The 1tfilehook package*

Frank Mittelbach
July 21, 2020

Contents

1 Introduction 1
1.1 Provided hooks e 1
1.2 General hooks for file reading 0oL 2
1.3 Hooks for package and class files L. 3
1.4 Hooks for \include files 4
1.5 High-level interfaces for BTEX 4
1.6 A sample package for structuring the log output 4

2 The Implementation 5
2.1 expl3helpers 5
2.2 Declaring the file-related hooks 0oL 7
2.3 Patching BTEX commands (need proper integration later) 7
2.4 High-level interfaces for INXTRX L 13

3 Package emulation for compatibility 14
3.1 Package filehook emulation 0oL 14
3.2 Package scrlfile emulation L oL oL 15

4 A sample package for structuring the log output 16

Index 17

1 Introduction

1.1 Provided hooks

The code offers a number of hooks into which packages (or the user) can add code to
support different use cases. Many hooks are offered as pairs (i.e., the second hook is
reversed. Also important to know is that these pairs are properly nested with respect to
other pairs of hooks.

There are hooks that are executed for all files of a certain type (if they contain code),
e.g., for all “include files” or all “packages”, and there are also hooks that are specific to
a single file, e.g., do something after the package foo.sty has been loaded.

*This package has version v0.9a dated 2020/07/19, © IATEX Project.

1.2 General hooks for file reading

There are four hooks that are called for each file that is read using document-level com-
mands such as \input, \include, \usepackage, etc. They are not called for files read
using internal low-level methods, such as \@input or \openin.

file/before These are:

file/before/. ..

file/after/... file/before, file/before/(file-name) These hooks are executed in that order just
file/after before the file is loaded for reading. The code of the first hook is used is used with

every file, while the second is executed only for the file with matching (file-name)
allowing you to specify code that only applies to one file.

file/after/(file-name), file/after These hooks are after the file with name (file-name)
has been fully consumed. The order is swapped (the specific one comes first) so
that the before and after hooks nest properly, which is important if any of them
involve grouping (e.g., contain environments, for example). furthermore both hooks
are reversed hooks to support correct nesting of different packages add code to both
/before and /after hooks.

So the overall sequence of hook processing for any file read through the user interface
commands of ITEX is:

\UseHook{(file/before)}
\UseHook{(file/before/(file name))}
(file contents)
\UseHook{(file/after/(file name))}
\UseHook{(file/after)}

Todo: With a higher-level interface that doesn’t matter, but it is a bit weird,
if you use \AddToHook or \hook_gput:nnn directly, so I guess that has to be
done differently!

The file hooks only refer to the file by its name and extension, so the (file name)
should be the file name as it is on the filesystem with extension (if any) and without
paths. Different from \input and similar commands, for hooks the .tex extension is not
assumed, so .tex files must also be given with their extension. Files within subfolders
should also be addressed by their name and extension only.

Extensionless files also work, and should then be given without extension. Note
however that TEX prioritizes .tex files, so if two files foo and foo.tex exist in the
search path, only the latter will be seen.

When a file is input, the (file name) is available in \CurrentFile, which is then
used when accessing the file/before/(file name) and file/after/(file name).

\CurrentFile The name of the file about to be read (or just finished) is available to the hooks through
\CurrentFile (there is no expl3 name for it for now). The file is always provided with
its extension, i.e., how it appears on your hard drive, but without any specified path
to it. For example, \input{sample} and \input{app/sample.tex} would both have
\CurrentFile being sample.tex.

\CurrentFilePath The path to the current file (complement to \CurrentFile) is available in \CurrentFilePath
if needed. The paths returned in \CurrentFilePath are only user paths, given through
\input@path (or expl3’s equivalent \1_file_search_path_seq) or by directly typing in
the path in the \input command or equivalent. Files located by kpsewhich get the path
added internally by the TEX implementation, so at the macro level it looks as if the file
were in the current folder, so the path in \CurrentFilePath is empty in these cases
(package and class files, mostly).

1.3 Hooks for package and class files

Commands to load package and class files (e.g., \usepackage, \RequirePackage,
\LoadPackageWithOptions, etc.) offer the hooks from section 1.2 when they are used to
load a package or class file, e.g., file/after/array.sty would be called after the array
package got loaded. But as packages and classes form as special group of files, there are
some additional hooks available that only apply when a package or class is loaded.

package/before These are:

package/after

package/before/... package/before, package/after These hooks are called for each package being loaded.
package/after/. ..

class/before package/before/(name), package/after/(name) These hooks are additionally called if
class/after the package name is (name) (without extension).

class/before/. ..

class/after/. .. class/before, class/after These hooks are called for each class being loaded.

class/before/(name), class/after/(name) These hooks are additionally called if the
class name is (name) (without extension).

All /after hooks are implemented as reversed hooks.
The overall sequence of execution for \usepackage and friends is therefore:

\UseHook{(package/before)}
\UseHook{(package/before/(package name))}

\UseHook{(file/before)}
\UseHook{(file/before/(package name).sty)}
(package contents)
\UseHook{(file/after/(package name).sty)}
\UseHook{(file/after)}

code from \AtEndOfPackage if used inside the package

\UseHook{(package/after/{package name))}
\UseHook{(package/after)}

and similar for class file loading, except that package/ is replaced by class/ and
\AtEndOfPackage by \AtEnd0fClass.

If a package or class is not loaded (or it was loaded before the hooks were set) none
of the hooks are executed!

include/before

include/before/. ..

include/end
include/end/. ..
include/after

include/after/...

