~)

The
MM -TEX

B "S'f.,'.;.'leard s Mdﬂual'_,;h'

COPynght 1991 by Mlchael Sprvak

All nghts Reserved

A rote on the
IAMS-TEX s Wizard’s Manual

At present the Wizard’s Manual is available only in this form, Zaboriously
printed on a laser printer: The manual was divided into several sections,
and for each section two . dvi files were produced, one for * rinting the
odd-numbered pages, one for the even-numbered pages.

As a result of this procedure, which was carried out fairly hastily, several
anomalies may occur, like running heads o= ctherwise blank pages, or
twc footnotes on a page both numbered 1: these anomaliss are artifacts
that do not occur when the file is handled normally.

In the unlikely event that there is sufficient interest in this Wizard’s Man-
ual to warrant publication as a book, a special rate will be given to those
who have ordered the manual in its current form.

Meanwhile, updates will be issued as bugs are discovered and corrscted,
or as new features are added.

The idea of making an index is toc horrible to contemplate——many,
many entries would probably have dozens of citations. However, s/hen
the manual seems to have reached a stable state I will provide a “scurce”
code. This will notbe a .tex file, but a sort of ASCII representatior: of
the book, so that one can use a text editor to search for anythirg.

Meanwhile, of course, please report any misprints, mistakes, omissions,
bugs, etc., either by mail,

TgXplorators
3707 'W. Alabama, Suits 450-273
Heuston, X, 77(27 U.5.A)

or by e-mail,

spivak@rice.edn

CONTENTS
Part I Preliminaries
Chapter 1. Introduction e e e
1.1 AuS-TeX Conventions e
1.2 = Constructions from. .AMS STEX o e e e e
1.3 . Changes to AVSSTEX; \ldcal: aﬁd \glb’bal ‘assignments :
Chapter 2, GemngstartedamihMMS-m e e e e e e
Chapter 3, Changes to AyS-TEX T
5131 \Err@ e '
1032 \atdsfe.. PO
33 Tests. T
3.4 Spaces after control sequence names in errormessages
85 Linebreaking e e e
3.6 \alloc@Q, \newcount®, and \newbox@ I £
87 Lists. S NS 3 §
8.8 Skipping spaces in \futurelet’s e
39 \loop e e e e e
3.10 Aléfrangals ol e e e e e e N

Chapter 4. Numbering styies P e e
Chapter 5. Printing cardinal and ordinal nwmbers A%
Chapter 6. Inbibiting éxpansion I

* Chapter 7. Invisibility -

A 1 Inv1s1b1e conss“ructtons

......................

ii Contents
Chapter 8. Special considerations for \everypar
Chapter 9. \Page« v v v v v vt e
Chapter 10. Indexing e e e
101 The.ndxfileo
©10.2 \indexproofing
. 10.3 Converting tokensto type 12
104 The \starparts@ and \windex@routines
105 Indexing v v v v e e e
10.6 Changes to the 4yS-TEXManual
107 Invisibility
10.8 Other delimiters for indexentries
10.9 - \idefineand \iabbrev. -
Part II Labels and Cross References
Chapter 11. The \label mechanism & N
11.1 Constructions that can be given {label)’s
“11.2 Restrictions v v 0 v e e e b e e e e e e -
- 11.3 Consequences of these restricdons PRIV SRS
11.4 \Initialize IR P
11.5 The questionoffonts. P
11.6 Storing (label)’s e e e e e e e e e e e
11.7 \refanditsrelatives . -i: %o v v'vie o v v e e .
118 \label v v v i e e
119 \pagelabel e e e e e e
Chapter 12. Beginning the document v
©12.1 Preliminaries” S
122 \document ‘.nL OSSO L Ve L

Conients

Chapter 13. Labels

........................

131 \label
18.2 \pagelabel
Chapter 14. Cross-Referencing
141 Preliminaries
142 \refanditsrelatives.
Chapter 15. Reading auxiliaryfiles
151 \readlax i
152 Stylefiles 0000

Part III Particular Constructions Allowing Labels
and their associates

Chapter 16. Displayed formulas
16.1 Imvisibiity
16.2 Localizinglabels
163 \tag e e
164 N\align
16.5 \alignatand \xalignat

16.6 \gather

Chapter 17. New counters

17.1 \newcounter
17.2 \usecounter

.......................

Chapter 18. Lists

18.1 Style choices
182 Counters,etc. 0 v e e e e e e
18.3 Other preliminaries
184 \list
1856 \item

.........................

...................

.........................

iv Contents

186 \runinitem@ 141
187 \inlevel« o e e e e e e e e 148
188 Noutlevel« i i e e e e e e e 144
189 \endlist e e 144
Chapter 19. \describeand \margins 148
19.1 \describe 148
192 \marginso 149
Chapter 20. \nopunct, \nospace, and \overlong 154
20.1 \nopunct, \nospace, and \overlong 154
20.2 Usingtheflags 159
Chapter2l.\demo 161
Chapter 22, \claim’s 165
221 Preliminaries v v e e e e e e e e 165
2922 \claimformat@@ v & v v v v v oo 166
22.3 Further preliminaries 168
22.4 Startingalclaim 169
22.5 Startinga\claim@c 171
22.6 Startingalclaim@q 173
227 Finishingoff o000 173
292.8 \endclaim e e e e e 175
229 \newclaim e 175
99.10 \shortenclaim v v v 181
22.11 Customizing \claim's 185
Chapter 23. Headinglevels 187
23.1 The.tocfile e e e e e e 187
23.2 Preliminaries e e e e e e e e e e e e 187
23.3 Differentlevelsof \HL. 188
23.4 The\HLconstrucdon « v v v « « .« . 188
23.5 Thel\hlcomstruction « v v v v v o v . . 195
23.6 Other elements of headinglevels 198
23.7 Writinglongtokenlists 199

Contents v

23.8 \HLtoc@and \hltoc@ 201
239 \mainfile, 207
23.10 Creating headinglevels 208
23.11 Inmitializations 211
23.12 \aftertoc@ 212
23.13 Order ofheadinglevels 213
23.14 Naming headerlevels 214
23.15 \Imitialize 221
Chapter 24. Accessing and controlling counters, styles,etc. 224
Chapter 25. Footnotes 240
25.1 Preliminaries 240
25.2 \vfootmote@ 241
25.3 Fancy footnote numbering L. 247
254 \footmark, 249
255 N\foottext 256
256 \footmote, 258

Part IV. Miscellaneous Constructions

Chapter 26. Literalmode 261
26.1 In-lineliteralmode 261
26.2 Displayed literalmode 264
26.3 Notesforthewary 266
26.4 Prohibiting pagebreaks 267
26.5 Indentation e e e e e e 268
266 TAB'S h oo e e e e e e e e e e e 268
26.7 Widowcontrol 270
26.8 Pagebreaks 0L 272
269 \Litbox 274
26.10 The generaldefinition 275
26.11 Nicersyntax 0o 281

vi Contents

Chapter 27. Literal mode in headinglevels 288
27.1 Literalmodein \HLand \h1 289
27.2 Thegeneral definitions 294

Chapter 28. Title, author, etc., in the defaultstyle 298

Chapter 29. The bibliography 301
20.1 Neite 302
29.2 Features of I4S-TEX's bibliography macros 303
29.8 Storingthefields 0. 313
29.4 Starting the bibliography macros 315
20.5 \bibinfo@ 318
29.6 Additionmalflags 320
207 \bib 321
20.8 Thebasic constraction L L. 323
29.9 \mo,\key,.... 325
29.10 Manipulating the \vbox’™es 328
29.11 Line breakingcommands 329
29.12 Adding punctuation beforeafield 332
29.13 \endbib@. 334
29.14 \endbib, \morebib, \anotherbib, and \transl 341

Chapter 30. Interfacingwith BIBTEX 345
80.1 \UseBibTeX 346
30.2 Thebibtex.texfile. 351

Chapter 31. \purge’ing and \unpurge’ing 358

Chapter 32. Packaging figures, tables, ..., with captions 363
32.1 Preliminaries 363
32.2 Staringan\island 366

32.3
324
32.5
32.6
32.7
32.8
32.9
32.10

Contents

Startinga \caption
Formattinga \caption
\ticwrite@
\Htrim@
Other accoutrements for \endisland
\endisland
\newisland

Chapter 33. An overview; placing the packaged figures, tables, ...
331 \place e e e e e
33.2 Automaticplacement L L.
333 Settngthingsup,
334 How\Aplaceworks
33.5 How the \output routineworks
336 Wheninsertionsfloat.
33.7 Whathappenstoan \Hbyw?

Chapter 34. \Aplace, \AAplaceand \Bplace
34.1 Figures, etc., within \Par...\endPar
342 \place@
343 \Aplaceand \AAplace
344 \Bplace
34.5 Changing \pagecontents
346 \breakisland@ and \printisland@
84.7 \bottomfigs@
348 \resetdimtopins@

Chapter 35. \Cplace, \Mplace,and \MXplace
851 \Place@,
3562 \Cplace@.
85.3 \Mplace@and \MXplace@
854 NendPar

Contents

Chapter 36. The \output routine: Ta-ran-ta-ra! Ta-ran-ta-ra!

36.1
36.2
36.3
36.4
36.5
36.6
36.7
36.8
36.9
36.10
36.11
36.12
36.13

Ta-ranta-ral!

\plainoutput
\pagebody
\pagecontents e e e
And wearedone!
When \box255istcosmall
Theendgame
The endgame onceagain
The endgame onceagain
The endgame onceagain
The endgame onceagain
The endgame onceagain
The endgame onceagain
Afinalwarning00

Part VI Front and Back Matter

Chapter 37, Front Matter (Table of Contents, List of Figures,

Tables,etc.)o

87.1 lamstex.stf preliminaries
37.2 Settinganentry
37.3 Further preliminaries for the table of contents
37.4 Starting the \maketoc command
37.5 Redefining \HLand\h1
37.6 \NameHLand \Namehl
877 \maketoc
37.8 Lists of Figures, Tables,etc.
379 Fini oL
Chapter 38. Back matter; theindex
38.1 Preliminaries
38.2 \LETTERand \Entry
383 \Page,etc. e

Contents
384 \Xref,etc.,
38.5 Preliminaries for double columns
386 \makeindex,
387 \combinecols@
388 \doublecolumns@.
38.9 \balancecolumns@
Chapter 39. The indexprogram
301 The.ndxfile
39.2 Theindexprogram
Part VII The Style Files
Imtroduction,
Chapter 40. The paperstyle
40.1 Basicsettings
40.2 Fontsand pointsizeso
403 The .toclevels oL
404 Setting up headinglevels
40.5 Footnotes oo
40.6 Additional “top matter” and “end matter” constructions . .
40.7 Bibliography SRS
408 \maketoc
Chapter 41. Thebookstyle
41.1 Basicsetings
412 Fontsand pointsizes L.
41.3 The .toclevels
41.4 Flushingoutfigures
41.5 \partand \chapter
41.6 \plainoutput
41.7 Other headinglevels
41.8 Footnotes

x Contents

41.9 Bibliographyo 0000 578
41.10 book.stf e e e e e 578
41.11 book.stb oo oo e 583

Chapter 42. The letterstyle 590

Part 1

Preliminaries

\.‘_,/)

Chapter 1. Introduction

This manual is intended for TEX wizards pondering the intricacies of var-
ious I4uS-TEX constructions, as well as for TEXnicians designing style files
for I4S-TEX who need more detailed information than that provided by
the I4S-TEX Style File Designers Manual. Although certain points about
TEX receive detailed explanation, many sections presuppose considerable
TgXpertise, which it would be impractical to try to provide within the scope
of this already lengthy manual.

Despite the manual’s lengthiness, the division into chapters and sections al-
lows specialized constructions used for one part of I44S-TEX to be separated
from those used in other parts. Of course, the various chapters are not com-
pletely independent, and Part I should probably be perused by everyone.

1.1. ApS-TEX Conventions. We will not be analyzing the file amstex.tex it-
self, since a detailed description of AyS-TEX is given in the file amstex.doc.
Nevertheless, certain AS-TEX conventions must be mentioned here, because
they are used throughout lamstex.tex.

First of all, AS-TEX uses the “scratch” tokens \next, \next@, \nextiie,
\nextiii@, In order to keep the number down, many definitions will,
for example, define \nextive back in terms of \next®, \nextii@, etc.

The amstex.doc file mentions the peculiar contortions that are used to
avoid difficulties that might arise when a definition has a clause like

\def\next@{ ... \mext ... }

since a previous \futurelet\next may have let \next be something that is
\outer.

In I\S-TEX, on the other hand, it is simply quite out of the question to
allow anything to be \outer. Something like \claim can’t be outer, for ex-
ample, because then things like \newpre\claim wouldn’t work. But even
something like \bye can't be \outer because it might easily occur right after
a point where I4yS-TEX has to subject the next token to some sort of test
(see the small print notes on pages 100 and 146). Consequently, although
we will continue to reserve \next as the token of choice in all \futurelet
constructions, we will finesse this whole problem by making sure that nothing
in MS-TEX is \outer.

‘g - SGhier 1. Introduction:

The only \outer things in plain TEX are the ASCII form-feed ~"L, the
\new... constructons (\newcount, \newdimen, ...), the \+ from the
\settabs construction, the \beginsection and \proclaim constructions,
and \bye. I#\S-TEX redefines ~~L, the \new... constructions, \+, and
\bye so that they are not \outer, and it makes \beginsection be unde-
fined (I40(S-TEX has its own system of “heading levels”), while Ay(S-TEX has
already made \proclaim be undefined (until a style file is read in).

It should be mentioned that although we no longer have to worry about
\next being \outer, some precautions are still in order—see page 23.

Another A4x(S-TEX convention involves constructions like
\if...\def\next@{\csa}\else\def\next@{\csb}\fi\next@

(It is assumed that the user of this manual understands why this is required
instead of simply \if...\csa\else\csb\fi whenever \csa or \csb has an
argument.)

In TUGBOAT, Volume 8, No. 2, Kabelschacht points out that this can be
replaced by

\if...\expandafter\csa\else\expandafter\csb\fi

We will call this the “K-method”; it is often used without explicit mention. (As
pointed out in the amstex.doc file, however, this method is not always valid
or practicable).

Another frequently used convention of ApS-TEX is “compressed format”.
We often have to make definitions of the form

\def\cs{\futurelet\next\cse}
\def\cs@{\ifx\next(something or other)%
\def\next@{...\cs0Q...}\else
\def\nexte{...\cs@ee...}\fi
\next@}
\def\csee{...}
\def\cs@ee{...}

But this uses up three new control sequence names, \cs@, \cs@@, and \cs@ee,
Just for this one construction. The “compressed format” uses the same names

S

1.2. Constructions from AmS-TEX 5

\next@, \nextii@, etc., over and over again, simply redefining them within
each definition:

\def\cs{)

\def\next@{\ifx\next(something or other)¥%
\def\next@{...\nextii@...}\else
\def\next@{...\nextiiie...}\fi

\next@l}Y,

\def\nextiie{...}}

\def\nextiiie{...}%

\futurelet\next\next@}

Notice that the “first” clause \futurelet\next\next@ has to be made last
(and, although it looks strange at first, it’s perfectly legitimate to have \next@
defined in terms of \next@ in this situation).

Compressed format makes things go a little slower, since \next@, etc., have
to be redefined all the time, but secems worth it, especially since it is usually
used for major formatting constructions that introduce a lot of space anyway.

AumS-TEX also uses the construction

\Invalid@\controlseq

to make \controlseq give an error message. As explained in amstex.doc,
this is recommended for any control sequences (often discovered via a
\futurelet) that function as “syntax” for other control sequences, and con-
sequently shouldn’t be encountered on their own.

1.2. Constructions from AnS-TEX. Some more specific ApS-TEX code should
also be mentioned. First of all, the code

\ifx\amstexloaded@\relax\catcode‘\@=\active
\endinput\else\let\amstexloaded@=\relax\fi

appears near the beginning of the amstex.tex file. This prevents the file
amstex.tex from being loaded twice by making \amstexloaded@ be un-
defined if amstex.tex hasn’t been loaded, but \relax if it has. This is a
necessity because of the two lines

A)

\let\ice=\/
\def\/{\unskip\ic@}

6 Chapter 1. Introduction

that occur later (compare The TEXbook, pp. 382-383).

Testing \amstexloaded@ also allows other macro packages to tell whether
amstex.tex has already been loaded, which is important for IWS-TEX, as
we will see in the next chapter.

AmS-TEX also introduces two new counters, and a new token list,

\newcount\count@@
\newcount\count@Q@@
\toksdef\toks@@=2

in addition to the counter \count@ and token list \toks@ provided by
plain.tex; these are also used in IyS-TEX (see section 3 for the choice
of 2 in the \toksdef).

Furthermore, AnS-TEX introduces the abbreviations

\def\FNe{\futurelet\next}
\def\DN@{\def\next@}
\def\DNii@{\def\nextii@}
\def\RIfM@{\relax\ifmmode}
\def\RIfMIfIe{\relax\ifmmode\ifinner}
\def\setboxz@h{\setbox\z@\hbox}
\def\wdz@{\wd\z@}

\def\boxz@{\box\ze}

These are used throughout I#\S-TEX also. When we show lamstex.tex
code, however, we will usually expand out these definitions, to make things
easier to read. Similarly, certain control sequences from plain, like \z@, \p@,
etc., will usually be expanded out for the sake of readability. Moreover, in
constructions like

\counte@s=. ..
\let\next@=\relax

and so forth, we will often add the optional = signs that are normally omitted
in the code.

We will frequendy use the AyS-TEX control sequence \eat@ defined by

\def\eato#1{}

" r
N

1.3. Changes to ApS-TEX; \local and \global assignments 7

AmS-TEX introduces the token \space@ that has been \let equal to a
space. It is often used after

\futurelet\next\foo

constructions where \foo has to do something special if the next token is a
space. In many cases, \foo must skip over that space, and then execute \goo.
The standard AxS-TEX way of doing this is with the code

\ifx\next\space@\def\next@. {\goo}\else
\def\next@.{\goo}\fi\nexte.

The . after the \next@ makes the space ‘visible’ to TEX.

As we shall see in section 3.8, I4S-TEX introduces a somewhat more eco-
nomical approach to this problem.

By the way, a case like this, where something is part of the syntax for \next@,
is one of the situations where the K-method would not work.

There are a few more ApS-TEX devices that are important in IMy,S-TEX,
but their discussion has been deferred until Chapter 3, since these devices are
actually additions intended for later versions of AyS-TEX.

1.3. Changes to AvS-TEX; \local and \global assignments. Numerous lines
of amstex.tex have been deleted in amstexl . tex because they are not used,
or are modified, by 1amstex.tex. Major changes of this sort are discussed at
the appropriate points.

There are also numerous small changes. For example, all \relaxnext@’s
have been omitted, since MyS-TEX no longer needs that device for dealing
with \outer constructions.

One change was necessary to avoid a conflict: \roman is now used in I4(S-
TEX for a numbering control sequence, whereas it previously had a different
(extremely unlikely) use in ApS-TEX, as a control sequence to be used in math
to produce a roman letter. The latter has now been changed from \roman to
\rom.

One other change should be mentioned explicitly: near the beginning of
amstexl.tex the definitions

\def\height{height}
\def\width{width}
\def\depth{depth}

8 Chapter 1. Introduction

have been inserted, so that ‘height’, ‘width’ and ‘depth’ can be replaced by
the corresponding single tokens in the specifications for various \hrules and
\vrules; these replacements save even more memory space in lamstex.tex,
where rules occur much more frequently.

Finally, I have now conscientiously adhered to The TgXbook’s recommenda-
tions (see pages 301 and 346) that assignments of variables either always be
global or always be local. In most cases, the necessary changes have been
minor (like changing some \xdef’s to \edef’s, or vice versa), but some-
what more extensive changes were required to ensure that \setboxn is
always local for n even and global for n odd; these changes occur in the
definitions of \insplit@, \rendsplit@, \lendsplit@, \lmultline@@@,
\rmultline@@@, \binrel®, \sideset®@, \r@et, \pmb@, and perhaps one
or two other places.

We will exercise comparable care regarding assignments of variables
throughout I4yS-TEX.

i’

e .

Chapter 2. Getting started with LyS-TEX

The first thing in lamstex.tex, after the copyright notice, is

\catcode‘\@=11

to make @ a letter, in order to create “private” control sequences that the
casual user cannot type, as well as to access such private control sequences
from plain.tex and amstexl.tex.

We will always adhere to the convention introduced here, using horizon-
tal lines when we print actual lamstex.tex code, as opposed to examples,
pieces of code, etc. We will often use different line breaks from the actual
lamstex.tex code, so that it will fit better on these printed pages. (It should
also be noted that when we give preliminary pieces of code we will often omit
% signs at the ends of lines, although they are meticulously added when needed
in the code itself)

Since Mp4S-TEX is not supposed to be loaded unless AyS-TEX has already
been loaded, the next code,

\ifx\amstexloaded@\relax\else
\errmessage{AmS-TeX must be loaded before LamS-TeX}\fi

produces an error message if it hasn’t—see the discussion of the code (A) on
page 5.

We will adopt a different scheme for preventing lamstex.tex from be-
ing read in twice, one that doesn’t create a new control sequence name, by
using the fact that lamstex.tex will eventually define the control sequence
\laxread@ (see page 80), while AyS-TEX makes certain that \undefined is
always undefined (see amstex.doc):

\ifx\laxread@\undefined\else\catcode‘\@=\active\endinput\fi

[Other macro packages that need to know whether or not I4\S-TEX has
been loaded can use a similar test, or, if the status of \undefined isn't clear,
they can use the test

\expandafter\ifx\csname laxread@\endcsname\relax

10 Chapter 2. Getting started with Iy,S-TEX

which is false when I444S-TEX has been loaded, but true when it hasn’t been
loaded, since the control sequence produced by \csname. . .\endcsname is
given the value \relax if it hasn't already been defined.]

Next we redefine \err@ from AyS-TEX to produce error messages saying
‘LamS-TeX error:’ instead of ‘AmS-TeX error:’

\def\err@#1{\errmessage{LamS-TeX error: #1}}

\Err@, which is \err@ with ArS-TEX’s “default help message”, will now also
produce such error messages (see section 3.1).

As indicated in section 1.1, we redefine ~~L, the \new... constructions,
\+, and \bye from plain so that they are not \outer,

\def~~L{\par}
\let\+=\tabalign
\def\newcount{\alloc@0\count\countdef\insceunt}
\def\newdimen{\alloc@i\dimen\dimendef\insc@unt}
\def\newskip{\alloc@2\skip\skipdef\inscQunt}
\def\newmuskip{\alloc@3\muskip\muskipdef\@cclvi}
\def\newbox{\alloc@4\box\chardef\insc@unt}
\let\newtoks=\relax
\def\newhelp#1#2{\newtoks#1#1\expandafter{\csname#2\endcsname}}
\def\newtoks{\alloc@5\toks\toksdef\@cclvi}
\def\newread{\alloc@6\read\chardef\sixt@@n}
\def\newwrite{\alloc@7\write\chardef\sixt@en}
\def\newfam{\alloc@8\fam\chardef\sixt@en}
\def\newlanguage{\alloc@9\language\chardef\@cclvi}
\def\newinsert#i{\global\advance\insc@unt by\m@ne

\ch@ck0\insc@unt\count

\ch@cki\insc@unt\dimen

\ch@ck2\insc@unt\skip

\ch@ck4\insc@unt\box

\allocationnumber=\insc@unt

\global\chardef#i=\allocationnumber

\wlog{\string#i=\string\insert\the\allocationnumber}}

Chapter 2. Getting started with \S-TEX 11

\def\newif#1{\count@\escapechar \escapechar\m@ne
\expandafter\expandafter\expandafter
\edef\@if#1{true}{\let\noexpand#i=\noexpand\iftrue}},
\expandafter\expandafter\expandafter
\edef\@if#i{false}{\let\noexpand#i=\noexpand\iffalse},
\@if#1{false}\escapechar\count@} % the condition starts out false

\def\bye{\par\vfill\supereject\end}

and then we

\let\beginsection=\undefined

to make \beginsection undefined (see amstex.doc).

In plain TEX, the \let\newtoks=\relax is inserted before the definition of

\newhelp so that plain.tex can be read in twice. Even though we are not
allowing lamstex.tex to be read in twice, this is still required, since we read it in
after plain.tex!

Chapter 3. Changes to AS-TEX

The next part of I4S-TEX contains various changes to ApS-TEX. Some
of the changes should, and probably eventually will, be made in AyS-TEX,
though they didn’t get included in AnmS-TEX version 2, while other changes
are relevant only for I4yS-TEX. (Further changes to AyS-TEX will be made
later, at the relevant points.)

3.1. \Err@. A\S-TEX’s definition of \Err@,

\def\Err@#i{\errhelp\defaulthelp@\errmessage{AmS-TeX error: #1}}

has been deleted in amstexl.tex, because it can obviously be shortened to

\def\Err@#1{\errhelp\defaulthelp@\erre{#1}}

3.2. \atdef@. ApS-TEX’s original mechanism for defining the active @ char-
acter can be improved considerably.
First of all, we want the active @ to mean
\futurelet\next\ate@

the problem being that we need to make this definition while @ is active

{\catcode‘\@=\active
\defe{...}

even though we want to allow @ as part of the control sequence name \ata.
Now we can easily name \at@ even when @ is active, as

\csname at\string@\endcsname

Of course, we can’t simply say

\def@{\futurelet\next\csname at\string@\endcsname}

12

S

3.2. \atdef@ 13

since @ would then simply \1et\next=a—we need to have the combination
\csname. ..\endcsname expanded out before the \futurelet\next takes
effect.

We could do this with

\def@{\def\next{\futurelet\next}\expandafter\next
\csname at\string@\endcsname}

but that’s somewhat unsatisfactory, since it requires the active @ to make a
subsidiary definition each time it is used.

Another possibility is to use the triple \expandafter trick (see The TEXbook,
page 374), which we will be using later on. But for the present problem the
simplest strategy is to use the code

\edef\next{\gdef\noexpande{\futurelet\noexpand\next
\csname at\string@\endcsname}

\next

Here the \edef makes \next mean

| \gdef l@ﬂ \futurelet|[\next|\ate}

where the boxed control sequences are not expanded out either because they
are primitives or because they are preceded by \noexpand; the \csname. ..
\endcsname is expanded out in the \edef, but the control sequence \at@
that it expands to is made equal to \relax, since \at@ hasn’t been defined
previously—so \at@ isn’t expanded further in the \edef. (Here we are using
the fact that lamstex.tex won't be read in twice [Chapter 2].)

Consequently, when we then call \next we get this \gdef. Thus, to get the
desired definition of the active @ we just need

{\catcode‘\@=\active
\edef\next{\gdef\noexpande{\futurelet\noexpand\next
\csname at\string@\endcsname}}

\next

}

14 Chapter 3. Changes to ApS-TEX

The definition of \at@ itself is now easy, with @ back as a letter. We will call
the very same routine, \at@@, when the next token is a letter, other character,
or control sequence (or active character); for any other type of token we will
call \at@@@, which will be an error message:

\def\ate{}

\ifcat\noexpand\next a\let\next@=\at@@\else
\ifcat\noexpand\nextO\let\next@=\at@@\else
\ifcat\noexpand\next\relax\let\next@=\at@@\else
\let\next@=\at@Q@\fi\fi\fi\next@}

The error message \at@Qe@ is simply

\def\at@@@{\errhelp\athelp@\err@{Invalid use of @}}

using the help message \athelp@ from AyS-TEX.
On the other hand, \at@@ (token) will simply be the control sequence

‘\(token)@at’

if it has been defined, or an error message otherwise. Here we put quotes
around \(token)@at to emphasize that it is a single control word, even when
(token) isn’t a letter; in practice, of course, such control words have to be
constructed using \csname. . .\endcsname:

\def\at@o#1{\expandafter
\ifx\csname\string#10@at\endcsname\relax
\let\next@=\at@ee
\else
\def\next@{\csname\string#10at\endcsname},
\fi
\next@}

Note that we use \string#1 so that the token #1 can be a control sequence
or active character, as well as a letter or other character.

Finally, \atde£f@, the mechanism for defining the value of the active @ on
various tokens, is the same as in AyS-TEX, except that we add a \string:

S

R

3.3, Tests 15

\def\atdef@#1{\expandafter\def\csname\string#i@at\endcsname}

There are two noteworthy things about this redefinition:

(1) The original definition of \atdef@ remains in amstexl.tex, because
it is used for

\atdef@;{...} \atdef@,{...}
\atdef@:{...} \atdef@!{...}
\atdef@?{...} \atdefe@.{...}
\atdefe-{...}

These \atdef@’s give the same results as the new \atdef@ would
give, since for these characters the \string is simply redundant—once
@ is active, @; and @: and so forth will work just as before. (The
\atdef@@\vert is irrelevant: it is deleted in amstexl.tex, and not
used in I4S-TEX.)

(2) Later in I4yS-TEX we are going to make " active. Nevertheless, Ay S-
TEX’s

\atdefQ@"

will still make the combination @" work correctly, because \string"
for " active gives the same result as ApS-TEX's " when " is not active.
Actually, we are going to give a new \atdef@" (section 8), but that will
be done before " is made active, so the same principle still applies.

3.3. Tests. AMS-TEX has the flag \ifin@, which is set only by the routine
\in@, a test to determine whether a particular token appears in any sequence;
this test, in turn, is used only by the routine \tagin@ to check for the pres-
ence of \tag in a sequence. I\S-TEX has numerous tests that are always
performed independently, so it is economical to have a single flag that will
be used by all of them; this flag will also replace \ifin@ from AyS-TEX. So
amstexl.tex deletes the line

\newif\ifin@

16 Chapter 3. Changes to ApS-TEX

and in I4S-TEX we introduce the flag

\newif\iftest@

Moreover, in amstexl.tex we also delete

\def\ine#i1#2{ . . . }
\def\tagine#1{ . . . }

while in M\4S-TEX we redefine the \tagin@ routine so that instead of using
\ifin@ it merely reproduces (an equivalent of) the definition:

\def\tagine#i{\taginefalse
\def\nexte##1\tag##2##3\nexte{\test@true
\ifx\tagin@##2\testefalse\fi}
\next@#1\tag\tagin@\next@
\tagin@false\iftest@\taginQ@true\fi}

3.4. Spaces after control sequence names in error messages. Numerous error
messages in A4rS-TEX use constructions of the form

. . \string\controlseq\space .

to get a space after the control sequence \controlseq in the error message.
However, it saves one token to instead use

. \noexpand\controlseq .

—the \noexpand prevents expansion of \controlseq in the error message,
but we still get a space after \controlseq.

This device is used throughout I4yS-TEX, and the requisite changes were
also made directly in amstexl.tex, since they were so minor.

A : E The first change occurs in the definition of \define® where

\err@{\string\define\space must be . . . }

—

592 3.4. Spaces aﬁamm#&qumiWor messages 17

is replaced by
\err@{\noexpand\define must be . . . }
The next occurs in the definition
\defineQQit1
which takes a control sequence #1 as its argument, where, for example
(A) \err@{\string#1 is already defined}
is changed to
\erre{\noexpand#iis already defined}

with no space before the ‘is’, since it will appear when the error message is given.
[amstex.tex actually has

\err@{\string#i\space is already defined}

which is unnecessary complicated, though it has the same number of tokens as (A).]
Similar replacements are made in the definitions of

\vmodeerrQi#i
\mathmodeerr@i#i
\dmatherr@#i
\nondmatherr@i#i
\onlydmatherr@ii
\nonmatherrei#i
\nonvmodeerr@#i
\textonlyfontQ#1#2

Finally, in the definition of \boldkey (which is actually redefined in lamstex . tex—
see page 31) the

\Err@{\string\boldkey\space can’t ...}
is replaced by

\Err@{\noexpand\boldkey can’t ...}

18 Chapter 3. Changes to ApS-TEX

with a similar change for \boldsymbol.
Note, by the way, that these substitutions cannot be made in

\newhelp\athelp
\newhelp\defahelp

which end up putting things inside \csname. . . \endcsname.

3.5. Line breaking. The original AyS-TEX definition of \nolinebreak had an
extra element \refskip@, which was initially \relax, but which was changed
for the bibliography. In version 2, that aspect of the bibliography macros
(sections 29.8 and 29.11), as well as the indexing macros (section 38.3), has
been improved. Consequently, the four control sequences

\nolinebreak
\allowlinebreak
\linebreak
\newline

will all have something added; it will suffice to add the same thing, which we
will call \1kerns@, to the first three, and something that we will call \nkerns@
to the fourth; like the old \refskip@, these are both initially \relax. The
definitions of these four line-breaking macros are deleted in amstex . tex, and
we now add the new definitions. They differ from the original definitions (see
amstex.doc) in the inclusion of \1kerns@ and \nkerns@; however, these do
not occur in quite the place that \refskip@ occurred in the original definition
of \nolinebreak—that was, in fact, incorrect. We have also simplified the def-
inition of \newline—as indicated in amstex.doc, the case of \newline\par
really isn’t worth worrying about.

\let\lkerns@=\relax

\def\nolinebreak{\relax
\ifmathmode®@
\mathmodeerr@\nolinebreak\else

N

3.6. \alloc@@, \newcount@, and \newbox@ 19

\ifhmode

\saveskip@=\lastskip \unskip

\nobreak

\ifdim\saveskip@ > Opt \hskip\saveskip@\fi

\lkerns@
\else\vmodeerr@\nolinebreak\fi\fi}
\def\allowlinebreak{\relax
\ifmathmode@

\mathmodeerr@\allowlinebreak\else
\ifhmode

\saveskip@=\lastskip \unskip

\allowbreak

\ifdim\saveskip@ > Opt \hskip\saveskip@\fi

\lkerns@
\else\vmodeerr@\allowlinebreak\fi\fi}
\def\linebreak{\relax

\ifmathmode

\mathmodeerr@\linebreak\else
\ifhmode

\unskip\unkern\break\lkerns@
\else\vmodeerr@\linebreak\fi\fi}

\let\nkerns@=\relax

\def\newline{\relax
\ifmathmode
\mathmodeerr@\newline\else
\ifhmode
\unskip\unkern\null\hfill\break\nkerns@
\else\vmodeerr@\newline\fi\fi}},

3.6. \alloc@@, \newcount@, and \newbox@ Near the beginning of ApS-
TeX, \alloc@ is redefined so that it doesn’t write anything to the .log file,
while the original definition is reinstated at the end. This means that the
\new... constructions used to create new counters, (dimen) registers, etc.,
within the file do not write anything to the .1log file.

20 Chapter 3. Changes to ApS-TEX

After redefining \alloc®, AyS-TEX also uses

\let\alloce@=\alloc@

to make \alloc@@ that version of \alloc@, even if called after \alloc@ has
been redefined at the end. In the definition of \1loadmsam, for example, the
code

\alloc@@8\fam\chardef\sixt@en\msafam

functions as a replacement for \newfam\msafam; this not only gets around
the problem that \newfam is still \outer in AyS-TEX, it also ensures that
nothing gets written to the . log file even if \1oadmsam is used after \alloc@
is restored to its old definition.

In the definition of \accentedsymbol, however, a non-outer \newbox is
needed, because it appears in a construction like

\expandafter\newbox\csname ... \endcsname

where we can’t simply use the code for \newbox. So amstex.tex used
\newbox@ as a non-outer version of \newbox. However, the AyrS-TEX defi-
nition,

\def\newbox@{\alloc@4\box\chardef\insc@unt}

because it used \alloc@ rather than \alloc@@, wasn't really the right choice
anyway.

In I4uS-TEX we rectify this situation. First of all, the definitions of
\newbox@ and \accentedsymbol are deleted in amstexl.tex. Then in
lamstex.tex, we

\def\newbox@{\alloc@@4\box\chardef\insc@unt}

and also, for later use,

\def\newcount@{\alloc@@0\count\countdef\insc@unt}

RNy

3.7. Lists 21

Then we redefine \accentedsymbol using \newbox@. In addition, the
combination

\expandafter\eat@\string

in the definition is replaced by \exstring@, since we will introduce this as an
abbreviation for that combination later (section 17.1) (we also take the oppor-
tunity to eliminate two unnecessary \expandafter’s from the original code):

\def\accentedsymbol#1#2{\expandafter
\newbox@\csname\exstring@#1@box\endcsname
\setbox\csname\exstring@#1@box\endcsname

=\hbox{$\meth#2$}
\define#1{\copy\csname\exstring@#1i@box\endcsname{}}}

3.7. Lists. ApS-TEX has two lists, \alloclist@, and \fontlist@, of the
type introduced in The TgXbook, page 378, and it defines \rightappend@,
which is like \rightappenditem from that page.

\alloclist@ is maintained for the \showallocations command, which
is really only for the use of TEXnicians, and MyS-TEX dispenses with this
feature, in order to save space; consequently, in amstexl.tex all material
related to \alloclist@ is deleted.

\fontlist@ is used for the \syntax command, which S-TEX retains,
but for this list of control sequence names it is more efficient to use a list of
the type described on page 379 of The TEXbook:

\\\name;\\\names. ..

Several other lists of this sort will be used in I4(S-TEX; in some cases, we will
even have a list of the form _ _ ____ ... , where _ _ _ are not control
sequence names.

In I4S-TEX we will still be using \rightappend@ on occasion, but we will

also define the routine \rightadd@#1\to#2 to add #1 to one of these simpler
lists #2:

\def\rightadd@#1\to#2{\toks@={\\#1}\toks@@e=\expandafter{#2}}
\xdef#2{\the\toks@@\the\toks@}},
\toks@={}\toksee={}}

292 Chapter 3. Changes to ApS-TEX

In amstexl.tex, the definition of \fontlista@ is deleted, and in IS-TEX
we instead define \fontlist@ to be a lList of this simpler sort:

\def\fontlist@{\\\tenrm\\\sevenrm\\\fiverm\\\teni\\\seveni
\\\fiveil\\tensy\\\sevensy\\\fivesy\\\tenex\\\tenbf
\\\sevenbf\\\fivebf\\\tensi\\\tenit}

Similarly, the definition of \font@ is deleted in amstexl.tex and replaced
in I#4S-TEX by

\def\font@#1=#2 {\rightadde#i\to\fontlist@\font#i=#2 }

(Although \font@ appears in amstexl.tex, it occurs only within other defi-
nitions, so the definition can be deferred to lamstex.tex.)

Although, as mentioned in section 3, the test \ifin@ has been deleted in
amstexl.tex, for a list #1 of control sequences,

\\\name; \\\names. ..

we will need another (simpler) test to determine whether a control sequence
#2 is in the list. Basically we want to use

\def\ismember@#1#2{\test@false\let\next@=#2y,
{\def\\##1{\let\nextii@=##1\ifx\nextii@\next@\global\test@true\fi}#1}}

But since we normally set the flag \iftest@ only locally, we don’t want to use
a \global\test@true in this one situation (compare section 1.8). So instead
we will use a new scratch token, \Next@, for which we will always use \global
assignments. In addition, there are two further details that we will explore in
a moment:

\def\ismember@# 1#2{| \global\let\NextQ=F |\let\next@2'/.
{\def\\##1{\let\nextii0=##1\ifx\nextii@\next@
[\global\let\Next@=T\fil}#1}

\test@false\ifx\NextQ@ T\test@true\fi|l\let\next@=\relax|}

‘M«“../

R

3.7. Lists 23

This test may compared with the test on page 379 of The TEXbook. Using
\let\next@ instead of \def\next@ allows the test

\ismember@#1i\next

to be used after \next has been \let equal to some control sequence by a
\futurelet, which will be important in section 7.2 (on some occasions we
will also be using \ismember@#1#2 when #2 is an explicit argument). But
two precautions are then in order:

e Although actual 1amstex.tex code usually omits = signs after \let’s,
in the above code we need both the boxed = sign and the space afier
it! Reason: Our \futurelet may have \let\next be a space token,
which is thus a (space token) in the notation of The TEXbook, page 269.
According to the syntax rule on page 277, one such space (but only
one) will be ignored after the = sign; if we simply had

\let\next@=#2{\def\\ ...

then the (space token) #2 would be ignored, and \next@ would end
up being the {, which would then disappear, causing infinite confusion
later on.

e Another important precaution is the \1et\next@=\relax at the end.
That is needed because the \futurelet\next may have \let\next
equal something equivalent to \iftrue or \iffalse, so that \next@
would then also be equal to \iftrue or \iffalse. If that situation
were allowed to continue, havoc might ensue the next time we used a
macro containing \next@ within it.