1.4 Hooks for \include files

To manage \include files, I TEX issues a \clearpage before and after loading such a
file. Depending on the use case one may want to execute code before or after these
\clearpages especially for the one that is issued at the end.

Executing code before the final \clearpage, means that the code is processed while
the last page of the included material is still under construction. Executing code after
it means that all floats from inside the include file are placed (which might have added
further pages) and the final page has finished.

Because of these different scenarios we offer hooks in three places." None of the hooks
are executed when an \include file is bypassed because of an \includeonly declaration.
They are, however, all executed if IXTEX makes an attempt to load the \include file
(even if it doesn’t exist and all that happens is “No file (filename).tex”).

These are:

include/before, include/before/(name) These hooks are executed one after another
after the initial \clearpage and after .aux file is changed to use (name).aux, but
before the (name).tex file is loaded. In other words they are executed at the very
beginning of the first page of the \include file.

include/end/(name), include/end These hooks are executed (in that order) after
ETEX has stopped reading from the \include file, but before it has issued a
\clearpage to output any deferred floats.

include/after/(name), include/after These hooks are executed (in that order) after
ETEX has issued the \clearpage but before is has switched back writing to the
main .aux file. Thus technically we are still inside the \include and if the hooks
generate any further typeset material including anything that writes to the .aux
file, then it would be considered part of the included material and bypassed if it is
not loaded because of some \includeonly statement.?

1.5 High-level interfaces for BTEX

We do not provide any high-level WTEX commands (like filehook or scrlfile do) but think
that for package writers the commands from for hook management are sufficient.

1.6 A sample package for structuring the log output

As an application we provide the package structuredlog that adds lines to the .log when
a file is opened and closed for reading keeping track of nesting level es well. For example,
for the current document it adds the lines

(LEVEL 1 START) tilmr.fd
= (LEVEL 1 STOP) t1ilmr.fd
(LEVEL 1 START) supp-pdf.mkii

If you want to execute code before the first \clearpage there is no need to use a hook—you can
write it directly in front of the \include.

2For that reason another \clearpage is executed after these hooks which normally does nothing, but
starts a new page if further material got added this way.

\CurrentFile
\CurrentFilePath

(LEVEL 1 STOP) supp-pdf.mkii

= (LEVEL 1 START) nameref.sty

= (LEVEL 2 START) refcount.sty

= (LEVEL 2 STOP) refcount.sty

= (LEVEL 2 START) gettitlestring.sty
= (LEVEL 2 STOP) gettitlestring.sty

= (LEVEL 1 STOP) nameref.sty

= (LEVEL 1 START) 1ltfilehook-doc.out
= (LEVEL 1 STOP) 1ltfilehook-doc.out
= (LEVEL 1 START) ltfilehook-doc.out
= (LEVEL 1 STOP) 1ltfilehook-doc.out
= (LEVEL 1 START) ltfilehook-doc.hd
= (LEVEL 1 STOP) 1tfilehook-doc.hd
= (LEVEL 1 START) 1ltfilehook.dtx

== (LEVEL 2 START) otilmr.fd

== (LEVEL 2 STOP) otllmr.fd

== (LEVEL 2 START) omllmm.fd

== (LEVEL 2 STOP) omllmm.fd

== (LEVEL 2 START) omslmsy.fd

== (LEVEL 2 STOP) omslmsy.fd

== (LEVEL 2 START) omxlmex.fd

== (LEVEL 2 STOP) omxlmex.fd

== (LEVEL 2 START) umsa.fd

== (LEVEL 2 STOP) umsa.fd

== (LEVEL 2 START) umsb.fd

== (LEVEL 2 STOP) umsb.fd

== (LEVEL 2 START) tsilmr.fd

== (LEVEL 2 STOP) tsilmr.fd

== (LEVEL 2 START) tllmss.fd

== (LEVEL 2 STOP) tllmss.fd

= (LEVEL 1 STOP) 1ltfilehook.dtx

Thus if you inspect an issue in the .log it is easy to figure out in which file it occurred,
simply by searching back for LEVEL and if it is a STOP then remove 1 from the level value
and search further for LEVEL with that value which should then be the START level of the
file you are in.

2 The Implementation

1 (*2ekernel)
2.1 expl3 helpers
> (@@=filehook)

User-level macros that hold the current file name and file path. These are used internally
as well because the code takes care to protect against a possible redefinition of these
macros in the loaded file (it’s necessary anyway to make hooks work with nested \input).

3 \def\CurrentFile{}
1 \def\CurrentFilePath{}

(End definition for \CurrentFile and \CurrentFilePath. These functions are documented on page 2.)

\1__filehook_internal t1 When inputting a file, \@filehook@set@curr@file does a file lookup (in \input@path
\@filehook@set@currefile and \1_file_search_path_seq) and returns the actual file name ((base) plus (ext)) in
_filehook normalise file nane:n \CurrentFile. Only the base and extension are returned, regardless of the input (both
path/to/file.tex and file.tex end up as file.tex in \CurrentFile). The path is
returned in \CurrentFilePath, in case it’s needed. \CurrentFile is then used to run
the file hooks with file/before/\CurrentFile and file/after/\CurrentFile.
s \ExplSyntaxOn
6 \tl_new:N \1__filehook_internal_tl
7 \cs_new_protected:Npn \@filehook@set@curr@file #1
¢ { \exp_args:NV __filehook_normalise_file_name:n #1 }
o \cs_new_protected:Npn __filehook_normalise_file_name:n #1

10 {

11 \file_if_exist:nTF {#1}

12 {

13 \exp_args:Nx \file_parse_full_name:nNNN
12 { \file_full_name:n {#1} }

15 }

16 { \file_parse_full_name:nNNN {#1} }

17 \CurrentFilePath \CurrentFile \1__filehook_internal_tl

18 \tl_set:Nx \CurrentFile { \CurrentFile \1__filehook_internal_tl }
19 }

(End definition for \1__filehook_internal_tl, \@filehook@set@curr@file, and __filehook_normalise_-
file_name:n. This function is documented on page ?7.)