As an example of this latter phenomenon, note that the original plain TEX
definitions

{\catcode‘\’=\active \gdef’{"\bgroup\prime@s}}

\def\prim@s{\prime\futurelet\next\primémes}

\def\pr@m0s{\ifx’ \next\let\next\preees \else\ifx"\next\let\next\preoet
\else\let\next\egroup\fi\fi\next}

24 Chapter 3. Changes to AnS-TEX

later had to be modified by changing \pr@m@s to

\def\prem@s{\ifx’\next\let\nxt\pr@ees \else\ifx"\next\let\nxt\preeet
\else\let\nxt\egroup\fi\fi\nxt}

For example, we might have

$a’\iffirstset x\else y \fi$

where \iffirstset is some user-defined construction, and then the
\futurelet\next in \prim@s would \let\next=\iffirstset. Note that
the appearance of \next after an \ifx test causes no problem, but its appear-
ance within an \if... clause, even following a \let or \def, would make
things go haywire. Similarly, in the definition of \ismember@, the \next@
appears in safe places.

To avoid such problems in general, after any \futurelet we will use only
the token \next, and otherwise \next will not appear in any macros except
after \ifx tests (or \ifcat tests). One definition in amstex.tex requires
modification to adhere to this rule: the definition

\gdef\comment@@Q#1\comment@0e{\ifx\next\comment@0@\let\next\comment@
\else\def\next{\oldcodes@\endlinechar=*\""M\relax}!,
\fi\next}

has been changed in amstexl.tex to

\gdef\comment@Qe#1\comment@Q@{\ifx\next\comment0@@@\let\next@\comment@
\else\def\next@{\oldcodes@\endlinechar=*‘\""M\relax},
\fi\next@}

3.8. Skipping spaces in \futurelet’. On page 7 we mentioned AyS-TEX’s
device for skipping over space tokens in \futurelet constructions. Instead
of using this device directly, which requires somewhat long definitions each
time, I4,,S-TEX uses a special “futurelet-next-skipping-spaces” construction

\FNSse\foo

3.8. Skipping spaces in \futurelet’s 25

which is like \futurelet\next\foo, except that any space tokens after
\foo will be discarded, and \foo will be applied after \next has been \1let
equal to the first non-space token after \foo. \FNSS@#1 begins by storing
#1 in \FNSS@@, and then applies a \futurelet\next construction, calling
\FNSS@@@, which then does the checking for a space:

\def\FNSS@#1{\let\FNSS@e=#1\futurelet\next\FNSSQEQ}

\def\FNSS@ee{\ifx\next\space@
\def\FNSsS@eeee. {\futurelet\next\FNSS@@Q@}\else
\def\FNSseeee.{\FNSSee}\fi
\FNSseeee.}

Thus, when \next happens to be a space, we swallow the space and call the
routine \futurelet\next\FNSS@QQ again, to get the next non-space token;

when we do get a non-space token, we simply apply \FNSS@@, the argument
of \FN3s@.

The ApmS-TEX \atdef@" (see amstex.doc) is deleted from amstexl.tex,
because it can be shortened if we use this \FNSS@ to get the first non-space
token after @":

\atdef@"{\unskip

\def\next@{\ifx\next‘\def\next@‘{\futurelet\next\nextii@}y,
\else\ifx\next\lg\def\next@\lg{\futurelet\next\nextii@}}
\else\def\nexto###i#1{\futurelet\next\nextiii@}\fi\fi
\next@}y,

\def\nextii@{\ifx\next‘\def\next@‘{\sldie**}Y
\else\ifx\next\lq\def\next@\1lq{\sld1ie‘‘}Y
\else\def\next@{\dlsl1e@‘}\fi\fi\next@}y,

\def\nextiii@{\ifx\next’\def\next@’ {\srdre’’}
\else\ifx\next\rq\def\next@\rq{\srdre’’}},
\else\def\next@{\drsr@’}\fi\fi\next@}y,

\FNSS@\next@}

[In our definition of \FNSS@@@ we used a new control sequence \FNSS@QQQ
instead of using a scratch token like \next@ to allow the use of \FNSS@ in
such “compressed format” definitions.]

26 Chapter 3. Changes to ApS-TEX

There is only one other definition in AnS-TEX that is (deleted from
amstexl.tex and) shortened using \FNSS@:

\def\root{/
\def\next@{\ifx\next\uproot\let\next@=\nextii@\else
\ifx\next\leftroot\let\next@=\nextiii@\else
\let\next@=\plainroot@\fi\fi\next@}
\def\nextii@\uproot##i{\uproot@##i\relax\FNSS@\nextivel}},
\def\nextive{\ifx\next\leftroot\let\next@=\nextve\else
\let\next@=\plainroot@\fi\next@}}
\def\nextve@\leftroot##i{\leftrootQ##i\relax\plainroot@l}y,
\def\nextiii@\leftroot##1{\leftrootQ##i\relax
\FNSS@\nextvi@l},
\def\nextvie{\ifx\next\uproot\let\next@=\nextvii@\else
\let\next@=\plainroot@\fi\nexte}),
\def\nextvii@\uproot##i{\uprootQ##i\relax\plainroot@}y,
\bgroup\uproot@\ze\leftroot@\z@
\FNSS@\next@}

However, there are numerous places in I44S-TEX where the use of \FNSS@
will similarly save space, definitely make the extra tokens used for \FNSS@
worth while. Note, moreover, that the above definition of \root not only
saves space, but also avoids introducing the scratch tokens \nextviii@ and
\nextix@ that occur in the original definition, but which occur nowhere else

in ApS-TEX.

3.9. \loop. The same article that introduced the “K-method” (page 4) also
introduced a new definition of plain TEX’s \loop. ..\repeat mechanism,
which we will use in I S-TEX:

\def\loopi#i\repeat{}
\def\iterate{#1\relax\expandafter\iterate\fi}
\iterate\let\iterate=\relax}

This has the property that it allows constructions like

\loop ___ \if... ___ \else ___ \repeat

3.9. \loop 27

where we repeat when the \if... test is false rather than true, which will
turn out to be useful at several points in MyS-TEX.!

Corresponding to this redefinition of \1loop, we add a new definition of
\gloop@ (which is used by the \cfrac construction):

\def\gloop@#1i\repeat{},
\gdef\iterate@{#1\relax\expandafter\iterate@\fil}},
\iterate@\global\let\iterate@=\relax}

The main purpose of redefining \gloop@ is so that it will use \iterate@
rather than \iterate, so that \iterate will only be given a local definition,
not both a local and a global one (compare section 1.3).

In amstexl.tex we delete the line

\newif\ifbadans@

and the definition of \printoptions, because we can define \printoptions
in terms of \iftest@ (section 3). We've deferred this redefinition until now
because it is also a little bit more convenient to use this alternative \1oop test:

\def\printoptions{\We{Do you want S(yntax check),
G(alleys) or P(ages)?"~JType S, G or P, follow by
<return>: }%
\loop
\read -1 to\ans@
\edef\next@{\def\noexpand\Anse{\ans@}}Y,
\uppercase\expandafter{\next@}/,
\ifx\Ans@\S@\global\test@true\syntax\else
\ifx\Ans@\G@\global\test@true\galleys\else
\ifx\Ans@\P@\global\testQtrue\else
\global\test@false\fi\fi\fi
\iftest@
\else
\We{Type S, G or P, follow by <return>: }¥
\repeat}

1 The alternative is to use \if... \test@false \else \test@itrue \fi \iftest@
\repeat.

28 Chapter 3. Changes to ApS-TEX

3.10. A ld frangais. Finally, certain changes are made to amstex.tex to ac-
commodate French styles that make some or all of ; and : and ! and ? into
active characters. In this case, various AuS-TEX macros that involve tests like

\ifx\next!

need to be changed.!

Our goal is to allow all necessary changes to be indicated in a reasonably
short file, say french.tex, which can be read in afler lamstex.tex (so that
it can be loaded on top of a I4S-TEX format file).

The most reasonable approach is to have certain control sequences that
have been \1let equal to the active punctuation symbols, so that we can use
these in an \ifx\next... test. Of course, this can only be done after the
active punctuation symbols have been defined, not in amstexl.tex. To get
around this problem, we will insist that the definition of the active punctuation
symbols in french. tex are not made with an ordinary \de£, but with a special
\APdef, which will manage things properly for us.

For the control sequences that will be \1let equal to the active punctuation
symbols we will use the following control words (which have to be created
using \csname. ..\endcsname): ‘\A@;’ and ‘\A4@:’ and ‘\A@?’ and ‘\AQ@!’.
We begin by assigning the non-active characters as defaunlt values:

\expandafter\let\csname A@;\endcsname=;
\expandafter\let\csname AQ:\endcsname=:
\expandafter\let\csname A@?\endcsname=?
\expandafter\let\csname AQ!\endcsname=!

‘When

\APdef:{ ... }

!In addition, in lamstex.tex we have the problem that certain control sequences, notably those
for commutative diagrams and tables, use certain punctuation as part of their syntax. For exam-
ple, the \ds option for arrows in a commutative diagram is typed in the form \ds{(h;v) (see
page 155 of the 14S-TEX Manual), If we make a definition like \def\ds (#1;#2){...}, then
TEX incorporates a type 12 ; as part of the syntax for \ds. So in a document where ; is active,
the ; that the user types will not be recognized as the proper syntax element. The devices for
handling this problem will be discussed at the appropriate time (in Volume 2).

3.10. A ld frangais 29

appears in french.tex, we want to (1) \def:{ ... }and (2) \let‘\4Q:'=:
(here, as on page 14, we put quotes around \AQ: to emphasize that it is a
single control word; in actual code something like

\expandafter\let\csname A@\string:\endcsname=:

will be needed).
To achieve this, we use

\def\APdef#1{\def\next@{\expandafter
\let\csname AQ\string#i\endcsname=#1},
\afterassignment\next@\def#1}

Thus, for example, \APdef: defines \next@ to mean
\let\A@:'=:

and after the assignment \def :, which swallows the following { ... }, we
perform \next@, so that ‘\A@:’ has now been \let equal to the active :

So, we can produce control sequences that have the value of each active
punctuation symbol that may occur in a file, assuming that \APdef has always
been used in french.tex.

Now consider the original AuS-TEX definition

\def\tdotse{\unskip

\def\next@{$\m@th\mathinner{\1ldotp\ldotp\ldotp}\,
\ifx\next,\,$\else\ifx\next.\,$\else
\ifx\next;\,$\else
\ifx\next:\,$\else
\ifx\next?\,$\else
\ifx\next!\,$\else
$ \ELi\EI\FI\Fi\Fi\fi}¥

\ \futurelet\next\next@}

We want to supplement this with \ifx\next tests that check whether \next
is an active punctuation symbol, in case \tdots@ gets used in a file where that
is the case. We can do this with tests like

\expandafter\ifx\csname A@\string;\endcsname\next

30 Chapter 3. Changes to ApS-TEX

For greater flexibility, when we encounter an active punctuation symbol we
will not necessarily insert the extra \, that the non-active symbol gets; we will
instead insert \fextra@, which by default is

\let\fextra@=\,

(but which french.tex can redefine, if desired).
The original definition of \tdots@ is deleted from amstexl.tex, and a
new definition is given in lamstex.tex:

\def\tdots@{\unskip
\def\next@{$\m@th\mathinner{\ldotp\ldotp\ldotp}\,
\ifx\next,\,$\else\ifx\next.\,$\else
\ifx\next;\,$\else
I}expandafter\ifx\csname A@\string;\endcsname\next|
[\fextra@$\else|
\ifx\next:\,$\else
[\expandafter\ifx\csname A@\string:\endcsname\next|
[\fextra@$\else|
\ifx\next?\,$\else
[}expandafter\ifx\csname A@\string?\endcsname\next|
[\fextrae$\else|
\ifx\next!\,$\else
|\expandafter\ifx\csname A@\string!\endcsname\next|
[\fextra@$\else|
$ \EINEINEINFINEINFI\FANEINEI\EL Y
\ \futurelet\next\next@}

Similarly, the definition of \extrap@ is deleted from amstexl.tex, and in
lamstex.tex we add

\def\extrape#i{}

\ifx\next,\def\nexte{#1i\,}\else
\ifx\next;\def\nexte{#1\,}\else
I}gxpandafter\ifx\csname A@\string;\endcsname\next]

|\def\next@{#1\fextrae}\else|

\ww/

S

e

3.10. A ld francais 31

\ifx\next.\def\next@{#1\,}\else\extra@
\ifextra@\def\next@{#1\,}\else
\let\next@E#1\fi\fi\fi\fi[\fi[\nexte}

The boxed = sign in this code is another case (compare page 23) where the
= sign cannot be omitted, though now the reason is different: we might have
#1 being an = sign! There are similar required ='s in the (original) defini-
tions of \boldsymbol@, \boldkeydots@, and \boldsymboldots@, and in
the new definition of \boldkey, to follow. These = signs and the one in the
definition of \ismember@ are the only ones that actually occur after a \let in
lamstex.tex.

Similarly, the definitions of \dotsc and \keybin@ are deleted from
amstexl.tex, and in lamstex.tex we add

\def\dotsc{\def\next@{\ifx\next;\plainldots@\,\else

!\expandafter\ifx\csname A@\string;\endcsname\nextl
|\plainldots@\fextra@\else|
\ifx\next.\plainldots@\,\else\extra@\plainldots@
\ifextra0\,\fi\fi\£i[\fif}¥

\futurelet\next\next@}

\def\keybin@{\keybin@true
\ifx\next+\else\ifx\next=\else\ifx\next<\else
\ifx\next>\else\ifx\next-\else\ifx\next*\else
\ifx\next:\else
|\expandafter\ifx\csname A@\string;\endcsname\next\else|

\keybin@false\fi\fi\fi\fi\f i\fi\fi| \fi l}~

The definition of \boldkey#1 is also deleted from amstexl.tex. In this
case, where we have a control sequence with an argument, rather than one
that has picked up the next token with a \futurelet\next, and where our
tests are of the form

\ifx#1!
we have to start with

\let\next=#1

32 Chapter 3. Changes to ApS-TEX

so that we can then use things like
\expandafter\ifx\csname A@\string!\endcsname\next

to check for an active !. The new code is:

\def\boldkey#1{\ifcat\noexpand#iaY,
\ifcmmibloaded@{\fam\cmmibfam#i}\else
\Err@{First bold symbol font not loaded}\fi
\else
\let\next[=J#1%
\ifx#1!\mathchar"5\bffam@21 \else
[}expandafter\ifx\csname A@\string!\endcsname\nextl

[\mathchar"5\bffam@21 \else]
\ifx#1(\mathchar"4\bffam@28 \else
\ifx#1)\mathchar"5\bffam@29 \else
\ifx#1+\mathchar"2\bffam@2B \else
\ifx#1:\mathchar"3\bffam@34 \else
|\expandafter\ifx\csname A@\string:\endcsname\nextl

[\mathchar'3\bffam@3A \else]
\ifx#1;\mathchar"6\bffame@3B \else
I\expandafter\ifx\csname A@\string;\endcsname\next|

[\mathchar"6\bffam@3B \else|
\ifx#i=\mathchar"3\bffam@3D \else
\ifx#1i?\mathchar"5\bffam@3F \else
l\expandafter\ifx\csname A@\string?\endcsname\next|

[\mathchar"5\bffam@3F \else|
\ifx#1[\mathchar"4\bffam@5B \else
\ifx#1]\mathchar"5\bffam@5D \else
\ifx#1,\mathchari@63B \else
\ifx#1-\mathcharii@200 \else
\ifx#1.\mathchari@03A \else
\ifx#1/\mathchari@03D \else
\ifx#1<\mathchari@33C \else
\ifx#1>\mathchari@33E \else
\ifx#1x\mathcharii@203 \else

3.10. A ld frangais

\ifx#1]|\mathcharii@064 \else
\ifx#10\boldO\else\ifx#11\bold1\else\ifx#12\bold2\else
\ifx#13\bold3\else\ifx#14\bold4\else\ifx#15\bold5\else
\ifx#16\bold6\else\ifx#17\bold7\else\ifx#18\bold8\else
\ifx#19\bold9\else

\Err@{\noexpand\boldkey can’t be used with #1}/
\FINFINFINFINFINFINFINFINFINFINEINFINFINFINFL
AREACEACSAVFAC AV SAL SACSAV SAVEACSAVEAT AT I NEFNFAV IRV Y1

33

Chapter 4. Numbering styles

Next we define the standard 4,S-TEX numbering styles: \arabic, \alph,
\Alph, \roman, \Roman, and \fnsymbol.

These numbering styles are meant to be applied to a number, not to a counter
(in the I4,S-TEX macros they are usually applied to \number(counter) for
some (counter)). \arabic is consequently quite trivial:

\def\arabic#1{#1}

The definition of \alph#1 uses the fact that the lower-case letters a—z have
positions 97-122 (if some one were to design a perverse font for which this
wasn't true, then \alph would have to be defined differently).

\alph begins by setting the scratch counter \count@ to the value of #1:

\def\alph#i{\count@=#1\relax

We always add the \relax as a precaution in such situations, even ifit may not
be strictly necessary (The TEXbook, page 208, recommends a space, but \relax
seemns best, to avoid any anomalous situations where an unwanted space might
somehow intrude itself into the token stream).

Then we add 96 to the value of \count@ and we print the character
\char\count@, but we give an error message if this would give us a char-
acter past 122 (this could easily happen if some one caused the counter to be
augmented more than 25 times):

\def\alph#1i{\count@=#1i\relax\advance\count@ by 96
\ifnum\count@>122 \Err@{\noexpand\alph invalid for
numbers > 26}\else\char\count@\fi}

(See section 3.4 for the use of \noexpand\alph rather than \string\alph.)

We don’t bother giving an error message if \count@ ends up having a value
less than 97, since reasonable macros will normally start the counter for a
particular construction at 1. (So there is the possibility that some one will
perversely \Reset some construction to 0, say, and then have \alph produce
a left quotation mark ‘! If this really seems bothersome, another check can
easily be added to the code.)

34

Chapter 4. Numbering styles 35

The definition

\def\Alph#1{\count@=#1\relax\advance\count@ by 64
\ifnum\count@>90 \Err@{\noexpand\Alph invalid for
numbers > 26}\else\char\count@\fi}

is exactly analogous, using the fact that the letters A-Z should have the posi-
tions 65-90.

For \roman we just have to

\def\roman#i{\romannumeral#1i\relax}

since TEX provides the \romannumeral primitive. (The \relax is essen-
tial here; otherwise something like \roman{10}3 would be expanded into
\romannumeral103, giving the result ‘ciii’.)

But \Roman is more complicated,

\def\Roman#1{\uppercase\expandafter{\romannumeral#1}}

Here the \expandafter causes expansion after the left brace {. Without the
\expandafter, something like \Roman3 would become

\uppercase{\romannumeral3}

which is just \romannumeral3, and thus ‘ii’. With the \expandafter, we
get

\uppercase{(expansion of \romannumeral3)}

i.e., \uppercase{iiil}, or ‘III.
Note that we don’t need to add \relax after the #1 in his definition, because
\romannumeral#? is expanded within the \uppercase{...}.

36 Chapter 4. Numbering styles

Finally, we have the \fnsymbol numbering style. As the code below shows,
\fnsymbol#1 successively sets

(1) \count@@ = #1

@ \count@ = [“7‘ L]

3) \count@e@ = [#1,; 1] +1

@) \countQ@@ = #1 — 7. .#17_ 1])
Hence -

1 for#1=1,8,15,...
2 for#1=2916,...
\count@@ =
7 for#1="714,21,...
so \count@@ tells which of the symbols *, 1, ¥, ¥, §, ||, # should be printed,
namely, * for \count@@ = 1, } for \count@@ = 2, etc.
On the other hand,
1 for#1=1,...,7
\count@@@ = ¢ 2 for#1i=28,...,14

so \count@@@ is the number of times that this symbol has to be printed. To
print the symbol this many times, we use a loop, initially setting the counter
\count@ to \count@Qe:

\def\fnsymbol#i{\count@=#1i\relax

\count@@=\count@

\advance\count@ by -1 \divide\count@ by 7
\count@@@=\count@ \advance\count@@@ by 1
\multiply\count@ by 7 \advance\count@@ by -\count@
\count@=\count@ee

{\loop
\ifcase\count@@\or*\or\dag\or\ddag\or\P\or\S\or

\text{\I}\or\#\£fi

\advance\count@ by -1 \ifnum\count@>0 \repeat}}

N .
R

o’

Chapter 4. Numbering styles 37

AmS-TEX has already defined \dag, \ddag, \P, and \S, so that they can
be used either in text or in math mode, where they will change size properly;
\text{$\|$} simply does the same for the || symbol (\# needs no special
treatment). Modifications of \dag, ... may be necessary for fonts with different
layouts.

In the above definition we put the \loop inside a group just in case
\fnsymbol happens to be used inside some \loop itself, a somewhat finicky
precaution, since a nested \1oop involving \fnsymbol will never be produced
by any IS-TEX construction. The same precaution will be used for any
Mp4S-TEX \loop that might conceivably occur within another \loop.

Chapter 5. Printing cardinal and ordinal numbers

This chapter is in some sense a companion to the previous one.
First we define \cardnine@#1 for printing the final part of the name of a
cardinal number; it will be applied to a counter with a value from 1, ..., 9:

\def\cardnine@#1{\ifcase#1\or one\or twolor
three\or four\or five\or six\or seven\or eight\or nine\fi}

The number 10 will be used so often in the macros of this chapter that we
want to use \newcount to introduce a counter having that value.

As we mentioned in section 3.6, amstex.tex (and amstexl.tex) redefine
\alloc@ so that it doesn’t write anything to the .Llog file; and

\let\alloc@@=\alloc@

is used so that \alloc@@ is that version of \alloc@, even if called after
\alloc@ has been restored to the old definition from plain TEX at the end.
We now want to reinstate the new definition until the end of lamstex.tex.
Instead of redefining it directly, we just have to

\let\alloc@=\alloc@e@

since \alloc@@ was permanently given the new definition.
Since \newcount is defined in terms of \alloc®, which we have just made
equivalent to \alloc@@, the next code

\newcount\ten@
\ten@=10

does not produce anything in the .log file of a file that has \input lamstex
(nor will any of the other \new. .. constructions to follow).

Although \cardinal{. ..} will normally be applied when . . . is a number,
to be on the safe side, we first safely store the value in a counter,

\def\cardinal#1{\count@=#1\relax

38

S

Chapter 5. Printing cardinal and ordinal numbers 39

and then proceed by cases.

\def\cardinal#i{\count@=#1\relax
\ifnum\count@>99 \number\count@
\else

\ifnum\count@=0 zero),

\else

\ifnum\count@<\ten@ \cardnine@\count@

\else

\ifnum\count@<20

\advance\count@ by -\ten@

\ifcase\count@ ten\or eleven\or twelve\or
thirteen\or fourteen\or fifteen\or sixteen\or
seventeen\or eighteen\or nineteen\fi

\else

\count@@=\count@ \count@@@=\count@@

\divide\count@ by \ten@ \multiply\count@ by \ten@

\advance\count@@@ by -\count@

\divide\count@ by \ten@

\ifcase\count@\or\or twenty\or thirty\or forty
\or fifty\or sixty\or seventy\or eighty\or ninety\fi

\ifnum\count@@@=0 \else-\cardnine@\count@ee\fi

\fi
\fi
\fi
\fi}

Thus, if #1 > 99, we simply typeset this number. If #1 = 0, we simply
typeset ‘zero’. If 0 < #1 < 10, we just use \cardnine@ to print the number.
For 10 < #1 < 20, we must explicitly specify ‘ten’, ... , ‘nineteen’.

Finally, for 20 < #1 < 99, we have to do a little calculation. The next code
successively sets

¢)) \count@@@ = \count@@ = #1

#1
) \count@ = 10- [E]

40 Chapter 5. Priniing cardinal and ordinal numbers
#1
(3) \count@@@ = #1 — 10- [ﬁ]
=#1 (mod 10)
#1
@ \count@ = [1—0]

The first part of the word for #1 is ‘twenty’ if #1 = 20,...,29, and hence
\count@=2; it is ‘thirty’ if #1 = 30,...,39, and hence \count@=3; etc. If
\count@@@ = (the name is complete; otherwise we must add ‘-one’, ‘-two’
..., depending on the value of \count@@@.

3

\ordnine@, for ordinal numbers, is exactly analogous to \cardnine@:

\def\ordnine@#i{\ifcase#i\or first\or second\or
third\or fourth\or fifth\or sixth\or seventh\or
eighth\or ninth\fi}

The ordinal numbers < 100 can be treated in a manner exactly like the
cardinal numbers. But a problem arises for ordinal numbers like ‘100th’,
‘101st’, ‘102nd’, ‘103rd’, ..., ‘109th’, ‘110th’, ‘111¢h’, ‘112th’, ...—now the
proper suffix depends not only on the last digit of the number, but also on
whether the next-to-last digit is a 1.

The routine \ordsuffix@ selects the right suffix in these cases, assuming
that the number in question has been stored in \count@. The first part of
the routine below divides \count@ by 10, and then calculates \count@@@ to
be \count@ (mod 10) [compare the previous calculations for \cardinal]. If
this is 1, so that the next-to-last digit of the number in \count@ was 1, ‘th’ is
selected. Because the original value of \count@ is needed for the second part
of the routine, we need to store it in yet another counter, \count@@@@, which
we have to declare.

This second part simply computes \count@@@ as \count@ (mod 10) [for
the original value of \count@]; if this second part of the routine ends up
being invoked, the correct choice of the suffix depends only on this value of
\counte@ee:

\newcount\count@QQe@

S

\\..,//

Chapter 5. Printing cardinal and ordinal numbers 41

\def\ordsuffix@e{\count00ee=\count@
\divide\count@ by \tene
\count@@@=\count@ \count@@=\count@
\divide\count@@ by \ten@ \multiply\count@@ by \ten@
\advance\count@@@ by -\countee
\ifnum\count@@@=1 th¥
\else
\count@@e@=\count@eee
\count@@=\count@oee
\divide\count@@ by \ten@ \multiply\count@@ by \ten@
\advance\count@@@ by -\count@@
\ifcase\count@@@ th\or st\or nd\or rd\else th\fi
\fi}

\nordinal and \spordinal are easy, since they are simply a number fol-
lowed by the proper suffix, or the suffix superscripted:

\def\nordinal#1{\count@=#1\relax\number\count@\ordsuffixe}
\def\spordinal#i{\count@=#1\relax\number\count@
$~{\text{\ordsuffix@}$}

And \ordinal itself simply mimics \cardinal, using \ordsuffix@ for
numbers > 100:

\def\ordinal#i{\count@=#1\relax
\ifnum\count@>99 \number\count@\ordsuffixe
\else
\ifnum\count@=0 zeroth
\else
\ifnum\count@<\ten@ \ordnine®@\count@
\else
\ifnum\count@<20 \advance\count@ by -\ten@
\ifcase\count@ tenth\or eleventh\or twelfth\or
thirteenth\or fourteenth\or fifteenth\or sixteenth\or
seventeenth\or eighteenth\or nineteenth\fi
\else

42

Chapter 5. Printing cardinal and ordinal numbers

\count@@=\count@

\divide\count@ by \ten@ \multiply\count@ by \ten@
\count@@@=\count@@ \advance\count@e@ by -\count@
\divide\count@ by \ten@

\ifcase\count@\or\or twent\or thirt\or fort\or fift\or
sixt\or sevent\or eight\or ninet\fi

\ifnum\count@@@=0 ieth\else y-\ordnine@\count@ee\fi
\fi

\fi

\fi
\fi}

Chapter 6. Inhibiting expansion

There are numerous situations where we want to suppress expansion, during
both \write’s and \edef’s or \xdef’s, of the numbering control sequences
\arabic, \alph, ... as well as the font change control sequences \rm, \it,
\b{, The latter includes \smc, which may not have been defined yet, so
we take care of that first:

\font@\tensmc=cmcsc10
\textonlyfont@\smc\tensmc

[For the details of \font@ and \textonlyfont@ see amstex.doc (and
also page 22); basically, this is like saying \font\tensmc=cmcsc10 and
\def\smc{\tensmc}.]

We introduce a new token list

\newtoks\noexpandtoks@

which will be a list of commands, and then \noexpands@ will issue these
commands by inserting this token list:

\noexpandtoks@={\let\arabic=\relax\let\alph=\relax
\let\Alph=\relax\let\roman=\relax\let\Roman=\relax
\let\fnsymbol=\relax\let\rm=\relax\let\it=\relax
\let\bf=\relax\let\sl=\relax\let\smc=\relax
\let\/=\relax\let\null=\relax}

\def\noexpands@{\the\noexpandtoks@}

It is casy to define the construction \Nonexpandingi#1, which is supposed
to make \let#1=\relax also be executed:!

\def\Nonexpanding#1{\global\noexpandtoks@
=\expandafter{\the\noexpandtoks@\let#i=\relax}}

!In version 1 of 14yS-TEX, this was called \Noexpand, but that seems too close to \noexpand
for comfort.

43

4 Chapter 6. Inhibiting expansion

\let\/=\relax was added to \noexpandtoks@ because \/ will often oc-
cur in “style” commands (pages 50, 74, 104, et al.) that appear in \edef’s
or \xdef’s and \write’s (pages 71, 76, et al.) and \/ is no longer a prim-
itive in ApS-TEX or MyS-TEX (page 5). Similarly \let\null=\relax was
added because \null sometimes occurs in “style” commands (see page 208,
for example).

Chapter 7. Invisibility

7.1. Invisible constructions. All constructions that are supposed to be “invisi-
ble” (the most important examples being \1abel and \pagelabel) begin with
\prevanish@. If we are in horizontal mode, this sets \saveskip@ (a glue reg-
ister declared in ApS-TEX) to be the previous glue, and then removes that
glue. Otherwise, it simply sets \saveskip@ to Opt.

\def\prevanish@{\saveskip@=0pt
\ifhmode\saveskip@=\lastskip\unskip\fi}

“Invisible” constructions end with \postvanish@, which puts back the
\saveskip@ glue, if greater than zero;! it must also look ahead to see if the
next token is a space, and swallow up that space if the \saveskip@ glue was
greater than zero:

\def\postvanish@{\ifdim\saveskip@>Opt\hskip\saveskip@\fi
\futurelet\next\postvanish@ae}
\def\postvanish@@{\def\next@.{}
\ifx\next\space@\ifdim\saveskip@>Opt\def\next@. {}\fi\fi
\next@.}

Here we use the method of page 7. Note that we don’t want to use \FNSS@
(section 3.8) in this special situation, since we want to eliminate the space only
when \saveskip@ is greater than zero.

[It is important to note that \saveskip@ appears only in these definitions,
except for certain AnS-TEX constructions that will not ever appear within
an “invisible” construction. So we don’t have to worry about the value of
\saveskip@ being clobbered before \postvanish@ is applied.}

These constructions allow us to define the general construction to make
anything “invisible”:

'We don’t want to add \hskip\saveskip® when \savekskip@ is zero, because that case can
occur when there is no previous glue: adding \hskip\saveskip@ might then allow a break
where none was allowed before.

45

46 Chapter 7. Invisibility

\def\invisible#1{\prevanishO\ignorespaces#1\unskip
\postvanish@}

(Notice that, because of the \ignorespaces and \unskip, the remark in the
I4\S-TEX Manual on page 32, lines 6-8, is incorrect.)

We will need a list, \vanishlist@, of all invisible constructions; this will be
a list of the sort discussed in section 3.7. We initialize it as:

\def\vanishlist@{\\\invisible}

7.2. Special considerations for invisible constructions. 1f we have a construction
like

\par
\invisible{...} Some text

then the \prevanish@ in \invisible sets \saveskip@ to Opt. Conse-
quently, the \postvanish@ will not delete the following space token that pre-
cedes ‘Some text’. But this space token is ignored in vertical mode (The
TEXbook, page 282), so we don’t get an extra space before “Some text”.

The situation is quite different, however, if we have

\par
\noindent \invisible{...},Some text

because now the space token is not ignored, since it is encountered in hori-
zontal mode; consequently, we will get an extra space before “Some text”.

In ApS-TEX and I4(S-TEX, the combination \par\noindent has the spe-
cial abbreviation \flushpar. We can avoid this difficulty with invisible con-
structions by redefining \flushpar as

\def\flushpar{\par\noindent\futurelet\next\pretendspace@}

where \pretendspace@ simply inserts \hskip-1pt\hskipipt (preceded by
\nobreak just as a precaution) when \next is something in \vanishliste:

\def\pretendspace@{\ismember@\vanishlist@\next
\iftest@\nobreak\hskip-ipt\hskipipt\£fi}

—

7.2. Special considerations for invisible constructions 47

[A precautionary \relax after the \hskipipt is not needed here—the \fi
will stop the scanning of \hskip.]
As a result of this definition,

\flushpar\invisible{...},
becomes
\par\noindent\nobreak\hskip-1pt\hskipipt\invisible{...},

(and similarly for \flushpar\label{...}, and any other “invisible” con-
structions that we will eventually define, and add to \vanishlist@).

Consequently, the \prevanish@ removes the \hskipipt and then sets
\saveskip@ to 1pt. Then the \postvanish@ adds back the \hskipipt
once again, canceling out the \hskip-1pt. Moreover, since \saveskipQ@ is
now positive, the space token after the \invisible will be thrown away, so
that \invisible{. ..} will really be invisible.!

Note, by the way, that \ismember@ was defined in such a way that the test
\ismember@\vanishlist@\next sets \iftest@ to be true when \next has
been \let equal to a control sequence in \vanishlist@ (page 23).

[In the above definitions, it might seem that we could simply add the
\hskip-1pt\hskipipt in all cases. But that wouldn’t quite work, because
the next construction might begin with an \unskip (e.g., \linebreak or
\dots). Aside from such a case, however, the \hskip-1pt\hskipipt doesn’t
do any harm.]

Since some users might type \noindent instead of \flushpar, we might
as well add the \futurelet\next\pretendspace@ to \noindent also.

\let\noindent@=\noindent
\def\noindent{\par\noindent@\futurelet\next\pretendspace@}

\def\pretendspace@{\ismember@\vanishlist@\next
\iftest@\nobreak\hskip-1ipt\hskipipt\fi}

'If some one has typed \define\foo{\invisible{...}} and then used \flushpar\foo,
this presents no problem, since in this case no space after \foo will appear. (But, of course,
\define\foo/{\invisible{...}} would make ‘\flushpar\foo/,’ behave incorrectly; this
didn’t seem worth worrying about})

48 Chapter 7. Invisibility

\let\flushpar=\noindent

\pretendspace@ will be needed at several other points in I4S-TEX (sec-
tions 16.1, 18.5, et al.).

In amstexl.tex we delete the definition of \flushpar, since it will be
replaced with this new definition.

J
R

Chapter 8. Special considerations for \everypar

Numerous MyS-TEX constructions use \noindent@ to start an unindented
paragraph. If some

\everypar={...}

has been specified in the document, these unindented paragraphs would also
start with the \everypar tokens, which is normally not desired.

Although this might be regarded as a rather paranoid concern, since
\everypar’s should presumably be used only within some region of the docu-
ment that contains only text, I4,/S-TEX contains a special construction to deal
with this problem.

First we introduce a new token list

\newtoks\everypartoks@

and then we define

\def\noindent@@{\par\everypartoks@=\expandafter{\the\everypar}

\everypar={}/,
\noindent@\everypar=\expandafter{\the\everypartoks@}}

Thus, \noindent©@

(1) ends the previous paragraph,

(2) stores the current value of \everypar in \everypartoks@,
(8) sets \everypar to be empty, and

(4) starts an unindented paragraph, which

(5) resets \everypar to its original value for the next paragraph.

Note that the original value of \everypar will not be inserted before the
\noindent@ed paragraph, because it gets the value {} that was current when
the \noindent@ was encountered.

In I4,(S-TEX, \noindent@@ will usually be used instead of \noindent, with
a \futurelet\next\pretendspace@ added when an invisible construction
might follow.

49

Chapter 9. \page

In 14,S-TEX the control sequence \page can be manipulated like \tag,
\claim, etc. Thus, we can use \Reset\page, \newpre\page, But we
want \page by itself to give an error message:

\def\page{\Err@{\noexpand\page has no meaning by itself}}

(Again, see section 3.4 for the use of \noexpand.)

As we will see in Chapter 11, associated with the I4S-TEX construction
\tag we have

\tag@C the counter associated with \tag
\tag@P the “pre” material for \tag
\tag@Q the “post” material for \tag
\tag@S the style for \tag

\tag@N the numbering style for \tag
\tag@F the font for \tag

Likewise, \claim and all other I4\S-TEX constructions that can be given a
(label) have similar counters and control sequences associated with them.

At present, we simply want to consider the counter and control sequences
associated to \page. For \page@C we just use plain TEX’s \pageno

\let\page@C=\pageno

and then we introduce default values (\empty is defined in plain.tex
by \def\empty{}, so \let\page@P=\empty is just a briefer way of saying
\def\page@P{}):

\let\page@P=\empty

\let\page@Q=\empty
\def\page@S#i{#1\/}

\def\page@F{\rm}

\def\page@N{\arabic} ¥ cannot be \let

50

Chapter 9. \page 51

The \/ in \page@S might be useful if \pageQF is ever chosen to be a slanted
font.

We want to have \def\page@F{\rm} rather than \let\page@F=\rm, be-
cause \rm may actually change definitions. For example,

\fontstyle\page{...}
expands out (page 227) to
{\pageCF...}

and if we are in 9-point type at the time, we would expect to get 9-point roman
type, not the 10-point roman type that is in effect at the time that \page@F is
specified.

And, as we will see later (page 59), it is even more critical that we have
\def\page@N{\arabic} rather than \let\page@N=\arabic.

Chapter 10. Indexing

The indexing macros were placed next, because they use the fact that " is
active in I4yS-TEX, and we would like to get this declared soon, so that any
"' appearing in other macros will refer to this active "'. Some of the methods
used here will also be crucial in Chapters 23 and 32.

It should be noted that in version 1 of I S-TEX, the index entries were
written to one file, with the extension .ndx, while the corresponding page
numbers were written to another file, with the extension .npg. That has
all changed, however, and now the entry and the page number are written
together to the .ndx file. Similarly, as we will see in Chapter 23, heading
levels will be written together with their page numbers in the .toc file, and
as we'll see in Chapter 32, Figures, Tables, etc., will be written together with
their page numbers in one file.

10.1. The .ndx file. We will need a flag,

\newif\ifindexing@

to tell whether an index file is being made.

\indexfile will (globally) set the flag \ifindexing@ to be true the first
time it is used; it will also test this flag when called, so that if it is called twice
it will do nothing at all the second time. The first time \index£file is called,
it should create a new output stream,

\newwrite\ndx@

associated with the file \jobname.ndx (where \jobname will be ‘f00’ when
TEX is processing foo.tex).

Instead of using \newwrite, we will just write the code for it instead, sub-
stituting \alloc@@ (page 38) for \alloc@:

\def\indexfile{\ifindexing@\else
\alloc@@7\write\chardef\sixt@0n\ndx@
\immediate\openout\ndx@=\jobname.ndx
\global\indexing@true\fi}

52

e’

10.2. \indexproofing 53

Then (compare section 3.6), since we used \alloc@@ rather then \alloc@,
nothing will be written to the .1log file, even though \indexfile is used after
\alloc@ itself has been redefined at the end of lamstex.tex.

10.2. \indexproofing. We will need an insertion class, called \margin@, for
index entries that are to appear in the margin if \indexproofing has been
specified. So we would like to say ‘\newinsert\margin@. But \newinsert is
defined differently than all other \new. .. constructions in plain, and it will
write something to the .log file, despite our redefinition of \alloc@. So we
instead simply restate everything from plain in the definition of \newinsert
except for the \wlog part:

\globalladvance\insc@unt\m@ne
\ch@ckO\insc@unt\count
\ch@cki\insc@unt\dimen
\ch@ck2\insc@unt\skip
\ch@ck4\insc@unt\box
\allocationnumber\insc@unt
\global\chardef\margin@\allocationnumber

Notice that although this takes up a lot of space in the file, it takes up hardly
any space within TEX itself, just like \newinsert\margin@.