\g__filehook_input_file_seq Yet another stack, to keep track of \CurrentFile and \CurrentFilePath with nested
\@filehook@file@push \inputs. At the beginning of \InputIfFileExists, the current value of \CurrentFilePath
\@filehook@file@pop and \CurrentFile is pushed to \g__filehook_input_file_seq, and at the end, it

_ filehook file pop assign:nn is popped and the value reassigned. \IfFileExists does \set@curr@file internally,
which changes \CurrentFile, so \@filehook@file@push has to be executed before
\IfFileExists.

20 \seq_new:N \g__filehook_input_file_seq
1 \cs_new_protected:Npn \@filehook@file@push

22 {

23 \seq_gpush:Nx \g__filehook_input_file_seq

2 { { \CurrentFilePath } { \CurrentFile } }

»x }

26 \cs_new_protected:Npn \@filehook@file@pop

27 {

28 \seq_gpop:NNTF \g__filehook_input_file_seq \1__filehook_internal_tl
29 { \exp_after:wN __filehook_file_pop_assign:nn \1__filehook_internal_tl }
30 { \ERROR_should_not_happen }

31}

52 \cs_new_protected:Npn __filehook_file_pop_assign:nn #1 #2

33 {

34 \tl_set:Nn \CurrentFilePath {#1}

35 \tl_set:Nn \CurrentFile {#2}

36 }

37 \ExplSyntax0ff

(End definition for \g__filehook_input_file_seq and others. These functions are documented on page
?7.)

\InputIfFileExists

2.2 Declaring the file-related hooks

All hooks starting with file/ include/, class/ or package/ are generic and will be
allocated if code is added to them. Thus there is no need to explicitly declare any hook
in the code below.

Furthermore, those named .../after or .../end are automatically declared as
reversed hooks if filled with code, so this is also automatically taken care of.

2.3 Patching BTEX commands (need proper integration later)

Most of what we have to do is adding \UseHook into several IATEX 2¢ core commands,
which is done for now by patching them.

38 <@@=>

\InputIfFileExists loads any file if it is available so we have to add the hooks
file/before and file/after in the right places. If the file doesn’t exist no hooks
should be executed.

50 \let\InputIfFileExists\@undefined

20 \DeclareRobustCommand \InputIfFileExists[3]{/

21 \@filehook@file@push

2 \IfFileExists{#1}},

43 {4
If the file exists then \@curr@file holds its name. But we can’t rely on that still being
true after the file has been processed. Thus for using the name in the file hooks we need
to preserve the name and then restored it for the file/after/... hook.

The hook always refers to the actual file that will be operated on, regardless of how
the user had it written in the document. expl3’s \file_full_name:n normalizes the file
name (to factor out differences in the .tex extension), and then does a file lookup to
take into account a possible path from \1_file_search_path_seq and \input@path.
However only the file name and extension are returned so that file hooks can refer to the
file by their name only. The path to the file is returned in \CurrentFilePath.

a4 \edef\reserved@a{\@filef@und

a5 \def\noexpand\CurrentFile{\CurrentFile}J,

46 \def\noexpand\CurrentFilePath{\CurrentFilePath},
47 }%

48 \expandafter\@swaptwoargs\expandafter

49 {\reserved@aly,

50 {u/o

51 #2

52 \@addtofilelist{#1}%

53 \UseHook{file/beforel}),

The current file name is available in \@curr@file so we use that in the specific hook.
54 \UseHook{file/before/\CurrentFilel}

55 \@@input

56 Y
And it is restored here so we can use it once more.

57 \UseHook{file/after/\CurrentFilel}Y

58 \UseHook{file/after}/

59 \@filehook@file@pop

60 Y%

61 {\@filehook@file@pop #3}%

o}

(End definition for \InputIfFileExists. This function is documented on page ?7.)

\set@curr@file Now we just hook into \set@curr@file to add \@filehook@set@curr@file at the end,
after \@curr@file is set.

63 \def\set@curr@file#1{},

e \begingroup

65 \escapechar\m@ne

66 \xdef\Q@curr@file{’

67 \expandafter\expandafter\expandafter\unquote@name
68 \expandafter\expandafter\expandafter{’

69 \expandafter\string

70 \csname\@firstofone#1\@empty\endcsname}1}/,
71 \endgroup

72 \@filehook@set@curr@file{\@currefile},

73}

(End definition for \set@curr@file. This function is documented on page 77.)

\load@onefilewithoptions This macro is used when loading packages or classes.

72 \def\load@onefilewithoptions#1 [#2] [#3]#4{/
s \@pushfilename

7% \xdef\Qcurrname{#11}J,

77 \global\let\@currext#4y}

7z \let\CurrentOption\@empty

79 \@reset@ptions

20 \makeatletter

st \def\reserved@a{’

82 \@ifl@aded\Qcurrext{#11}J,

83 {\e@if@ptions\@currext{#1}{#2}{}%

84 {\@latex@error

85 {Option clash for \@cls@pkg\space #1}/

86 {The package #1 has already been loaded

87 with options:\MessageBreak

88 \space\space[\@ptionlist{#1.\Q@currext}]\MessageBreak
89 There has now been an attempt to load it

9 with options\MessageBreak

01 \space\space [#2] \MessageBreak

92 Adding the global options:\MessageBreak

93 \space\space

94 \@ptionlist{#1.\Qcurrext},#2\MessageBreak

05 to your \noexpand\documentclass declaration may fix this.%
9 \MessageBreak

o7 Try typing \space <return> \space to proceed.l}}}%

08 {\@pass@ptions\Q@currext{#2}{#1}/

99 \global\expandafter

100 \let\csname ver@\@currname.\@currext\endcsname\Q@empty
101 \expandafter\let\csname\@currname.\@currext-h@@k\endcsname\Q@empty

102 \InputIfFileExists

103 {\@currname.\@currextl}’

104 {%

105 % -— e

When the current extension is \@pkgextension we are loading a package otherwise, if
it is \@clsextension, a class, so depending on that we execute different hooks. If the
extension is neither, then it is another type of file without special hooks.

106 \ifx\@currext\@pkgextension

107 \UseHook{package/before}’

108 \UseHook{package/before/\@currnamel}y,
109 \else

110 \ifx\@currext\@clsextension

111 \UseHook{class/before},

112 \UseHook{class/before/\@currnamel}y,

113 \fi

114 \fi

The value of \CurrentFile holds during \InputIfFileExists, so the hooks above have
that available for using. However at this point \CurrentFile is reset to its previous value
by \@filehook@file@pop because it doesn’t know that we’ll have more hooks ahead. So
here (still in the (¢rue) branch of \InputIfFileExists, right after actually reading the
file in) we’ll cheat: use \@filehook@file@push once more, so there are two entries for
the current file in the name stack, so that when \InputIfFileExists pops it, there’s
still one (identical) left.

115 \@filehook@file@push

116 % - e i

117 }Vn

118 {\@missingfileerror\@currname\@currext}’
119 \let\Qunprocessedoptions\@@unprocessedoptions

120 \csname\@currname . \@currext-h@@k\endcsname
121 \expandafter\let\csname\@currname.\@currext-h@@k\endcsname
122 \@undefined

123 o/g T

And same procedure, James, when we are finished loading, except that the hook order is
now reversed.

124 \ifx\Qcurrext\@pkgextension

125 \UseHook{package/after/\@currname}j,
126 \UseHook{package/after},

127 \else

128 \ifx\@currext\@clsextension

129 \UseHook{class/after/\@currnamel},

130 \UseHook{class/after}/,

131 \fi

132 \fi

Now here we do \@filehook@file@pop to restore the \CurrentFile before this file being
loaded and fix what we’ve done in the stack right above.

133 \@filehook@file@pop

134 % _____________ TTTTTT T T T T T T T T
135 \@unprocessedoptions}y

136 \@ifl@ter\Qcurrext{#1}{#3}{}%

137 {\@latex@warning@no@line

138 {You have requested,\on@line,

139 version\MessageBreak

140 ‘#3° of \@cls@pkg\space #1,\MessageBreak

141 but only version\MessageBreak

142 ‘\csname ver@#1.\@currext\endcsname’\MessageBreak

143 is availablel}}%
144 \ifx\@currext\@clsextension\let\LoadClass\@twoloadclasserror\fi

145 \@popfilename
146 \@reset@ptionsl}y,
147 \reserved@a}

The code for this macro has changed between 2020/02/02 and 2020/10/01 so the

never version is this:

s \@ifl@tO@r\fmtversion{2020/10/01}

1o {%

150 \def\load@onefilewithoptions#1 [#2] [#3]#4{/
151 \@pushfilename

152 \xdef\@currname{#1}/,

153 \global\let\@currext#4,

155 \let\CurrentOption\Qempty

155 \@reset@ptions

156 \makeatletter

157 \def\reserved@a{¥

158 \@ifl@aded\Qcurrext{#11}/

150 {\@if@ptions\@currext{#1}{#2}{}%

160 {\@latex@error

161 {Option clash for \@cls@pkg\space #1}J,

162 {The package #1 has already been loaded

163 with options:\MessageBreak

164 \space\space[\@ptionlist{#1.\@currext}]\MessageBreak
165 There has now been an attempt to load it

166 with options\MessageBreak

167 \space\space [#2] \MessageBreak

168 Adding the global options:\MessageBreak

169 \space\space

170 \@ptionlist{#1.\@currext},#2\MessageBreak

171 to your \noexpand\documentclass declaration may fix this.}
172 \MessageBreak

173 Try typing \space <return> \space to proceed.}}}’
174 {\@pass@ptions\@currext{#2}{#1}

175 \global\expandafter

176 \let\csname ver@\@currname.\@currext\endcsname\Q@empty
177 \expandafter\let\csname\@currname.\@currext-h@0k\endcsname\Qempty
178 \InputIfFileExists

179 {\@currname.\@currext}/

180 %

181 % ___

182 \ifx\@currext\@pkgextension

183 \UseHook{package/beforel}’

184 \UseHook{package/before/\@currname}

185 \else

186 \ifx\@currext\@clsextension

187 \UseHook{class/beforel}/,

188 \UseHook{class/before/\@currnamel}y,

189 \fi

190 \fi

101 \@filehook@file@push

192 % _____________ T TTTT T T T T T

193 }Vn

10

194 {\@missingfileerror\@currname\Q@currext}y,

105 \expandafter\let\csname unprocessedoptions-\@currname.\@currext\endcsname
196 \@@unprocessedoptions