We put no limit on the number of marginal notes on a page, and they take
up no space (compare The TEXbook, page 415):

\dimen\margin@=\maxdimen
\count\margin@=0
\skip\margin@=0pt

The flag \ifindexproofing@ will tell us whether \indexproofing (and/
or \noindexproofing) appears:

\newif\ifindexproofing@
\def\indexproofing{\indexproofing@true}
\def\noindexproofing{\indexproofing@false}

54 Chapter 10. Indexing

10.3. Converting tokens to type 12. If a control sequence \controlseq has
been defined by

\def\controlseq(parameter text){({replacement text)}

(see The TEXbook, page 203, for terminology), then the TEX primitive
\meaning\controlseq

expands to

macro: (parameter text)->(replacement text)

where all non-space tokens are of type 12.
The construction \unmacro@ is used to store the (parameter text) in
\macpar@ and the (replacement text) in \macde£f@:

\def\unmacro@#1:#2->#3\unmacro@{\def \macpare{#2}
\def\macdef@{#3}}

In particular, if we
\def\foo{#1}
where #1 is any text with balanced braces, and we do

\expandafter\unmacro@\meaning\foo\unmacro@

then! \macdef@ will consist of #1 with all non-space tokens converted to type 12.
Some information is lost in the process: multiple spaces in #1 coalesce to
single spaces in \macdef@, control words in #1 are followed by spaces in
\macdef®@ even if no spaces appear after them in #1, and line breaks in #1 sim-
ply become spaces in \macdef@. So this method is not particularly useful for
literal mode, especially since it cannot be applied at all unless #1 has balanced

! There is no problem with : being part of the syntax of \unmacro@ even in a file where : has
been made active (compare section 3.10), because \unmacro@ will always be used like this, to
work on some value of \meaning.

i’

RN

10.3. Converting tokens to type 12 55

braces. Nevertheless, it alleviates considerably the problems that arise when
we want to \write the string #1 to a file without having control sequences
expanded. We simply have to write \macdef@ instead!

More precisely, for some output stream, like \ndx@, instead of using an
\immediate\write like

\immediate\write\ndxe{#1}
we can

\def\nexte{#1}
\expandafter\unmacro@\meaning\next@\unmacro@
\immediate\write\ndxe{\macdefe}

For delayed \write’s we have to be more careful, since \macdef@ may have
been redefined by the time the \write occurs. Instead of

\write\ndx@{\macdef@}
we must use

\edef\next@{\write\ndx@{\macdef@}}
\next@

The \nxd@ is not expanded in this \edef, since it was created with \chardef;
such control sequences aren’t expanded in \edef’s. Consequently, the \edef
simply makes \next@ mean

\write\ndx@{(expansion of \macdef@)}

so that \next@ then produces this \write.

Notice that it is irrelevant that we are writing type 12 tokens to the .ndx
file: once they are written to that file their category codes are completely
irrelevant—if TEX reads this file later, they will simply be given the category
codes that are in force at the time.

56 Chapter 10. Indexing

10.4. The \starparts@ and \windex@ routines. In version 1 of I4yS-TEX,
only invisible entries could have * optional entries, but now even visible entries
can have them. '

We will use a construction \starparts@#1 that determines if #1 contains a
* and defines

\stari@ to be all of #1
\starii@ to be the part of #1 before the first * (or all of #1 if there is none)
\stariii@ tobe the partof #1 after the first * (or empty if there is none)

We begin by choosing the values that will hold when no * appears:

\def\starparts@#i{\def\starie{#1}\def\stariie{#1}\let\stariii@=\empty

Then we perform a test that sets \iftest@ to be true if * appears in #1 and
false if it doesn’t (compare the definition of \tagin@ in section 3.3):

\test@false

\def\nextQ## 1+##2##3\nexte{\ifx\starpartse##2\test@false
\else\test@true\fi}

\next@#1*\starparts@\next@

If no * appears we are done; otherwise we will have to call another routine
that separates the two parts:

\def\starparts@#i{\def\stari@{#i}\def\stariie{#1}¥
\let\stariii@=\empty
\test@false
\def\next@##1+##2##3\next@{\ifx\starparts@i#t#2\test@false

\else\test@true\fil}y

\next@#1*\starparts@\next@
\iftest@\def\next@{\starparts@e#1\starpartsee}’,
\else\let\next@=\relax\fi\next@}

\def\starparts0Q#1*#2\starparts@@{\def\stariie{#1},
\def\stariii@{*#2}}

T

R

10.4. The \starparts@ and \windex@ routines 57

Onceour "..." and ""..." constructions, to be defined in section 5, have
used \starparts@ to determine \stari@, \starii@, and \stariii@, we
will use \starii@ to typeset ‘...” in the case of a visible index entry, and

then we will use the “write-index” routine \windex@.
When we are making an .ndx file, this routine will first

\expandafter\unmacro@\meaning\stari@\unmacro@

to convert ‘.. ." to type 12 tokens. Then

\edef\macdef@{\string"\macdef@\string"}

will add " at each end, for the sake of the index program; \string" is needed
since " will be active.

Then we will use the \edef of page 55 to write these tokens to the .ndx file.
This will be followed by the page number. Actually, instead of writing just the
page number, we write four groups, the first containing the page number, and
the next three containing the page numbering style, the “pre-page” material,
and the “post-page” material (Chapter 9),

\write\ndx@{{\number\pageno}{\page@N}{\page@P}{\page@q}}

This allows the index program to deal with all sorts of special page numbering
possibilities.
In addition, when \ifindexproofing@ has been set true, we want to

\insert\margin@{\hbox{\rm\vrule \height9pt \depth2pt
\widthOpt ...

where the \hbox begins with a “strut”, designed to keep baselines of successive
entries 11 points apart (see page 7 for the use of \height, ...).!

! Perhaps this is a good place to mention something that tends to be obscured in discussions
about struts. Most TEXnicians are familiar with struts as the device that allows one to place
one \vbox above another and still have the proper space between the bottom baseline of the
top \vbox and top baseline of the bottom \vbox. The problem here is that TEX will normally
insert only \lineskip space between the two boxes, since the baseline of the second box is so
far from the baseline of the first. But the situation with regard to \footnote’s, or members of
other insertion classes, is really quite different: TEX inserts no interline glue whatsoever between two
different members of an insertion dass (The TEXbook, page 125). Thus, even single line footnotes
will be spaced incorrectly without struts} (Struts are discussed further in section 25.2.)

58 Chapter 10. Indexing

This \hbox should contain all material before any * in ‘...’ typeset in
\rm, but all material after the first * should be converted to type 12 tokens,
and typeset in the \tt font,! since it contains things like *e\it, which are
not supposed to be acted upon, but merely convey information to the index

program.
This is all accomplished with the following code:

\def\windex@{\ifindexing@
\expandafter\unmacro@\meaning\stari@\unmacro@
\edef\macdef@{\string"\macdef@\string"}/
\edef\next@{\write\ndx@{\macdef@}}\next@
\write\ndx@{{\number\pageno}{\page@N}{\page@P}{\page@q}}%
\fi
\ifindexproofing@

\ifx\stariii@\empty\else
\expandafter\unmacro@\meaning\stariii@\unmacro@\fi
\insert\margin@{\hbox{\rm\vrule \height9pt \depth2pt

\widthOpt \stariie
\ifx\stariii@\empty\else\tt\macdef@\fi}}Y,
\fi}

At the time that our \write is performed, we will want \noexpandse@ to be
in effect, partly to prevent expansion of any font control sequences that might
appear in \page@P and \page@q, but mainly because we want to be sure that
\page@N isn’t expanded during the \write, since the index program expects
to see a numbering control sequence in this second group.

But there’s no point putting

{\noexpandse
\write\npg@{{\number\pageno}{\page@N}{\page@P}{\page@q}}}

in our definition, because this delayed \write is simply added to the main
vertical list and does not take place until a \shipout. Instead, we will have
to be careful to specify \noexpands@ during any \shipout (section 36.1).
Nevertheless, this is an appropriate time to discuss the problems that would
be encountered if expansion were not prohibited. Expansion would clearly

! Other styles (compare Part VII) may use smaller print for these side notes.

. L

10.5. Indexing 59

cause problems if \page@N is defined as \alph or \Alph, but, in fact, for
this particular \write, expansion would be a problem even if \page@N is de-
fined as \arabic, because \page@N appears in a group by itself ~TEX would
complain during the \write that

! Argument of \page@N has an extra }.

And here comes the most subtle point of all: If we \let\page@l=\arabic,
then our \write would not put \arabic in place of \page@N, even if
\noexpands@ is in effect when it takes place, and we would get the very
same error message. That is because \page@N would have the original
meaning of \arabic—although \noexpands@ says ‘\let\arabic=\relax,
our \page@N would not be this \arabic! On the other hand, when we
\def\page@N{\arabic}, the \write first expands \page®N to (the current)
\arabic, and then doesn’t expand this \arabic further.

10.5. Indexing. Now we are finally ready to make " active,

\catcode‘\"=\active

and define the action of ". As we have already noted (page 15), the combina-
tion @" will still work when * is active.

First of all, " will have to look ahead to see if it is followed by another ",
because this indicates an invisible entry:

\def"{\futurelet\next\quote@}
\def\quote@{\ifx\next"\expandafter\quote@@\else
\expandafter\quote@ee\fi}

Note that we are using the “K-method” here (see section 1.1).
\quote@@Q, the result when " isn't followed by another ", so that we have
a visible index entry, is simply defined as

\def\quote@@@#1"{\starparts@{#1i}\starii@\windex@}

Thus, after \starparts@ defines \stari@, \starii@, and \stariii@, we
typeset \starii@—the part before any *—and then apply the “write-index”
routine \windex@.

60 Chapter 10. Indexing

We should note that as a consequence of the definition of \quote@Q@#1, the
indexed word #1 may be followed by an \insert and/or a “whatsit”, namely,
the \write produced by \windex@. But either an \insert or a “whatsit” can
appear gfter a word without suppressing hyphenation—see The TEXbook, third
paragraph from the bottom on page 454. (This should be compared to the
\makexref macro on page 424 of The TFXbook, where the \insert appears
before the word, and therefore suppresses hyphenation of the word.) Simi-
larly, as we will see in a moment, an invisible index entry simply supplies an
\insert and/or a \write. The warning on page 100 of the I4(S-TEX Manual
is therefore inaccurate: an invisible entry will suppress hyphenation of a word
only if it immediately precedes it, not if it follows it. Similarly, the warnings
on pages 31 and 33 are inaccurate; only a \1abel or \pagelabel immedi-
ately preceding a word will interfere with its hyphenation—in particular, the
example given on page 33 won'’t interfere with hyphenation.

\quote@@ is not that much different from \quote®, except that we want it
to swallow the next ", and begin with \prevanish@, so that it will be invisible:

\def\quote@@"#1"{\prevanish@\starpartse{#1}\windex@
\futurelet\next\quote@eeo}

The \futurelet\next\quote@@QQ is needed to see whether yet another "
occurs after the third " that caused all this to happen. If a fourth " didn’t
occur, we insert the \postvanish@, and if a fourth " did occur, we simply
swallow it up, and then insert the \postvanish@:

\def\quote@@@e{\ifx\next"\def\next@"{\postvanish@}\else
\let\next@=\postvanish@\fi\next@}

10.6. Changes to the IA\S-TEX Manual. Because of changes in the indexing
macros, almost every caveat on page 101 of the I4,S-TEX Manual is wrong.

The first paragraph is wrong: index entries within heading levels will show
up in the margins when \indexproofing has been specified. (Of course, one
had better not type something like

\HL1 "Disappearing" words\endHL

10.8. Other delimiters for index entries 61

since "Disappearing" would then be interpreted as a “quoted” number for
\HL1! Something like \HL1{}"Disappearing" is needed.)

The third paragraph is wrong, because only the parts after the first * will
be typeset in the typewrite font, with characters of type 12.

The fourth paragraph is wrong: \" can be used within an invisible entry.

The fifth paragraph is wrong: invisible entries can now appear anywhere.

It is true, as the final paragraph claims, that index entries in \footnote’s
won’t appear in the margin (they are \insert’s within an \insert, and won't
migrate out). However, no special efforts are required in the \footnote
macros to get indexing to work within \footnote.

10.7. Invisibility. After all this, we want to add " to \vanishlist@:

\rightadd@"\to\vanishlist@

This probably looks wrong, since it is only the double mark "* that indicates
an invisible entry, but

\nobreak\hskip-1ipt\hskipipt"..."
and
\nobreak\hskip-ipt\hskipipt""..."

will both work out just right: before the visible index entry "..." the
\hskip-1ipt\hskipipt will simply be irrelevant, while before an invisible
index entry ""..." it provides the right clues for the \prevanish@ called by
\quote@@ (compare page 47).

10.8. Other delimiters for index entries. The use of " as a delimiter for index
entries conflicts with its use in German styles (this will probably remain true
even when the international font layouts are in use, although then the " will
presumably no longer be active for German). However, it is not very hard to
set up other delimiters for this purpose.

For example, suppose we want to use <. ..> delimiters, so that

Beauty<<beauty>> is <truth>.

62 Chapter 10. Indexing

will produce a index entry for truth, and an invisible index entry for beauty.
For this, we could

\catcode‘\<=\active
\let<=" J we might as well continue using \quote@,

% \def"{...} if we have new definitions for German, or
h \catcode‘\"=12 if " should no longer be active

\def\windex@{\ifindexing@
\expandafter\unmacro@\meaning\nextii@\unmacro@
\xdef\nextii@{\string<\macdef@>}/,

\fi}
\def\quote@{\ifx\next<\expandafter\quote@@\else

\expandafter\quote@@Q\fi}
\def\quote@@0#1>{\starpartse{#1}\starii@\windexe}
\def\quote@@<#1>{\prevanish\starparts@{#1}\windex@

\futurelet\next\quote@eQ}

\def\quote@@@@{\ifx\next>\def\next@>{\postvanish@}\else
\let\next@=\postvanish@\fi\nextQ}

The new version of the index program (see Chapter 39) now accepts any
delimiters in the .ndx file. However, as Chapter 39 points out, for German
alphabetization we would probably want some modifications to deal with words
with umlauts.

We should probably also remove " from \vanishlist@. There is no gen-
eral mechanism for removing something from \vanishlist@. However, since
we know that \vanishlist@ will be of the form

\\\invisible\\" ...
we can

\def\next@\\\invisible\\"#1\next@{\def\vanishliste{#1}}
\expandafter\next@\vanishlist@\next@

For consistency, it would probably be better to choose, once and for all, index entry
delimiters that could be used in all cases; <...> don't satisfy that requirement,

N

‘\v/

10.9. \idefine and \iabbrev 63

since Scandinavian keyboards have letters instead of < and >. There aren’t too many
possibilities left, however! The only reasonable candidates are _ and | (although + and
= would also be possible, if we insisted that people never used them outside of math
mode), and

Beauty| |beautyl| is |truthl, truth beauty
doesn’t look too bad. If only | weren't used for something else in German styles!)
10.9. \idefine and \iabbrev. A construction like
\idefine\cs(parameter text}{(replacement text)}
has to

\define\cs(parameter text){(replacement text)}

and also send this definition off to the .ndx file.

\idefine first stores its argument, \cs say, in \next@, and also stores
\noexpand\cs in \nextii@, for later use:

\def\next@{#1}\def\nextii@{\noexpand#1}/,

Then we will apply the construction \idefine@ once we have suitably swal-
lowed up the (parameter text) and (replacement text):

\def\idefine#1{\def\next@{#1}\def\nextii@{\noexpand#1}
\afterassignment\idefine@\def\nextiii@}

Here the \def\nextiii@ will cause the following (parameter text) and
(replacement text) to be digested into a definition of \nextiii@, after which
assignment we will apply \idefine@.

Since \nextiii@ now has the definition that we want for \cs, the first thing
\idefine®@ must do is to

\let\cs=\nextiiie@

64 Chapter 10. Indexing

Since \next@ was \def’ed to be \cs, we can do this with

\expandafter\let\next@=\nextiii@

Then, if we are indexing, we need to recover the (parameter text) and
(replacement text) for \cs, which is now that for \nextiii@. So we use

\expandafter\unmacro@\meaning\nextiii@\unmacro@

[This construction doesn’t work if ‘~>’ appears in the (parameter text) of a
definition, so let’s hope no one ever makes such a definition.]
Now we want to write

\define\cs(parameter text){(replacement text)}

to the .ndx file. Since \nextii@ was defined as \noexpand\cs, we can do
this with

\immediate\write\ndx@{\noexpand\define
\nextii@\macpar@{\macdef@}}

—mote that the \write will first expand \nextii@ to \noexpand\cs, and
then replace this with \cs, unexpanded. Since all tokens in \macpar@ and
\macdef@ are type 12, we don’t have to worry about their expansion (and
note the remark on page 55).

Thus, the definition of \idefine@ reads:

\def\idefine@{\ifindexing@
\expandafter\let\next@=\nextiii@
\expandafter\unmacro@\meaning\nextiii@\unmacro@

\immediate\write\ndx@{\noexpand\define\nextii@
\macpar@{\macdef@}}\fi}

\iabbrev is simpler. Recall that \iabbrev must be used in the form

\iabbrev*\cs{...}

10.9. \idefine and \iabbrev

so we define

65

\def\iabbrevx#1#2{\ifindexing@
\toks@={#2}),
\immediate\write\ndx@
{\noexpand\abbrev\noexpand#i{\the\toks@}}\fi}

e’

N

Part 11

Labels and
Cross References

R—

Chapter 11. The \1abel mechanism

I4S-TEX’s \label mechanism—one of its most crucial features—involves
several different parts of I4S-TEX, and will occupy the next few chapters.
The present chapter merely explains the basic strategy, without presenting
any explicit code. (Section 4 also explains about an important new construc-
tion that has been added to I4S-TEX.)

11.1. Constructions that can be given (label)’s. For any IS-TEX construction
\foo that can be given a (label), I4\S-TEX uses

\f00@C for the counter associated with \foo

\foo@P for the “pre” material associated with \foo
\foo@Q for the “post” material associated with \foo
\fo0@S for the style associated with \foo

\foo@N for the numbering style associated with \foo
\foo@F for the font associated with \foo

So, for example, \tag has an associated counter \tag@C, and associated
control sequences \tag@P ..., \tag@F; \claim has an associated counter
\claim@C, and associated control sequences \claim@P, ..., \claim@F; etc.
The values of the \. . .@C counters can be manipulated directly, or indirectly
through \Reset and \Offset, and the \...QP, \...QQ, \...@S, \...QN,
and \...QF control sequences can be redefined directly, or indirectly using
\newpre, ..., \newfontstyle. (This is covered in detail in Chapter 24.)

Moreover, every \tag in a displayed formula, every \claim. . .\endclaim,
etc., locally defines four quantities, \thelabelq, ..., \thelabel@@@Q, to be
used if the construction is ever given a (label):

\thelabel@ will be the value of \ref{(label)}
\thelabel@@ will be the value of \Ref{(label)}
\thelabel@@@ will be the value of \nref{(label)}
\thelabel@@@@ will be the value of \pref{(label)}

All I\S-TEX constructions that can be given a (label) implicitly provide
grouping! and outside of the group \thelabel@g, ..., \thelabel@0QQ are

\claim...\endclaim and all similar I4,,S-TEX constructions provide grouping; in the case
of \tag the grouping in question is provided by the display $$. . .$$ in which the \tag lies.

69

70 Chapter 11. The \1abel mechanism

undefined (unless the construction happens to lie within another construction
that can be given a (label)). However, we will initially

\let\thelabel@=\relax
Then the simple test
\ifx\thelabel@\relax

will be true unless we are in a construction where \label is legitimate.

As a (somewhat contrived) example of how this works, suppose that in the
third section of some document, \claim numbers are being printed as (3.i),
(3.i1), (3.1ii), . .. , and that before the tenth \claim we state

\Offset\claim0
\newpost\claim{-A}

so that the number of the tenth \claim will be printed as ‘(3.ix-A).
Then within the tenth \claim

the value of \claim@C will be
\claim@P willbe 3.
\claime@Q willbe -A
\claim@S#1 willbe (#1)
\claim@N willbe \roman
\claim@F will be \bf

and, correspondingly

\thelabel®@ willbe \roman{9}
\thelabel@@ willbe (3.\roman{9}-A)
\thelabel@@@ willbe 9
\thelabel@@@@ willbe 3.\roman{9}-A
The value of the counter for \claim, the numbering style, the pre- and

post-material, and the style for \claim are all involved in the values of
\thelabelg, ..., \thelabel@QQQ; see section 5 regarding the font style.

R

- -

11.3. Consequences of these restrictions 71

11.2. Restrictions. The first concrete example of defining \thelabelg, ...,

\thelabel@@@Q occurs in Chapter 16. For the moment, we simply want to

note that these control sequences will essentially be created using \edef’s, to

insure that they will contain the current values of the counter, numbering style,

etc. Moreover, they will often occur in \xdefs’s and \write’s (see page 76).
This means that

Any control sequences appearing in
\...QP, \...@Q, \...@S, or \...@N
must be ones that can appear in \xdef’s and \write’s.

Actually, we will use \noexpands@ (Chapter 6) to inhibit expansion during the
\edef’s, \xdef’s, and \write’s (pages 82, 84, et al.), so the proper strategy is
to allow only control sequences for which \noexpands@ prevents expansion.

We've already noted (page 44) that \let\/=\relax was added to the to-
ken list \noexpandtoks@ because \/ often appearsin \ . . . @S definitions; and
\let\rm=\relax, ... were added because font change control sequences of-
ten appear also—see, for example, pages 74 and 104.

Similarly, page 385 of the My(S-TEX Manual indicates that if a new font se-
lection command \TimesRoman is ever going to be used in defining the style
for anything that can be labelled, then \Nonexpanding\TimesRoman ought
to be added, and if a new numbering command \Babylonain is ever go-
ing to be used to number anything that can be labelled, then we should add
\Nonexpanding\Babylonian to the file.!

11.3. Consequences of these restrictions. Since constructions like \newpre sim-
ply define various \. . .@P control sequences, the restrictions of the previous
section also mean that in constructions like

\newpre\tag{...}

any conirol sequences in ‘. . ." must be ones for which \noexpands@ prevents expan-
sion. And this means that some of the things stated, and implied, in the IS-
TEX Manual are false.

!The I4\S-TEX Manual also indicates that the style file for that manual (and for this manual,
as well) includes \Nonexpanding\FC, because the “font complement” \FC command occurs in
\footmarkes and \foottext@s.

72 Chapter 11. The \1abel mechanism

While the illustrations of \newpost given for \tag and the illustrations of
\newstyle and \newnumstyle given in connection with \1ist were quite
legitimate, the small print on page 77 gives the example

\newpre\exno{\value\HL1.\value\hl1.}

for numbering a user-created construction. But this example is completely
wrong! Things like \value can’t be used for \newpre.
Instead, we need something like!

\Evaluate\HL1
\edef\HLvalue{\number\Value}
\Evaluate\hli
\newpre\exno{\HLvalue.\number\Value.}

A)

And the situation is even more complicated, because we need to restate this
after every \h11.

11.4. \Initialize. To handle such situations, IyS-TEX now has the con-
struction \Initialize (the detils of which are described in sections 23.4
and 23.15). If you type

\Initialize\hl11{\Evaluate\HL1
\edef\HLvalue{\number\Value}Y,
\Evaulate\hl1
\newpre\exno{\HLvalue.\number\Value.}}

(B)

then the set of commands (A) will be executed each time an \h1l1 occurs.
Similarly,

\Initialize\HL1i{\newpre\h11{}}
would make the pre-material for \h11 be empty even for the default style,

which normally makes the pre-material for \h11 be ‘1.’ in the first \HL1, and
‘2.7 in the second, etc.

!'To be on the safe side, we might prefer \Evaluatepref\HL1 \edef\HLvalue{\Pref},...,
in case "..." has been used to quote a heading level, but \Evaluate will illustrate the point
well enough.

g

11.5. The question of fonis 73

If \chapter and \section have been introduced as names for \HL1 and
\h1l1 (see Chapter 23 for details), then we can substitute \chapter for \HL1
and/or \section for \hl1 in the \Initialize command, e.g.

\Initialize\chapter{\newpre\section{}}

[Different \Initialize commands don’t accumulate, so if you later want
to add \newpre\h12{}, then you must use

\Initialize\HL1{\newpre\hli{}\newpre\h12{}}

This shouldn’t be much of a problem, since such commands are rather special,
and would probably go near the beginning of a document; moreover, if they
did accumulate, it would quite dicey to cancel any such command.]

As an extra bonus, within the \Initialize construction, \pref may be
used with a special significance. For example, in something like

\Initialize\hli{\newpre\exno{\pref.}}

the ‘\pref’ will give the value that \pref would have for a (label) in the \h11

that has just been executed. Consequently, in the default style this will have
the same effect as (B).!

11.5. The question of fonts. Note that the font for \claim is not recorded
anywhere in \thelabelg, ..., \thelabel@@Q@—it is relevant only when the
\claim number is actually printed.

Thus, as we'll see in Chapter 24, \Ref{(label)} will not print ‘(3.ix-AY’, but
simply ‘(8.ix-A) [or ‘(3.ix-A)’ if we are using italic type, etc.]. But we can get
‘(3.ix-A) by typing \fontstyle\claim{\Ref{(label)}}, which expands out
(page 227) to

{\claim@F\Ref{(label)}}

This seems like the optimal arrangement, giving the option of using the same
font or not.

!More precisely, it will have the same effect as if we had used \Evaluatepref, as suggested in
footnote 1 on page 72.

74 Chapter 11. The \1abel mechanism

Note, by the way, that to print \claim numbers as (3.i), (3.ii), (3.iii), ...,
with bold numbers and letters, but with roman parentheses, we would define
\claim@s (either directly, or indirectly through \newstyle), to be

\def\claim@S#i{{\rm (3 #1\/{\rm)}}

and \fontstyle\claim{\Ref{(label)}} will then give the claim number
printed in exactly this way. (The \/ is useful in case \c1aim@F is ever chosen
to be a slanted font.)

11.6. Storing (label)’s. Every time a valid \1abel{{label)} or \pagelabel ap-
pears, so that (label) can be given associated values \ref{(label)}, ..., I4\S-
TEX has to record this information in two places:

(1) The information must be kept internally, in a new control sequence that
we will consider in a moment.
(2) The information must also be written to the auxiliary .1lax file.!

The reason for writing to the auxiliary file, of course, is so that the informa-
tion from that auxiliary file can be read in again the next time the document
is TEX’ed, thus allowing for forward references.

It will be important to distinguish information read in from the auxiliary
file from information created on the current run, and also to distinguish labels
created by \1abel from those created by \pagelabel.

The basic datum that we will be recording in the .1ax file will be a term of
the form

@(label) “V1"Vo" V3 Vs~ (type indicator)

where

V) = value of \ref{(label)}

Vg = value of \Ref{(label)}

V3 = value of \nref{(label)}

V4 = value of \pref{(label)}
'In version 1 of IAyS-TEX, the auxiliary file had the extension .aux; however, this has been
changed to .lax (“I4yS-TEX auxiliary file”), not only to avoid conflict with . aux files produced
by I£TEX, but also because I4yS-TEX can now write . aux files also (Chapter 30); these have the
structure of IfIEX auxiliary files, but contain only entries relevant to BIBTEX, so that BIBTEX can

be used with 14S-TEX files also. In conformity with this change, the old \readaux has been
changed to \readlax (section 15.1).

M’

11.6. Storing (label)’s 75

and the (type indicator) is

0 if (label) was created by a \1abel on the current run

1 if (label) was created by a \1abel on the previous run

2 if (label) was created by a \pagelabel on the current run
3 if (label) was created by a \pagelabel on the previous run

Each \label{(label)} will create a new control sequence ‘\(label)@L’ with the
value

V17 V" V3 V,4"(type indicator)
(we use quotes around \(label)@L as on pages 14 and 29), and it will also write
@(label) "V~ V3" V3~ V4~ (type indicator)

to the .lax file.

@ and “ are simply two conveniently chosen tokens that should not ap-
pear within any (label). Actually, the @ and ~ appearing in the definition of
‘\(label)@L’ and in the .lax file will not be active characters, but will have
category code 11 (so that normally they won’t even appear in the input file).
For @ this is easy to arrange (indeed it would be quite difficult to avoid), since
all our definitions are going to be made while @ has category code 11; for ~
we will simply declare \catcode‘\~=11 at the beginning of our definitions,
and return to \catcode‘\“=\active at the end. Because these “’s are not
active, we do not have to worry about their being expanded in any \xdef’s or
\write’s, which will turn out to be quite a convenience.

When we begin our document, with the \document command, if the .lax
file already exists (from a previous run), it will be read in, line by line, and
each line

@(label) "V~ Vo~ V3~ V4~ (type indicator)
will be used to define ‘\(label)@L’ to have the value

V17V V3™ V4" (type indicator)

76 Chapter 11. The \1abel mechanism

Thus, whenever a . 1ax file already exists, we will start with all the information
obtained on the previous run. Of course, we will have to make sure that ~
has category code 11 while reading in the lines of the .1lax file so that it will
have that category code when it is used in defining the corresponding control
sequence (compare the remark on page 55).

11.7. \reof and its relatives. 1t should be pretty obvious how \ref#1, \Ref#1,
and other cross-referencing commands will work: The test

\expandafter\ifx\csname#10L\endcsname\relax

is true precisely when #1 has not yet been used as a (label). If the test is
true, we simply give an error or warning message. Otherwise, the value of
\csname#1@L\endcsname will be

V17V V3" V4~ (type indicator)

\ref will return V;, \Ref will return Vo, etc.

The really interesting question is how we are going to keep the \1abel and
\pagelabel information updated.

11.8. \1abel. Whenever we encounter a \label{(label)}, we will first check
that we are in a construction that allows (label)’s, using the test (page 70)

\ifx\thelabel@\relax

If the result if true, so that we are in a construction not allowing a (label), we
will simply give an error message. Otherwise, we will use the test

\expandafter\ifx\csname#10L\endcsname\relax

which is true if and only if #1 has not already been used as a (label).
If #1 has not already been used as (label), we will use

\expandafter\xdef\csname#i@L\endcsname{V, V" V3~ V4~ 0}

the O at the end indicating that (label) comes from a \label added on the
current run. In addition, we will

\immediate\write\laxwrite@{Q#1"V, Vo V3~V "1}

N .
e

o .

11.9. \pagelabel 77

with a 1 at the end. When this line of the .1ax file is read by \document on
the next run, ‘\(label)@L’ will then be defined so that its value has a 1 at the
end, indicating that it represents “previous” information.

On the other hand, if (label) zas already been used, we need to examine the
whole sequence

@(label)”..."..."..."..."(type indicator}

and determine the value of the (type indicator).
If this value is O or 2, then (label) has already been used on the current

run, and we will just give an error message saying that (label) has already
been used.

But if the value is 1 or 3, then the information for (label) was compiled
during the previous run. Since we want to allow the previous value to be
changed, we will change the definition of ‘\(label)@L’ so that the sequence

B ¢ 1) <))
that currently appears in the definition is replaced by the appropriate
V1" Ve" V3~ V40
the 0 once again indicating that (label) now comes from a \1abel created on

the current run. And, once again, we will write appropriate information to
the .1lax file, but with 1 replacing 0.

11.9. \pagelabel. The \pagelabel construction works rather differently.
First of all, we don’t use the

\ifx\thelabel@\relax

test, because \pagelabel’s are allowed anywhere.
So we simply start with the test

\expandafter\ifx\csname#1@L\endcsname\relax

If this test is false, then then (label) has never been used, and now we define
‘\(label)@L’ to be

V1"Ve"V3™"V,"2

78 Chapter 11. The \label mechanism

where the 2 at the end indicates that (label) comes from a \pagelabel added
on the current run, and where

V) = value of \page@N{\number\page@C}

Vg = value of \page@S{\page@P\page@N{\number\pagedC}\pageeq}
V3 = value of \number\page@C

V4 = value of \page@P\page@N{\number\page@C}\pageq

As in the case of \label, we also want to write appropriate information
to the .lax file, except that the 2 at the end should be replaced by 3, so
that when this line is read by \document in the next run, ‘\(label)@L’ will be
defined with a 3 at the end, so that it will appear as “previous” information.

But now there is a big difference: for \1abel we will use an \immediate\write,
but for \pagelabel we will use an ordinary \write. That is because only a
(delayed) \write is certain to give the proper value of \page@C—the infor-
mation that we have recorded in \(label)@QL may actually be incorrect, be-
cause the value of \page@C may not be the number of the page on which
the \pagelabel eventually appears. And this means, of course, that only
\pagelabel’s read in from the previous run can be assured of being correct.

The other case, when (label) has already been used, also requires changes.
As before, we must examine the value

...... .+« " ... " (type indicator)

of \(label)@L and determine the value of the (type indicator).

If this value is O or 2, then (label) has already been used on the current
run, and we will just give an error message saying that (label) has already
been used.

On the other hand, if the value is 1 or 3, then the information for (label)
was compiled during the previous run.

Now a 1 indicates that in the previous run (label) was used for a \label,
rather than a \pagelabel—presumably because the user has now decided
to use (label) for a \pagelabel that was used for a \1abel on the previous
run. In this case, we will simply replace the definition of ‘\(label)@L’ with the
appropriate information for this new (label), replacing the 1 with a 2. We will
also write corresponding new information to the .lax file, changing the final

;
‘\-—-»/

11.9. \pagelabel 79

1 to a 3, however, so that when it is read in again on the next run, it will be
recognized as information coming from a previous \pagelabel.

On the other hand, a 3 indicates that in the previous run (label) was used
for a \pagelabel. In this case, as indicated above, this previously obtained
information is more likely to be the correct one. Consequently, we will not
change the definition of ‘\(label)@L’. But we will still write this appropriate
new information (using a delayed \write) to the .1lax file, keeping the final
3, so that it will appear once again as “previous” information on the next run.

The label mechanism in version 2 of I4S-TEX is entirely different, and much

more efficient than, the one used in version 1 of I4$-TEX, which was designed
using a TEX that allowed 3,000 control sequence names. Since I4S-TEX itself uses up
about 2,700 names, not counting additional control sequences introduced by style files,
it seemed imprudent at that time to use a labelling method that introduces a new con-
trol sequence name for each (label). But with that old mechanism, main memory was
usually exhausted after only about 40 or 50 (label)’s had been created (necessitating the
stratagems explained in section 4.8 of the I4,S-TEX Manual), so this excessive wariness
was clearly counterproductive. Moreover, more generous TEXs, allowing at least 3,500
control sequence names, are now quite common (and there’s always tinylams.tex
for the truly parsimonious).

Chapter 12. Beginning the document

12.1. Preliminaries. Since we have to read an existing .1lax file at the begin-
ning of the document, and then write to a new .1lax file during the document,
we first declare

\newread\laxread@
\newwrite\laxwrite@

I4S-TEX makes use of a special sort of list, initially defined to be empty,

\let\fnpages@=\empty

which is used for fancy footnote numbering. As we will see in Chapter 25,
when \fancyfootnotes is in effect, each \footnote will cause I4(S-TEX to

write a special line to the .1ax file: If the first footnote occurs on page 7, say,
then

F7

will be written to the .lax file. If the second and third footnotes occur on
pages 12 and 14, then the lines

F12
and

Fi4

will each be written (sometime later on). These lines are always written with
a (delayed) \write, and the corresponding information is not recorded in-
ternally. On the other hand, when we read in an existing .lax file, any such

F(number) lines will be incorporated into \fnpages@, which will end up look-
ing like

\W7\\12\\14 .

80

.\‘.,/"

12.2. \document 81

(As we will see in section 25.3, we will be able to extract information from
\fnpages@ in an extremely efficient way.) For this purpose, we will be using

\def\Finit@#1#2\Finit@{\let\nextii@=#1\def\nextiiio{#2}}

so that \Finit@...\Finit@ will \1et\nextii@ be the first token in ‘...’
and define \nextiii@ to be the remainder. (Since \Finit@ will always be
applied to a line we read in from the . lax file, \nextii@ will always be either
For @)

At this point, lamstex . tex changes ~ to a letter, and introduces the routine
\getparts@:

\catcode‘\"=11

\def\getparts@ ek1-#2-#3"#4-#5"#6{\def\nextive{#1}Y%
\def\nextiiie{#2"#3"#4"#5"}\count@=i6\relax}

Thus, when applied to something of the form
@(label) "V~ V3" V3~ V4~ (type indicator)

\getparts@ stores (label) in \nextiv@ and V;"Vy"V3~V,~ in \nextiiie,
and sets \count@ to the value of {type indicator).

12.2. \document. As in ApS-TEX, \document first defines \fontlist®@ to
be empty. It then opens the file \jobname.lax for reading. It processes the
contents of this file one line at a time, reading each line into \next@. This is
done with a \1loop, where we \repeat until \ifeof detects the end of the
file (see section 3.9).

First we will see if \next@ is a special line starting with F by using the test

\expandafter\Finit@\next@\Finit@
\ifx\nextii@ F

If this test is true, then \next@ is ‘F{number), and \nextiii@ has been
defined to be the (number). We want to add ‘\\(number)’ to \fnpagesQ,

\expandafter\rightadd@\nextiii@\to\fnpages@

82 Chapter 12. Beginning the document

If the test is false, so that \next@ is not one of the special lines for fancy
footnote numbering, then it will be of the form

(label) " V"V V3~ V" (type indicator)
and we want to make the appropriate definition
\def ‘\(label)@L’ {V;" V3~ V3“ V4~ (type indicator)}
To do this we use
\expandafter\getparts@\next@
and then
\edef\next@{\gdef\csname\nextive @L\endcsname
{\nextiii@\number\count@}

\next@

Here the \edef makes \next@ mean

[\gdet || \(label)eL V1" V5" V5"V~ |(type indicator)}

The control sequence ‘\(label)@L’ is not expanded further because it has been
made equal to \relax. As noted on page 71, any control sequences appearing
in \next@ should be ones whose expansion is inhibited by \noexpands@; so
V17 Vy"V37V,” will not be expanded further, because we will be doing all this
within a group with \noexpands@. In addition, as we mentioned on page 76,
we will want to make @ and ~ have category code 11 within this group. Finally,
we will set

\endlinechar=-1

within this group, so that \next@ will not contribute a blank space at the end
because of the (carriage-return) at the end of the line.

There is one further detail that we have to worry about. Many files, espe-
cially files that have been written by TEX itself, have a (carriage-return) at the

12.2. \document 83

end. In this case, the last \next@ before the end of the file will be empty (f
we hadn’t set \endlinechar=-1 it would be \par). Consequently,

\expandafter\Finit@\next@\Finite
and

\expandafter\getparts@\next@

would give error messages. So, before any of our tests, we will first make sure
that \next@ isn’t empty.

After having read \jobname.lax, and thus obtaining all the information
form the last run of the file, we re-open the file, to record information pro-
duced with this run:

\def\document{\let\fontlist@=\empty
\immediate\openin\laxread@=\jobname.lax\relax
{\endlinechar=-1 \noexpands@

\catcode‘\@=11 \catcode‘\"=11
\loop \ifeof\laxread@ \else
\read\laxread@ to\next@
\ifx\next@\empty
\else
\expandafter\Finit@\next@\Finit@
\ifx\nextii@ F¥
\expandafter\rightadd@\nextiii@\to\fnpages®@
\else
\expandafter\getparts@\next@
\edef\next@{\gdef\csname\nextive@ @L\endcsname
{\nextiii@\number\counte}}/,
\next@
\fi
\fi
\repeat},
\immediate\closein\laxread@
\immediate\openout\laxwrite@=\jobname.lax\relax}

Chapter 13. Labels

13.1. \label. We begin by setting

\let\thelabel@=\relax

(see pages 70 and 76). Since the combination
\thelabel@ “\thelabel@@ “\thelabel@@Q@ “\thelabel@@ee ~

occurs several times in our constructions, it will save time and space to intro-
duce an abbreviation for it:

\def\thelabels@{\thelabel@ ~\thelabel@@® ~\thelabel@@@
“\thelabel@@ee ~}

The definition of \1abel#1 begins with \prevanish@, since \1label’s are
supposed to be invisible, and then gives an error message if \thelabel@ is
\relax, so that we are not in a construction that allows \1label’s. Otherwise
we first use the test

\expandafter\ifx\csname#1@L\endcsname\relax

which is true precisely when #1 has not already been used as a (label). In this
case, we simply use

\expandafter\xdef\csname#1Q@L\endcsname{\thelabels@0}
\immediate\write\laxwrite@{@#1~\thelabels@1}

to define ‘\#1@L’ and to write to the .1lax file. Of course, this must be done
within a group with \noexpands@.

If #1 has already been used as a (label), then we need to look at the (type
indicator) of ‘\#1@L’. To do this we use

\edef\next@{@" \csname#1QL\endcsname}
\expandafter\getparts@\next@

84

\ e

13.1. \1label 85

so that \count@ will have the value of (type indicator). We need the
\edef\next@ so that \next@ will contain the actual value that the control
sequence \csname#1@L\endcsname expands out to; naturally, we also need
to perform this step in a group with \noexpandsa@.

If, as a result of our test, \count@ is even, we issue an error message that
label #1 has already been used. Otherwise, we simply use

\expandafter\xdef\csname#1@L\endcsname{\thelabels@0}
\immediate\write\laxwrite@{@#1~\thelabels@1}

to define the control sequence and write to the .lax file:

\def\label#i{\prevanish@
\ifx\thelabel@\relax
\Err@{There’s nothing here to be labelled}},
\else
{\noexpands@
\expandafter\ifx\csname#1@L\endcsname\relax
\expandafter\xdef\csname#10L\endcsname{\thelabels@0}¥
\immediate\write\laxwrite@{0#1~\thelabels@1}}
\else
\edef\next@{@"\csname#10L\endcsname},
\expandafter\getparts@\nextQ
\ifodd\count@
\expandafter\xdef\csname#1@L\endcsname{\thelabels@0}/,
\immediate\write\laxwrite@{@#1~\thelabels@1},
\else
\Err@{Label #1 already used}}
\fi
\fi
)
\fi
\postvanish@}

For simplicity, we used a single group to enclose all the constructions that
require a \noexpands@.

Finally, having defined \1abel we now

86 Chapter 13. Labels

\rightadd@\label\to\vanishlist@

13.2. \pagelabel. There are several differences between the definition of
\pagelabel and that of \label.

(1) First of all, we don’t have to check the value of \thelabel@®, since
\pagelabel is allowed anywhere.

(2) Instead of \thelabel@, ..., \thelabel@@@Q, which are defined by
constructions that can be given a (label), we use the values we want for a page
label. Again, it will save time and space to introduce an abbreviation:

\def\thepages@{\page@N{\number\page@C}-¥
\page@S{\page@P\pageON{\number\page@C}\page@q}-Y%
\number\page@C ~\page@P\pageON{\number\page@C}\pageeq “}

(As with \thelabels@, we will be using \thepagesQ within a group where
we have stated \noexpandsa@.)
(8) Instead of an \immediate\write\laxwrite@, we must use a (delayed)

\write\laxwrite@. This is necessary to be sure of getting the proper value
of \page@C into the .1lax file.

When we encounter a \pagelabel#1i, we again first use the test

\expandafter\ifx\csname#1@L\endcsname\relax

which is true if #1 has not already been used as a (label); in this case, we simply
use

\expandafter\def\csname#1QL\endcsname{\thepages@2}
\write\laxwrite@{@#1~\thepages@3}

If the test is not true, we again need to look at the type indicator with

\edef\next@{@"\csname#1@L\endcsname}
\expandafter\getparts@\nextQ

13.2. \pagelabel 87

If this test sets \count@ to be even, we issue an error message. But if \count@
is odd we always '

\write\laxwrite@{@#1~\thepages@@3}

moreover, we also

\expandafter\xdef\csname#1@L\endcsname{\thelabels@2}

if \count@ is 1 (but not if it is 3):

\def\pagelabel#i{\prevanish@
\expandafter\ifx\csname#1@L\endcsname\relax
{\noexpands@
\expandafter\xdef\csname#1@L\endcsname{\thepages02}}4
\write\laxwrite@{@#1~\thepages03},
\else
{\noexpands@
\edef\next@{@~\csname#1@L\endcsnamel}’,
\expandafter\getparts@\nextQ
\ifodd\counte@
\ifnum\count@=1
\expandafter\xdef\csname#10L\endcsname{\thelabels@2}Y,
\fi
\write\laxwrite@{@#1~\thepages03}},
\else
\Err@{Label #1 already used},
\fi
Y
\fi
\postvanish@}

For simplicity, we have again used a single group for all constructions that
require the \noexpands@. The \write happens to appear in this group, but
as before (page 58), that is irrelevant, since the \write only happens during
a \shipout.

Finally, we add \pagelabel to \vanishliste:

88 Chapter 13. Labels

\rightadd@\pagelabel\to\vanishlist@

Page 39 of the MyS-TEX Manual mentions that for a counter, say
‘\somecounter’, we want to allow such things as

\pagelabel{thispage\number\somecounter}

In version 1 of I\S-TEX, special manipulations were required for this, but
now both \label and \pagelabel automatically allow this, because in both
cases the argument #1 is expanded out in all parts of the definition.

N L

Chapter 14. Cross-Referencing

14.1. Preliminaries. We need a flag \ifreferr@ to tell whether we want error
messages or merely warning messages when a (label) #1 for a \ref isn’t found:

\newif\ifreferr@

\referr@true
\def\RefErrors{\global\referr@true}
\def\RefWarnings{\global\referr@false}

And we want to define a routine that prints either the desired error message
or the desired warning message. For TEX version 2, the best we can do is the
following, where \W@ from AyS-TEX stands for ‘\immediate\writel6 ’:

\ifreferr@\Err@{No \noexpand\label found for #i}\else
\We{Warning: No \noexpand\label found for #1.}\fi}

(As before, compare section 3.4 for the use of \noexpand.)
But in TEX version 3, we can mimic an error message more closely by print-
ing the line number after the warning, using \inputlineno:

\We{Warning: No \noexpand\label found for #1.}

\We{l.\number\inputlineno\space ... #1}
(We have to settle for ‘. . .” since we can't actually capture the contents of the
input line.)

It looks even better to print something like
1.3 ... \ref{#1}
when a (label) for \ref isn’t found, and

1.3 ... \Ref{#1}

when a (label) for \Ref isn’t found, etc. So we will actually be creating a
control sequence with two arguments, the first corresponding to the \ref or

89

90 Chapter 14. Cross-Referencing

\Ref, and the second to the (label), so that we will print

\We{Warning: No \noexpand\label found for #2.}
\We{l.\number\inputlineno\space ... \string#i{#2}}

Since we can’t be sure when people will be switching to version 3, it seems
best to use different code for the two versions. We can check for the version
of TEX with

\setbox0=\hbox{\global\count@=*""30} (here 0 is ‘zero’, not ‘oh’)

In TEX version 3, \count®@ will then have the value 48, but in TEX version 2, it
will have the value 115 (and \box0 will also contain the character 0). Instead
of running this test each time we have to print a warning, we will simply let
‘\versionthree® be undefined in version 2 and \relax in version 3:

\setbox0=\hbox{\global\count@=‘""30}
\ifnum\count@=48 \let\versionthree®=\relax\fi

Then we can use a message of the form

\ifreferr@\Err@{No \noexpand\label found for #2}\else
\We{Warning: No \noexpand\label found for #2.})
\ifx\versionthree@\relax
\We{l.\number\inputlineno\space ... \string#1{#2}}\fi
\fi

(The \global\count@ assignment here doesn’t really contradict the policy
of section 1.3 because this \global assignment is made just once, at the top
level, not within a macro.)

o : E The simpler looking test

\setbox0=\hbox{\global\count@=*"~00}

has all sorts of insidious complications, because in version 3 of TgX, ~~00 stands for
the ASCII RUL, which is usually an ignored character in TEX! Since *30 is the code
for the number 0, it is unlikely to be special.

S

14.2. \ref and its relatives 91

14.2. \ref and its relatives. For \ref#1 we simply have to use the test

\expandafter\ifx\csname#1@L\endcsname\relax

to check whether #1 is a label, and then pick out the relevant portion of the
value of \csname#1@L\endcsname.

With this in mind, we might first define \nolabel@ by

\def\nolabel@#1#2{\expandafter\ifx\csname#20L\endcsname\relax

\ifreferr@\Err@{No \noexpand\label found for #2}\else
\We{Warning: No \noexpand\label found for #2.}
\ifx\versionthree@\relax

\We{l.\number\inputlineno\space ... \string#1{#2}}\fi

\fi

\else}

so that \nolabel@#1#2 would give an error or warning message if #2 hasn’t
been used as a label, and otherwise do whatever follows. However, it will
be a little more convenient to define \nolabel@#1#2#3, with an extra argu-
ment, #3, that is often given the value \relax:

\def\nolabel@#1#2#3{}
\expandafter\ifx\csname#20L\endcsname\relax
\ifreferr@\Err@{No \noexpand\label found for #2}\else
\We{Warning: No \noexpand\label found for #2.}%
\ifx\versionthree@\relax
\We{l.\number\inputlineno\space ... \string#i{#2}}\fi
\fi
#3\else}

We also want a routine that sets a scratch token to the actual value of the
control sequence \csname#1@L\endcsname; because this will have to be de-

fined within a group, we use the scratch token \Next@, reserved for \global
assignments (page 22):

\def\csLe#1{{\noexpands@\xdef\Next@{\csname#1@L\endcsname}}}

92 Chapter 14. Cross-Referencing

Now \ref#1 should print an error or warning message if #1 is not a (label),
\def\ref#1{\nolabel@\ref{#1}\relax
Otherwise, it should print everything up to the first © in the value of the
control sequence \csname#1@L\endcsname. If we define
\def\nextii@#1~#2\nextii@{#1}
and also use
\csLe{#1}

to set \Next@ to the value of \csname#1@L\endcsname, then we just have to
use

\expandafter\nextii@\NextQ@\nextii@

So the definition of \ref is

\def\ref#i{\nolabel@\ref{#i1}\relax
\def\nextiio#i#1~##2\nextiie{#t#1}Y
\csLe{#1}\expandafter\nextii@\Next@\nextii@\fi}

Similarly for

\def\Ref#1{\nolabel@\Ref{#1}\relax
\def\nextiiQ##1~##2"##3\nextiio{##2}
\csLe{#1}\expandafter\nextii@\NextQ@\nextii@\fi}

and

\def\nref#1{\nolabel@\nref{#1}\relax
\def\nextii@##1~##2"##3" ##4\nextiie{##3}}
\csL@{#1}\expandafter\nextii@\Next@\nextii@\fi}

14.2. \ref and its relatives 93

and

\def\pref#i{\nolabel@\pref{#1}\relax
\def\nextiiO##1~##2 ##3"##4~ ##5\nexviie{##4}Y,
\csLe{#1}\expandafter\nextii@\Next@\nextii@\fi}

For later purposes, we will

\let\pref@=\pref

so that \pref@ may be used to reinstate the usual meaning of \pref if it has
been redefined.

The definition of \Evaluatenref is somewhat different—we use the gen-
erality built into \nolabel@ to \gdef\Nref{-10000 } when #1 isn’t a label:

\def\Evaluatenref#1{}
\nolabel@\Evaluatenref{#1}{\gdef\Nref{-10000 }}%
\def\nextii@it#1~##2"##3"##4~ \nextii@{\def\nextiie{##3}}
\csLe{#1}\expandafter\nextii@\Next@\nextii@
\xdef\Nref{\nextii@}\fi}

\Evaluatepref is analogous:

\def\Evaluatepref#1i{}
\nolabel@\Evaluatepref{#1}{\global\let\Pref=\empty}’
\def\nextii@##1~##2"##3”##4 ##5\nextiie{\def\nextiiQ{##4}1},
\csL@{#1}\expandafter\nextii@\Next@\nextii@
\xdef\Pref{\nextii@}\fi}

Note that the (label) is expanded out in both \nolabel@ and \csL@. Con-
sequently (compare page 88), \Evaluatenref and \Evaluatepref can have
arguments containing \number\somecounter for a counter ‘\somecounter’;
in fact, even \ref, \Ref, \pref and \nref can contain such arguments.

Applications of \Evaluatenref and \Evaluatepref are given on pages 38-39

of the I4(S-TEX Manual. ‘\Evaluateref’ and ‘\EvaluateRef’ haven't been
provided, on the grounds that in similar situations one would be able to determine the
value of \ref from that of \nref, and the value of \Ref from that of \pref.

Chapter 15. Reading auxiliary files

Although \readlax is similar to \document, there are a few significant dif-
ferences.

I5.1. \readlax. \readlax#1 first opens the file #1.1lax for reading, giving
a conspicuous message if the file isn’t found, ie., if the test \ifeof is true at
the beginning. (Note that \document doesn’t give a message if \ jobname.lax
isn’'t found.) Like \document, it then processes the contents of this file one line
at a time, except that it will read the line into the control sequence \nextve.
Again, this is done with a \1oop that repeats until \ifeof detects the end of
the file.

As with \document, we want to ignore the case where \nextv@ is empty.
Now, however, we also want to ignore the lines beginning with F, because
information about the numbering of footnotes from another file would conflict
with information gathered for the current file.

So the definition of \readlax#1 begins

\def\readlax#i{\immediate\openin\laxread@=#1.lax\relax
\ifeof\laxread@\We{}\We{File #1.lax not found.}\We{}\fi
{\endlinechar=-1 \noexpands@

\catcode‘\@=11 \catcode‘\"=11
\loop \ifeof\laxread@ \else
\read\laxread@ to\nextve
\ifx\nextve@\empty
\else
\expandafter\Finit@\nextve@\Finit@
\ifx\nextiie FY
\else

When a suitable line \nextv@ has been found, we use
\expandafter\getparts@\nextve
to stores the (label) part of \nextv@ in \nextiii@, the value of the (type
indicator) in the counter \count@, and the rest of \nextve, except for the

initial *, in \nextiiie.

94

. -

15.1. \readlax 95

Then we have to use the test

\expandafter\ifx\csname\nextiv@ @L\endcsname\relax

to see if the (label) part of \nextv@ has already been used, because this rep-
resents a conflicting use of (label), so that we need to issue an error message
(remember that \readlax can be used at any time, possibly after some (label)’s
have already been made).

If this test is true, so that the (label) does not appear, we will define
‘\(label)@L’ to be the remainder of \nextve, excep: that we will change the (type
indicator) to 0 if it is 1 and to 2 if it is 3. For this we can use

\edef\next@{\gdef\csname\nextive @L\endcsname
{\nextiii@\ifnum\count@=1 O\else 2\fi}}
\next@

(within a group with \noexpands@).

As a consequence of this arrangement, any (label) from the auxiliary file
that we read in with \readlax will count as a “current” label, so that if
\label{(label)} occurs later in the file we will get an error message, rather
than changing the data for this (label). That seems like the reasonable arrange-
ment, since we use \readlax to get information from what is presumably a
different part of the same document, and the same \label{(label)} shouldn’t
appear in two different parts of the document (at least, not if we intend to
combine the labels in the two parts with \readlax).

Our whole definition is

\def\readlax#i{\immediate\openin\laxread@=#1.lax\relax
\ifeof\laxread@\We{}\We{File #1.lax not found.}\We{}\fi
{\endlinechar=-1 \noexpands@

\catcode‘\@=11 \catcode‘\"=11

\loop \ifeof\laxread@ \else

\read\laxread@ to\nextve

\ifx\nextvo\empty

\else
\expandafter\Finit@\nextve\Finit@
\ifx\nextii@ F%

96 Chapter 15. Reading auxiliary files

\else
\expandafter\getparts@\nextve
\expandafter\ifx\csname\nextiv@ OL\endcsname\relax
\edef\next@{\gdef\csname\nextiv@ QL\endcsname
{\nextiii@\ifnum\count@=1 O\else 2\fi}}V
\next@
\else
\Err@{Label \nextiv@\space in #1.lax already used}}
\fi
\fi
\fi
\repeat}y,
\immediate\closein\laxread@}

At this point we are finished with all definitions that involve ~ with category
code 11:

\catcode‘\"=\active

15.2. Style files. Control sequences to read in style files are simple:

\def\docstyle#i{\input #1.st\relax}
\def\predocstyle#i{\input #1i.stf\relax}
\def\postdocstyle#i{\input #1.stb\relax}

B -

Part III

Particular
Constructions
Allowing Labels

and their associates

Chapter 16. Displayed formulas

The next part of I4yS-TEX is concerned with displayed formulas and the \tag
mechanism; it js the first place where we define \thelabel@ However,
numerous special considerations for \tag are also required, and sections 2
and 3 are the only ones specifically related to the \1abel mechanism.

16.1. Invisibility. An “invisible” construction following a display, in a case like

$$

$$\1label{. ..} more text
or even

$$
$5i§u§1a;.bel{. . .JLmore text

presents the same problem as an invisible construction following \noindent
(section 7.2): The \prevanish@ sets \saveskip@ to Opt (even in the sec-
ond case, because TEX ignores a space after the $$ that end a display).
Consequently, the \postvanish@ does not skip the space following the
\label{...}, and we end up with an extra space before ‘more text’.

There doesn’t seem to be any correction that we can add to \prevanish@
to address this problem, because there is apparently no way to tell when a TEX
construction happens to appear immediately after a display. To get around this
problem, whenever I4S-TEX encounters the $$ that begin a display, it calls a
control sequence that reads in everything up to the closing $$ as its argument,
and then puts back both this argument and the closing $$, together with the
proper compensating mechanism:

\everydisplay{\csname displaymath \endcsname}
\expandafter\def\csname displaymath \endcsname#1$${%
#1$$\FNSS@\pretendspace@}

Note that here we need \FNSS@ (section 3.8), not just \futurelet\next,
since we have to skip over any space after the final $$.

99

100 Chapter 16. Displayed formulas

We will introduce the abbreviation

\def\FNSSP@{\FNSS@\pretendspace@}

not only because it will save numerous tokens, but also because at one point
(section 25.2), it will be essential to have it. So we use

\everydisplay{\csname displaymath \endcsname}
\expandafter\def\csname displaymath \endcsname#1$${
#1$$\FNSsPe}

a : E The control sequence

\csname displaymath \endcsname

(compare \csname align \endcsname etc., as explained in amstex.doc) shows up
on the screen as

\displaymath,
so if a blank line occurs before the closing $$, we will get the error message

! Paragraph ended before \displaymathy, was complete.

[If we defined ‘\displaymath,/ to be \long, we would get basically the same error
message that TEX normally gives,

! Missing $ inserted.

but it would be presented in a much more confusing way, since “context lines”, involv-
ing the argument of ‘\displaymath,/’, would also be presented.]

a ! : !j Notice that a construction like

$. . .$%
\bye

16.1. Invisibility 101

will eventually \1et\next=\bye and then call \pretendspace®, which uses the test
\ismember@\vanishlist@\next. If \bye were \outer we would get an error mes-
sage

! Forbidden control sequence found while scanning use of \ismemberQq.

Unlike the situation for \noindent (section 7.2), which is presumably used only
when some text is going to follow, if we have something like

A line of text.
$$

$$
\label{...}

Another line of text.

the \hskip-1pt\hskipipt added by the \prevanish@ in \label will have a dire
effect: it will cause a blank line to be typeset after the display. Since there will be
\baselineskip glue before this blank line, the next line, ‘Another line of text.’ will
be separated from the display by too much space.

But there’s really nothing that can be done about this. Even in plain TEX,

A line of text.
$$

$$
\writen{...}

Another line of text.

will create a spurious blank line after the display. So users just have to be warned
against using “invisible” constructions after a display that ends a paragraph.

Because of this (admittedly convoluted) approach to this (admittedly rather
special) problem, constructions that change category codes won’t work within
a displayed formula. If that needs to be allowed (as it sometimes was for the
14\S-TEX Manual), one can

\def\Math{\begingroup\everydisplay{}$$}
\def\endMath{$$\endgroup\futurelet\next\pretendspace@}

102 Chapter 16. Displayed formulas

and then use \Math. . .\endMath instead of $$. . . $$. (We don’t need \FNSS@
here, since there won’t be a space token after the control sequence \endMath.)

Some people, of course, might argue that this is really the “logical” way
to do things anyway. If such a definition were to be instituted permanently,
then the basic ArS-TEX definition of \tag (see (A) below) would have to be
changed, so that the argument of \tag is delimited by \endMath rather than
by $$. (When the IS-TEX Manual required literal mode in a displayed
formula with a \tag, the literal mode material was first set in a box, which
was then used within the usual $$. . .\tag$$ construction.) It should also be
noted that the AyS-TEX construction \align....\endalign must read in

. as an argument, in which case category code changes within . .. will still
be ignored. The same is true of the M\S-TEX \CD. . .\endCD construction.
So, all in all, \Math. . \endMath should be reserved for special effects.

There is a way of allowing category changes within a display $$. . . $$ if we are
willing to change the category code of § itself:

\let\dollar@=$
\newif\ifindisplay@
\catcode‘\$=\active
\def${\futurelet\next\dollaree}
\def\dollaree{’
\ifx\next$%
\ifindisplay@
\def\next@${\dollare\dollar@\FNSSPQ}Y
\else
\def\next@${\dollar@\dollar@\indisplay@truel’
\fi
\else
\let\next@=\dollar®@
\fi
\nextQ}

(We never need toset \indisplay@false, since our \indisplay@true occurs within
the display, which TEX implicitly encloses within a group.)

I wanted to avoid additional category changes as much as possible, but perhaps this
approach is really preferable.

If such definitions were made, we would also have to restate any definitions that
involved § as part of their syntax. For example, we would have to restate ApS-TEX’s

N -

g

16.1. Invisibility 103

definition of \tag,

\def\tag#1$${\iftagsleft@\leqno\else\eqno\fi

(A) \maektag@#1i\maketag$$}

at some point after $ has been made active.

It would naturally also be sensible to replace any §. . . $ combinations in macros by
\dollar@...\dollar@ (many such appear in the ApS-TEX macros, or their replace-
ments in I4yS-TEX, e.g., those in sections 4 and 5).

But a § in an \xdef (e.g., as on page 106) would instead have to be replaced by
\noexpand$. Moreover, we would have to add ‘\let$=\relax’ to \noexpandtoks®@
(or, equivalently, state \Nonexpanding$).

One advantage of this approach, by the way, is that one could modify the definition
of \dollar@e@ to be:

\def\dollaree{y,
\ifx\next$%

\else
\ifhmode
\def\next@{\saveskip@=\lastskip\unskip\/%
\ifdim\saveskip@>Opt \hskip\saveskip@\fi\dollar@}Y,
\else
\let\next@=\dollare
\fi
\fi
\next@}

With such a definition, something like
(1) If $1x[<3$, then ...
would be treated as if it had been typed

(2) If\/ $Ix|<3$, then .

(On the other hand, input (2) would remain as is, since \/ has no effect except after a
character or ligature.)

This arrangement is quite useful if the current font is slanted or italic, as in the
statement of a \claim, because

104 Chapter 16. Displayed formulas

Iflz| <3, then ...
looks much better if the italic correction is added:
If || <3, then ...

(See page 185 for other examples where the italic correction seems called for.) I used
this approach in the style file for the Publish or Perish Mathematics Lecture Series.

As far as I can tell, there is no other way of achieving this: \everymath doesn’t do
any good, because a $ puts a ‘\mathon’ on the horizontal list, and one can’t remove it,
in order to \unskip.

16.2. Localizing labels. As already mentioned in section 11.1, IyS-TEX uses
\thelabely, ..., for the values of \ref, ..., \pref associated to a (label),
and any I4uS-TEX construction that can be given a (label) must define
these control sequences. It turns out that these four components will always
have to be defined globally, because they have to be made within a group
beginning with \noexpands@—compare page 71—even though we want
\thelabelq, ..., to be defined only locally. So I4\S-TEX uses \Thelabelg,
--+» \Thelabel@@QQ for the four components that it defines globally, and
then uses the constructions

\let\thelabel@=\Thelabelg, ...

to create locally defined ones. Since this is used so often, we abbreviate it:

\def\locallabel@{\let\thelabel@=\Thelabel®
\let\thelabel@@=\Thelabel@@\let\thelabel@@@=\Thelabel@QQ
\let\thelabel@@@@=\Thelabel@@QQ}

16.3. \tag. We introduce the counter \tagQC for \tag, and the initial values
for the other associated things for labelling:

\newcount\tageC

\tag@C=0

\let\tag@P=\empty
\let\tag@Q=\empty
\def\tages#1{{\rm(F#1\/{\rm)}}
\let\tag@N=\arabic
\def\tagF{\rm}

16.3. \tag 105

As in the case of \page@F (page 51), we use \def\tag@F{\rm} rather than
\let\tag@F=\rm, so that \fontstyle\tag will work correctly. In \tages
we specified roman parentheses even if \tag@F is changed (compare page 74);
of course, \tag@s could be changed if we didn’t want this.

Unlike the situation for \page@N, we can \let\tag@N=\arabic, because
\tag@N appears only in certain \xdef’s (page 106), and then this value of
\tag@N will simply disappear, resulting in a shorter string than if we kept
\arabic unexpanded.

NOTE: Nevertheless, we must use \def instead of \1et for other numbering
styles. Note that \newnumstyle does this (Chapter 24).

AmS-TEX already defines the combination \tag#1$$ to be \legno or
\egno followed by \maketag@#1i\maketag$$, and we just have to redefine
\maketag@ for I4S-TEX, although the argument #1 will now have a rather
different significance: in A\S-TEX, #1 would be the tag number that we want
to use, but now #1 could instead involve things like \1abel or \pagelabel, or
even \Reset\tag (to affect the next \tag), as well as a “quoted” tag number
"...", again followed by things like \1label or \pagelabel.

The action of \maketag@ will depend on whether or not it is followed by a
" for a “quoted” \tag.

\def\maketag@{\futurelet\next\maketagee}

However, for reasons that will be explained in section 4, if \maketagQ is fol-
lowed by \relax"..." we will want to get the same result as if it were followed
simply by "'...". So we will call \maketag@@Q@ if \maketag@ is followed by "
and \maketag@@@Q if it is followed by anything else other than \relax. But
if \maketag@ is followed by \relax, we call a control sequence that swallows
this \relax and then reiterates the process:

\def\maketag@@{\ifx\next\relax
\def\next@\relax{\futurelet\next\maketag@@}\else
\ifx\next"\let\next0=\maketag@@@\else
\let\next@=\maketag@@@Q\fi\fi\next@}

The definition of \maketag@@@@ (when \tag is not followed by a ") illus-
trates the general scheme by which S-TEX deals with labels.

106 Chapter 16. Displayed formulas

(1) First we globally advance the \tag counter, \tag@C, by one.

(2) Then we \xdef the values of \ThelabelQ@, ..., \Thelabel@QQQ ap-
propriately, using the current values of \tag@C, \tag@P, etc.

(8) Then we use \locallabel@ to (locally) set the values of \thelabele,
..., \thelabel@@eQ.

(4) Then we actually typeset the tag, using \tag@s for the style, and in the
font \tag@F (which will be irrelevant if we have \TagsAsMath).

In step 2 we will be doing something like

{\noexpands@
\xdef\Thelabel@QQ{\number\tagQC}
\xdef\Thelabel@{\tag@N{\Thelabelee@}}
\xdef\Thelabel@@@@e{\ifmathtags0$\tagOP\Thelabel@\tageQ$\else
\tag@P\Thelabel@\tageQ\fi}
\xdef\Thelabel@e{\tag@S{\Thelabel@@@Q}}
}

All of the I4S-TEX constructions that can be given a (label) will define
\Thelabel@, ..., \Thelabel@@@@ in much the same way (with \tag@C re-
placed by the suitable \. . .@C counter, etc.). Consequently, it is worth intro-
ducing an abbreviation for the steps defining \Thelabel@ and \Thelabel@@:

\def\xdefThelabel@#1{\xdef\Thelabel@{#1{\Thelabel@@e}}}
\def\xdefThelabel@@#1{\xdef\Thelabel@@{#1{\Thelabel@ee@}}}

Thus, we define \maketag@@@@ by

\def\maketag@@ee#1\maketag@{\global\advance\tageC by 1

{\noexpands@
\xdef\Thelabel@@@{\number\tageC}
\xdefThelabel@\tagoN
\xdef\Thelabel@@0Q{\ifmathtags@
$\tag@P\Thelabel@\tageQ$\else
\tag@P\Thelabel@\tag@Q\£il}},
\xdefThelabel@0\tag@S

Y

g

16.3. \tag 107

\locallabel@
\hbox{\tag@F\thelabel@@}},
#1}

When \tag is followed by ", it might occur in constructions like

\tag "\style{...}" or \tag "\style{\pre 3}" etc,

involving any of \pre, \post, \style, or \numstyle. In such situations,
\pre must be interpreted as \tag@P, etc., when the tag is printed,

{\let\pre=\taglP \let\post=\tageQ
\let\style=\tag@S \let\numstyle=\tagON
\hbox{\tag@F...}

Moreover, \Thelabelg, ..., \Thelabel@@@@ must be suitably interpreted.
For this we use a routine that is also used by many other constructions:

\def\Qlabel@#1{{\noexpands@\xdef\Thelabel@a{#1}%
\let\style=\empty\xdef\Thelabel@QQ@{#1}¥
\let\pre=\empty\let\post=\empty\xdef\Thelabel@{#1}¥
\let\numstyle=\empty\xdef\Thelabel@@Q{#1}}}

For example, \Qlabel@{#1} for \tag"#1" will be used after we have
\let\pre=\tag@P, etc. So

(1) \Thelabel@@ (which is what \Ref is supposed to produce), will give
#1, with \pre interpreted as \tag@P, etc.

(2) \Thelabel@@@Q (what \pref is supposed to produce), will be the same,
except \style will be ignored if it appears, since \pref is supposed to
produce what \Ref produces, but without any of the \style format-
ting.

(8) \Thelabel@ (what \ref is supposed to produce), also ignores \pre
and \post if they appear.

(4) \Thelabel@@@ (what \nref is supposed to produce), also ignores
\numstyle if it appears.

108 Chapter 16. Displayed formulas

\def\maketag@0Q"#1"#2\maketag@{}
{\let\pre=\tag@P \let\post=\tageq
\let\style=\tag@S \let\numstyle=\tag@N
\hbox{\tag@F#1i}/,
\noexpands@
\Qlabelo{#1}},
1Y)
\locallabel@
#2}

It might seem unlikely that any one would use a \1abel for a “quoted” \tag, since
then the tag is already known. But the label mechanism is provided nevertheless,
and might even be of some use. For example,

$$... \tag"\style{\pre A}" \label{tagA}$$

might be used to produce the tag ‘(3.AY, where the user wouldn’t know what precedes
the ‘A" In this case, \Ref{tagA} or \pref{tagA} would be needed to print ‘(3.A)’ or
‘3.A in the text,

Because of the \xdef’s in \Qlabel, any “quoted” number ". . ." following \tag
(or any other construction that allows a {label)) must contain only things that can
safely be used in \xdef’s when \noexpands@ is in force.
As a far-fetched example, in this manual Chapter 11 was labelled ‘STARTLABEL’ and
Chapter 15 was labelled ‘ENDLABEL’. If the next chapter were commentary on these
chapters, and for some reason we wanted this commentary to be called

Chapter 11'-15'. Remarks on Labels and Cross References

we wouldn’t be able to type

\chapter "\nref{STARTLABEL}$’$--\nref{ENDLABEL}$’$" Remarks ...

Instead, we would have to use something like

\Evaluatenref{STARTLABEL}

\edef\startlabel{\Nref}

\Evaluatenref{ENDLABEL}

\edef\endlabel{\Nref}

\chapter "\startlabel$’$--\endlabel$’$" Alternate ...

.\\‘//

16.4. \align 109

In such a case, we might even use a \label with this “quoted” number,

\chapter "..." . . . \label{...} \endchapter
in order to refer to this new chapter later on.

16.4. \align. This section presumes familiarity with ApS-TEX’s \align con-
struction (see amstex.doc). Before considering this construction in detail, we
need to consider one aspect of the general scheme.

When ApS-TEX sees something like

\align
(formula;) & (formulag) \tag (formula number) \\

the \align is an \halign whose preamble contains three &’s, of the form

\halign{ ...#... & ...#... & ... \maketag@i\maketag® ... \cr

Within the \align, a \tag is simply interpreted as an &. But this means that
after a \tag, TeX will examine the next token, expanding if necessary, to see if
a \noalign or \omit follows (The TrXbook, page 240). So if

(formula;) & (formulag) \tag "..." \\

appears, the first " will already be expanded out to \futurelet\next\quote®@
before being submitted to \maketag@. Gonsequently, \maketag@ will think
that the next token is \futurelet, rather than "!

To get around this, we will instead have \tag interpreted as &\relax, to
insure that the " is not expanded out. Thus, \tag"..." will lead to

\maketag@\relax"..."\maketag@

and we have already arranged for this t give the same result as if the \relax
weren’t there (section 3).

The definition of \tag for \align is made by AyS-TEX’s control sequence
\align@, which is now redefined to include the \relax, together with other
changes that will be explained later.

110 Chapter 16. Displayed formulas

\def\align@{\inalign@true\inanyQ@true
\vspace@\allowdisplaybreak@\displaybreak@\intertext@
\def\tag{\global\tag@true\ifnum\and@=0

\def\next@{%\omit|[\global\rwidthe=0pt i \relax[}\else
\def\next@{& \relax [F\fi\nexte}}

\iftagsleft@\def\next@{\csname align \endcsname}\else

\def\next@{\csname align \space\endcsname}\fi\next@}

Sdll further changes to the rest of the AyS-TEX \align construction it-
self are also required, because the remainder of this construction first calls
\measure@ to measure all the formulas, before actually setting them. Even
in AyS-TEX, this can produce problems: if a user puts a constructed \box
within an \align, it will be emptied out by \measure@ and hence produce
nothing at all when the typesetting is done (this means that the user needs to
use \copy rather than \box).

In I4\S-TEX, the problem is that we want to ignore any \Reset\tag
and \Offset\tag constructions during the \measure®, since these globally
change the \tag counter, and we don’t want to do that twice (\Reset and
\0ffset are described in Chapter 24).

We introduce a special abbreviation for a more general construction that
disables \Offset and \Reset (but keeps them invisible):

\def\noset@{\def\Offset##1##2{\prevanish@\postvanish@}/,
\def\Reset##1##2{\prevanish@\postvanish@}}

Now we redefine \measure@ so that \noset@ is used:

\def\measure@#1\endalign{¥
\global\lwidth@=0pt \global\rwidthQ@=0pt
\global\maxlwidth@=0pt \global\maxrwidth@=0pt
\global\and@=0
\setbox0=\vbox

{\everycr{\noalign{\global\tag@false
\global\and@=0}}\Let@

v

164. \align 111

\halign{\setbox0=\hbox{$\meth\displaystyle{\@Lign#i#}$}%
\global\lwidth@=\wd0
\ifdim\lwidth@>\maxlwidth@ \global\maxlwidth@=\1lwidthQ\fi
\globalladvance\and@ by 1
&\setbox0=\hbox{$\moth\displaystyle{{}\@lign##}$}%
\global\rwidth@=\wd0
\ifdim\rwidth@>\maxrwidth@ \global\maxrwidth@=\rwidth@\fi
\globalladvance\and@ by 1
&\Tag@\eat@{##}\crcr#i\crer}}y,

\totwidth@=\maxlwidth@ \advance\totwidth@ by \maxrwidthe}

(Here \eat@ from ApS-TEX is defined by \def\eat@#1{}, see section 1.2.)
The assignments of \1wdith@, ... at the beginning of the definition don’t re-
ally have to be \global, but they do have to be \global later in the definition,
so we make them \global at all times (compare section 1.8).

Now, in the definition of ‘\align,/’ and ‘\align,,/ (called by \align),
after we \measure@ we can allow \Offset and \Reset to have their usual
meanings, but there is a different problem. When we have something like

(formula;) & (formulag) \Offset\tag0 \newpost\tag{$’$} \tag \\

the new values of \tag@C and \tag@P created by \0ffset and \newpost are
processed as part of (formulag) (since the & that ends this formula is supplied
by the \tag). But the new value of \tag@P is created only locally, so it will
not be known when \tag has to do its work. To get around this problem, we
need to pass such information through by means of two new globally defined
control sequences, \tag@P@ and \tag@Qe, and we make a special abbreviation
for this:

\def\prepost@{\global\let\tag@Pe=\tageP
\global\let\tag@Qe=\tageQl}

We also have an abbreviation for the construction that (locally) sets \tag@P
and \tag@Q to the globally defined \tag@PQ@ and \tageQe:

\def\reprepost@{\let\taglP=\taglP0\let\taglQ=\tagene}

112 Chapter 16. Displayed formulas

Now we redefine \align,, and \align,y, from ArS-TEX using \prepost@
within the formulas, and using \reprepost@ when the formula number is
being printed; note that we use \preposta@ at the end of each formula, so that
any \newpre or \newpost will have been discovered, but \reprepost@ at
the beginning of each formula number. (These maneuvers aren’t needed for
\measure@, since we simply \eat@ each formula number.)

First comes ‘\align, "

\expandafter\def\csname align \space\endcsname#1\endalign
{\measure@#1\endalign\global\and@=0
\ifingather@\everycr{\noalign{\global\and@=0}}\else

\displ@y@\fi

\Let@\tabskip\centering@

\halign to\displaywidth

{\hfil\strut@\setboxO=\hbox{$\m@th\displaystyle
{\elign##[\preposte}$}4

\box0 \globalladvance\and@ by 1

\tabskip\z@skip&
\setbox0=\hbox{$\m@th\displaystyle{{}\@lign##$}'/.
\global\rwidth@=\wdO

\box0 \hfil \globalladvance\and@ by 1
\tabskip\centering@ &
\setbox0=\hbox{\@lign\strut©
\maketag@i#t#\maketag@l}y,

\dimen@=\displaywidth \advance\dimen@ by -\totwidth@
\divide\dimen@ by 2 \advance\dimen@ by \maxrwidth@

\advance\dimen@ by -\rwidthe

\ifdim\dimen@<2\wd0
\1lap{\vtop{\normalbaselines\null\box0}}%
\else\llap{\boxO}\fi

\tabskip\zQskip

\crcriti\crcr

\black@\totwidth@}}

‘\~<~.<./ g

164. \align 113

Note that in a formula like
\align
(formula) \newpre\tag{a}\tag ... \\

where there is a line without any &, the definition of \tag in \align@
(page 110) means that this line will be interpreted as

(formula) \newpre\tag{a}% [\omit|[\global\rwidthe=0pt| &\relax
\reprepost@ \maketag@...\maketag@ \cr

The \prepost@ in the first part of the preamble for \align globally defines
\tag@PQ to be ‘a’, and the \reprepost@ then makes \tag@P properly defined
for \maketag@. But if the \omit were not inserted, then the \prepost@
for the second part of the preamble would globally redefine \tag@P@ to be
the default value of \tag@P, so that the new value would not be properly
propagated to the \maketag@ part of the preamble.

Since we’ve added the \omit, we also have to add \global\rwidth@=0pt,
which would normally be set by an empty formula. The extra clause

\ifdim\rwidth@> \maxrwidth@ \global\maxrwidth@=\rwidth@\fi

appearing in the definition of \measure@ doesn’t have to be duplicated, since
it would be inoperative for an empty formula.

The \tabskip\centering@ also appears after the first & in the preamble,
but we don’t have to worry about that: once the preamble has been read, the
various \tabskip glues are determined, and they remain the same for any
row, even those that have \omit’s in them.

(The ‘\global\advance\and@ by 1’ will also be omitted because of the
\omit, but this is irrelevant, since the current value of \and@ has already
been used to determine properly the meaning of \tag.)