197 \csname\@currname.\Qcurrext-h@@k\endcsname

198 \expandafter\let\csname\@currname.\Q@currext-h@@k\endcsname
199 \@undefined

200 \ifx\Qunprocessedoptions\relax

201 \let\@Qunprocessedoptions\@undefined

202 \else

203 \csname unprocessedoptions-\@currname.\@currext\endcsname
204 \fi

205 \expandafter\let

206 \csname unprocessedoptions-\Qcurrname.\Q@currext\endcsname
207 \@undefined

208 % - -

209 \ifx\Qcurrext\@pkgextension

210 \UseHook{package/after/\@currname}j,

211 \UseHook{package/after}/,

212 \else

213 \ifx\@currext\@clsextension

214 \UseHook{class/after/\@currnamely,

215 \UseHook{class/afterl}},

216 \fi

217 \fi

218 \@filehook@file@pop

219 o/g - T TTT T T T T T T T

220 }%

21 \@ifl@ter\@currext{#1}{#3}{}/

222 {\@latex@warning@no@line

223 {You have requested,\on@line,

224 version\MessageBreak

225 ‘#3’ of \@cls@pkg\space #1,\MessageBreak

226 but only version\MessageBreak

227 ‘\csname ver@#1.\@currext\endcsname’\MessageBreak

228 is availablel}l}

229 \ifx\@currext\@clsextension\let\LoadClass\@twoloadclasserror\fi
230 \@popfilename

231 \@reset@ptionsl}y

22 \reserved@a}

233 HYh

(End definition for \load@onefilewithoptions. This function is documented on page 77.)

\@include

2 \def\@include#1 {%

255 \clearpage

236 \if@filesw

237 \immediate\write\@mainaux{\string\Q@input{#1.aux}}%
238 \fi

239 \@tempswatrue

20 \if@partsw

241 \@tempswafalse
242 \edef\reserved@b{#1}¥
243 \@for\reserved@a:=\@partlist\do

11

244 {\ifx\reserved@a\reserved@b\Qtempswatrue\fi}y

245 \fi

26 \if@tempswa

247 \let\@auxout\@partaux

248 \if@filesw

249 \immediate\openout\@partaux #1.aux
250 \immediate\write\@partaux{\relax}y,
251 \fi

22 h —-—- —-—-

First we need to fix \CurrentFile, because due the pesky space-delimited \@include,
\CurrentFile contains the \include’d file with a space. To fix that, we re-do
\set@curr@file. The 2020/10/01 release doesn’t need this as \include was changed to
do \set@curr@file on the correct file name, rather than one with a trailing space.

253 \set@curr@file{#11}/,

Execute the before hooks just after we switched the .aux file ...

254 \UseHook{include/before}},
255 \UseHook{include/before/#1}Y
256 o/u ___
257 \@input@{#1.tex}’

. then end hooks ...
258 o/u _____________ T
250 \UseHook{include/end/#1}J
260 \UseHook{include/end}},
261 o/u ___
262 \clearpage

and after the \clearpage the after hooks followed by another \clearpage just
in case new material got added (after all we need to be in well defined state after the
\include).

263 % === T TTT T T T T T T
264 \UseHook{include/after/#1}%
265 \UseHook{include/after},

The additional \clearpage is needed to ensure that switching the .aux files happen at
a defined point even if the above hooks add further material.

266 \clearpage

267 fhm
268 \@writeckpt{#1}%

269 \if@filesw

270 \immediate\closeout\@partaux

271 \fi

272 \else

273 \deadcycles\z@

274 \@nameuse{cp@#1}/,

7
75 \fi
7 \let\@auxout\@mainaux

The code for this macro has changed between 2020/02/02 and 2020/10/01 so the
never version is this:

27s \@if1l@t@r\fmtversion{2020/10/01}
270 {h
230 \def\@include#l {J%

12

251 \clearpage

282 \if@filesw
283 \immediate\write\@mainaux{\string\Q@input{"#1.aux"}}%
284 \fi

25 \@tempswatrue
26 \if@partsw

287 \@tempswafalse

288 \edef\reserved@b{#1}/,

289 \@for\reserved@a:=\Qpartlist\do

290 {\ifx\reserved@a\reserved@b\Qtempswatrue\fi}y
201 \fi

200 \if@tempswa

203 \let\Qauxout\@partaux

294 \if@filesw

295 \immediate\openout\@partaux "#1.aux"
296 \immediate\write\@partaux{\relax}y,
207 \fi

298 % - -

299 \UseHook{include/before}

300 \UseHook{include/before/#1}/

301 % - -

302 \@input@{#1.tex}/

303 o/g T
304 \UseHook{include/end/#1}%

305 \UseHook{include/end}},

306 o/g === TS T T T T T T T T T T
307 \clearpage

T — S —
309 \UseHook{include/after/#11}/,

310 \UseHook{include/afterl}

311 \clearpage

312 % === T T T T T T T T T T T
313 \@writeckpt{#1}Y

314 \if@filesw

315 \immediate\closeout\@partaux

316 \fi

317 \else

318 \deadcycles\z@

319 \@nameuse{cp@#1}/,

320 \fi

21 \let\@auxout\@mainaux}

2 H3

(End definition for \@include. This function is documented on page ?77.)

2.4 High-level interfaces for BTEX

None so far and the general feeling for now is that the hooks are enough. Packages like
filehook, etc., may use them to set up their interfaces (samples are given below) but for
the now the kernel will not provide any.