The re-definition of ‘\align,/ is exactly analogous:

\expandafter\def\csname align \endcsname#1i\endalign
{\measure@#1\endalign\global\and@=0

114 Chapter 16. Displayed formulas

\ifdim\totwidth@>\displaywidth\let\displaywidth@=\totwidthe
\else\let\displaywidth@=\displaywidth\fi
\ifingather@\everycr{\noalign{\global\and@=0}}\else
\displ@y@\fi
\Let@\tabskip\centering@
\halign to\displaywidth
{\hfil\strut@\setbox0=\hbox{$\m@th\displaystyle
(ot ignedpropostah i)
\global\lwidth@=\wd0 \global\lineht@=\ht0
\box0 \globalladvance\and@ by 1
\tabskip\z@skip&\setbox0=\hbox{$\meth\displaystyle{{}\@lign
o \preposrah it
\ifdim\ht0>\1lineht@ \global\lineht@=\ht0 \fi
\box0 \hfil \globalladvance\and@ by 1
\tabskip\centering@ & \kern-\displaywidth@
\setbox0=\hbox{\@lign\strut@
\maketag@##\maketag@l}’,
\dimen@=\displaywidth \advance\dimen@ by -\totwidth@
\divide\dimen@ by 2 \advance\dimen@ by \maxlwidth@
\advance\dimen@ by -\1lwidthe
\ifdim\dimen@<2\wd0
\rlap{\vbox{\normalbaselines\box0 \vbox to\lineht@{}}}%
\else\rlap{\box0}\fi
\tabskip\displaywidth@\crcr#i\crcr
\black@\totwidth@}}

The extra clause
\ifdim\ht0>\1lineht@ \global\lineht@=\ht0 \fi

appearing in the second part of the preamble doesn’t have to be added to the
definition of \tag in \align@, along with the \omit, since it would always be
inoperative for a blank formula.

16.5. \alignat and \xalignat. This section presumes familiarity with 4xS-
TEX’s \alignat and \xalignat constructions, which also require changes
(no changes are required for \xxalignat, which doesn’t allow \tag’s).

16.5. \alignat and \xalignat 115

\alignat and \xalignat process their arguments twice, like \align, al-
though the initial processing provides much less information. In these con-
structions a \tag might even end up overlapping a formula, but at least a black
box is produced at the end, to indicate such overlapping (which is easy to miss
when proofreading). The initial processing is done with empty \tag’s, but as
if the \tag’s were set at their minimum distance from the formula (i.c., at a
distance equal to their widths), and the result is saved in \box\savealignat@.
During the second processing the only role played by this box is in the

\black@{\wd\savealignat@}

that is appended after the \halign, to give a black box if the whole construc-
tion turns out to be too wide.

Unlike the situation for \align, where we specify the preamble for the first
process in \measure®, the AyS-TEX routine \attagQ is used to produce
the preambles for both processes of \alignat and \xalignat, using a flag
\ifmeasuring@ to determine whether we are making a preamble for the first
process or for the second, as well as the flag \ifxat@ to determine whether
we are making preambles for \alignat or for \xalignat.

The definition of \attag@ from .4yS-TEX has to be modified in the same
way as the definitions of \measure@, ‘\align,’ and ‘\align,,/, by inserting
\prepost@ and \reprepost@ in the appropriate places:

\def\attag#i{\let\Maketag@=\maketag@\let\TAGE=\Tage
|\let\Preposte=\prepost@|\let\Repreposte=\repreposte I
\let\Tag@=\relax\let\maketag@=\relax
|\1et\prepost©=\re1§” \let\reprepost@=\relax |
\ifmeasuring@

\def\1lap@##1i{\setboxO=\hbox{##1}\hbox to2\wd0o{}}¥
\def\rlap@##i{\setbox0=\hbox{##1}\hbox to2\wd0{}}¥
\else\let\llap@=\1lap\let\rlap@=\rlap\fi
\toks@={\hfil\strute
$\m@th\disp1aystyle{\@1ign\the\hashtoks@$'/.
\tabskip\z@skip\global\advance\and@ by 1 &
$\m@th\displaystyle{{}\QIign\the\hashtoks@$\hfil
\ifxat@\tabskip\centering@\fi\globalladvance\and@ by 11}

e

116 Chapter 16. Displayed formulas

\iftagsleft@

\toks@@={\tabskip\centering0&\Tag@\kern-\displaywidth

\rlap@{\@lig
\maketag@\the\hashtoks@\maketag@}/,
\global\advance\and@ by 1 \tabskip\displaywidth}\else

\toks@@={\tabskip\centering@&\Tage

\llap@{\@li\maketagQ
\the\hashtoks@\maketag@}\global\advance\and@ by 1

\tabskip\z@skip}\fi
\atcount@#1i\relax\advance\atcount@ by -1
\loop\ifnum\atcount@>0
\toks@=\expandafter{\the\toks@&\hfil

$\moth\displaystyle{\@lign\the\hashtokse[\preposte[}$}

\globalladvance\and@ by 1 \tabskip\z@skipZ

$\meth\displaystyle{{}\@lign\the\hashtokse

Nerepostal $\ktia
\ifxat@\tabskip\centering@\fi\globalladvance\and@ by 1}

\advance\atcount@ by -1 .
\repeat >
\xdef\preamble@{\the\toks@\the\toks@e}}, 7
\xdef\preamble@0{\preamble@},

\let\maketag@=\Maketag@\let\Tag@=\TAG®
l\let\prepost@=\Prepost@”\1et\reprepost@=\Reprepost@D

Now we must modify the definition of ‘\alignat,’, which is called by
\alignat, in several ways:

(1) \tag must mean &\relax;

(2) More generally, \tag must mean &\omit&\relax if used when one &
has been omitted, or &\omit&\omit&\relax if used when two &’s have
been omitted, etc.

Fortunately, when we define \tag for \alignat and \xalignat we don’t
have to worry about additional things appearing in the preamble, as was neces-
sary for \align. On the other hand, whereas the first pass for \align simply
had \eat@{#} in the preamble for the \tag part, \alignat and \xalignat
have \maketag@#\maketagQ.

N

16.5. \alignat and \xalignat 117

(3) This means that the tag counter \tag@C will be incremented during the
first pass. So we will first store the current value of \tag@C in a new
counter \tagQCC, and then restore \tag@C to this value before doing
the second pass.

(4) Moreover, we want to disable \1abel during the first pass (or we will
be using the same (label) twice during the second pass, and get an error
message).

We could use \let\label=\eat@ for this purpose, but we will in-
stead call \unlabel@, defined by

\def\unlabel@{\def\label##1{\prevanish@\postvanish@}¥,
\def\pagelabel##1{\prevanish@\postvanish@}}

since this construction will be needed later anyway (section 32.4).

\def\unlabel@{\def\label##1{\prevanish@\postvanish@}/,
\def\pagelabel##1{\prevanish@\postvanish@}}
\newcount\tag@CC

\expandafter\def\csname alignat \endcsname#1#2\endalignat
{\inany@true\xatefalse
\gdef\tag{\global\tagltrue
\count@=#1\relax\multiply\count@ by 2
I\advance\count@ by -1|
I\gdef \tag@{&}\loop\ifnum\count@>\and@
\xdef\tag@{&|\omit|\tage}\advance\count@ by -1
\repeat\tag@ \relax[}/
\vspace@\allowdisplaybreak@\displaybreak@\intertext@
\displ@y@\measuring@true| \tag@CC=\tag@C |

\setbox\savealignat@=\hbox{|\noset@|/\unlabelel
$\meth\displaystyle\Let@
\attag@{#1}\vbox{\halign{\span\preamble@@\crcr#2\crcr}}$}%

\measuring@false

\Let@\attag@{#iﬂlpag@0=\tag@cc!

\tabskip\centering@\halign to\displaywidth

{\span\preamble@@\crcr#2\crcr\blacke{\wd\savealignat@}}}

118 Chapter 16. Displayed formulas

Similar changes are made for ‘\xalignat,’

\expandafter\def\csname xalignat \endcsname#1#2\endxalignat
{\inany@true\xat@true

\def\tag{\global\tag@true

\count@=#1\relax\multiply\count@ by 2

Badvance\count@ by -1]

[\def\tage{&} \loop\ifnum\count@>\ande

\xdef\tag{¥ \omit |\tage}\advance\count@ by -1

\repeat\t ag@l \relax}¥,
\vspace@\allowdisplaybreak@\displaybreak@\intertext@
\displ@y@\measuring@true|\tag@CC=\tagaC|

\setbox\savealignat@=\hbox{|\noset@||\unlabelel
$\m@th\displaystyle\Let@
\attag@{#1}\vbox{\halign{\span\preamble@@\crcr#2\crcr}}$}%

\measuring@false

\Let@\attage{#1}\tageC=\tageCC]|

\tabskip\centering@\halign to\displaywidth

{\span\preamble@@\crcr#2\crcr\blacke{\wd\savealignat@}}}

16.6. \gather. Finally, the A\S-TEX construction \gather also has a
\def\tag{&} clause, which must be changed to \def\tag{&\relax}:

\def\gather{\relax\ifmmode\ifinner
\def\next@{\onlydmatherr@\gather}\else
\ingather@true\inany@truﬂ)gef\tag{&\relax}L
\vspace@\allowdisplaybreak@\displaybreak@\intertext@
\displ@y\Let@

\iftagsleft@\def\next@{\csname gather \endcsname}\else
\def\next@{\csname gather \space\endcsname}\fi\fi
\else\def\next@{\onlydmatherr@\gather}\fi\next@}

Chapter 17. New counters

Having seen how \tag deals with \1abel, we are now in a position to consider
I4pS-TEX s \newcounter construction for creating a new counter.!

17.1. \newcounter. We introduce a very frequently used abbreviation

\def\exstring@{\expandafter\eat@\string}

where \eat@ from ApS-TEX is simply defined (section 1.2) as
\def\eat@#1{}
Note that if #1 is a control sequence, say \tag, then something like

\csname\exstring@#1@C\endcsname

Jjust becomes \tag@C (the \eat@ eats the \ at the beginning of \string\tag).
The first thing \newcounter\foo will do is to

\define\foo{}

to give an error message if \foo has already been defined.
Since \foo\label{(label)} is supposed to work, albeit not by the general
mechanism for \1abel’s, \foo needs to be defined in terms of a \futurelet:

\def\foo{\futurelet\next\foolZ}
We use \foo@Z because no control sequence from ApS-TEX or MvS-TEX
ends with @Z.

The name ‘\foo0Z’ will be created with

\csname\exstring@\foo @Z\endcsname

'In version 1 of 14,S-TEX, this was called \counter, because \newcounter seemed too close to
TEX’s \newcount primitive for comfort, butit actually seems unlikely that anyone (except perhaps
TEXperts!) would mistakenly type \newcount instead of \newcounter, and \newcounter fits
much better with all the other I14),S-TEX names.

119

120 Chapter 17. New counters

and to define \foo we use the same strategy that was used in section 3.2:

\edef\next@{\def\noexpand\foo{\futurelet\noexpand\next
\csname\exstring@\foo @Z\endcsnamel}}
\next@

Now \£00@Z should increase the counter \fooQC by 1, and print the prop-
erly formatted number, in the proper font:

\def\foo@Z{\global\advance\fooQC by 1
{\foo0@F\foo@S{\foo@P{\foo@N{\number\foo@C}}\foo@Q}}

(for the moment, let’s not worry about how \£o0@C, ...are to be defined).
Moreover, if \foo is followed by \label{...}, then we need a way of

getting this \1abel{...} properly recorded. To do this, we can simply use
the code

{\noexpands@\xdef\Thelabele{...}...}
{\locallabel@\label{...}}

The \1label in the second group will make sense, because the \Llocallabel@
will define \thelabel@; this \1abel will thus write to the .1lax file, and ap-
pend to \lax1list@. After the group containing \locallabel@ is finished,
however, any values of \thelabel@, ...will be restored to their previous val-
ues, so another \label will give an error message (unless \foo happens to
appear within some other construction that itself allows a \1abel).

\def\foo@Z{\global\advance\foo@C by 1
{\f00@F\f00@S{\foo@P{\foo@N{\number\foo@C}}\foo@qQ}}Y,
\ifx\next\label

\def\next@\label##1{Y
{\noexpandse@
\xdef\Thelabel@{...}...\xdef\Thelabel@@ee{....}}Y%
{\locallabel@\label{##1}}}Y
\else
\let\next@=\relax
\fi
\next@}

—_—

p——

17.1. \newcounter 121

Of course, these ##’s will all have to be ####'s, since this whole definition
appears within the definition of \newcounter. But that’s only a minor prob-
lem. We are also going to have to treat this whole thing with an \edef\next@
(compare page 82), so it is going to look pretty complicated (in particular, now
our ####'s will all have to be #it##it###'s, since an \edef changes ## to #).

The control sequence \foo@C will be specified within this \edef\next@ as

\csname\exstring@\foo @C\endcsname

and similarly for \foo@P, In all cases, TEX will make these equivalent to
\relax, so they will not be expanded further.
Finally, after all this, we can create \£00@C, ... with their proper meanings,

\expandafter\newcount@\csname\exsting@\foo@ C\endcsname

\expandafter\let\csname\exstring@\foo ON\endcsname=\arabic

Note that here we use \newcount@ (section 3.6), since it appears within a
definition, and thus might be used after \alloc@ has been returned to its old
definition. Note also that we use \1let rather than \def, just as with \tag
(page 105), but \def would be required for anything other than \arabic
(and is supplied whenever \newnumstyle is used).

In the following code for \newcounter, note that \noexpand is required
before \number, \ifx, \else and \fi because these primitives are “ex-
panded” in an \edef:

\def\newcounter#i{\define#1{}¥

\edef\next@{\def\noexpand#i{\futurelet
\noexpand\next\csname\exstring@#10Z\endcsname}}\next@

\edef\next@{\def\csname\exstring@#10Z\endcsname
{\global\advance\csname\exstring@#1eC\endcsname by 1
{\csname\exstring@#10F\endcsname
\csname\exstring@#1@S\endcsname{\csname\exstring®@
#10P\endcsname\csname\exstring@#1@N\endcsname
{\noexpand\number\csname\exstring@#1eC\endcsname},
\csname\exstring@#1@Q\endcsname}}Y,
\noexpand\ifx\noexpand\next\noexpand\label

122 Chapter 17. New counters

\def\noexpand\next@\noexpand\labeli#i#iititititi1{}

{\noexpand\noexpands@

\xdef\noexpand\Thelabel@
{\csname\exstring@#10N\endcsname
{\noexpand\number\csname\exstring@#1eC\endcsname}}},

\xdef\noexpand\Thelabel@QQ
{\noexpand\number\csname\exstring@#1eC\endcsnamel},

\xdef\noexpand\Thelabel@@
{\csname\exstring@#10@S\endcsname
{\csname\exstring@#10P\endcsname
\csname\exstring@#10N\endcsname
{\noexpand\number\csname\exstring@#1eC\endcsnamel},
\csname\exstring@#10Q\endcsname}}¥

\xdef\noexpand\Thelabel@@QQ
{\csname\exstring@#1@P\endcsname
\csname\exstring@#10N\endcsname
{\noexpand\number\csname\exstring0#1eC\endcsname}},
\csname\exstring@#10Q\endcsname}}¥%

{\noexpand\locallabel@\noexpand\label {####it###1}}%

\noexpand\else\let\noexpand\next@=\relax\noexpand\fi
\noexpand\next@}}/
\next@
\expandafter\newcount@\csname\exstring@#10C\endcsname
\expandafter\let\csname\exstring@#10N\endcsname=\arabic
\expandafter\def\csname\exstring@#1@S\endcsname##i{##1\/}Y
\expandafter\let\csname\exstring@#10P\endcsname=\empty
\expandafter\let\csname\exstring@#10Q\endcsname=\empty
\expandafter\def\csname\exstring@#10F\endcsname{\rm}
}

17.2. \usecounter. To follow through the definition of \usecounter, it
helps to consider a specific case, like the following simplification of an example
from the I4AS-TEX Manual (page 78):

(*) \usecounter\exno\example#i{{\it Example #1.},}

17.2. \usecounter 123

Here we want

\example to give {\it Example \exno.}
\example"..." to give {\it Example {\exno@F___... Y.
\example\label{...} to give {\it Example \exno\label{...}.},
where _ _ _ stands for
\let\pre=\exno@P ... \let\numstyle=\exno®N

In the third case, the combination \exno\label{. ..} will itself take care of
printing the right number, and labelling it.

Page 79 of the I4,4S-TEX Manual suggest that the user should modify (#) to
read

\usecounter\exno\example#1{{\it Example #1.} \ignorespaces}

But that’s silly—it’s clearly better to have \usecounter automatically add the
\ignorespaces. Actually, we really need to add \FNSSP@ (page 100) for
cases where |, doesn’t appear at the end of the definition, but an invisible

construction, like \pagelabel, occurs after the use of the construction being
defined.

So we really want
(E1) \example
to give {\it Example \exno.} \FNSSP@
(E2) \example"..."

to give {\it Example {\exno@F___...}.} ,\FNSSP@
(E3) \example\label{...}

to give{\it Example \exno\label{...}.}\FNSSP@

Clearly, \example is going to involve a \futurelet, so we expect that
\usecounter\exno\example should expand out to something like

\def\example{\futurelet\next\exno@ezZ}

124 Chapter 17. New counters

[Note that the subsidiary control sequence \exno@@Z is written entirely in
terms of \exno. So if we later type

\usecounter\exno\otherexample

\otherexample will then be defined exactly the same way, as
\futurelet\next\exno@ez

—though of course \exno@@Z will now end up being defined differently. This

is a reasonable arrangement, since the same counter \exno shouldn’t be al-

lowed for two different constructions.]

In the use

\usecounter\exno\example#i{{\it Example #1.}, }

we also have to somehow capture the (parameter text) and (replacement text).
This suggests that \usecounter\exno\example should expand out as

\def\example{\futurelet\next\exno@eZ}

\def\exno@eZe

where the \def\exno@@Z@ at the end will then swallow up the subsequent
(parameter text) and (replacement text), and thus, in our case,

| \def\exnoeeze#1{{\it Example #1.},

Once we have \exno@@Zg, it is easy to say what \exno@@Z should do:
(1) If \next is neither \1abel nor ", then (El1) we want

{\it Example \exno.J} \FNSSP@

which can obtained as

\exno@@Ze{\exno}\FNSSP@

S’

—

17.2. \usecounter 125

(2) If \next is ", so that we have \example"...", then (E2) we want
p

{\it Example {\exno@F \let\pre=\exno@P ...
\let\numstyle=\exno@N ... }.}, \FNSSP@

which can be obtained as

\exno@@Ze{{\exno@F \let\pre=\exno@P ..
...\let\numstyle=\exno@N ...}}\FNSSP@

(8) If \next is \1abel, so that we have \example\label{. ..}, then (E3)
we want

{\it Example \exno\label{...}.} \FNSSP@
which can be obtained as
\exno@@Z@{\exno\labelq{...}}\FNSSP@
Thus, we want \usecounter\exno\example to expand as

\def\example{\futurelet\next\exno0ezZ}
\def\exno@@Z{\ifx\next\label
\def\next@\label##1{\exno0eze
{\exno\label{#i#1}\FNSSPC}
\else
\ifx\next"\def\next@"##1"{\exno00z0
{{\exno@F_ _ _##1}}\FNSSP@}
\else
\def\next@{\exno@ezZe{\exno}\FNSSPQ}
\fi\fi\next@}
\def\exno@QZe

The general definition of \usecounter has the same features as that for
\newcounter, with several \edef\next@s. But there are some complica-
tions.

126 Chapter 17. New counters

First, we need a way of inserting the
\exno@F
which we will specify as
\csname\exstring@#1QF\endcsname

except that after this is expanded to \exno@F, which is now not \relax, we
need to inhibit further expansion of this \exno@F. This can be done with

\expandafter\noexpand\csname\exstring@#10F\endcsname

because the primitive \expandafter is “expanded” in an \edef: the \csname

.. .\endcsname is first expanded to \exno@F, and then this expansion is

placed in front of \noexpand, and consequently not expanded in the \edef!
Similar maneuvers are needed for \exno@P ... ; our \edef\nextQ will

\let\noexpand\pre=
\expandafter\noexpand\csname\exstring@#10P\endcsname

In addition, the control sequences \exno@@Z and \exno@@Z@ might already
exist, if ‘\usecounter\exno’ has already appeared (compare page 124). In
this case, the control sequences

\csname\exstring@#100Z\endcsname
\csname\exstring@#10@Z@\endcsname

would also not be \relax, and therefore they would be expanded in \edef’s,
probably with disastrous results. So we will simply \let them be \relax to
begin with.

Finally, we want to add an error message at the beginning if the first argu-
ment of \usecounter hasn’t already been created by \newcounter.

\def\usecounter#i#2{\expandafter
\ifx\csname\exstring@#10Z\endcsname\relax
\Err@{\noexpand#inot created with \string\newcounter}\fi
\expandafter\let\csname\exstring@#100Z\endcsname=\relax
\expandafter\let\csname\exstring@#100Z@\endcsname=\relax

v
N p
R

17.2. \usecounter 127

\edef\next@{\def\noexpand#2{\futurelet\noexpand\next
\csname\exstring@#10@Z\endcsname}}

\next@

\edef\next@{\def\csname\exstring@#1@@Z\endcsname
{\noexpand\ifx\noexpand\next\noexpand\label
\def\noexpand\next@\noexpand\label

##i##1{\csname\exstring@#100@Z0\endcsname
{\noexpandi#i\noexpand\label{########1}}\noexpand\FNSSP@Q}Y,
\noexpand\else
\noexpand\ifx\noexpand\next\noexpand"¥,
\def\noexpand\next@\noexpand"##i######1\noexpand"y,
{\csname\exstring@#10@Z@\endcsname{{\expandafter\noexpand
\csname\exstring@#10F\endcsname
\let\noexpand\pre=
\expandafter\noexpand\csname\exstring@#1@P\endcsname
\let\noexpand\post=
\expandafter\noexpand\csname\exstring@#1@Q\endcsname
\let\noexpand\style=
\expandafter\noexpand\csname\exstring@#10S\endcsname
\let\noexpand\numstyle=
\expandafter\noexpand\csname\exstring0#10N\endcsname
#i######13F\noexpand \FNSSP@}Y,
\noexpand\else
\def\noexpand\next@{\csname\exstring@#10@Ze\endcsname
{\noexpand#1}\noexpand\FNSSPQ}/,
\noexpand\fi\noexpand\fi\noexpand\next@}}/,
\next@
\expandafter\def\csname\exstring@#100Z@\endcsname}

Chapter 18. Lists

Now that we’ve discussed \tag, with just one counter \tag@C, it seems ap-
propriate to discuss \1ist, because it has five counters ‘\1ist@C?1’, ...,
“\1ist@C5’, corresponding to the five levels of a list (Chapter 24 explains how
this is handled by the \pre, \newprs, ..., constructions). As on pages 14, 29
and 75, we will always use quotation marks around control sequence names
like ‘\1ist@C1’, which really have to be named in the file by means of \csname
...\endcsname.

18.1. Style choices. Lists require four different style decisions, each in five
versions, for the five different levels of a list.

A. First,

(A-1) \1listbi@ will be the material (usually vertical spacing and/or penalties)
that goes before the first \item at the first level of a list.

(A.2) \1listbii@ will be the material that goes before the first \item at the
second level.

rS-TEX begins by setting the default values

\def\listbi@{\penalty50 \medskip}
\def\1listbii@{\penalty100 \smallskip}
\let\listbiii@=\relax
\let\listbiv@=\relax
\let\listbv@=\relax

Thus,

(A.1) \1listbi@ will produce a \penalty50 \medskip before the very first
\iten at the top level of a \1ist (when we define \item we will use
\1istbi@ only for the first \item at the top level [and after the previ-
ous paragraph has been ended}, so this penalty and space will not apply
to later \item’s at the top level).

(A.2) Similarly, \1istbii@ produces \penalty100 \smallskip before the
first item at the second level of a [ist.

(A.3) In the default style, nothing is added before the first item at the third
through fifth levels.

128

. .
e

18.1. Style choices 129

B. Next,

(B.1) \1listmi@ will be the changes to be made in the midst of \item’s at the
first level (usually changing the left and/or right indentations).

(B.2) \listmii@ will be the changes to be made in the midst of \item’s at
the second level.

IAS-TEX sets the default values

\def\listmi@{\advance\leftskip by 30pt}
\let\listmii@=\1listmi@
\let\listmiii@=\1listmi@
\let\listmive=\1listmi@
\let\listmv@=\1listmi@

Thus,

(B.1) \listmi@ will indent the text for \item’s at the top level by 30pt;
(B-2) \listmii@ will indent the text for \item’s at the second level by yet
another 30pt;

As we will see later (page 133), although \1istbiii@, ...can be left unde-
fined, it is important to have definitions for \1istmii@, ..., even if they are
just the same as \1listmi@.

C. Next,

(C.1) \itemi@ will specify the formatting of the \item numbers at the first
level;

(C.2) \itemii@ will specify the formatting of the \item numbers at the sec-
ond level;

MS-TEX sets the default values

\def\itemi@#1{\noindent@e\1lap{#1\hskip5pt}}
\let\itemii@=\itemi@

\let\itemiii@=\itemi®@

\let\itemive=\itemi@

\let\itemv@=\itemi@

130 Chapter 18. Lists

For the use of \noindent@@, see Chapter 8. Notice that if \everypar is non-
empty, then new paragraphs within an \item (like the one shown on page 17
of the I4S-TEX Manual), will have this \everpar material before them. (If
we wanted to prohibit that, we could simply set \everypar={} right after
the \begingroup in the definition of \1ist to follow, and use \noindent@
instead of \noindent@@ at this point.)

Thus,

(C.1) \itemi@ will format an \item number #1 as

\noindent@@\1llap{#1\hskipSpt}

The \11lap{#1\hskip5pt} simply causes the \ item number to appear
5pt to the left of the rest of the text;

(C.2) Similarly, \itemii@ formats an \item number at the second level in
exactly the same way;

D. Finally, we have some control sequences that are numbered differently:

(D.1) \1liste@ will be the formatting (usually vertical spacing and/or penal-
ties) that goes at the end of the last \item at the first level;

(D.2) \listei@ will be the formatting that goes at the end of the last \item
at the second level;

(D.5) \listeiv@ will be the formatting that goes at the end of the last \item
at the fifih level.

Thus, for reasons that will become clear (page 137) these control sequences
are “numbered” one less than the level to which they apply.
4pS-TEX sets the default values

\def\liste@{\penalty-50 \medskip}
\def\listei@{\penalty-100 \smallskip}
\let\listeii@=\relax
\let\listeiii@=\relax
\let\listeiv@=\relax

18.2. Counters, etc. 131

Thus,

(D.1) \1iste@ will produce \penalty-50 \medskip at the end of the list;
(D.2) \listei@ will produce \penalty-100 \smallskip when we go from
the end of the second level of the list back to the first level;

but nothing will be added when we go from the end of the third level back to
the second level, etc.

18.2. Counters, etc. Next we must create the counters ‘\list@C1’, ...,
“N\1ist@C5’, which we initialize to O:

\expandafter\newcount\csname 1ist@Ci\endcsname
\csname 1ist@C1\endcsname=0

We want ‘\1ist@C1’, ‘\1ist@C2, ..., in conformity with a general I4,4S-TEX
principle for handling constructions with more than one counter (see Chap-
ter 24), but we use \1listbi@, \1listbii@, ..., because there are a fixed
number of such control sequences, which we will usually be mentioning ex-
plicitly, so there’s no need to complicate matters by using names that combine
letters and numbers.

Just as we use \...QC1’, ..., ‘\...CP’ to indicate counters at various lev-
els, we also use ‘\...@QP1’, ... for the pre-material at the various levels, and

A\...0Q1, ...for the post-material at the various levels. We initialize all of
these to be empty:

\expandafter\let\csname list@P1\endcsname=\empty

\expandafter\let\csname 1ist@Qi\endcsname=\empty

Then come the styles at each level (compare page 74):

\expandafter\def\csname 1ist@Si\endcsname#1{{\rm(F#1\/{\rm)}}

Note that these styles determine the formatting of an item number, but the
spacing after the formatted number is determined by \itemi@, ... (page 130).

132 Chaper 18. Lists

In conformity with this, style control sequences in I4(S-TEX never address the
question of the spacing after the formatted number, which has to be handled
separately.

Then come the numbering styles at each level:

\expandafter\let\csname list@N1\endcsname=\arabic

Note that here we once again use \let rather than \def, just as with \tag
(page 105), but \def would be required for anything other than \arabic.
Finally, we also need the font styles at each level:

\expandafter\def\csname 1ist@F1\endcsname{\rm}

There will be occasions when we want to refer to the list counter, etc., for
the current level, without having to know or to specify this level explicitly. For
this purpose, we first create a counter,

\newcount\listlevel@
\listlevel@=0

which will always hold the current list level, and then we

\def\1list@eC{\csname 1ist@C\number\listlevel@\endcsname}
\def\1list@0P{\csname 1list@P\number\listlevel@\endcsname}
\def\1ist@@Q{\csname list@Q\number\listlevel@\endcsname}
\def\1ist@@S{\csname list@S\number\listlevel@\endcsname}
\def\1ist@ON{\csname list@N\number\listlevel@\endcsname}
\def\1list@QF{\csname list@F\number\listlevel@\endcsname}

so that, for example, \1ist@@C will be ‘\1ist@C1’ if we are at the first level,
“\1ist@C2’ if we are at the second level, etc.

18.3. Other preliminaries. Since, as we’ve already indicated in section 1, the
first \item at each level needs to be treated specially, we need flags

R

18.3. Other preliminaries 133

\newif\iffirstitemi@
\newif\iffirstitemii@
\newif\iffirstitemiii@
\newif\iffirstitemive
\newif\iffirstitemv@

Moreover, we need ways of setting the flag for each level true or false without
explicitly mentioning the level:

\def\Firstitem@true{\csname
firstitem\romannumeral\listlevel@ @true\endcsname}
\def\Firstitem@false{\csname
firstitem\romannumeral\listlevel@ @false\endcsname}

We will also need to refer to \1istm...@, \item...@, and \liste...@ with-

out having to specify the level ‘.. .’. So we define
\def\Listm@{\csname

listm\romannumeral\listlevel@ @\endcsname}
\def\Item@{\csname

listformatt\romannumeral\listlevel@ @\endcsname}
\def\Liste@{\csname
listformate\romannumeral\listlevel@ @\endcsnamel}

(For this to work, we must have \listm...@, \item...@, defined for all
levels; \Liste@ will be applied only for 1 < \listlevel@ < 5.)

Version 1 of I4,,S-TEX had \continuelist, which was meant to be used
as

\continuelist
\list

\endlist

134 Chapter 18. Lists

although the I4\S-TEX Manual mistakenly indicated the usage

\continuelist
\item

\endlist

(which would conflict with the general ‘\foo ... \endfoo’ convention for
I4\S-TEX constructions). This was a natural mistake to make, however, so
now ‘\continuelist’ has been replaced by ‘\keepitem’.

\keepiten itself will simply set a flag,

\newif\iflistcontinue®
\def\keepitem{\listcontinue@true}

while \endlist will always reset \1istcontinue@false.

184. \list. Unlike the case of \tag, whenever we start a \1ist we want
to reset the list counters ‘\1ist@C1’, ... to O, except if \keeplisting is in
force, in which case ‘\1ist@C1’ will not be changed. Then we want to begin
a group, set \firstitemi@true, set the list level counter to 1, and define
\item in terms of a \futurelet, since it needs to see if a “quoted” number
follows:1

\def\1list{}
\iflistcontinue@\else
\global\csname 1ist@C1\endcsname=0
\fi
\global\csname 1ist@C2\endcsname=0
\global\csname 1list@C3\endcsname=0
\global\csname 1list@C4\endcsname=0
\global\csname 1list@C5\endcsname=0
\begingroup
\firstitemi@true
\listlevel@=1

1An \item outside a \1ist will continue to have its usual meaning from plain TgX, though
it might be preferable to specify \Invalid@\item (see section 1.1) and to \let\itemitem=
\undef ined, since that usage more or less conflicts with I4S-TEX usage.

e

18.4. \list 135

\def\item{\futurelet\next\item@}

At this point it might seem like it's time to end the previous paragraph, and
get down to work. But we need a slight diversion, because we are also going to
allow the possibility that \1ist is followed by \runinitem instead of \item,
as in ApS-TEX. So we also need a \futurelet for that:

\def\1list{¥

\iflistcontinue@\else
\global\csname 1list@C1\endcsname=0
\fi

\global\csname 1list@C2\endcsname=0
\global\csname 1ist@C3\endcsname=0
\global\csname 1list@C4\endcsname=0
\global\csname 1list@C5\endcsname=0
\begingroup

\firstitemi@true

\listlevel@=1
\def\item{\futurelet\next\item@}y,
\futurelet\next\list@}

\runinitem has no role except to serve as an indicator after \1list [or
after \inlevel, since we also allow \runinitem to be used instead of the
first \item at each level], so (compare section 1.1) we first state

\Invalid@\runinitem

In the definition of \1ist@, the test \ifx\next\runinitem can be used to
detect if \1ist is followed by \runinitem. If \1ist@ detects a \runinitem,
it will then swallow this \runinitem and do yet another \futurelet (to see
if \runinitem is followed by a quoted number).

Otherwise, the first thing \1ist@ should do is to end the current paragraph.
At this point, however, the default style adds some adjustment for the space
between paragraphs, since paragraphs are allowed within each \item. If our
style does leave some space, say 1pt, between paragraphs, we probably want to
do the same for paragraphs within each \item. Normally, however, \parskip

136 Chapter 18. Lists

is something like ‘Opt plus 1pt’, with only stretchable space. In this situa-
tion, it is inadvisable to leave the stretchability, for, on a page requiring a fair
amount of vertical stretching, this interparagraph stretch might easily end up
looking too big compared to the other spacing that the style selects for \1ist’s
(I speak from experience!). This stretchability can be eliminated with the code

\dimen@=\parskip \parskip=\dimen@

(since \dimen@ is a dimension, the first assignment sets \dimen@ to the non-
stretchable part of \parskip, and the second assignment resets \parskip to
this non-stretchable part).

So the definition of \1ist@ might be

\def\list@{\ifx\next\runinitem
\def\next@\runinitem{\futurelet\next\runinitem@}\else
\def\next@{\par \dimen@=\parskip \parskip=\dimen@}\fi\next@}

That's not quite good enough however, because we also want to allow a
blank line before the \runinitem, since blank lines are generally allowed
before \item’s.!

So if \next happens to be \par, we will call a construction that swallows
this \par and then repeats the \futurelet\next\list@:

\def\list@{\ifx\next\par
\def\next@\par{\futurelet\next\list@}\else
\ifx\next\runinitem

\def\next@\runinitem{\futurelet\next\runinitem@}\else
\def\next@{\par \dimen@=\parskip \parskip=\dimen@},
\fi\fi\nexte}

Leaving aside the definition of \runinitem@ for the moment, we consider
the case where \item occurs next.

'On the other hand, there’s no way we can allow a blank line to occur before \1ist in a
\list\runinitem’ combination; when a run-n \item is required, the \1ist must appear
in the same paragraph as the previous text.

N

18.5. \iten 137

18.5. \item. \item has already been set to \futurelet\next\item@. Be-
fore worrying about whether a quoted \item number follows, \item@ will
take care of any needed formatting. This will involve two new flags

\newif\ifoutlevel®
\newif\ifrunin@

The first will be true if the \ item was preceded by \outlevel (so that \item’s
at a higher level have just been completed). The second will be true if the
present \item follows a \runinitem at the same level.. In either of these
cases, the appropriate flag for first \item’s at this level (\iffirstitemi@ or
\iffirstitemii@ or...) will be false.

The first thing \item@ adds is

\ifoutlevel@\Liste@\outlevel@false\fi

So, for example, if our \item occurs at the top level (\listlevel@ = 1), and
we have just completed \item’s at the second level, we will add \listei@—
recall (page 130) that this is the formatting that goes at the end of the last
\item at the second level.

The reason for this approach is that in a situation like

\list
\item ..
\inlevel
\item ...
\inlevel
\item ...
\item ..
Noutlevel]
\outlevel
\item ...

where we go from third level \item’s right back to first level \item’s, the
spacing before that next \item at the first level should be the spacing that
goes after second level items, not the spacing that goes after third level items
(and certainly not the sum of the spacing that goes after the second and third

138 Chapter 18. Lists

levels). So we don’t want the spacing to be put in by the \outlevel’s; instead
\outlevel will just set \outlevel@true, for use by \item.

Next, we consider the case where \ifrunin@ is true. In this case, we simply
want to set \runin@false, end the current paragraph (which contains the
previous \runinitem, which has not been indented any extra amount), add
the same adjustments that were made for \1ist@, in case we are at the first
level, and then add \Listm@ (the \1istm. . .@ for the current level) to apply
to the remaining \item’s at the current level:

\ifrunin@\runin@false\par
\dimen@=\parskip \parskip=\dimen@
\Listm@\fi

If neither of these cases occurs, we have to consider the possibility that the
\item was the first at its level. At the first level, this means that we will add

\listbi@ \listmi@

if \iffirstitemi@ is true, also setting \firstitemi@false, but simply add
a \par for other items:

\iffirstitemi@
\listbi@\listmi@\firstitemi@false
\else\par\fi

Note that \1istbi@ will be occurring after a \par supplied by \1list, via
\1ist@, or by \outlevel (section 8).

Analogous code is added for the situation where we are at the second level
(\iffirstitemii@...\fi); in this case, \1istbii@ will be occurring after
the \par supplied by the previous code. And similarly for the third through
fifth levels.

Each of these \iffirstitem...@ tests has to be made separately, and
\listbie,... appear only in such constructions; that is why there is no point
having a ‘\Listb@ construction.

We will use compressed format, as well as the K-method, for \item@, so
that the definition ends

\ifx\next"\expandafter\next@\else\expandafter\nextii@\fi

18.5. \item 139

with \next@ and \nextii®@ defined first.
The definitions of \next@ and \nextii@ are quite similar to the definitions

of \maketag@@@ and \maketag@0QQ, using \Qlabel@ from section 16.3 for
“quoted” \item numbers, but with some additions:

\def\next@"##1"{{\let\pre=\1ist@eP \let\post=\1listeeq
\let\style=\1ist@@S \let\numstyle=\1list@eN

| \vskip-\parskip |

\Item@{\1ist@QF#i#1}),

\noexpands@

\Qlabel@{##1}}

\locallabel®

[\Fnsspe]r

\def\nextii@{\globalladvance\list@QC by 1
{\noexpandse
\xdef\Thelabel@@@{\number\1list@eC}
\xdefThelabel@\1list@@N
\xdef\Thelabel@0@e{\1ist@@P\Thelabel@\list@eQ}}’
\xdefThelabel@@\1ist@@S

Y

\locallabel@

|\vskip-\parski§]

\Item@{\1ist@@F\thelabel@@}},

l}futurelet\next\pretendspace@D%

We add the \vskip-\parskip because \Item@ will normally start a new
paragraph, and we want the spacing before the \item to be explicitly specified
by \1istbi@, ..., and not involve any \parskip, which is easy to forget
about.

And we add the \FNSSP@ and \futurelet\next\pretendspace@’s be-
cause \Item@ puts us into horizontal mode (in the default style it also pro-
duces some space after the \item number—the \hskip5pt at the end of the
\1lap in the definition of \item...@—but this space is “hidden” inside the
\1lap, and will not be discovered by \1lastskip). So (compare section 7.2)

\item \label{...} Text .

140 Chapter 18. Lists

would leave an extra space before the “Text ...”. The \pretendspaces@’s
take care of this. In the case of \nextii@ we don’t need FNSSP@, since a space
token won't appear after \item (compare \endMath, page 102).

It should perhaps also be noted that something like \1et\pre=\1ist@eP
does not actually make \pre have the value of the appropriate ‘\1ist@P1’
or ‘\1ist@P2’ or ..., but simply makes \pre expand out to the definition of

\1list@@P, i.e., to

\csname list@P\number\listlevel@\endcsname

This is adequate, however, since we are not storing this value of \pre for later
use: when this \pre gets used, either in printing the number,

{\1list@QF##1}
or in the \xdef’s invoived in

\Qlabel@{##1}

the current value of ‘\1ist@P1’ or ‘\1ist@P2’ or ..., will be inserted.
Thus, the definition of \item@ is:

\def\iteme{Y,
\ifoutlevel@\Liste@\outlevel@false\fi
\ifrunin@\runin@false\par
\dimen@=\parskip \parskip=\dimen@ \Listm@\fi
\iffirstitemi@

\listbi@\listmi@\firstitemi@false
\else\par\fi
\iffirstitemii@
\listbii@\listmii@\firstitemii@false
\else\par\fi
\iffirstitemiii@
\listbiii@\listmiii@\firstitemiii@false
\else\par\fi
\iffirstitemive
\listbiv@\listmive\firstitemiv@false
\else\par\fi

e

S’

18.6. \runinitem@ 141

\iffirstitemv@
\listbv@\listmve\firstitemv@false
\else\par\fi
\def\next@"##1"{{\let\pre=\1istQOP \let\post=\list@eq
\let\style=\1ist@@S \let\numstyle=\1list@eN
\vskip~-\parskip
\Item@{\listQQF##1}
\noexpands@
\Qlabel@{##1}}
\locallabel@
\FNSSP@}},
\def\nextii@{\globalladvance\1list@QC by 1
{\noexpands@
\xdef\Thelabel@0d{\number\1list@eC}}
\xdefThelabel@\1list@ON
\xdef\Thelabel@0@@{\1list@@P\Thelabel@\1list@eQq}}Y
\xdefThelabel@@\1list@eS
Y
\locallabel@
\vskip-\parskip
\Item@{\1ist@CF\thelabel@e}},
\futurelet\next\pretendspace@}},
\ifx\next"\expandafter\next@\else\expandafter\nextii@\fi}

18.6. \runinitem@. \runinitem@ is similar to, but simpler than, \item@.

First, \runinitem@ sets \ifrunin@true and \Firstitem@false (to be
used by the next \item [page 137]). The preliminary formatting of \item@
isn’t necessary, so \runinitem@ then immediately defines \next@ and
\nextii@ for the compressed format:

\def\next@"##1"{{\let\pre=\1istQ@eP \let\post=\1listeeQ
\let\style=\1ist@@S \let\numstyle=\1ist@eN
\unskip\space{\1list@eFit# 1}

\noexpands@
\Qlabel@{##1}}%
\locallable@
\ignorespaces}

142 Chapter 18. Lists

\def\nextii@{\global\advance\list@QC by 1
{\noexpandsae
\xdef\Thelabel@@@{\number\1ist@eC}Y
\xdefThelabel@\1list@eN
\xdef\Thelabel0e@e{\1ist@@P\Thelabel@\1list@eQ}}Y
\xdefThelabel0@\1list@@S

YA

\locallabel@
\unskip\space{\1ist@@F\thelabele@}}

In other words, after suitably defining \thelabel@, ..., we leave a space
after the preceding text, and then print the \item number, either as explic-
itly quoted, or as supplied automatically, and then add a space. In the case
of \runinitem"..." we have to ignore any space that follows the .. .".
Notice, however, that in neither case do we have to worry about invisible con-
structions that follow, since now a real space has been inserted.

Thus, the definition of \runinitem®@ reads:

\def\runiniteme{y,
\runin@true
\Firstitem@false
\def\nexte##1{{\let\pre=\1ist@eP \let\post=\listeeQ
\let\style=\1ist@0S \let\numstyle=\1liste@eN
\unskip\space{\1list@QF##1} Y
\noexpands@
\Qlabelo{##1}}Y
\locallabel@
\ignorespaces}),
\def\nextii@{\global\advance\list@eC by 1
{\noexpandse@
\xdef\Thelabel@@@{\number\1list@aC}}
\xdefThelabel@\listQeN
\xdef\Thelabel@@0@{\1ist@@P\Thelabel@\1list@eQ}}Y,
\xdefThelabel@@\1list@QS
Y :

\\,/l'

18.7. \inlevel 143

\locallabel@
\unskip\space{\1ist@@F\thelabel@@} }%
\ifx\next"\expandafter\next@\else\expandafter\nextii@\fi}

18.7. \inlevel. We will keep each level of a list within its own group, to
localize \1listlevel@, etc.

\inlevel will simply produce an error message if \1istlevel@ is al-
ready 5. Otherwise it will provide a \begingroup and advance \1listlevel@
by 1; notice that this is not a \global\advance: the value of \listlevel@
will be different within the different groups provided by different levels. Then
we will set \Firstitem@true (i.e., set \firstitemii@true if we are at now
at the second level, \firstitemiii@true if we are now at the third level,
etc.). No special formatting has to be done by \inlevel, because, once
\listlevel@ has been correctly set, each \item will take care of all nec-
essary formatting. But we are not quite done, because we need a \futurelet
to see if a \runinitem follows:

\def\inlevel{\ifnum\listlevel@=5
\def\next@{\Err@{Already 5 levels down}}\else
\def\next@{\begingroup\advance\listlevel@ by 1
\Firstitem@true\futurelet\next\inlevel@}\fi\nexte}

If \inlevel@ detects a \runinitem, it just has to swallow this \runinitem
and call \futurelet\next\runinitem®, exactly like \1ist; otherwise noth-
ing remains to be done at all. However, just as in the case of \1ist@, we must
also allow the possibility that a \par precedes a \runinitem!:

\def\inlevel@{\ifx\next\par
\def\next@\par{\futurelet\next\inlevel@}\else
\ifx\next\runinitem

\def\next@\runinitem{\futurelet\next\runinitem@}\else
\let\next@=\relax\fi\fi\next@}

!As in the case of \List, there’s no way we can allow a blank line to occur before \inlevel in
an ‘\inlevel\runinitem’ combination; when a run-in \iten is required at a new level, the
\inlevel must appear in the same paragraph as the previous text.

144 Chapter 18. Lists

18.8. \outlevel. Similarly, \outlevel gives an error message if we are at
level 1. Otherwise, we want to end the paragraph and provide an \endgroup
to match the \begingroup provided by the previous \inlevel. Nothing
has to be done to \1listlevel@, since it will simply return to the value it
was already given before this new group had been entered. Note that it is
important to end the paragraph before the \endgroup; otherwise, the current
value of \leftskip provided by \Listm@ would no longer be in force when
the paragraph ended. In addition, before the \endgroup we need to globally
reset the counter for the current level back to 0 (in case we go down to this
level by another \inlevel). Finally, we want to set \outlevel@true, for use
by the next \item (page 137 ff.).

\def\outlevel{\ifnum\listlevel@=1
\Err@{At top levell}\else ,
\par\global\list@@C=0 \endgroup\outlevel@true\fi}

18.9. \endlist. \endlist first ends the current paragraph:

\def\endlist{\par .

Note that it’s quite possible for \endlist to occur after several consecutive
\inlevel’s—there may not be \outlevel’s to match all these \inlevel’s.
Consequently, \endlist must not only supply an \endgroup to match the
\begingroup supplied by \1ist, butit must also supply enough \endgroup’s
to match any \inlevel’s that do not having matching \outlevel’s; this is
accomplished by the following code:

\global\toks1={2}/,

\count@=\listlevel®

{\loop

\ifnum\count@>0 \global\toksi=\expandafter{\the\toksi \endgroupl})
\advance\count@ by -1

\repeat}

\the\toks1

(The possibility that an \inlevel does not have a matching \outlevel is
the reason why we reset the counters for all levels at the beginning ofa \1ist

e

18.9. \endlist 145

[page 134], even though \outlevel resets the counter for its level [see the pre-
vious page].) The \1oop is enclosed within a group for the unlikely eventuality
that some \1ist...\endlist occurs within a \loop construction (compare
page 37). Because of this, we need a \global assignment of the token list, so
we use \toks1 (compare section 1.8); and for consistency, we begin with the
\global assignment \global\toks1={}. We don’t make an abbreviation for
\toks1 because it is used so infrequently.
The \endgroup’s are followed by

\liste@
(page 130), and then by
\listcontinue@false

since \1istcontinue@true is set by \keeplisting, which appears before a
\list.

The final step is to take care of the fact that a \1ist...\endlist is not
supposed to start a new paragraph at the end, unless a new paragraph actually
appears in the file. For this we add

\vskip-\parskip
\noindent@e@

If text follows immediately after the \endlist, it will start an unindented
paragraph, with no extra space, except that provided by \1iste (and so it will
appear that the \1ist. . .\endlist has merely “interrupted” the paragraph).

On the other hand, when \endlist is followed by a \par or blank line
before new text, so that we have

\vskip-\parskip
\noindent@@
\par

the “empty paragraph” \noindent@@. ..\par doesn’t produce a blank line,
but we do get \parskip glue inserted before the \noindent@@ and also before
the text following the \par. Together with the \vskip-\parskip, this means

146 Chapter 18. Lists

that the following text, which will start a new paragraph, will have the usual
\parskip glue before it.
There is just one further detail: We need to add

\futurelet\next\pretendspace@

in case an invisible construction like \pagelabel happens to appear after the
\endlist (compare page 139).
Thus, the definition of \endlist is:

\def\endlist{\par
\global\toksi={}},
\count@=\listlevel@

{\loop
\ifnum\count@>0
\global\toksi=\expandafter{\the\toksl \endgroup},
\advance\count@ by -1
\repeatl},
\the\toksi
\liste@
\listcontinue@false
\vskip-\parskip
\noindent@@
\futurelet\next\pretendspace@}

As on page 100, note that if \bye were \outer, then \endlist\bye would give
an error message.

Notice that a \par after \endlist doesn’t have to appear explicitly for all
this to work. For example, something like

\list
\endlist
\section{...}

where \section starts a new paragraph, will behave correctly. Consequently,
this approach is preferable to one that would use a \futurelet to see if a

s

18.9. \endlist 147

\par comes next (such uses of \futurelet in sections 4 and 7 were quite
different—they were meant only to skip over any \par’s that might appear).
If somewhat different design decisions are required for the spacing after the
\endlist, we could, for example, use

\edef\parskip@{\parskip=\the\parskip}

\parskip=(dimen,;)

\noindent@@

\futurelet\next\pretendspace@

[The construction
\edef\parskip@{\parskip=\the\parskip}
is similar to the construction

\edef\@sf{\spacefactor\the\spacefactor}

used in plain TEX: the primitive \parskip is not expanded in the \edef,
but ‘\the’ i expanded, so \parskip@ means

‘\parskip=(current value of \parskip)’

after the \edef is finished.]

Chapter 19. \describe and \margins

Although \describe and \margins don’t really come next by any logical
imperative, they come next in I4,(S-TEX because they are so similar to \1ist.

19.1. \describe. Since \describe has only one level, it is simplest to
incorporate all necessary style decisions directly into the definition, with-
out using subsidiary control sequences like \1istbi@, etc. In addition,
\describe is much less complicated than \1ist because nothing gets num-
bered, \describe doesn’t have to check for a \runinitem, and \item’s in a
\describe don’t have to check to see if a " follows.

We require just one flag, for the first \item in a \describe:

\newif\iffirstdescribe@

\describe can immediately end the previous paragraph (unlike \1ist,
which has to worry about a \runinitem following); then, like \1ist, it be-
gins a group and sets \firstdescribe@true. (The default style doesn’t
bother adding ‘\dimen@=\parskip \parskip=\dimen@, but other styles
might want to add that here.) Then it simply has to define \item within
\describe, which is simply a control sequence with an argument:

\def\describe{\par

\begingroup

\firstdescribe@true

\def\item##1{)
\iffirstdescribe@
\penalty50 \medskip \vskip-\parskip
\firstdescribe@false\else\par\fi
\hangindent2pc \hangafteri
\noindent@@{\bf##1}\hskip.5em}

(compare page 130 for the use of \noindent@a).
In the definition of \item, the

\penalty50 \medskip \vskip-parskip
\hangindent2pc \hangafterl \noindent
\noindent@@{\bf##1}\hskip.5em

148

19.2. \margins 149

represent style decisions, which might be changed for other styles.
\enddescribe is also much simpler than \endlist: we simply end the

previous paragraph, add spacing and penalties (style decisions) and end the
group started by \describe:

\def\enddescribe{\par
\penalty-50 \medskip\vskip-\parskip
\endgroup}

Since \describe. . .\enddescribe is supposed to start a new paragraph
at the end (at least in the default style), we don’t need the special machinations
that were used for \endlist (page 145); of course, they could always be added
for a style that wants to handle this question differently.

19.2. \margins. The \margins construction uses the commands \pullin
and \pullinmore, rather than \item. We might as well have these give
error messages outside of a \margins. . .\endmargins construction (see sec-
tion 1.1),

\Invalid@\pullin
\Invalid@\pullinmore

There is no special formatting before the first paragraph of a \margins
construction. Nevertheless, we still need a flag

\newif\iffirstpull®

but this flag will play quite a different role than the analogous flag in
\describe: Fach \pullin command is going to start a new group, within
which \leftskip and \rightskip will be determined by the arguments of
this command; since a \pullin is usually followed by yet another \pullin,
this means that each \pullin will also have to provide the \endgroup that
matches the \begingroup from the previous \pullin, except that the first
\pullin should not provide this extra \endgroup.

150 Chapter 19. \describe and \margins

\margins, like \describe, will end the previous paragraph, begin a group,
set \firstpull@true, and then define \pullin and \pullinmore:

\def\margins{\par\begingroup\firstpull@true
\def\pullin##1##2{.. .}
\def\pullinmore##i##2{...}}

\pullin will end the previous paragraph, and supply an- \endgroup, ex-
cept for the first \pullin, as already indicated, and then start yet another
group:

\def\pullin##1##2{\par
\iffirstpull@\firstpull@false\else\endgroup\fi
\begingroup

(Notice that it is important to have the \par before the \endgroup, compare
page 144.)

In this new group we want to set \leftskip=##1 and \rightskip=##2.
But we want

\pullin{}{...} or \pullin{ }{...}

to yield \leftskip=0pt, and similarly for the second argument, so we explic-
itly have to check for these possibilities:

\def\next@{##1}Y
\ifx\next@\empty\leftskip=0Opt\else
\ifx\next@\space\leftskip=0Opt\else
\leftskip=##1\fi\fi
\def\nexto{##2}/,
\ifx\next@\empty\rightskip=Opt\else
\ifx\next@\space\rightskip=0pt\else
\rightskip=##1\fi\filignorespaces}

The final \ignorespaces is needed to get rid of any spaces following the
\pullin{...}...}.

. ;s
N

19.2. \margins 151

Normally, \margins is meant to be used as

\margins

\pullin{...}{...}
\endmargins

but our definition allows text to intervene between the ‘\margins’ command
and the first ‘\pullin’; such text will just be treated as a paragraph with no
special indentations.

Note that this definition of \pullin regards the arguments as ‘absolute’
dimensions, rather than as dimensions relative to values of \leftskip and
\rightskip that may have already been set. Indeed, when one of the argu-
ments is {} or { }, we explicitly set the value of \leftskip or \rightskip
to Opt, instead of simply leaving it alone.

Since no other I4yS-TEX macros fool with \leftskip and \rightskip,
this seems like a reasonable design decision; a sophisticated user who knows
about \leftskip and \rightskip will presumably have the sense either to
adjust the arguments of \pullin appropriately (or to use \pullinmore), or
to first set \leftskip and \rightskip to Opt before using \margins.

To make the arguments of \pullin relative dimensions, it would suffice to
replace the ‘\leftskip’ and ‘\rightskip’ with ‘\advance\leftskip’ and
‘\advance\rightskip’, respectively. In this case, we could simply omit the
‘\leftskip=Opt\relax’ and ‘\rightskip=0pt\relax’ both times.

The definition of \pullinmore follows just such a scheme, except that we
must store the current values of \leftskip and \rightskip before ending
the previous group:

\xdef\Next@{\leftskip=\the\leftskip
\rightskip=\the\rightskip}

The effect of this \xdef (compare page 147) is to make \Next@ mean

\leftskip=(current value of \leftskip)
\rightskip=(current value of \rightskip)

We need \xdef rather than \edef, because this will be followed by an
\endgroup; then, after the following \begingroup we can reinstate these

152 Chapter 19. \describe and \margins

values, before using the arguments of \pullinmore to decide how much to
\advance\leftskip or \advance\rightskip:

\def\pullinmore##i##2{\par
\xdef\Next@{\leftskip=\the\leftskip
\rightskip=\the\rightskip}}
\iffirstpull@\firstpull@false\else\endgroup\fi
\begingroup
\Next@
\def\next@{##1}
\ifx\next@\empty\else\ifx\next0\space\else
\advance\leftskip by ##1\fi\fi
\def\next@{##2}%
\ifx\next@\empty\else\ifx\next@\space\else
\advance\rightskip by ##1\fi\fi
\ignorespaces}

We use the scratch token \Next@ here, because it has been reserved for
\global assignments (page 22).
Thus, the definition of \margins is

\def\margins{\par\begingroup\firstpull@true
\def\pullin##i##2{\par
\iffirstpull@\firstpull@false\else\endgroup\fi
\begingroup
\def\next{##1}},
\ifx\next@\empty\leftskip=Opt\else
\ifx\next@\space\leftskip=Opt\else
\leftskip=##1\fi
\def\next{##2}/,
\ifx\next@\empty\rightskip=Opt\else
\ifx\next@\space\rightskip=0Opt\else
\rightskip=##2\fi\fi
\ignorespaces}),
\def\pullinmore##i##2{\par
\xdef\Next@{\leftskip=\the\leftskip
\rightskip=\the\rightskip},

Seaasse”

e’

.. -

19.2. \margins 153

\iffirstpull@\firstpull@false\else\endgroup\fi
\begingroup

\Next@

\def\next@{##1}/,
\ifx\next@\empty\else\ifx\next@\space\else
\advance\leftskip by ##i\fi\fi
\def\nexte{##2}
\ifx\next@\empty\else\ifx\next@\space\else
\advance\rightskip by ##2\fi\fi
\ignorespaces}}

And \endmargins simply has to end the current paragraph, and supply two
\endgroup’s (one to match the \begingroup from the previous \pullin
or \pullinmore, and one to match the initial \begingroup supplied by
\margins):

\def\endmargins{\par\endgroup\endgroup}

Chapter 20. \nopunct, \nospace, and \overlong

In the next chapter we will consider \demo, because it uses some prelimi-
nary constructions for \claim, the subject of the chapter after that. Since
both \demo and \claim involve punctuation and spacing that are normally
supplied by a style, but which a user might want to override, this chapter is
devoted to such considerations, which version 1 of I4\S-TEX handled with
the \nofrills construction.

20.1. \nopunct, \nospace, and \overlong. In AMS-TEX’s amsppt style,
\nofrills was used in several, not entirely consistent, ways (unfortunately
extended yet further by the AMS in their additions to the style), and this
inconsistent usage was brought over to version 1 of I4S-TEX (see the small
print on page 209).

In version 2 of \S-TEX, \nofrills has been changed to \nopunct, so
that it affects only punctuation. It then seemss silly to allow \nopunct to also
delete the spacing after the punctuation, with \usualspace required to put
this spacing back. Instead, it seems more consistent to have ‘\nospace’ to
delete the space, so that removal of the punctuation and removal of the spacing
are handled separately.

In addition to these two new control sequences, \overlong has been re-
tained. Although no construction in the default I4,4S-TEX style happens to
allow both \overlong and \nopunct or \nospace, other style might, so
our macros will allow for the possibility that any combination of \nopunct,
\nospace, and \overlong precedes some construction (however, we will as-
sume that each of these is used just once).

In M4S-TEX, \nopunct, \nospace, and \overlong all work in the same
way, by checking whether the next control sequence after any of these is in an
appropriate list, and setting a flag to be true if it is; it is then the prerogative
of that next control sequence to deal with this information (and to reset the
flags to false at the end).

We need three flags

\newif\ifnopunct@
\newif\ifnospace@
\newif\ifoverlong@

154

R

-

20.1. \nopunct, \nospace, and \overlong 155

a list, initialized as

\let\nofrillslist@=\empty

of constructions to which both \nopunct and \nospace can apply, and a list,
initialized as

\let\overlonglist@=\empty

of constructions to which \overlong can apply.

Because each of \nopunct, \nospace, and \overlong has to allow the
possibility that it is followed by one or both of the others, the macros are
complicated, though in no way interesting; basically, each will set the corre-
sponding flag to be true, although the flag may be reset to false if we eventually
find that an appropriate control sequence doesn’t follow.

First of all, each of these construction begins with a \futurelet\next:

\def\nopunct{\nopunct@true\futurelet\next\nopuncte}
\def\nospace{\nospace@true\futurelet\next\nospace@}
\def\overlong{\overlong@true\futurelet\next\overlong@}

If \nopunct is followed by \nospace or \overlong, it will swallow these
control sequences, set the corresponding flags true, and then use yet another
\futurelet:

\def\nopuncte{)

\ifx\next\nospace
\def\next@\nospace{\nospace@true\futurelet\next\nopnos@}¥

\else

\ifx\next\overlong
\def\next@\overlong{\overlong@true\futurelet\next\nopol@}%

\else
\let\next@=\nopunct@@

\fi\fi\next@}

We reach \nopunct@@ when neither \nospace nor \overlong follows our
original \nopunct, so now we have to check whether the control sequence

156 Chapter 20. \nopunct, \nospace, and \overlong

that follows is in \nofrillslist@. Ifso, we simply execute this control se-
quence (the flag \ifnopunct@ has already been set true); otherwise we reset
\ifnopunct@ to be false and give an error message, and still execute the
control sequence:

\def\nopunct@e#i{\ismember@\nofrillsliste@#1Y,
\iftest@
\let\next@=#1%
\else
\def\next@{\nopunct@false
\Err@{\noexpand\nopunct can’t be used with
\string#1}#1}$Y
\fi\next@}

(We use an argument #1 for \nopunct@@, rather than picking up the next
control sequence with a \futurelet\next, so that we can properly include
#1 in the error message.) For the use of \noexpand in this, any future, error
messages, compare section 3.4.

Temporarily leaving aside \nopnos@ and \nopol@, the other possible out-
comes of \nopunct@, we use basically the same procedures for \nospace@
and \overlong@:

\def\nospacee{),

\ifx\next\nopunct
\def\next\nopunct{\nopunct@true\futurelet\next\nopnose},

\else

\ifx\next\overlong
\def\next@\overlong{\overlong@true\futurelet\next\nosole},

\else
\let\next@=\nospace@@

\fi\fi\next@}

(notice that we use the same \nopnos@ that appeared in \nopunct@)

\def\nospace@@#1{\ismember@\nofrillslist@#1Y
\iftest@
\let\next@=#1Y

St

. s

20.1. \nopunct, \nospace, and \overlong 157

\else
\def\next@{\nospace@false
\Err@{\noexpand\nospace can’t be used with
\string#1}i#1})
\fi\next@}
\def\overlonge{),
\ifx\next\nopunct
\def\next@\nopunct{\nopunct@true\futurelet\next\nopolel}/,
\else
\ifx\next\nospace
\def\next@\nospace{\nospace@true\futurelet\next\nosole}/,
\else
\let\next@=\overlong@@
\fi\fi\next@}

(notice that we use the same \nopol@ and \nosol@ that appeared in
\nopunct@ and \nospace@)

\def\overlong@e#i{\ismember@\overlonglist@#1Y,
\iftest@ :
\let\next@=#1Y
\else
\def\next@{\overlong@false
\Err@{\noexpand\overlong can’t be used with
\string#1}#1},
\fi\nexte}

Now each of \nopnos@, \nopol@, and \nosol@ must look for the third of
the triumvirate:

\def\nopnos@{\ifx\next\overlong
\def\next@\overlong{\overlong@true\nopnosol@}\else
\let\next@=\nopnos@e\fil\nextQ}

\def\nopol@{\ifx\next\nospace
\def\next@\nospace{\nospace@true\nopnosol@}\else
\let\next@=\nopol@@\fi\next@}

158 Chapter 20. \nopunct, \nospace, end \overlong

\def\nosol@{\ifx\next\nopunct
\def\next@\nopunct{\nopunct@true\nopnosol@}\else
\let\next@=\nosol@@\fi\next@}

The first of the newly created possibilities, \nopnos@Q is easy:

\def\nopnos@@#1{\ismember@\nofrillslist@#1y
\iftest@
\let\next@=#1%
\else
\def\next@{\nopunct@false\nospace@false
\Err@{\noexpand\nopunct\noexpand\nospace
can’t be used with \string#il}#1}y,
\fi\nexte}

Notice that we may be giving the error message

\nopunct \nospace can’t be used with .

not worrying about niceties like commas between \nopunct and \nospace!

For the next two, which require testing for both \nofrillslist@ and
\overlonglist@, we will \let\nextiii@=T or F, depending on whether
or not the argument is in \nofrillslist@, and \let\nextiv@=T or F,
depending on whether or not the argument is in \overlonglist@; we
use \nextiii@ and \nextiv@ because \ismember@ redefines \next@ and
\nextii@. It helps to define a routine that makes these tests, and then also
sets \iftest@ to be true precisely when both of the tests were positive:

\def\testiio#1{\ismember@\nofrillslist@#1Y%
\iftest@\let\nextiii@=T\else\let\nextiii@=F\fi
\ismember@\overlonglist@#1¥
\iftest@\let\nextiv@=T\else\let\nextive=F\fi
\test@false
\if\nextiii@ T\if\nextive@ T\test@true\fi\fi}

Then we define \nopol@@ and \nosol@e:

M

e

20.2. Using the flags 159

\def\nopole@d#i{\testii@{#1}%

\iftest@

\let\next@=#1%

\else\def\next@{\if\nextiii@ T\else\nopunct@false\fi
\if\nextiv@ T\else\overlong@false\fi
\Err@{\if\nextiii@ T\else\noexpand\nopunct\fi
\if\nextiv@ T\else\noexpand\overlong\fi
can’t be used with \string#i}#1})

\fi\next@}

\def\nosol@e@#i{\testii@{#1}),

\iftest@\let\next0=#1%

\else\def\next@{\if\nextiii@ T\else\nospace@false\fi
\if\nextiv@ T\else\overlong@false\fi
\Err@{\if\nextiii@ T\else\noexpand\nospace\fi
\if\nextiv@ T\else\noexpand\overlong\fi
can’t be used with \string#il}#1}),

\fi\nexte}

Finally, \nopnosol@—when \nopunct, \nospace, and \overlong have
all appeared—works almost the same:

\def\nopnosol@#i{\testiie{#1})
\iftest@\let\next@=#1%
\else\def\nexte{}
\if\nextiii@ T\else\nopunct@false\nospace@false\fi
\if\nextiv@ T\else\overlong@false\fi
\Erre{/,
\if\nextiii@ T\else\noexpand\nopunct\noexpand\nospace\fi
\if\nextiv@ T\else\noexpand\overlong\fi
can’t be used with \string#i}#1}},
\fi\nexte}

20.2. Using the flags. The additional punctuation for constructions that allow
\nopunct@ will be added precisely when \ifnopunctQ@ is false, so we intro-
duce an abbreviation for that:

160 Chapter 20. \nopunct, \nospace, and \overlong

\def\punct@#i{\ifnopunct@\else#i\fi}

Similarly, we have

\def\addspace@#i{\ifnospace@\else#1\fi}

for adding the space.
Control sequences that allow \overlong are ones that normally might con-
tain an \hss, like

\def\centerline#i1{\line{\hss#1\hss}}

Any such candidates will have the \hss replaced by \hss@, which is defined
by

\def\hss@{\ifoverlong@ Opt plusi000pt minus1000pt
\else Opt plus1000pt\fi}

So both stretch and shrink will be allowed when \ifoverlong@ has been set
true, but only stretch will be allowed otherwise.

Ny 3

Chapter 21. \demo

Since \demo is one of the constructions to which \nopunct and \nospace
should apply, we put it in \nofrillsliste@:

\rightadd@\demo\to\nofrillslist@

As in ApS-TEX, we will introduce a new flag,

\newif\ifclaime@

so that each \claim can set \ifclaim@ to be true (within the group that that
\claim will begin). Then \demo can give an error message when \ifclaim@
is true, since we shouldn’t be giving a proof within the statement of a \claim.
(On the other hand, \claim will not make a similar check regarding \demo,
since we could be stating subsidiary \claim’s within a \demo. In fact, the flag
\ifclaim@ is used only by \demo, since virtually anything other than a \demo
can come within a \claim.)

As we will see in the next chapter, whenever we have started a \claim,
or something like \Thm that has been constructed using \newclaim or
\shortenclaim, not only will \ifclaim@ be true, but also \claimtype@
will be defined to be \claim or \Thm, etc. So we can give an error message
that mentions \claim when we are in the middle of a general \claim, but
will instead state

Previous \Thm has no matching \endThm
when we are in the middle of a \Thm produced with \newclaim, etc. We can
do this with

\Err@{Previous \expandafter\noexpand\claimtype@ has
no matching \string\end
\expandafter\expandafter\expandafter\eat@\expandafter
\string\claimtype@}

Here (compare page 126) the \expandafter is expanded in the error mes-
sage, so \claimtype@ is expanded—to \claim, \Thm, or whatever—before

161

162 Chapter 21. \demo

having \noexpand placed in front of it, which then prevents further ex-
pansion. See The TEXbook, page 374 for the triple \expandafter; here
\claimtype@ is expanded first, to \claim or \Thm, etc., then \string
is applied to this, and then \eat@ (section 1.2) is applied to the result of
this \string, thus eating the \ at the beginning of the \string\claim or
\string\Thm or whatever. (Finally, see section 3.4 for the spacing after the
\noexpand’ed control sequence.)
The combination

\expandafter\expandafter\expandafter\eat@\expandafter\string

will occur quite frequently, so we abbreviate it:

\def\exxx@{\expandafter\expandafter\expandafter
\eat@\expandafter\string}

Normally (i.e., when \ifclaim@ is false), \demo#1 will end the previous
paragraph and add a \smallskip (deleting the previous skip if smaller, or
using the previous skip instead, if it is larger).

Then it will begin a group and start an unindented paragraph with #1
in \smc (with spaces before and after #1 ignored, since they are presumably
typing errors); we use \noindent@@ for this (Chapter 8). This will be followed
by a colon, unless \nopunct@ preceded the demo,

\punct@:

and an \enspace, unless \nospace preceded the \demo,

\addspace@\enspace

Instead of typing a (type 12) :, we will

\let\colon@=:

and use \colon@ instead, so that a French style that makes : active can change
\colon@ (compare 3.10). Moreover, we will use

\punct@{\null\colon@}

\\m/ :

" _

Chapter 21. \demo 163

Jjust in case #1 happens to end with an upper-case letter (although this will
usually be irrelevant, since an \enspace, rather than a space, follows).

At this point, after we have determined whether or not the colon and
\enspace should be added, we will reset \ifnopunct@ and \ifnospace@
to be false immediately, even though \enddemo will also do this, just to mini-
mize problems if the user forgets the \enddemo.

Finally, we want to switch to \rm. However, we must also be careful to add
a \FNSSPQ, in case an invisible construction follows the \demo{. . .} (this will
also throw away any extraneous space after the }). We can’t simply say

\def\demo#i{\ifclaime ...
\else

\I.‘miFIIISSPQ\fi}

because \next will be \1et equal to the \£i, rather than to the next non-space
token after \demo{. . .}. So instead we have to use the definition

\def\demo#1i{\ifclaim@
\Err@{Previous \expandafter\noexpand\claimtype@ has
no matching \string\end\exxx0\claimtype@l}¥
\let\next@=\relax
\else
\par
\ifdim\lastskip<\smallskipamount
\removelastskip\smallskip\fi
\begingroup
\noindent@@{\smc\ignorespaces#1\unskip
\punct@{\null\colon@}\addspace@\enspacel}},
\nopunct@false\nospace@false
\rm
\def\next@{\FNSSP@Q}/,
\fi
\next@}

164 Chapter 21. \demo

\enddemo simply has to end the current paragraph, supply the \endgroup
to match the \begingroup from \demo, reset the flags \ifnopunct@ and
\ifnospace@, and insert a \smallskip:

\def\enddemo{\par\endgroup
\nopunct@false\nospace@false\smallskip}

Chapter 22. \claim’s

Now we come to \claim and related constructions, one of the more compli-
cated complexes in S-TEX.

22.1. Preliminaries. Tirst of all, \claim is another thing that can follow
\nopunct, so we add it to \nofrillslist@:

\rightadd@\claim\to\nofrillslist@

The fontstyle for \claim’s,

\def\claim@F{\smc}

will be needed right away, but, in fact, we will need something more general.
In Chapter 21, we pointed out that \claimtype@ will be defined to be
\claim when we have started an ordinary \claim, but \Thm when we have
started a construction like \Thm that has been constructed with \newclaim or
\shortenclaim.
Each construction like \Thm will have an associated font style \Thm@F. This
can be named (see page 119) as

\csname\exstring@\Thm @F\endcsname

or, more generally (recall the definition of \exxx@ on page 162), as

\csname\exxx@\claimtype@ F\endcsname

Since we often need to refer to this general font style, we introduce the special
construction

\def\claim@@eF{\csname\exxx@\claimtype@ @F\endcsname}

[We use a triple @Q@, rather than the double @@ used in \1ist@QF to emphasize
the distinction: \1istQeF depends on the value of the counter \1listlevel@,
the level of a \1ist, while \c1aim@@QF depends on \claimtype@, the name
of the \claim.]

165

166 Chapter 22. \claim’s

Now we can introduce \claimformat@ to indicate the general format of a
\claim:

\def\claimformatQ#1#2#3{\medbreak
\noindent@@{\smc#1 {\claim@eeF#2} #3,
\punct@{\null.}\addspace@\enspace}\sl}

(Compare page 162 for the ‘\null.’ and Chapter 8 for the \noindent@a.)
Arguments #1 and #3 for \claimformat@ are the two arguments that a user

types in
\claim{...}{...}

while argument #2 is the \claim number, either produced automatically, or
specifically “quoted” after \claim.

Section 11 explains how a style file can modify \claimformat@ to deal with
numerous possibilities for formatting different sorts of \claims in different
ways.

22.2. \clainformat@@. Since \claimformat@ is meant to be easily modified
by a style designer, it omits several messy details:

(1) Any extraneous spaces at the beginning and end of arguments #1 and
#3 should be removed.

(2) If #3 is empty, or a space (which occurs if the user types { } instead of
{}), then the space before it must be removed.

(8) #2should be the properly formatted \claim number. Moreover, if this
is empty (because the user typed \claim""), then the space before it
should be removed.

(4) A space following the \claim{...}{...} should be ignored; more
generally, we need \FNSSP@, in case an invisible construction follows.

So instead of using \claimformat@ directly, we will use \claimformat@@,
which calls \claimformat@ with all these details added. When we are us-
ing \claimformat@@, the control sequence \thelabel@@ will contain the
properly formatted claim number.! In the definition below, argument #2 cor-
responds to argument #3 for \claimformat@. Only the next-to-last line of
code needs further amplification.

! The formatting of the \claim number is specified by \claim@S—it should not be specified
directly in \claimformat@.

22.2. \claimformatQ@ 167

\def\claimformat@o#i#2{Y%
\claimformat@{\ignorespaces#1\unskip}/
{\ifx\thelabel@@\empty\unskip\else\thelabel@Q\fil},
{\ignorespaces#2\unskipl}/,
\let\Claimformat@@=\claimformat@@

\FNSSP@}

Note that it wasn’t necessary to add any special clause for the cases where
#2 is empty or a space—in either case the space preceding #2 will end up
being removed. (Section 11 illustrates how modifications may be made to the
definition of \claimformat@. In some cases, \claimformat@@ might need
some tinkering also.)

To explain the mysterious next-to-last line of code, we have to confess to
a little white lie. \claim, and all related constructions, never actually use
\claimformat@Q. Instead they use \Claimformat@@, which we will initially
set to be the same as \claimformat@e:

\let\Claimformat@@=\claimformat@@

This indirect approach has been implemented to deal with constructions
produced with \newclaim and \shortenclaim. Suppose, for example, that
we produce \Thm with

\newclaim\Thm\c{thm}{Theorem}

Roughly speaking, this defines \Thm as

\def\Thm{ ...
\def\Claimformat@@{\claimformat@@{Theorem}} ...
\claim }

The \claim in this definition will call \Claimformat@@, and hence

\claimformat@@{Theorem}

168 Chapter 22. \claim’s

so that the “Theorem’ label will automatically be inserted. Although the final
\endclaim will return \Claimformat®@Q to its original state, so that any sub-
sequent \claim will just be using \claimformat@@ (unless it happens to be
called by another construction that redefines \Claimformat@@), we add

\let\Claimformat@@=\claimformat@@

at this point, just to minimize problems if the user forgets the \endclaim.

22.3. Further preliminaries. Although we won’t consider all the complications
of \newclaim until later, there are several other aspects that we need to men-
tion before moving on.

We've already used \claimtype@ to define \claim@@@F. More generally,
we will

\def\claim@@@P{\csname\exxx0\claimtype@ @P\endcsname}
\def\claim@@@Q{\csname\exxx0\claimtype@ @Q\endcsname}
\def\claim@@@S{\csname\exxx@\claimtype@ @S\endcsname}
\def\claim@@@N{\csname\exxx@\claimtype@ @N\endcsname}

The counter has to be treated differently, however, for the following reason.
If the user directly types something like

\claim\c{thm}

then the style, numbering style, pre- and post-material for this \claim are
just the standard ones. But ¢ new counter must be involved, since such \claim’s
are to be numbered independently from other \claim’s; this new counter is
required even if no \newclaim construction has been used.

To keep track of these different numbering classes, we will introduce
\claimclass@ in addition to \claimtype@ A \claim with a particular
“class”, produced by

\claim\c{(claim class)}

defines \claimclass@ to be this (claim class) (ordinary \claim’s, which are
equivalent to \claim\c{}, define \claimclass@ to be empty). And the
\newclaim construction

\newclaim\Thm\c{thm}{Theorem}

AN

- .

22.4. Starting ¢ \claim 169

makes \Thm define \claimclass@ to be ‘thm’ also.
Now, when \claim\c{thm} is typed, we will use

\claim@Cthm
for the counter. More generally, we will use
\csname claim@C\claimclass@\endcsname
(As we will see later, the construction
\newclaim\Thm\c{thm}{Theorem}

creates \Thm@P, \Thm@Q, etc., directly, but it creates \Thm@C indirectly: first the
counter \claim@Cthm is created, if it doesn’t already exist, and then \Thm@C
is made equivalent to this counter.)

Consequently, the counter \c1aim@@QC is simply defined by:

\def\claim@@@C{\csname claim@C\claimclass@\endcsname}

It is the \claimclass@ of a construction like \Thm, etc., that determines its
numbering. Consequently,

\newclaim\Thm\c{thm}{Theorem}
\newclaim\Lem\c{lem}{Lemma}

produces \Thm'’s and \Lem’s that are numbered independently, while

\newclaim\Thm\c{thm}{Theorem}
\newclaim\Lem\c{thm}{Lemma}
makes \Thm’s and \Lem’s share the same numbering.

22.4. Startinga \claim. First we introduce the other components of a printed
\claim number:

170 Chapter 22. \claim’s

\newcount\claimeC
\claim@C=0
\let\claim@P=\empty
\let\claim@Q=\empty
\def\claim@S#1{#1\/}
\let\claim@N=\arabic

Compare page 105 for the ‘\1let\claim@N=\arabic’.

\claim initializes \ifclaim@ to be true, \claimclass@ to be empty, and
\claimtype@ to be \claim, and then uses a \futurelet to see if we are
“quoting” the claim number with a " or specifying a claim class with \c:

\def\claim{\claim@true
\let\claimclass@=\empty\def\claimtype@{\claim}}
\futurelet\next\claim@}

If \claim is followed by \c, we will use \claim@c, and if it is followed by "
we will use \claim@q,

\def\claime{%
\ifx\next\c
\let\next@=\claim@c
\else
\ifx\next"¥
\let\next@=\claim@q
\else

Otherwise, we will use
\begingroup

to begin a group. [The definitions of \claim@c (section 5) and \claim@q
(section 6) will each begin with \begingroup also; but we don’t simply put
the \begingroup into the definition of \claim because, as we will see later
(page 179), constructions produced by \newclaim or \shortenclaim lead
us directly to \claim@c, without passing through \claim.]