23 (/2ekernel)

13

3 Package emulation for compatibility

3.1 Package filehook emulation

This is a partial implementation of the filehook interfaces. It is only meant for guidance
in case that package gets updated to use the hook management.
Not implemented are:

\AtBeginOfFiles
\AtEndOfFiles
\AtBeginOf Inputs
\AtEnd0f Inputs
\AtBeginOfInputFile
\AtEndOfInputFile

324 <*f| lehook-d raft)

325 \newcommand\AtBeginOfEveryFile [1]
326 {\AddToHook{file/before}{#1}}

227 \newcommand\AtEndOfEveryFile [1]
28 {\AddToHook{file/after}{#1}}

320 \newcommand\AtBeginOfIncludes [1]
330 {\AddToHook{include/before}{#1}}
331 \newcommand\AtEndOfIncludes [1]

332 {\AddToHook{include/end}{#1}}

333 \newcommand\AfterIncludes [1]
{\AddToHook{include/after}{#1}}

\newcommand\AtBeginOfPackages [1]

356 {\AddToHook{package/before}{#1}}
;37 \newcommand\AtEndOfPackages [1]

;33 {\AddToHook{package/after}{#1}}

@
o

330 \newcommand\AtBeginOfClasses [1]
30 {\AddToHook{class/before}{#1}}
31 \newcommand\AtEndOfClasses [1]

32 {\AddToHook{class/after}{#1}}

For normal files we drop the .tex extension for now:

33 \newcommand\AtBeginQfFile [2]

344 {\AddToHook{file/before/#1}{#2}}
25 \newcommand\AtEndOfFile [2]

16 {\AddToHook{file/after/#1}{#2}}

327 \DeclareDocumentCommand \AtBeginOfPackageFile {smm}
348 {\IfBooleanTF{#1}}

349 {\@ifpackageloaded{#2}/

350 {#3}70

351 {\AddToHook{package/before/#2}{#3}}1}/
352 {\AddToHook{package/before/#2}{#3}}/

353 }

;52 \DeclareDocumentCommand \AtEndOfPackageFile {smm}
355 {\IfBooleanTF{#1}/,

356 {\@ifpackageloaded{#2}%
357 {#3Y
358 {\AddToHook{package/after/#2}{#3}}}%

14

359 {\AddToHook{package/after/#2}{#3}}/
360 }

Are the * forms here of any use? I know they are use 3-4 times on CTAN but I
wonder if those are real or mistaken usages.
;61 \DeclareDocumentCommand \AtBeginOfClassFile {smm}

362 {\IfBooleanTF{#1}},
363 {\@ifclassloaded{#2}/,

364 {#3}%

365 {\AddToHook{class/before/#2}{#3}}}%
366 {\AddToHook{class/before/#2}{#3}}%

367 }

35 \DeclareDocumentCommand \AtEndOfClassFile {smm}
360 {\IfBooleanTF{#1}/

370 {\@ifclassloaded{#2}/

371 {#3}Y%

372 {\AddToHook{class/after/#2}{#3}}}%
373 {\AddToHook{class/after/#2}{#3}}%

374 }

375 \newcommand\AtBeginOfIncludeFile [2]

376 {\AddToHook{include/before/#1}{#2}}
377 \newcommand\AtEndOfIncludeFile [2]

72 {\AddToHook{include/end/#1}{#2}}

370 \newcommand\AfterIncludeFile [2]

350 {\AddToHook{include/after/#1}{#2}}

This is missing some interfaces so disabling the package isn’t really correct, but then
this code above is not supposed to stay like this anyway.

;51 \expandafter\let\csname ver@filehook.sty\endcsname\fmtversion
522 \@namedef {ver@filehook.sty}{2020/10/01}

353 (/filehook-draft)

3.2 Package scrlfile emulation

This is a partial implementation of the scrlfile interfaces. It is only meant for guidance
in case that package gets updated to use the hook management.

350 (*scrifile-draft)

I think this is roughly correct (using the file/... hooks rather than the class or
package hooks at least for the \After... commands but it needs some further verifica-
tion.

The star and plus variants haven’t been implemented so far, this is only a rough
draft.

355 \newcommand\BeforeClass [2]

36 {\AddToHook{file/before/#1.cls}{#2}}
557 \newcommand\AfterClass [2]

352 {\AddToHook{file/after/#1.cls}{#2}}
se0 \newcommand\AfterAtEnd0fClass [2]

500 {\AddToHook{class/after/#1}{#2}}

15

301 \newcommand\BeforePackage [2]

50 {\AddToHook{package/before/#1.sty}{#2}}
;03 \newcommand\AfterPackage [2]

304 {\AddToHook{file/after/#1.sty}{#2}}

505 \newcommand\AfterEndOfPackage [2]

306 {\AddToHook{package/after/#1}{#2}}

307 \newcommand\BeforeFile [2]

3098 {%

390 \typeout{BeforeFile: #1!!!}},

400 \AddToHook{file/before/#1}{#2}}
101 \newcommand\AfterFile [2]

w02 {h

403 \typeout{AfterFile: #1!!!}}

404 \AddToHook{file/after/#1}{#2}}

This is missing some interfaces so disabling the package isn’t really correct, but then
this code above is not supposed to stay like this anyway.

205 \expandafter\let\csname ver@scrlfile.sty\endcsname\fmtversion
w06 \@namedef {ver@scrlfile.sty}{2020/10/01}

a7 {/scrlfile-draft)

4 A sample package for structuring the log output

a8 (*structuredlog)
o (@@=filehook)

210 \ProvidesExplPackage
a1 {structuredlog}{\1ltfilehookdate}{\1tfilehookversion}
412 {Structuring the TeX transcript file}

213 \int_new:N \g__filehook_nesting_level_int

214 \tl_new:N \g__filehook_nesting_prefix_tl
215 \tl_gset:Nn \g__filehook_nesting_prefix_tl { }

216 \AddToHook{file/before}{

217 \int_gincr:N \g__filehook_nesting_level_int

25 \tl_gput_right:Nn\g__filehook_nesting_prefix_tl {=}

a0 \iow_term:x {

420 \g__filehook_nesting_prefix_tl \space

421 (LEVEL~ \int_use:N \g__filehook_nesting_level_int \space START)~

422 \CurrentFile ~~J

423 }

424 }

We don’t want to install the file/after hook immediately, because that would mean
it is the first time executed when the package finishes. We therefore put the declaration
inside \AddToHookNext so that it gets only installed when we have left the package.