22.5. Starting a \claim@c 171

Then we will advance the \claim counter by 1, define \thelabelg, ...
in the usual way, and then call \Claimformat@@. In the following, we can
use \claim@C, ... rather than the more general \c1aim@@QC, ... because, as
we have just mentioned, this clause of \claim@ will only be called directly by
\claim, never indirectly by something created by \newclaim:

\def\claim@{}
\ifx\next\c
\let\next@=\claim@c
\else
\ifx\next"y
\let\next@=\claim@q
\else
\begingroup
\globalladvance\claim@C by 1
{\noexpands@
\xdef\Thelabel@e@{\number\claim@C},
\xdefThelabel@\claim@N
\xdef\Thelabel@0@@{\claim@P\Thelabel@\claim@Q}}¥
\xdefThelabel@@\claim@S
iy
\locallabel@
\let\next@=\Claimformat@e@
\fi
\fi
\next@}

22.5. Starting a \claim@c. The definition of \claim@c begins

\def\claim@c\c#1{\claim@true\begingroup

so that \claim@c swallows up the succeeding \c, sets \ifclaim@ to be true,
and then begins a group. We add the \claim@true even though this appears
in \claim, because constructions created by \newclaimand \shortenclaim
call \claim@c directly (pages 179 ff. and 182 ff.).

Next we have to find out if the counter

\csname claim@C#1\endcsname

172 Chapter 22. \claim’s

already exists (which will happen if \claim\c{#1} has already appeared);
this is easily done with the test

\expandafter\ifx\csname claim@C#1\endcsname\relax

which is true when the counter hasn’t been defined yet. If the counter has
already been defined, we simply advance it by 1. If it hasn’t been defined, we
create it, with \newcount@ (compare page 121), and set it to 1.

Then we define \claimclass@ to be #1, and define \thelabelg@, ... ;
in this case, for the preliminary construction, defining \Thelabelg, ..., we
do use the more general constructions \c1aim@@@C, ...(page 168); fortu-
nately, these definitions can all be used within \xdef’s. Finally, we need a
\futurelet to see if our \claim@c\c{.. .} is followed by a quoted number
"...", which can happen when \claim@c is called by a construction cre-
ated by \newclaim or \shortenclaim. We have to allow the possibility that
a space might intervene between the \c{...} and a ", so we use \FNSS@
(section 3.8):

\def\claim@c\c#1i{\claim@true

\begingroup

\expandafter\ifx\csname claim@C#1\endcsname\relax
\expandafter\newcount@\csname claim@C#1\endcsname
\global\csname claim@C#i\endcsname=1

\else
\globalladvance\csname claim@C#1\endcsname by 1
\fi

\def\claimclass@{#1}}

{\noexpands@
\xdef\Thelabel@0Q{\number\claim@eacl}},
\xdefThelabel@\claim@QeN
\xdef\Thelabel@QQ@{\claim@@QP\Thelabel@\claim@@@q}}¥%
\xdefThelabel@@\claim@e@S

YA

\locallabel@

\FNSSe\claim@c@}

We're not really done with \claim@c yet, but we will return to \claim@c@
in a moment.

22.7. Finishing off 173

22.6. Starting a \claim@q. For our definition of \claim@q we use \Qlabel@
from section 16.3 for defining \thelabel, ..., and we add a \FNSS@, since
we have to see whether our \claim@q is followed by \c{. ..} (possibly after
a space):

\def\claim@q"#1"{\begingroup
{\let\pre=\claim@@OP \let\post=\claim@eeq
\let\style=\claim@@@S \let\numstyle=\claim@eeN
\noexpands@

\Qlabel@{#1}}%
\locallabel@
\FNSS@\claim@q@}

Unlike the situations for \maketag@ and \item@, we are not yet ready to
actually typeset the quoted \claim number; however, the number that we
want to typeset has been safely stored in \thelabel@@, which eventually finds
its way into \claimformat@e.

In regard to the \let\pre=\claim@@@P, ..., compare page 140.

22.7. Finishing off. Let’s return to \claim@c, which ended with

\FNSS@\claim@c@

Here \claim@c@ must check to see whether \next is ". If \next is not ",
we just call \Claimformat@@. If \next is "', we will call yet another rou-
tine \claim@cq. But we will also have to make an adjustment: Remem-
ber that \claim@c has already increased the appropriate counter \csname
claim@C\claimclass@\endcsname by 1. If \claim@c@ finds a " next, so

that the claim number is actually being quoted, then it must counteract this
change:

\def\claim@ce{\ifx\next"}
\globalladvance\claim@@eC by -1
\let\next@=\claim@cq
\else\let\next@=\Claimformate@Q
\fi

\next@}

174 Chapter 22. \claim’s

The definition of \claim@cq is now fairly straightforward, using only de-
vices already encountered; instead of \Claimformat@@ at the end, we use
\FNSS@\Claimformat@@, just to get rid of a possible space following the sec-
ond ":

\def\claim@cq"#1"{{\let\pre=\claim@@eP \let\post=\claimeeeq
\let\style=\claim@@@S \let\numstyle=\claimQ@eN
\noexpands®@

\Qlabele{#1}}%
\locallabel@
\FNSS@\Claimformat@Q}

Similarly, our definition of \claim@q ended with

\FNSS@\claim@q@

where \c1aim@q@ can simply be defined by

\def\claim@q@{\ifx\next\c\expandafter\claim@qc
\else\expandafter\Claimformat@@\£fi}

(the “K-method” again, see section 1.1).
We reach \claim@qc only when we have the combination

\claim"..."\c{...}

(never via a construction that has been created with \newclaim), which is
actually pretty unlikely, since there’s not much point indicating the class of
a \claim if the number is being quoted (unless different classes of \claim’s
are going to be formatted differently, in which case the style designer has
presumably already used \newclaim to introduce a new name), but we might
as well carry it through.

Before calling \Claimformat@@, we just have to use the \c{. . .} part to de-
fine \claimclass@, and, just in case this particular class \c{. . .} of \claim’s
has never been used before, create the new counter ‘\claim@. ..’ if neces-
sary, and set it to O (not to 1, as in \claim@c, since the counter isn’t going

22.9. \newclaim 175

to be used now). And finally, we must again use \FNSS@\Claimformat@@ to
skip over any space after the \c{...}:

\def\claim@qc\c#1i{\expandafter

\ifx\csname claim@C#1\endcsname\relax
\expandafter\newcount@\csname claim@C#1\endcsname
\global\csname claim@C#1\endcsname=0 \fi
\FNSS@\Claimformat@Q}

22.8. \endclaim. Finally, \endclaim simply ends the group begun by
\claim (or \claim@c if called by something created by \newclaim or
\shortenclaim), sets \ifclaim@ and \ifnopunct@ to be false, resets
\Claimformat@@ to be \claimformat@@, and adds a \medbreak.

\def\endclaim{\endgroup\claim@false
\nopunct@false\nospace@false
\let\Claimformat@@=\claimformat@@\medbreak}

22.9. \newclaim To finish off the entire \claim complex, we have to define
\newclaim and \shortenclaim.

\newclaim allows \claimclause as optional syntax, and we do the stan-
dard thing to prevent its being used at inappropriate times (see section 1.1):

\Invalid@\claimclause

\newclaim itself will require a \futurelet to see if \claimclause comes
next:

\def\newclaim{\futurelet\next\newclaim@}

If \claimclause does come next, we will swallow the \claimclause and
incorporate the following argument into

\newclaime@e{i#i}
otherwise, the result will be the same as if we had typed

\newclaim\claimclause\relax

176 Chapter 22. \claim’s

so we will simply call \newclaim@@\relax directly:

\def\newclaim@{\ifx\next\claimclause
\def\next@\claimclause##i{\newclaim@o{##1}}\else
\def\next@{\newclaim@@\relax}\fi\next@}

Thus, we have reduced everything to the definition of \newclaim@@.
Several aspects of \newclaim@@ are included for eventual use by the
\shortenclaim construction. For example, something like

\shortenclaim\Thm\thm

should be allowed only if \Thm has already been created with \newclaim; for
this reason, we are going to keep a list, \claimlist@, of all such possibilities,
and we initialize it as:

\def\claimlist@{\\\claim}

We will also need two new token lists,

\newtoks\claim@i
\newtoks\claim@v

and, as we’ll see, one other auxiliary control sequence is going to be defined in
the process of defining \newclaim@@. Finally, there will be a situation where
we don’t want the \claimclause to be inserted, even if it has been specified.
For this purpose, we initially

\let\noclaimclause@=F

In the special case where we want to suppress the claim clause, we will
\let\noclaimclause@=T (this happens only once, and is more efficient than
declaring \ifnoclaimclause@, which actually creates three control sequence
names).

If (L)) denotes an optional space, then \newclaim will appear in something
of the form

\newclaim \claimclause {(claim clause)}(_}\Thm \c{thm}{,,){Theorem}

22.9. \newclaim 177

so \newclaim@@ will appear in something of the form
(A) \newclaim@@ {(claim clause)}{,)\Thm \c{thm}{){Theorem}
Our definition of \newclaim@@ will be of the form

\def\newclaimo@#1#2#3\c#4#5{ .

In case (A), argument #1 will be {claim clause) (which may be empty), argu-
ment #2 will be ‘\Thm’, and argument #3 will be empty. In fact, argument #3
will always be empty, but by adding the #3 before the \c we make argument
#2 an undelimited argument, and consequently argument #2 will simply be
‘\Thm’ even in the situation where the space occurs,

\newclaimeeq{. ..} \Thm\c{thm}

Similarly argument #4 will be ‘thm’, and argument #5 will be ‘Theorem’ (even
if a space precedes ‘{Theorem}’, since #5 is an undelimited argument).
The definition of \newclaim@@ begins

\def\newclaim@@#1#2#3\c#4#5{\define#2{},
\rightadd@#2\to\claimlist@\rightadd@#2\to\nofrillslist@

Hlustrating with case (A) again, the \define\Thm{} is inserted simply to al-
low \define to give an error message if \Thm is already defined—for in that
case we certainly don’t want \Thm to be given another meaning by \newclaim.
Then we add \Thm to \claimlist@, for use by \shortenclaim, as explained
above, and to \nofrillslist@, since we will want \nopunct\Thm to be al-
lowed.

Next we have to create default values for \Thm@P, \Thm@Q, \ Thm@S, \ ThmeN,
\Thm@F, which will simply be the default values for \c1aim@Pp, ... :

\expandafter\def\csname\exstring@#2@P\endcsname{\claim@P}
\expandafter\def\csname\exstring@#2@eQ\endcsname{\claim@q}
\expandafter\def\csname\exstring@#2@S\endcsname{\claim@s}
\expandafter\def\csname\exstring@#2@eN\endcsname{\claim@N}
\expandafter\def\csname\exstring@#2@F\endcsname{\claim@F}

178 Chapter 22, \claim’s

Notice that we use \def, rather than \1let, so that when \newclaim\Thm is
used, \Thm@P, ... will be assigned the current values of \c1aim@P, These
may have been modified by some

\newpre\claim
\newpost\claim
\newstyle\claim
\newnumstyle\claim
\newfontstyle\claim

That was done because style files may quite well define \c1aim@P to be some-
thing like

(chapter number) . (section number).

and we would presumably want such a numbering scheme to be carried
through for our \Thm.

[A \newpost will usually be made only locally, so that \claim@Q prob-
ably won’t change, except for individual \claim’s. As for \claim@S and
\claim@N, if the user changes them, presumably the change should be

brought along also for \Thm. One could always change some of this code,
to

\expandafter\let\csname\exstring@\Thm@S\endcsname=\claim@s

for example, if this doesn’t seem like the best arrangement.]
We also make \endThm mean \endclaim:

\expandafter\def\csname end\exstring@#2\endcsname{\endclaim}

The counter \claim@Cthm may already exist (because of a previous
\claim\c{thm}); if not, we must create it, with \newcount@ (again, see
page 121), and, for safety’s sake, initialize it to O:

\expandafter\ifx\csname claim@C#4\endcsname\relax
\expandafter\newcount@\csname claim@C#4\endcsname
\global\csname claim@C#4\endcsname=0 \fi

S

e

22.9. \newclainm 179

Then we have to \1et\Thm@C=\claim@Cthm, which is accomplished by the
code

\edef\next@{\let
\csname\exstring@#2@C\endcsname
=\csname c¢claim@C#4\endcsname\endcsname}
\nexta@

Here the first \csname. . .\endcsname will be expanded to \Thm@C, which
will be made equivalent to \relax, since \Thm@C isn’t already defined;
on the other hand, the second \csname...\endcsname will expand to
\claim@Cthm, which has been created with \newcount@, and hence with
a \countdef; such control sequences aren’t expanded further in an \edef
(compare page 55).

After all this, we will want to define \Thm:

\def#2{ .
\def\claimtype@{#2}
\def\Claimformat@@{\claimformat@@{#5}}\claim@c\c{#4}}}
Thus, \Thm will not call \claim directly, but instead call
\claim@c\c{thm}

This is where \claim\c{thm} usually gets us. The difference is that we first
take the opportunity to define \Claimformat@@ as

\claimformat@@{Theorem}

so that the argument ‘Theorem’ is automatically supplied, and we also take the
opportunity to

\def\claimtype@{\Thm}
In addition, for the sake of \shortenclaim we want to add

\global\claim@i={#1}\gdef\claim@iv{#4}\global\claim@v={#5}

180 Chapter 22. \claim’s

In situation (A), \Thm will thus store the (claim clause) in the token list
\claim@i, the class “‘thm’ in \claim@iv, and ‘Theorem’ in the token list
\claim@v:

\def#2{ . .
\global\claim@i={#1}\gdef\claim@iv{#4}\global\claim@v={#5}
\def\claimtype@{#2}},
\def\Claimformat@e{\claimformat@@{#5}}\claim@c\c{#4}}}

In the next section we will see why we need \global assignments.

Finally, we want the claim clause, argument #1, to be executed, except in
the special case where we have \let\noclaimclause@=T:

\def#1{\ifx\noclaimclause@ T\else#1\fi
\global\claim@i={#1}\gdef\claim@iv{#4}\global\claim@v={#5}
\def\claimtype@{#2}/
\def\Claimformat@@{\claimformat@e{#5}}\claim@c\c{#4}}}

So the full definition of \newclaim@@ reads:

\def\newclaim@@#1#2#3\c#4#5{\define#2{}¥
\rightadd@#2\to\claimlist@\rightadd@#2\to\nofrillsliste,
\expandafter\def\csname\exstring@#2@P\endcsname{\claim0P}Y,
\expandafter\def\csname\exstring@#2eQ\endcsname{\claim@q}},
\expandafter\def\csname\exstring@#20S\endcsname{\claim@s}Y,
\expandafter\def\csname\exstring@#20N\endcsname{\claim@N}},
\expandafter\def\csname\exstring@#2@F\endcsname{\claim@F}Y,
\expandafter\def\csname end\exstring@#2\endcsname{\endclaim}},
\expandafter\ifx\csname claim@C#4\endcsname\relax

\expandafter\newcount@\csname claim@C#4\endcsname
\global\csname claim@C#4\endcsname=0 \fi
\edef\next@{\let

\csname\exstring@#2@C\endcsname

=\csname claim@C#4\endcsname},

\next@

e

5 /f

R

22.10. \shortenclaim 181

\def#2{\ifx\noclaimclause@ T\else#i\fi

\global\claim@i{#1}\gdef\claim@iv{#4}\global\claim@v{#5}%
\def\claimtype@{#2}/

\def\Claimformat@@{\claimformat@@{#5}F\claim@c\c{#4}}}

We \def\endThm{\endclaim} rather \let\endThm=\endclaim for situatons

where a style file changes \endclaim, and also uses \newclaim to create special
claims, like \Thm. If we used \let, then the \newclaim\Thm would have to come after
the redefinition of \endclaim, or \endThm would have the wrong meaning.

On the other hand, even if \endclaim isn't changed, but the particular case of
\endThm is supposed to be different (leaving extra space perhaps, or possibly even
something more extreme, like an \hrule across the page), then one might have to

\redefine\endThm{\endgroup\claim@false\nopunct@false
(special formatting after \Thm)}

But special formatting at the beginning of \Thm should be handled as in the case of
\Conj in section 11.

22.10. \shortenclaim. Finally, we come to \shortenclaim#1#2, a typical
usage of which is

\shortenclaim\Thm\thm
The first thing \shortenclaim will do, when called this way, is
\define\thm{}

to get an error message if \thm is already defined.
Next, \shortenclaim will try the test

\ismember@\claimlist@\Thm
If this is false, we will just give an error message

\Thm not yet created by \newclaim.

182 Chapter 22. \claim’s

Otherwise, we will first add \thm to \nofrillslist@, and then make
\thm@S be \Thm@S, etc:

\rightadde@#2\to\nofrillslist@
\expandafter\def\csname\exstring@#2@S\endcsname
{\csname\exstring@#1@S\endcsname}

(The I44S-TEX Manual incorrectly implies, on page 45, that \thm@S, etc.,
will actually be \claim@S, etc., on the grounds that these constructions for
\Thm might be changed later on. That would indeed be a problem if we used
\let instead of \def, but with the \def, any use of \newstyle\Thm, etc.,
will automatically carry over to \thm. A problem arises only if something like
\newstyle\thm is ever used; in that case, any succeeding \newstyle\Thm’s
will no longer carry over to \thm.)

Then, as with \newclaim, we must make \endthm mean \endclaim, and
let \thm@C be \ThmeC.

Finally, \shortenclaim will have to define \thm. The problem now is that
we would like to

\def\thm{(claim clause)
\def\claimtype@{\thm}¥
\def\Claimformat@@{\claimformat@@{Theorem}{}}%
\claim@c\c{thm}}

where (claim clause) is the claim clause for \Thm.
So we need a way of getting this (claim clause), as well as the ‘thm’ and
‘Theorem’ that actually go with \Thm. The strategy for this is to set a box

A) \setbox0=\vbox{\Thm""\relax\endgroup}

because the globally defined token list \claim@i will then contain our de-
sired (claim clause), \claim@iv will be defined to be “thw’, and the token
list \claim@v will contain ‘Theorem’. We use an empty label "" for the \Thm
so that the counter won’t be increased, and instead of \endThm, we just use
\endgroup, since the other parts of \endThm will be irrelevant in this situa-
tion.

.\\//

22.10. \shortenclaim 183

Once we have recovered these quantities, we will be in a position to globally
\def\thm, but again we will need a somewhat indirect route:

\xdef#2{\the\claim@i
\def\noexpand\claimtype@{\noexpand#2}}
\def\noexpand\Claimformat@e

{\noexpand\claimformat@@{\the\claim@v}{}}Y%
\noexpand\claim@c\noexpand\c{\claim@iv}}

This works as before, noting that for a token list like \claim@i, the expansion
of \the\claim@i is simply that token list. (We need token lists to store the
(claim clause) and the part of the \claim exemplified by ‘Theorem’ because
both of these might contain control sequences, which should remain unex-
panded in the \xdef; on the other hand, the claim class, like a (label), is not
supposed to have expandable tokens in it.)

But there is still one little fillip that we need to add: Instead of (A), we really
want to use

\setbox0=\vbox{\let\noclaimclause@=T
\Thm""\relax\endgroup}

To see why, imagine a situation (compare section 11), where we have
\newclaim\Cor\c{cor}{Corollary}

\newclaim\claimclause{\Reset\Cor1}\Thm\c{thm}{Theorem}
\shortenclaim\Thm\thm

so that each \Thm and \thm resets the numbering of \Cor’s to 1. If we were
to declare these in a different order,

\newclaim\claimclause{\Reset\Cor1}\Thm\c{thm}{Theorem}

\shortenclaim\Thm\thm
\newclaim\Cor\c{cor}{Corollary}

then the \shortenclaim\Thm\thm will cause us to

\setbox0=\vbox{\Thm""\relax\endgroup}

184 Chapter 22. \claim’s

and if the (claim clause) \Reset\Cor1l were executed, we would get an error
message, since \Cor hasn’t been created yet! So we add the

\let\noclaimclause®@=T

which prevents the (claim clause) from being executed.
Summing up, the definition of \shortenclaim reads:

\def\shortenclaim#i#2{\define#2{}/
\ismember@\claimlistQ#1Y
\iftest@
\rightadd@#2\nofrillslist@%
\expandafter\def\csname\exstring@#20S\endcsname
{\csname\exstring@#10S\endcsnamel}},
\expandafter\def\csname\exstring@#20N\endcsname
{\csname\exstring@#1@N\endcsnamel}/,
\expandafter\def\csname\exstring@#2@P\endcsname
{\csname\exstring@#10P\endcsnamel}’,
\expandafter\def\csname\exstring@#20Q\endcsname
{\csname\exstring@#1@Q\endcsname}’,
\expandafter\def\csname\exstring@#20F\endcsname
{\csname\exstring@#1@F\endcsnamel},
\expandafter\def
\csname end\exstring@#2\endcsname{\endclaim}},
\edef\nexte{\let
\csname\exstring@#2@C\endcsname
=\csname claim\exstring@#1@C\endcsnamel}¥,
\next@
\setbox0=\vbox{\let\noclaimclause@=T#1""\relax\endgroup}’,
\edef#2{\the\claim@i
\def\noexpand\claimtype@{\noexpand#2},
\def\noexpand\Clainformat@@
{\noexpand\claimformat@@{\the\claim@v}\relax}},
\noexpand\claim@c\noexpand\c{\claim@iv}}
\else
\Err@{\string#1 not yet created by \string\newclaim}},
\fi}

22.11. Customizing \claim’s 185

22.11. Customizing \claim’. To assist in printing different sorts of \claim’s
in different ways, I4(S-TEX provides two tests,

\def\classtest@#1{\def\next@{#1}}
\ifx\next@\claimclass@\testQ@true\else\test@false\fi}

\def\typetest@#i{\def\nexte{#1}}
\ifx\next@\claimtype@\test@true\else\test@false\fi}

Thus, for example, \classtest@{thm} will set \iftestQ to be true precisely
when \claimclass@ is ‘thm’, and \typetest@\Thm will set \iftest@ to be
true precisely when \claimtype@ is \Thm.

To see how these are used, let us suppose that we want our Theorems,
Lemmas, Corollaries, Definitions and Conjectures to be printed as follows
(temporarily switching to Computer Modern fonts):

LEMMA 6. If n is odd, then n? is odd; and if n is even, then n? is even.

CoroLLARY 1 (CoNVERSE). If n? is odd, then n is odd; and if n? is even, then
n is even.

THEOREM 7 (PYTHAGORAS). /2 is irrational.

DEFINITION 8. An integer @ is a perfect square if z = y? for some integer y.

? CONJECTURE A. If z is not a perfect square, then /z is irrational.

Thus, Theorems, Lemmas, and Definitions are all numbered together, but
Corollaries begin at 1 after each Theorem or Lemma. In addition, Definitions
are in \rm type. Finally, Conjectures are numbered completely independently,
as A, B, G, ..., and they have a ? in the margin.

To set things up, we first use

\newclaim\claimclause{\Reset\Cori}\Thm\c{thm}{Theorem}
\shortenclaim\Thm\thm

\newclaim\claimclause{\Reset\Cori}\Lem\c{thm}{Lemma}
\shortenclaim\Lem\lem

\newclaim\Cor\c{cor}{Corollary}
\shortenclaim\Cor\cor

\newclaim\Defn\c{thm}{Definition}
\shortenclaim\Defn\defn

186 Chapter 22. \claim’s

\newclaim\Conj\c{conj}{Conjecture}
\shortenclaim\Conj\conj
\newnumstyle\Conj\Alph

Since \Thm, \Lem and \Defn all have the same claim class ‘thw’, they will
be numbered together (and the numbering for \thm, \1em, and \defn follow
those for \Thm, \Lem, and \Defn, respectively). The \claimclause’s in the
\newclaim’s for \Thm and \Lem ensure that Corollary numbers start at 1 after
each one; these claim clauses carry over to \thm and \lem.

Finally, we just have to redefine \claimformat@ as follows:

\catcode‘\@=11

\def\claimformatQ#1#2#3{\medbreak\noindent@Q
\classtest@{conj}\iftest@\1lap{\bf?\hskip5pt}\fi

{\smc#1 {\claim@@eF#2} #3\puncte{\null.}\addspace@\enspacel}%
\typetest@\Defn

\iftest@\rm

\else

\typetest@\defn

\iftest@\rm

\else\sl\fi\fi}

\catcode‘\@=\active

Then the output on page 185 will be produced by
\lem If n is odd, ... \endlem
\Cor {(Converse)} If $n~2$ is odd ... \endCor
\Thm{(Pythagoras)} $\sqrt2$ is irrational.\endThm
\defn An integer x is a perfect square ... \enddefn

\conj If x is not a perfect square, ... \endconj

v

S’

Chapter 23. Heading levels

The “heading levels” \HL and \hl exhibit a strange mixture of the features
of \1ist and \claim. They have levels, like \1ist, but these levels indicate
separate entities, rather than parts of a single construction. And we can create
new names, like \chapter and \section for, say, \HL1 and \h11, but this
is somewhat different than creating new \claim’s with \newclaim, because
\chapter is essentially just a synonym for \HL1, rather than a new class of
heading levels.

Moreover, heading levels introduce yet another complication, since they are
constructions that get written to the table of contents file, which we need to
consider first.

23.1. The .toc file. In version 1 of I4S-TEX, headings were written to the
- toc file, while the corresponding page numbers were written to a separate
-tpg file. Now, however, the page numbers are written together with the
headings in the .toc file.

On the other hand, \island’s, and their page numbers, will be written to a
separate file, which I can’t resisting calling the .tic file, even though it’s not
really a proper acronym. Corresponding to \indexfile (page 52), we have

\newif\iftoce@

\def\tocfile{\iftoc@\else
\alloc@@7\write\chardef\sixt@@n\toc@
\immediate\openout\toc@=\jobname.toc
\alloc@@7\write\chardef\sixt@@n\tic@
\immediate\openout\tic@=\jobname.tic
\global\toc@true\fi}

23.2. Preliminaries. To begin with, we want to add \h1 to \nofrillsliste:

\rightadd@\hl\to\nofrillslist@

We don’t need to add \HL to \nofrillslist@, since these heading levels
don’t have any punctuation in the default style (compare the small print section
on page 209). But \HL can be preceded by \overlong, so we need to

187

188 Chapter 23. Heading levels

\rightadd@\HL\to\overlonglist@

23.3. Differentlevels of \HL. Justas the \1ist construction used \1istlevel@

to keep track of the \1ist level, we will use \HL1evel@ to keep track of the

\HL level. But \1istlevel@ was a counter, whereas \HL1evel@ will simply

be a control sequence that will be defined to have the proper value.!
Analogous to \1ist@QC, ..., we have

\def\HL@Q@C{\csname HLOC\HLlevel@\endcsname}
\def\HL@O@P{\csname HLOP\HLlevel@\endcsname}
\def\HL@@Q{\csname HLE@Q\HLlevel@\endcsname}
\def\HL@@S{\csname HLES\HLlevel@\endcsname}
\def\HL@ON{\csname HLE@N\HLlevel@\endcsname}
\def\HL@O@F{\csname HL@F\HLlevel@\endcsname}

In addition, as with \claim, we will have \HLtype®, which will be defined
to be \chapter when we are using \chapter instead of \HL1, etc. However,
\HL itself will simply \let\HLtype@=\relax.

Corresponding to \c1aim@@QC, etc., we define

\def\HL@@OC{\csname\exxx@\HLtype@ @C\endcsname}
\def\HL@QEP{\csname\exxxQ@\HLtype® @P\endcsname}
\def\HL@@QQ{\csname\exxx@\HLtype@ @Q\endcsname}
\def\HL@QAS{\csname\exxx@\HLtype® @S\endcsname}
\def\HL@QAN{\csname\exxxQ\HLtype@ @N\endcsname}

all of which will only be used when \HLtype@ is not \relax; \HL@QQF won't
be needed at all.

23.4. The \HL construction. Roughly speaking, \HL1 will translate to ‘\HL@1’
and \HL2 will translate to ‘\HL@2, ..., while an error message will be given
if the corresponding control sequence ‘\HL@n’ does not exist. The default
style defines ‘\HL@1’ (section 10), and it is up to other style files to define any

!This has the advantage that in various \edef’s, \csname ... \endcsname’s, etc., we can
use \HL.1evel@ alone instead of \number\HL1level@. On the other hand, it was a little more
efficient to have \1istlevel@ be a counter, since at one point we \advance\listlevel@.

23.4. The \HL construction 189

further such constructions. We use quotation marks around \HL@# as before
(see page 128).

Assuming that \HL#1 can be used, we will not call ‘\HL@#1’ directly, but
instead store #1 in \HL.1evel@ and call \HL@, where \HL@ will then take care
of calling ‘\HL@#’ where % is the value \HL1evel@. We do this so that some-
thing like \chapter can simply define \HL1evel@ to be 1 and then call \HL@
directly.

Actually, \HL#1 will call \FNSS@\HL@, because we need to see ifa quoted \HL
number ", .." follows, and we also have to skip over any space between the
argument #1 of \HLi#1 and the next token; moreover, we will define \HLname@
to be \HL{#1}, for use when writing to the .toc file (section 8), and we
initialize \HLtype®@ to be \relax:

\def\HL#1{\expandafter
\ifx\csname HL@C#1\endcsname\relax
\def\next@{\Err@{\string\HL#1 not defined in this stylel}}¥
\else
\def\next@{\gdef\HLlevel@{#1}\def\HLname@{\HL{#1}}%
\let\HLtype@=\relax\FNSS@\HL@Q}Y
\fi
\next@}

We use a \gdef \HL1evel@ justin case \HL happens to be used within a group,
because the value of \HL1level might be of interest after the \HL has been
printed (compare section 13).

The action of \HL@ will depend on whether a " follows next, so \HL@ will
essentially be defined as

\def\HLO{Y
\def\next@"##1"##2\endHL{...}

\def\nextii@##1\endHL{...}
\ifx\next"\expandafter\next@\else\expandafter\nextii@\fi}

Both \next@ and \nextii@ will be calling

\csname HLO\HLlevel@\endcsnamei##1\endHL

190 Chapter 23. Heading levels

where things like

\expandafter\def\csname HLQ1\endcsname#i\endHL{...}
\expandafter\def\csname HL@2\endcsname#1\endHL{...}

are the basic data that a style file will provide.

(1) \next@ first stores ##2 in \entry@, for eventually writing to the .toc
file.

\def\next@"#i#1"##2\endHL{\def\entryQ{##2} .

Then \next@ must create \Thelabel®, ..., \Thelabel@@@@. The prelimi-
nary step

\let\pre=... \let\post=...

must be divided into two cases, depending on whether we are using an ordi-
nary \HL(number), so that \HLtype@ is \relax, or a substituted name, like
\chapter, in which case \HLtypeQ will be defined to be \chapter:

\ifx\HLtype@\relax

\let\pre=\HLQOP \let\post=\HLQEQ
\let\style=\HLQQES \let\numstyle=\HL@GN
\else

\let\pre=\HLE@GP \let\post=\HLeeeQ
\let\style=\HLQQOS \let\numstyle=\HLQQGN
\fi
\Qlabel@{#i#1}

Note that this would be much harder to state if we hadn’t introduced \HL@Q@P,
..., and compare page 140.

After defining \Thelabel@, ..., \Thelabel@@@@, we will want to store the
value of \Thelabel@@@Q in \TheprefQ. The reason for this is that after the
appropriate

‘\HL(number)’ ... \endHL

23.4. The \HL construction 191

construction, we may perform other steps using the value of \ThelabelQ@@@,
and it is possible (though unlikely) that the \HL. . . \endHL construction con-
tains some other construction allowing (label)’s, which would then create new
values for \Thelabel@@@@.!

But this is one other detail that we need to worry about, in connection with
writing information to the .toc file (section 8). Normally, we will be using
\Thelabel@@QQQ for the properly formatted heading number that we will
write to the .toc file. Thus, we will be writing the number, together with any
pre- and post- material, but without extra formatting determined by the style,
so that we can use a different formatting style in the Contents if we desire. For
example, in the text we might print \h11 numbers as ‘§1’, ‘§2’, ... (compare
the small print section on page 209), but we want the option of including or
omitting the § in the Contents.

If we do decide to print the § in the Contents, then we will have a bit of
quandary when we are dealing with a “quoted” number, like

\HL1 "B" ... \endHL

In this case, the printed number will appear as ‘B’ rather than ‘§B’, so it
should presumably also appear that way in the contents; on the other hand,
“\style B" would appear as ‘§B’, so should continue to appear that way in
the Contents.

What this means is that quoted numbers should also appear quoted in the .toc
Jile, and that any occurrence of \style in a quoted number should also appear
in the .toc file, although occurrences of \pre and \post should simply be
expanded out to their proper values.

(This is admittedly a rather piddling point; compare the small print section
on page 206.)

To handle this, we introduce a new flag

\newif\ifquoted@

\footnote is really the only plausible candidate for this, aside from user-constructed counters.
(\tag might seem like a candidate, except that displayed formulas aren't allowed in headings;
actually they can easily be simulated by setting $\dsize. . .$ on a separate line, but it would be
quite strange to expect such a formula to have a \tag over at the margin).

192 Chapter 23. Heading levels

which we will set true right after defining \entry@, and after the
\Qlabel@{##1} we will add

\let\style=\relax\xdef\Qlabel@oooQ{##1}

so that \style will remain unexpanded in \Q1abel@QQQ; on the other hand,
\nextii@ will set \ifquoted@ to be false and won't define \Qlabel@QQQ.
After all this, we use

\csname HL\HLlevel@\endcsname##2\endHIL

to actual typeset the heading.

[We use ##2 explicitly, rather than \entry@, because certain style files, like
the book style, store the argument of ‘\HL@1’. . .\endHL for use in running
heads. In such cases, we want to store the actual heading that was originally
typed, not simply \entry@, since \entry@ may have changed its meaning by
the time the running head is typeset.]

Then we will use

\csname HL@I\HLlevel@\endcsname

to perform the proper “initializations”, determined by the style file. For ex-
ample, the default style file will basically make ‘\HL@I1’ mean

\Reset\h11{1}
\newpre\h1li{\Thepref@.}

(recall [page 190] that \Thepref@ holds the value of Thelabel@QQQ), so that
in the first \HL1, the \h11 numbers will be 1.1, 1.2, ... ; in the second \HL1,
they will be 2.1, 2.2, ... ; etc. As we will see in Chapter 24, a \newpre will
essentially do an \edef, so that the current value of \Thepre£@ will be stored
in the pre-material for \h11.

And after that we will use

\csname HL@J\HLlevel@\endcsname
to perform “initializations” prescribed by the user, via \Initialize (sec-

tion 11.4); as we will see in section 15, \Initialize simply defines things
like ‘\HL@J1’.

23.4. The \HL construction 193

Before performing these two routines we will

\let\pref=\Thepref@

so that any \pref that the user places in an \Initialize will be interpreted
properly (this even allows the style file designer to use \pref in defining
‘\HLQI1’), and we will use \pref@ to restore the original definition of \pref:

\let\pref=\Theprefe

\csname HL@I\HLlevel@\endcsname
\csname HLQ@J\HLlevel@\endcsname}
\let\pref=\pref@

Then we will use
\HLtoc@
to write to the . toc file, if necessary. \HLtoc@ won’t be defined until section 8.
After writing to the .toc file, yet other steps may be required, which we call
\aftertoc@. Initially we
\let\aftertoc@=\relax
but various heading level definitions may change this (compare section 12).
Finally, after that we simply want to reset values that may have been set

before the \HLQ:

\let\aftertoc@=\relax \overlong@false

(2) \nextii@ is exactly analogous, except that for defining \Thelabel@,
..., we will need

\ifx\HLtype@\relax
\global\advance\HLQGC by 1
\xdef\Thelabel@@@{\number\HLEAC}Y
\xdefThelabel@{\HLOEN}Y,

194 Chapter 23. Heading levels

\xdef\Thelabel@@@e{\HLQOP\Thelabel@\HLOQQ}Y,
\xdefThelabel@@{\HLOQS}Y

\else

\globalladvance\HL0QQC by 1
\xdef\Thelabel@0@{\number\HLEQQC}Y,
\xdefThelabel@{\HL@OEN}Y
\xdef\Thelabel@0@e{\HL@QEP\Thelabel@\HLOQGQ}Y,
\xdefThelabel@@{\HLOQAS}Y

\fi

(and, as already mentioned, we set \ifquoted@ to be false, and do not define
\Qlabel@QeQ).

The whole definition of \HL@ is:

\let\aftertoc@=\relax

\def\HLe{},
\def\next@"##1"##2\endHL{\def \entry@{##2}\quoted@true
{\noexpandse@
\ifx\HLtype@\relax
\let\pre=\HLOQP \let\post=\HL@eQ
\let\style=\HLEOS \let\numstyle=\HLQEEN
\else
\let\pre=\HLOQOP \let\post=\HL@@QQ
\let\style=\HL@@QS \let\numstyle=\HLe@@EN
\fi
\Qlabel@{##1}\let\style=\relax\xdef\QlabeloQ@O{##1}Y
\xdef\Thepref@{\Thelabel©000}}}
\csname HLO\HLlevel@\endcsnamei##2\endHL
\let\pref=\Thepref@
\csname HLOI\HLlevel@\endcsname
\csname HLQJ\HLlevel@\endcsname
\let\pref=\pref@
\HLtoc@
\aftertoc@
\let\aftertoc@=\relax \overlong@false})

23.5. The \h1 construction

\def\nextii@##i\endHL{\def\entrye{##1}\quotedefalse

{\noexpandse@

\ifx\HLtype@\relax
\globalladvance\HL@QC by 1
\xdef\Thelabel@@@{\number\HLEQC}Y
\xdefThelabel@{\HLEEN}Y,
\xdef\Thelabel@eee{\HLQOP\Thelabel@\HLQCQ}Y,
\xdefThelabel@Q{\HLOES}Y,

\else
\globalladvance\HLOQQC by 1
\xdef\Thelabel@@@{\number\HLEQQC}Y,
\xdefThelabel@{\HL@QEN}Y
\xdef\Thelabel©@Q@@{\HL.@@CP\Thelabel@\HLCCCQ}Y,
\xdefThelabel@@{\HLOGQS}Y,

\fi

\xdef\Thepref@{\Thelabel@eQe}}%

\csname HL@\HLlevel@\endcsname#i1\endHL
\let\pref=\Theprefe@

\csname HLOI\HLlevel@\endcsname
\csname HL@J\HLlevel@\endcsname
\let\pref=\pref@

\HLtoc@

\aftertoc@

\let\aftertoc@=\relax \overlong@falsel}’,

\ifx\next"\expandafter\next@\else\expandafter\nextii@\fi}

In all these definitions, \endHL simply functions as syntax, so we want to

declare (see section 1.1)

\Invalid@\endHL

As of yet, no heading level \HL has actually been defined. Before considering

this, however, we first tend to \h1l.