125 \AddToHookNext{file/after}{
126 \AddToHook{file/after}{

427 \iow_term:x {

428 \g__filehook_nesting_prefix_tl \space

429 (LEVEL~ \int_use:N \g__filehook_nesting_level_int \space STOP)~
430 \CurrentFile ~~J

431 }

16

433
434

}
}

436

\int_gdecr:N \g__filehook_nesting_level_int
\tl_gset:Nx \g__filehook_nesting_prefix_tl
{\exp_after:wN \use_none:n \g__filehook_nesting_prefix_t1l}

We have to manually increment the level because now that we have installed the
code in file/after it gets decremented when we leave the package without ever being

incremented upon entry.

237 %\int_incr:N\g__filehook_nesting_level_int

138 (/structuredlog)

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

\AddToHook
332,

........ 2, 326, 328, 330,
334, 336, 338, 340, 342, 344,

346, 351, 352, 358, 359, 365, 366,

372, 373, 376, 378, 380, 386, 388,

390, 392, 394, 396, 400, 404, 416, 426
\AddToHookNext 16, 425
\After... 15
\AfterAtEndOfClass 389
\AfterClass 387
\AfterEndOfPackage 395
\AfterFile 401
\AfterIncludeFile 379
\AfterIncludes 333
\AfterPackage 393
\AtBeginOfClasses 339
\AtBeginOfClassFile 361
\AtBeginOfEveryFile 325
\AtBeginOfFile 343
\AtBeginOfIncludeFile 375
\AtBeginOfIncludes 329
\AtBeginOfPackageFile 347
\AtBeginOfPackages 335
\AtEndOfClassououe... 3
\AtEndOfClasses 341
\AtEndOfClassFile 368
\AtEndOfEveryFile 327
\AtEndOfFile 345
\AtEndOfIncludeFile 377
\AtEndOfIncludes 331
\AtEndOfPackage 3
\AtEndOfPackageFile 354
\AtEndOfPackages 337

17

B
\BeforeClass 385
\BeforeFile 397
\BeforePackage 391
\begingroup 64
C
class/after 3
class/after/... 3
class/before 3
class/before/... 3
\clearpagec..... 3,

4, 12, 12, 235, 262, 266, 281, 307, 311
\closeout 270, 315
cs commands:

\cs_new_protected:Npn 7,9, 21, 26, 32

\csname 70,
100, 101, 120, 121, 142, 176, 177
195, 197, 198, 203, 206, 227, 381, 405
\CurrentFile 2,2, 2,3,5,6,8, 9
11, 17, 18, 24, 35, 45, 54, 57, 422, 430
\CurrentFilePath 2, 3, 5, 6, 7, 17, 24, 34, 46
\CurrentOption 78, 154

\deadcycles 273, 318
\DeclareDocumentCommand 347, 354, 361, 368

\DeclareRobustCommand 40
\def 3,
4, 45, 46, 63, 74, 81, 150, 157, 234, 280
NAO + et 243, 289
\documentclass 95, 171
E
\edef 44, 242, 288

\else 109, 127, 185, 202, 212, 272, 317

\endcsname 70,
100, 101, 120, 121, 142, 176, 177
195, 197, 198, 203, 206, 227, 381, 405

\endgroup 71
ERROR commands:
\ERROR_should_not_happen 30
\escapechar 65
exp commands:
\exp_after:wN 29, 434
\exp_args:NV 8
\exp_args:Nx 13

\expandafter ... 48, 67, 68, 69, 99, 101,
121, 175, 177, 195, 198, 205, 381, 405

\ExplSyntaxOff 37

\ExplSyntaxOn 5

\fi 113, 114, 131, 132, 144, 189, 190, 204,
216, 217, 229, 238, 244, 245, 251,
271, 275, 284, 290, 291, 297, 316, 320
file commands:

\file_full_name:n 7, 14
\file_if_exist:nTF 11
\file_parse_full_name:nNNN 13, 16
\1_file_search_path_seq 2,5, 7
file/after 1
file/after/... 1
file/before 1
file/before/... 1
filehook internal commands:
__filehook_file_pop_assign:nn .. 20
\g__filehook_input_file_seq 6, 20

\1__filehook_internal_tl ... 5, 28, 29
\g__filehook_nesting_level_int ..
413, 417, 421, 429, 432, 437
\g__filehook_nesting_prefix_tl ..

. 414, 415, 418, 420, 428, 433, 434

__filehook_normalise_file_-

NAME T« v v e et e e e 5
\fmtversion 148, 278, 381, 405
G
\global 77,99, 153, 175
H

hook commands:
\hook_gput:nnn 2
I
\IfBooleanTF 348, 355, 362, 369
\IfFileExists 6, 42
\ifx 106, 110, 124, 128, 144,

182, 186, 200, 209, 213, 229, 244, 290

18

\immediate
237, 249, 250, 270, 283, 295, 296, 315
\include 1, 8, 4, 11, 12
include/after 4
include/after/... 4
include/before 4
include/before/... 4
include/end 4
include/end/... 4
\includeonly 3, 4
\input 1,2, 2, 5,6
\InputIfFileExists 6, 7, 8 9, 39, 102, 178

int commands:
\int_gdecr:N 432
\int_gincr:N 417
\int_incr:N 437
\int_new:N 413
\int_use:N 421, 429
iow commands:
\iow_term:n 419, 427
L

\let . 39, 77, 78, 100, 101, 119, 121, 144,

153, 154, 176, 177, 195, 198, 201,
205, 229, 247, 276, 293, 321, 381, 405
\LoadClass 144, 229
\LoadPackageWithOptions 2
\ltfilehookdate 411
\1ltfilehookversion 411

M

\makeatletter 80, 156

\MessageBreak 87, 88, 90, 91, 92, 94, 96
139, 140, 141, 142, 163, 164, 166,
167, 168, 170, 172, 224, 225, 226, 227

\newcommand
. 325, 327, 329, 331, 333, 335, 337,
339, 341, 343, 345, 375, 377, 379,
385, 387, 389, 391, 393, 395, 397, 401

\noexpand 45, 46, 95, 171
(0]

\openin 1
\openout 249, 295
P
package/after 3
package/after/... 3
package/before 3
package/before/... 3
\ProvidesExplPackage 410

R
\relaxc..iii.. 200, 250, 296
\RequirePackage 2
reserved@a commands:
\reserved@a: 243, 289
S
seq commands:
\seq_gpop:NNTF 28
\seq_gpush:Nn 23
\seq_new:N 20

\space . 85, 88, 91, 93, 97, 140, 161, 164,
167, 169, 173, 225, 420, 421, 428, 429
\string 69, 237, 283
T
TEX and ETEX 2 commands:
\@@input 55
\@Q@unprocessedoptions 119, 196
\@addtofilelist 52
\Qauxout 247, 276, 293, 321
\@cls@pkg 85, 140, 161, 225
\@clsextension
..... 8, 110, 128, 144, 186, 213, 229
\@curr@file 7,7, 7, 66, 72
\@currext 77, 82, 83, 88

94, 98, 100, 101, 103, 106, 110, 118,
120, 121, 124, 128, 136, 142, 144,
153, 158, 159, 164, 170, 174, 176,
177, 179, 182, 186, 194, 195, 197
198, 203, 206, 209, 213, 221, 227, 229
\@currname 76, 100, 101,
103, 108, 112, 118, 120, 121, 125,
129, 152, 176, 177, 179, 184, 188,
194, 195, 197, 198, 203, 206, 210, 214

\@empty . 70, 78, 100, 101, 154, 176, 177
\efilef@und 44
\@filehook@file@pop
.......... 9, 9, 20, 59, 61, 133, 218
\@filehook@file@push
............ 6, 9, 20, 41, 115, 191
\@filehook@set@curr@file . 5, 5, 7, 72
\@firstofone 70
\@for, 243, 289
\@if@ptions 83, 159
\@ifclassloaded 363, 370
\@ifl@aded 82, 158
\@ifl@tOr 148, 278
\@ifl@ter 136, 221
\@ifpackageloaded 349, 356
\@include 11, 234
\@input 1, 237, 283
\@input@ 257, 302
\@latex@error 84, 160
\@latex@warning@no@line 137, 222

19

\@mainaux 237, 276, 283, 321
\@missingfileerror 118, 194
\@namedef 382, 406
\@nameuse 274, 319
\@partaux
247, 249, 250, 270, 293, 295, 296, 315
\@partlist 243, 289
\@pass@ptions 98, 174
\@pkgextension 8, 106, 124, 182, 209
\@popfilename 145, 230
\@ptionlist 88, 94, 164, 170
\@pushfilename 75, 151
\@reset@ptions 79, 146, 155, 231
\@swaptwoargs 48
\@tempswafalse 241, 287
\@tempswatrue 239, 244, 285, 290
\@twoloadclasserror 144, 229
\@undefined 39,122, 199, 201, 207
\@unprocessedoptions 119, 135, 200, 201
\@uriteckpt 268, 313
\if@filesw . 236, 248, 269, 282, 294, 314
\if@partsw 240, 286
\if@tempswa 246, 292
\input@path 2,5, 7
\load@onefilewithoptions 74
\m@ne, 65
\on@line 138, 223
\reserved@a

. 44, 49, 81, 147, 157, 232, 244, 290

\reserved@b 242, 244, 288, 290
\set@curr@file 6, 7, 11, 63, 253
\unquote@name 67
\NZ@ 273, 318
tl commands:
\tl_gput_right:Nn 418
\tl_gset:Nn 415, 433
\tl new:N 6, 414
\tl_set:Nn 18, 34, 35
\typeout 399,403
U
use commands:
\use_none:n 434
\UseHook 2, 3, 6, 53, 4,
57, 58, 107, 108, 111, 112, 125, 126,
129, 130, 183, 184, 187, 188, 210,
211, 214, 215, 254, 255, 259, 260,
264, 265, 299, 300, 304, 305, 309, 310
\usepackage 1,2, 8
\L\%
\write 237, 250, 283, 296
X
\xdef 66, 76, 152

	Contents
	1 Introduction
	1.1 Provided hooks
	1.2 General hooks for file reading
	1.3 Hooks for package and class files
	1.4 Hooks for \include files
	1.5 High-level interfaces for LaTeX
	1.6 A sample package for structuring the log output

	2 The Implementation
	2.1 expl3 helpers
	2.2 Declaring the file-related hooks
	2.3 Patching LaTeX commands (need proper integration later)
	2.4 High-level interfaces for LaTeX

	3 Package emulation for compatibility
	3.1 Package filehook emulation
	3.2 Package scrlfile emulation

	4 A sample package for structuring the log output
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