23.5. The \h1 construction. Everything for \h1 is almost exactly analogous to

that for \HL:
We start with

196 Chapter 23. Heading levels

\def\hleeC{\csname hl@C\hllevel®\endcsname}
\def\h1@@P{\csname h1@P\hllevel@\endcsname}
\def\hleeq{\csname h1@Q\hllevel@\endcsname}
\def\h1@@S{\csname h1@S\hllevel@\endcsname}
\def\h1@@N{\csname hl@N\hllevel@\endcsname}
\def\h1@eF{\csname hl@F\hllevel@\endcsname}

Then we define

\def\hl@e@eC{\csname\exxx@\hltype@ @C\endcsname}
\def\h1@@@P{\csname\exxx@\hltype® @P\endcsname}
\def\hleeeq{\csname\exxx0\hltype@ @Q\endcsname}
\def\hl@@@S{\csname\exxx@\hltype@ @S\endcsname}
\def\h1@eeN{\csname\exxx@\hltype@ @N\endcsname}

Similarly, we define

S

\def\hl#1{\expandafter

\ifx\csname h1@C#1i\endcsname\relax
\def\next@{\Err@{\string\hl#1 not defined in this style}}}

\else
\def\next@{\gdef\hllevel@{#1}\def\hlname@{\h1{#1}}}
\let\hltype@=\relax\FNSS@\h1@})

\fi

\next@}

Then we define \h1@ as follows (see the remarks at the end regarding the
\FNSSP@’s):

\def\hle{Y
\def\next@"##1"##2{\def \entry@{##2}\quoted@true
{\noexpandse
\ifx\hltype@\relax
\let\pre=\h1lQ@QP \let\post=\hl@eq
\let\style=\h100S \let\numstyle=\h1@eN

e

23.5. The \h1 construction 197

\else
\let\pre=\h10@@P \let\post=\hleeeq
\let\style=\h1QQQS \let\numstyle=\hl@eeN
\fi
\Qlabel@{##1}\let\style=\relax\xdef\Qlabel@ee@{##1}%
\xdef\Thepref@{\Thelabel0eee}}}
\csname hl@\hllevel@\endcsname{##2}}}
\let\pref=\Theprefe@
\csname h1@I\hllevel@\endcsname
\csname h1@J\hllevel@\endcsname
\let\pref=\pref@
\hltoc@
\aftertoce@
\let\aftertoc@=\relax
\nopunct@false \nospace@false \FNSSP@}J
\def\nextiie##1{\def\entrye{##1}\quoted@false
{\noexpandse@
\ifx\hltype@\relax
\global\advance\hl@@C by 1
\xdef\Thelabel@@@{\number\hleaC}y,
\xdef\Thelabel@@Q@{\h1@@P\Thelabel@\h1le0eq}¥
\xdefThelabel@e{\hleeS},
\else
\global\advance\h1@@QC by 1
\xdef\Thelabel@Q@{\number\hleeec}y,
\xdefThelabel@{\h1Q@EN}Y,
\xdef\Thelabel@@@@{\h1Q@QP\Thelabel@\h1l00@eQ}Y,
\xdefThelabel@@{\h100@S}Y,
\fi
\xdef\Thepref@{\Thelabel@@QQ}}),
\csname hl@\hllevel@\endcsname{##1}}%
\let\pref=\Thepref@
\csname h1l@I\hllevel@\endcsname
\csname hl@J\hllevel@\endcsname
\let\pref=\pref@

198 Chapter 23. Heading levels

\hltoce@

\aftertoc@

\let\aftertoc@=\relax

\nopunct@false \nospace@false \FNSSP@}}
\ifx\next"\expandafter\next@\else\expandafter\nextii@\fi}

The \FNSSP@’s are added to deal with spaces and invisible constructions that
might occur after the whole \hl(number){. ..} combination. (It wouldn’t do
any good to add the \FNSSP@’s to the definitions of ‘\h1@?’, ..., since other
material comes after them in the definition of \h1@.)

23.6. Other elements of heading levels. In the default style, \newstyle can be
used to change the style for printing \HL and \hl numbers, and \nopunct
and \nospace can be used to control the punctuation and spacing that follows
an \h1 heading level (compare page 208).

On the other hand, most styles will have one further element of a heading
level that we might want to control, namely, a word like ‘Chapter’ that is
printed before the \HL number.

Someone writing in German would naturally want to replace ‘Chapter’ with
‘Kapitel, etc. Although such a replacement could easily be made directly
within the style file, there is considerable objection to this, on the grounds
that additional style files shouldn’t have to be made for such minor changes.

So, to the pantheon of constructions like \ . . .@C, \...@P, ..., we admit one
more candidate, \ .. .QW, the “word” associated with a construction. This will
be complemented by a construction \newword, analogous to \newpre, ...,
(Chapter 24), allowing us to change its values, as well as \word, to print its
value. From the point of view of the user, \word and \newword will work just
like \pre and \newpre, etc., but they will be not be applicable to all construc-
tions allowing labels, only to a select few (and also one or two constructions
that do not allow labels—see section 29.4).

The idea of this device is that a style file can define ‘\HL@1’ in terms of
‘\HL@W1’, which might initially be defined to mean Chapter. Then if the user

types
\newword\HL1{Kapitell}

thereby redefining ‘\HL@W1’, the word ‘Kapitel’ will be substituted for ‘Chap-
ter’ in the \HL1 headings.

e

23.7. Writing long token lists 199

23.7. Writing long token lists. As we saw in section 10.3, the construction

\expandafter\unmacro@\meaning\entry@\unmacro@

will make \macdef@ contain the tokens of \entry@, but with all non-space
tokens converted to type 12.

This means that \macdef@ can be used in a \write, without worrying about
expansions. But we still have to worry about the fact that a heading may be
too long for a \write. This may be true even for implementations of TEX that
allow rather long \write’s, since there is no theoretical limit on the length
of a heading; the problem is particular acute for \caption’s (Part V), which
might be quite long.

Consequently, we will simply arbitrarily split \macdef@ at every sixth space!
when we \write to the .toc file; to make the .toc file look better, we will
add a space at the beginning of each piece.

To do this quickly, we will make a definition like

\def\six@#1 #2 #3 #4 #5 #6 {\def\nexte{#1})
\ifx\next@\empty\def\next0##i\sixe{}\else
\write\toc@{ #1 #2 #3 #4 #5 #6}\let\next@=\six@\fi
\next@}

and then use

\six@(material to be SPﬁt)uuuuuuuuuuuu\Six@

with 12 ./’s added. Thus, \six@ will extract six pieces, write them to the .toc
file, and then call \six@ once again, except when #1 is empty (in which case
#2, ..., #6 will also be empty). The first time this happens, everything has
already been written, so we simply throw away everything up to and including
the final \six@. (At the next-to-last stage, #1 might be the last piece, and thus
the only non-empty argument of \six@. Then \six@ will use up 6 of the
inserted (s (unless this last piece of the (material to be split) happened to
end with a |, itself). So we need 6 more ’s, to be used up by the next call to
\six@.)

'In version 1 of I4S-TEX, lines were split at every fifth space; but six seems safe enough,
especially since, as we mention below, various spaces that didn’t count in version 1 will count now.

200 Chapter 23. Heading levels

This all fails spectacularly, however, if the {(material to be split) is empty, or
happens to begin with a space! So we will have to be careful about that.

Since we are going to need a similar routine to \write to the .tic file
in Chapter 32, the ‘\toc@ in the above definition will be replaced by an
argument #1, so that we define

\def\sixQ#1#2 #3 #4 #5 #6 #7 {\def\nexto{#2}’
\ifx\next@\empty

\def\nexto##i\sixe{},

\else

\write#i{ #2 #3 #4 #5 #6 #7}\def\next@{\sixe@#1}%
\fi

\nexte}

We are going to be applying this when the {material to be split} is stored in
\macdef@. If \macdef@ happens to be empty (because of an empty heading
level), we will do nothing. Otherwise, we will first eliminate any initial space
in \macdef@ with

\def\next@#1#2\next@{\def\macdefe{#1#2}}
\expandafter\next@\macdef@\next®

If \macdef@ originally expands to 48;18s ..., then #1 will be s;, since TEX
ignores spaces in looking for undelimited arguments, and #2 will be ss ...,
so the new \macdef@ will be the old, with any initial space deleted.

Then we will use

\edef\next@
{\noexpand\six@\toc@\macdef@
\space\space\space\space\space\space
\space\space\space\space\space\space\noexpand\six@}
\next@

The \edef not only inserts 12 spaces, but it also expands out \macdef@ to its
current value, so that the resulting series of (delayed) \write’s doesn’t depend
on what value \macdef@ may have by the time the \write’s are done.

. .

23.8. \HLtocQ and \hltoc@ 201

Finally, we will use
\let\macdef@=\relax

to clear up memory space, since \macdef@ might be quite long.
The whole definition is:

\def\Sixtoc@{\ifx\macdef@\empty\else
\def\next@##1##2\next@{\def\macdef@{#i#1##2}},
\expandafter\next@\macdef@\next@

\edef\next@
{\noexpand\six@\toc@\macdef®
\space\space\space\space\space\space
\space\space\space\space\space\space
\noexpand\six@}/,

\next@\let\macdef@=\relax\fi}

Even if some argument for \six@ is of the form {...}, TEX won’t remove the
braces, since these are now type 12 characters, not real braces. (In version 1 of
14uS-TEX, where this wasn’t the case, a much more complicated routine was required.)

Similarly, we don’t have to worry about braces being removed during the first stage of
deleting any initial space.

Some remarks near the end of page 87 of the I4(5-TEX Manual are now wrong.

\J 5 Now spaces after control words are counted in this break-up process (and will be
inserted even if they weren’t typed in the input file). Spaces within curly braces will also
count (since these type 12 braces won't introduce any grouping for the arguments).

This has the added advantage that one dqesn’t have to worry about a long group within
a heading.

If the prospect of short lines in the . tic file is too unappealing, 2 more compli-
cated routine could be used, in which we selected the pieces delimited by spaces
one at a time, and stored them until we obtained a sufficiently large aggregate; the

“size” of a collection #1 of type 12 tokens is easily computed by examining the width
of \hbox{\tt#1}.

23.8. \HLtoc@ and \h1ltoc@. For \HLtoc@, we want to write either something

202 Chapter 23. Heading levels

like

\HL {(heading level)}{(word)}{(formatted \HL number)}
The heading, with line breaks after

every sixth space.
\Page{(page number)}{\arabic }{}{}

or something like

\chapter {(word)}{(formatted \chapter number)} .
The heading, with line breaks after
every sixth space.

\Page{}{\arabic FH}{}

if we have created \chapter as a name for \HL1, say, using \NameHL (sec-
tion 14). [If the heading is empty, then we will simply have the \Page. . . line
follow the \HL line.] .

Here (word) is the value of ‘\HL@Wn’ (section 6). In the default style ‘\HL@W1’
is empty, while for the book style book.st \HL1 (alias \chapter) has \HL@W1
inidally defined as Chapter. Notice that the (word) is treated as a separate
argument from the (formatted number). So, even if the heading level itself
prints something like

Chapter 3. ...

the table of contents will be able to combine these elements in different ways,
if desired.

This whole arrangement is a big change from version 1 of M\S-TEX; in
addition to the (word), the page number is included, and all the other infor-
mation appears without extraneous matter that made the .toc file harder to
read.

To handle the special case of quoted numbers, we define

\def\QorThelabel@@eQe{\ifquoted@
\noexpand\noexpand\noexpand"\Qlabel@eee
\noexpand\noexpand\noexpand"\else
\Thelabel@oQO\fi}

23.8. \HLtoc@ and \hltoc@ 203

so that \QorThelabel@@@@ will expand in an \edef to either

\noexpand" (expansion of \Qlabel@@@Q)\noexpand"

or to

(expansion of \ThelabelQ@QQ)

Our first \write will involve \HLname@, which is either \HL {(heading
level)} or something like \chapter; the (word) for the heading level;
and \QorThelabel@@@@, the actual (formatted number) (or \Qlabel@e@e).
However, this will be a delayed \write, and the values of \HLname@ and
\Thelabel@@@@ or \Qlabel@@@@ may be completely different by the time
the \write is executed, so everything has to be expanded out.

For \QorThelabel@@@@ we need to be in a group with \noexpands@;
moreover, within this group we need to \1et\style=\relax, in case \style
appears in \Qlabel@@QQ.

For \HLname@ we need something like

\edef\next@{\write\toc@{\noexpand\noexpand
\expandafter\noexpand\HLname@}}
\next@

In this \edef, the \toc@ is not expanded, since it was created with a
\chardef (compare page 179), the \noexpand\noexpand collapses to a
single \noexpand, and the \expandafter\noexpand\HLname@ (compare
pages 126 and 161) inhibits expansion of a control sequence occurring at the
beginning of the expansion of \HLname@ (i.e., either \HL or \chapter, etc.)
Thus, our \edef makes \next@ mean

\write\toc@{\noexpand(\HL1 or \chapter, etc.)}

so that \next@ then gives us what we want.

The (word), stored in ‘\HL@W1’, etc., presents more problems, because it
may contain control sequences that shouldn’t be expanded out in the \write.

204 Chapter 23. Heading levels

So we will use the \unmacro\meaning trick of section 7, within the triple
\expandafter trick (page 162): the code

\expandafter\expandafter\expandafter\unmacro@
\expandafter\meaning\csname HL@W\HLlevel@\endcsname\unmacro@

will make \macdef contain the tokens of the (word), but with all non-space
tokens converted to type 12.
So, altogether, we can use

\expandafter\expandafter\expandafter\unmacro@
\expandafter\meaning\csname HL@W\HLlevel@\endcsname\unmacro@
{\noexpands@\let\style=\relax
\edef\next@{\write\toc@{\noexpand\noexpand\expandafter\noexpand
\HLname@{\macdef@}{\QorThelabele@ea}}

\next@}

Note that, just as we will need to declare \noexpands@ before a \shipoust,
when the \write is actually done (pages 58 and 87), we will also need to
declare \let\style=\relax before the \shipout.

Then we use

\expandafter\unmacro@\meaning\entry@\unmacro@
\Sixtoc@

to write the heading, with all non-space characters of type 12, and line breaks
after every sixth space.
Finally, we add

\write\toc@{\noexpand\Page{\number\pageno}{\page@N},
{\page@P}{\page@q}~~J}

where the extra blank line at the end is added to make the .toc file more
readable.!

! Blank lines after the \Page. .. line will usually create no problem, since the table of contents
will be usually be set as a series of lines each contributed in vertical mode. But it's conceivable
that a style file will format things in a way that puts us into horizontal mode, and then it might

.\\‘_/’,

23.8. \HLtoc@ and \hltoc@ 205

(During the \write we will have \noexpands@ in effect, so that the num-
bering control sequence \page@N won’t be expanded, nor will any font change
control sequences in \page@P or \page@Qq.)

So our final definition is:

\def\HLtoce{}

\iftoce

\expandafter\expandafter\expandafter\unmacro@
\expandafter\meaning
\csname HL@W\HLlevel@\endcsname\unmacro@
{\noexpands@\let\style=\relax
\edef\next@{\write\toce{y,
\noexpand\noexpand\expandafter\noexpand\HLname@
{\macdef@}{\QorThelabeleeeee}}}/
\next@}%
\expandafter\unmacro@\meaning\entry@\unmacro@
\Sixtoc@
\write\toc@{\noexpand\Page{\number\pageno}{\page@l},

{\page@P}{\page@q}~~J}/
\fi}

For \hltoc@ we want to write something like

\hl {(heading level)}{(word){(formatted \h1 number)}
The heading, with line breaks after
every sixth space

\Page{(page number)}{\arabic }{}{}

be important that we not leave horizontal mode after the page number is printed; in such cases,
the macros must scan for \Page#1#2#3i#4\par, to eliminate the blank line. Although this is an

added pain, it is unlikely to occur often, so it seems worth while adding the extra readability to
the .toc file.

In the case of the index, where an unknown number of \Page’s can follow each \Entry, we
will be careful to eliminate such \pars’s (section 38.1).

206 Chapter 23. Heading levels

or something like

\section {(word)}{(formatted \section number)} .
The heading, with line breaks after every
sixth space

\Page{(page number)}{\arabic }{}{}

In addition, we want \nopunct and \nospace to appear before the \hl or
\section in the \write if they appeared in the input file:

\def\hltoce{}

\iftoc@

\expandafter\expandafter\expandafter\unmacro@
\expandafter\meaning
\csname h1l@W\hllevel@\endcsname\unmacro@
{\noexpands@\let\style=\relax
\edef\next@{\write\toce{)
\ifnopunct@\noexpand\noexpand\noexpand\nopunct\fi
\ifnospace@\noexpand\noexpand\noexpand\nospace\fi
\noexpand\noexpand\expandafter\noexpand\hlname@
{\macdef@}{\QorThelabeleeeee}}}
\next@}},
\expandafter\unmacro@\meaning\entry@\unmacro@
\Sixtoc@
\write\toc@{\noexpand\Page{\number\pageno}{\page@N}/
{\page@P}{\page@Q}~~J}}

\fi}

(We didn’t add the analogous clause
\ifoverlong@\noexpand\noexpand\noexpand\overlong\fi

to the definition of \HLtoc@, because \overlong will usually be irrelevant to
the treatment of the heading level in the Contents; but for some styles this
addition might be reasonable.)

It’s conceivable that a style file might need different information in the . toc file
that we have provided. For example, perhaps the sections 3.1, 3.2, 8.3, ...of

e

—

23.9. \mainfile 207

Chapter 3 are simply going be numbered 1, 2, 3, ... under the Chapter 3 entry in the
Contents. To handle such possibilities, the . toc file should probably get the whole set
of information

{\Thelabel@}{\Thelabel@0}{\Thelabel@0@}{\Thelabeld0QQ}

instead of simply {\Thelabel@Q@Q}. Then front matter style files (Chapter 37) could
decide which information to use. Since I've never actually seen a book in which for-
matting of this sort was used, it seemed silly to encumber 4y S-TEX with this extra
baggage. But if such a treatment were needed, it should be clear how to modify the
definitions of \HLtoc@ and \hltoc@ accordingly.

23.9. \mainfile. When we have specified \tocfile in our main file, say
paper.tex, the file paper.toc is written, but this file is not meant to
be TEX’ed directly. Instead, we will be making a “front matter” file, say
paperfm.tex, and since this file will need to know the name of the origi-
nal file, in order to \input the proper .toc file, paperfm.tex will begin
with a line like

\mainfile{paper}

We define

\def\mainfile#i{\def\mainfile@{#1}}

so that, at the appropriate time the macros for the front matter style can

\input mainfile@.toc

If the \mainfile command is omitted from paperfm.tex, we would like to
produce an error message when \maketoc is encountered. So we add

\def\checkmainfile@{\ifx\mainfile@\undefined
\Err@{No \noexpand\mainfile specified}\fi}

(We put these definitions directly into lamstex.tex so that front matter
style files don’t have to worry about them.) (See section 3.4 for the use of
\noexpand.)

208 | Chaper 23. Heading levels

23.10. Creating heading levels. Although we now have the general mechanism
for handling heading levels, no heading levels have actually been defined.

The default style makes \HL1 and \h11 be defined, which will indicate the
general procedure required.

We begin by adding the necessary counters and control sequences.

\expandafter\newcount@\csname HL@C1\endcsname
\csname HLQC1\endcsname=0

\expandafter\def\csname HLO@S1\endcsname#i{#1\null.}
\expandafter\let\csname HL@N1\endcsname=\arabic
\expandafter\let\csname HL@P1\endcsname=\empty
\expandafter\let\csname HLQQ1\endcsname=\empty
\expandafter\def\csname HL@F1i\endcsname{\bf}
\expandafter\let\csname HL@W1\endcsname=\empty

\expandafter\newcount@\csname h1@Ci\endcsname
\csname h1@C1\endcsname=0
\expandafter\def\csname h1@Si\endcsname#i{#1\/}
\expandafter\let\csname h1@N1i\endcsname=\arabic
\expandafter\let\csname h1@Pi\endcsname=\empty
\expandafter\let\csname hl@Q1\endcsname=\empty
\expandafter\def\csname hl@F1\endcsname{\bf}
\expandafter\let\csname hl@Wi\endcsname=\empty

Using \newcount@ (see page 121) rather than \newcount isn’t necessary here,
since these definitions are made within the file lamstex.tex, but they serve
as a reminder that auxiliary files should use \newcount@ (unless they have
stated \let\alloc@=\alloc@Q at the beginning). We added the \null in
‘\HL@S?’ in case #1 ends with an upper-case letter (compare page 162). (The
proficient AVS-TEX or I\S-TEX user would type ‘@.° in such a case, but @
can’t be allowed in a style command, since that would essentially be as bad as
allowing it in a (label).)

Note, by the way, that the period after the heading number in ‘\HL@S1’
is not considered to be punctuation that can be eliminated with \nopunct.
There is no need for that, since a quoted heading level could always be used
instead (and \newstyle\HL1 or \newstyle\hll could be used to make a
permanent change). Basically, \nopunct only affects punctuation that the

p—

- .

23.10. Creating heading levels 209

user normally wouldn’t be able to change at all, like the period after an \h11
title in the default style (see page 211).

In version 1 of I{yS-TEX, I didn't have this principle clearly formulated, and the

\O 5 period after the heading number in \EL1 was considered a “frill”. Moreover, the

default style used to print a § before the heading number, and this ‘\S’ was “hard-

wired” into the definition of \HL@1 (except that we \let\Ssymbol@=\S and used

\Ssymbol@, just in case some one decided to redefine \S). If we wanted to retain this
§, then it should really be placed within the definition of ‘\HL@S1’.

In that case, however, it would also be necessary to add \Nonexpanding\S (or
\Nonexpanding\Ssymbol@). In view of all this, it scemed better just to leave the
damn thing out.

To allow \HL1 to be defined, we must create ‘\HL@1’ with

\expandafter\def\csname HLQ@1\endcsname#1\endHL{...}

Although that’s quite a mouthful, such definitions are meant to be supplied
only by style file designers, and numerous subtleties are involved in the defi-
nitions anyway, so there’s no point trying to make this part easier.

Roughly speaking, I4S-TEX's definition of the default style ‘\HL@1’ is

\expandafter\def\csname HLO1\endcsname#1\endHL{\bigbreak
{\locallabel@

\vbox{\Let@\tabskip\hss@

\halign to\hsize{\bf\hfil##\hfil\cr
\csname HL@W1\endcsname\space
{\HL@@F\thelabel@@} #1\crcr}}
\nobreak\medskip}

where

(1) We put the whole construction in a group with \locallabel@, so that
a \label within the

\HL1 ... \endHL

will be given the values relevant to this \HL1.

210 Chapter 23. Heading levels

(2) We set a \vbox consisting of centered lines. \Let@, from AyS-TEX, is
the device for letting \\ be the same as \cr within this \vbox. Nor-
mally we would use \tabskip\hfil or \tabskip\hss to produce the
centered lines; \tabskip\hss@ is used in case \overlong precedes
the \HL (page 160).

(3) At the beginning of the argument #1 we print \thelabel@@ (the num-
ber, together with any pre- and post-material, plus anything produced
by the style), in the proper font. Notice that we explicitly leave the space
after \thelabel@@, since the spacing is not made part of ‘\HL@S1’
(compare page 132). Moreover, before \thelabel@@ we print the
(word) for ‘\HL@1’ (empty in the default style).

However, there are a few details that we need to change:

(1) The preamble should really contain
\halign to\hsize{\bf\hfil\ignorespaces##\unskip\hfil\cr

to discard extraneous spaces at the beginning or end of each line of the
heading.
(2) In addition, we need to replace the

{\HL@@F\thelabel@Q} #1

by

{\HL@@F\thelabel@@} \ignorespaces#1

to get rid of an extraneous space at the very beginning of the heading.
(3) Moreover, if \thelabel@@ is empty (from a \HL 1 ""), then the space
before the \ignorespaces should be eliminated. And if the (word) is
empty, then the space after it should be eliminated.
(4) We don’t really want our heading to be a \vbox, because \insert’s (like
\footnote) won’t migrate out. So we will instead globally \setbox1
to be the \vbox, and then \unvbox1i:

\expandafter\def\csname HLO1\endcsname#1\endHL{\bigbreak
{\locallabel@

23.11. Instielizations 211

\global\setboxi=\vbox{\Let@\tabskip\hss@
\halign to\hsize{\bf\hfillignorespaces##\unskip\hfillcr
\expandafter\ifx\csname HL@Wi\endcsname\empty\else
\csname HL@Wi\endcsname\space\fi

{\HL@@F\ifx\thelabel@@\empty\else\thelabel@@\space\fi}},
\ignorespaces#i\crcr}),

Y

\unvbox1 \nobreak\medskip}

NOTE: The \nobreak here is absolutely essential—see section 12.
The definition of \h11 for the default style is quite straightforward, using
\punct@ and \addspace@, since \h1l is on \nofrillsliste@:

\expandafter\def\csname hl@1\endcsname#l{\medbreak\noindente@
{\locallabel@
\bf{\h1@@F\ifx\thelabel@@\empty\else\thelabel@@\space\fil}/,
\ignorespaces#i\unskip
\punct@{\null.}\addspace@\enspace}}

See Chapter 8 for the use of \noindent@@. Notice that here we don’t even
print the (word), even if it has been changed by \newword. (Generally speak-
ing, \HL heading levels will have words printed as part of them, while \h1 lev-

els won’t. Of course a style file could redefine ‘\h1@1’ to include the {word),
if necessary.)

23.11. Initializations. In addition to defining ‘\HL@1’, we want a definition
like

\expandafter\def\csname HL@I1\endcsname{\Reset\h11{1})
\newpre\hli{\pref.}}

so that these “initializations” are always performed after each \HL1 (though
they may be overridden if \csname HL@J1\endcsname has been defined by
an \Initialize [section 15]). Recall that \pref will mean \Thepref@ during
this initialization.

But there is a little subtlety involved here, since \HL1 might be used with
an empty label \HL1"". For example,

\HL1""Introduction\endHL

212 Chapter 23. Heading levels

might be used to get an unnumbered Introduction preceding the other \HL1’s.
In that case \pref would be empty, and we don’t want a lonely period pre-
ceding the \h11 numbers! So instead we use

\expandafter\def\csname HLQI1\endcsname{\Reset\h11{1}}
\ifx\pref\empty\newpre\hli{}\else\newpre\hli{\pref.}\fi

No initializations are required at each \h11 in the default style, so we simply
leave ‘\h1@I1’ undefined.

In the situation on page 72, where we used

\Initialize\h1l1{%
\Evaluate\HL1i\edef\HLvalue{\number\Value}
\Evaulate\hli
\newpre\exno{\HLvalue.\the\Value.}}

to set the numbering for \exno, subtleties about empty heading level numbers were
not taken into account. Actually, there’s no way that they can be handled at this point,
since there’s no way of determining, once we get to an \h11, whether or not the \HL1
before it had an empty heading number. To deal with these possibilities, we could,
for example, have \HL1 store the current value of \Thelabel@@@@ in another control
sequence, say \HLpref, in addition to storing it in \Thepref@; then \HLpref wouldn’t
change at an \h11, so it would give information about the \HL1 that comes before the
current \h11. If we were designing a style file in which something like \exno were a
standard feature, then we would probably need to do this.
A clever user could always emulate this with

\Initialize\HL1{\Evaluate\HL1\xdef\HLpref{\number\Value}}

\Initialize\h1li{
\ifx\HLpref\empty\else
\Evaluate\HLi\edef\HLvalue{\number\Value}\fi
}

(Or a new \Initialize\HL1 could simply be given before any \HL1"" is stated.)

23.12. \aftertoc@ Remember that \HL1 calls \HL®, and \HL@ in turn will
then call ‘\HL@1’. . .\endHL followed by

\HLtoc@

e

R

13. Order of heading levels 213

for writing to the .toc file.

IT IS THEREFORE ESSENTIAL that no breaks be allowed by any ma-
terial at the end of the definition of ‘\HL@1’...\endHL, to insure that the
proper page number will be written; thus, in the definition for the default
style (page 210), the \nobreak before the \medskip would be necessary even
if the style file design weren’t particularly concerned about prohibiting a page
break here.

It is quite possible that a style file won’t try to prohibit a page break after
the heading is printed. In fact, a style file might even demand a page break
at this point. For example, the style file for the I4yS-TEX Manual uses \HLO
for the Part pages, and in the definition of ‘\HLQO’, we want a page break
after typesetting the Part page; and then we want to \Offset\page2, since
the next page is supposed to be blank. It would certainly not do to

\expandafter\def\csname HL@O\endcsname#1\endHL{
(instructions for typesetting the Part page)
\vfil\break\Offset\page2}

because in the .toc file the page number for this Part page would then be
1 more than it should be! Instead, the definition has the additional clause

\def\aftertoc@{\vfil\break\0ffset\page2}

—then the proper page is written by the \HLtoc@ command before we increase
the page numbering by 1.

23.13. Order of heading levels. The default style allows an \hl1 to appear
before an \HL1, but we could easily disallow this. For example, we could first

\def\HLlevel@{0}

and then use

\expandafter\def\csname hl@i\endcsname{y,
\ifnum\HLlevel@=0
\Err@{\string\hll not allowed before some \string\HL}

Similarly, if we created \h12, we could

\def\hllevel@{0}

214 Chapter 23. Heading levels

and then

\expandafter\def\csname h1@2\endcsname#1{l
\ifnum\hllevel®@=0
\Err@{\string\hl2 not allowed before some \string\hli}
. ¥
For this to work properly, we should also add
\def\hllevele{0}
to our definition of ‘\HLQI1’.

Note, by the way, that there's really no necessity for “higher” heading levels to have
smaller numbers.!

23.14. Naming header levels. Now we come to the \NameHL and \Namehl
mechanisms, by which, for example,

\NameHL1\chapter

makes \chapter...\endchapter function like \HL1. . .\endHL, and

\Namehl1l\section

makes \section{...} function like \h11i{...}. As the uppercase ‘N’ sug-
gests, \NameHL and \Namehl will act globally.!
As a special case of

\NameHL#1#2

let us consider \NameHL1 \chapter.
First we will want to

\define\chapter{}

! Actually, a heading level doesn’t even have to be a number (but it’s probably best not to exploit
that fact).

*\NameHL and \Namehl replace the \newHL and \newhl constructions from version 1 of I4S-
TEX.

. S

R

23.14. Naming header levels 215

to get an error message if \chapter is already defined.
We will also want to

\rightadd@\chapter\to\overlonglist@

And we will want to let \chapter@C be ‘\HL@C1’, and \chapter@P be
‘A\HL@P1’, etc. For this we will need the old \edef trick (see, for exam-
ple, page 82 and Chapter 17, and see pages 126 and 161 for the use of the
‘\expandafter\noexpand’):

\edef\next@{\let\csname\exstring@#20C\endcsname
=\expandafter\noexpand\csname HLOC#1\endcsname}\next@

NOTE: Since we \let\chapter@C=\HL@C1’, etc., it is therefore essential that
\NameHL % be used only after ‘\HL@CY’, ..., ‘\HL@F1’ have been defined.
Then we want to

\def\chapter##i\endchapter
{\def\HLtype@{\chapter}
\def\HLname@{\chapter}
\gdef\HLlevel@{#1}
\FNSS@\HL@##1\endHL}

This definition will have to be done with an \edef also:

\edef\next@{\def\noexpand#2####i\expandafter\noexpand
\csname end\exstring@#2\endcsname
{\def\noexpand\HLtype@{\noexpandi#2}

\def\noexpand\HLname@{\noexpand#2}

\gdef\noexpand\HLlevel@{#1}

\noexpand\FNSS@\noexpand\HLO####1\noexpand\endHL}}
\next@

[We used \FNSS@ rather than \futurelet\next simply because it takes fewer
tokens, especially with the \noexpand required before it.]

216 Chapter 23. Heading levels

We also want to state ‘\Invalid@\endchapter’ so that an improper use of
\endchapter will give an error message (see section 1.1),

\edef\next@{\noexpand\Invalid@\expandafter\noexpand
\csname end\exstring@#2\endcsname}
\next@

That is the main outline of the definition, but additional details are needed.
With this much of the definition, \chapter would still not function just like
\HL1, because, for example, \newpre\chapter and \newpre\HL1 would
have entirely different effects: one would change \chapter@P, while the
other would change ‘\HLOP1'—if a user typed \newpre\HL1 this would not
affect the pre-material for \chapter. That might not seem like such a terri-
ble problem—users could just be warned not to use \newpre\HL1 instead of
\chapter—auntil we realize that our definition of ‘\HL@I1’ has a \newpre\h1i
clause: if the user of the default style decided to

\NameHL 1 \chapter
\Namehl 1 \section

then \section’s would not have the proper pre-material determined by the
\chapter in which they were used. (Similarly, \newfontstyle\chapter and
\newfontstyle\section would have no effect.)

To get around this problem, we need a way of passing special informa-
tion to the \new... constructions of Chapter 24, so that, for example,
\newpre\chapter and \newpre\HL1 will each change both \chapter@P
and ‘\HL@P1’. This will be done by means of two Replacement control se-
quences:

‘\HLQR1’ will be defined to have the value \chapter
\chapter@ will be defined to have as value the pair {HL}{1}

So we will add

\expandafter\gdef\csname HLOR#1\endcsname{#2}
\expandafter\gdef\csname\exstring@#20R\endcsname{{HL}{#1}}

23.14. Naming header levels 217

In some cases, some of this information must also be passed to the .toc
file. For example, the default front matter style file lamstex.stf contains
instructions for typesetting entries that begin

\HL {1}

but if \NameHL1\chapter appears in the main file, then \chapter will pro-
duces entries in the .toc file beginning

\chapter

In order for the lamstex.stf file to be able to deal with these lines, the
information

\NameHL1\chapter

must be passed to it:

\iftoc@

\immediate\write\toc@{\noexpand\NameHL#1\noexpand#2~~J}
\fi

with a “"J to give a blank line afterwards, to separate this from an entry line
that might come next.

For all this to work properly when we get to front matter style files (Chap-
ter 37), it will be essential, of course, that the user has placed the \tocfile
command before any \NameHL commands. Actually, in addition to its invoca-
tion by a user who wants names for heading levels that a style hasn’t given
names to, \NameHL can also be used by a style file designer. In the latter case,
we really don’t want any extra information written to the .toc file, since the
style file designer will presumably also write special code for the front matter
style files to deal with lines that begin with something like

\chapter

As we will see in Part VII, special precautions will be taken to insure that
nothing is written to the .toc file even if a file contains \tocfile before the
\docstyle command.

218 Chapter 23. Heading levels

A style file might well want to \NameHL1 twice. For example, in the book
style file, the control sequence

\appendices

calls \NameHL1\appendix to make

\appendix ... \endappendix

work just like \chapter. ..\endchapter.!

Once \appendices has used \NameHL1i\appendix, we want a previous
name for \HL1, say \chapter, to become undefined, and we also want
\endchapter to become undefined, and we want \Offset\chapter, etc.,
to be disallowed. To test whether \NameHL1 has already appeared, we simply
use the test

\expandafter\ifx\csname HL@R1\endcsname\relax
If this test is false, we want to \let

\...eC, \...epP, \...eqQ, \...0S, \...QN, \...QF,, \...QW,

all be \relax, where ... is the value of the control sequence \csname
HL@R#1\endcsname, since, as we'll see in Chapter 24, this will disallow the
corresponding \Reset, ..., constructions.

Unfortunately, \csname...\endcsname is quite unsuitable for use in
\expandafter constructions, which is Jjust how we will need it, so we will
first use the code

\def\nextive{\let\nextiii@=}
\expandafter\nextiv@\csname HLOR#1\endcsname

'In this style ‘\HL@1’ uses ‘\HL@W1’ (section 6), which is initially defined to be ‘Chapter’, but
which is then changed to ‘Appendix’ by the \appendices command. Similarly, \appendices
also uses \Reset\HL1{1}, to start the numbering of Appendices at 1.

23.14. Naming header levels 219

which makes the “nameable” control sequence \nextiii@ have the same value
as ‘\HLOR#1’. Then we can use

\expandafter\let\nextiii@\undefined
\expandafter\let\csname\exxx@\nextiii@ @C\endcsname=\relax

\expandafter\let\csname end\exxx@\nextiii@\endcsname=\undefined

So our whole definition is:

\def\NameHL#1#2{\define#2{}%

\expandafter\ifx\csname HL@R#1\endcsname\relax

\else
\def\nextiv@{\let\nextiiie=})
\expandafter\nextiv@\csname HL@R#1\endcsname
\expandafter\let\nextiii@\undefined
\expandafter\let\csname\exxx@\nextiii@ @C\endcsname=\relax
\expandafter\let\csname\exxx@\nextiii@ @P\endcsname=\relax
\expandafter\let\csname\exxx@\nextiii@ @Q\endcsname=\relax
\expandafter\let\csname\exxx@\nextiii@ @S\endcsname=\relax
\expandafter\let\csname\exxx@\nextiii@ @N\endcsname=\relax
\expandafter\let\csname\exxx@\nextiii@ @F\endcsname=\relax
\expandafter\let\csname\exxx@\nextiii@ @W\endcsname=\relax
\expandafter\let\csname

end\exxx@\nextiii@\endcsname=\undefined

\fi

\expandafter\gdef\csname HL@R#1\endcsname{#2}}
\expandafter\gdef\csname\exstring@#2@R\endcsname{{HL}{#1}}¥
\iftoc@
\immediate\write\toc@{\noexpand\NameHL#1\noexpand#2~~J}%
\fi

\rightadde@#2\to\overlonglist@
\edef\next@{\let\csname\exstring@#20C\endcsname
=\expandafter\noexpand\csname HLOC#1\endcsname}\next@
\edef\next@{\let\csname\exstring@#2@P\endcsname
=\expandafter\noexpand\csname HLOP#1\endcsname}\next@
\edef\next@{\let\csname\exstring@#2eq\endcsname
=\expandafter\noexpand\csname HL@Q#1\endcsname}\next@

220 ' Chapter 23. Heading levels

\edef\next@{\let\csname\exstring@#2@S\endcsname
=\expandafter\noexpand\csname HL@S#1\endcsname}\next@
\edef\next@{\let\csname\exstring@#2@N\endcsname
=\expandafter\noexpand\csname HL@N#1\endcsname}\next@
\edef\next@{\let\csname\exstring@#20F\endcsname
=\expandafter\noexpand\csname HLQ@F#1\endcsname}\next@
\edef\next@{\let\csname\exstring@#20W\endcsname
=\expandafter\noexpand\csname HLOW#1\endcsname}\next@
\edef\next@{\def\noexpand#2####1\expandafter\noexpand
\csname end\exstring@#2\endcsname
{\def\noexpand\HLtype@{\noexpand#2}/
\def\noexpand\HLname@{\noexpand#2}
\gdef\noexpand\HLlevel@{#1}}
\noexpand\FNSS@\noexpand \HL@#i###1\noexpand\endHL}}¥%
\next@
\edef\next@{\noexpand\Invalid@\expandafter\noexpand
\csname end\exstring@#2\endcsnamel}’,
\next@
}

For \Namehl we don’t have to worry about an \end. .. construction. More-
over, \Namehl doesn’t worry about \ . . . @W constructions, since words are sel-
dom added to such heading levels.

\def\Namehl#1#2{\define#2{}

\expandafter\ifx\csname hl@R#1\endcsname\relax

\else
\def\nextive{\let\nextiii@}¥
\expandafter\nextiv@\csname hl@R#1\endcsname
\expandafter\let\nextiii@=\undefined
\expandafter\let\csname\exxx@\nextiii@ @C\endcsname=\relax
\expandafter\let\csname\exxx@\nextiii@ @P\endcsname=\relax
\expandafter\let\csname\exxx@\nextiii@ @Q\endcsname=\relax
\expandafter\let\csname\exxx@\nextiii@ @S\endcsname=\relax
\expandafter\let\csname\exxx@\nextiii@ @N\endcsname=\relax
\expandafter\let\csname\exxx@\nextiii@ @F\endcsname=\relax
\fi

23.15. \Initialize 221

\expandafter\gdef\csname hl@R#1\endcsname{#2}/,
\expandafter\gdef\csname\exstring@#20R\endcsname{{h1}{#1}}
\iftoce
\immediate\write\toc@{\noexpand\Namehl#1\noexpand#2~~J}Y
\fi

\rightadde@#2\to\nopunctlistey,
\edef\next@{\let\csname\exstring@#2@C\endcsname=
\expandafter\noexpand\csname hl@C#1\endcsname}\next@
\edef\next@{\let\csname\exstring@#20P\endcsname=
\expandafter\noexpand\csname h1@P#1\endcsname}\next@
\edef\next@{\let\csname\exstring@#2@Q\endcsname=
\expandafter\noexpand\csname h1@Q#1\endcsname}\next@
\edef\next@{\let\csname\exstring@#20@S\endcsname=
\expandafter\noexpand\csname h1@S#1i\endcsname}\next@
\edef\next@{\let\csname\exstring@#2@N\endcsname=
\expandafter\noexpand\csname hl@N#1\endcsname}\next@
\edef\next@{\let\csname\exstring@#2@F\endcsname=
\expandafter\noexpand\csname hl@F#1\endcsname}\next@
\edef\next@{\def\noexpand#2{},
\def\noexpand\hltype@{\noexpand#21}/,
\def\noexpand\hlname@{\noexpand#21}Y,
\gdef\noexpand\hllevel@{#1}/
\noexpand\FNSS@\noexpand\h1@}}%

\next@}

23.15. \Initialize. Finally, we want to consider \Initialize, which al-
lows the user to prescribe additional “initializations” that are done at a heading
level.

We want \Initialize\HL(number) and \Initialize\hl({number) to be
allowed, and also \Initialize\chapter if \chapter has been created using
\NameHL. So we will use one routine, \InitH@, if \Initialize is followed
by a header level \HL or \hl, and another routine, \InitS@, if it is followed
by a single name like \chapter:

\def\Initialize{\futurelet\next\Inite@}

222 Chapter 23. Heading levels

\def\Init@{\ifx\next\HL\let\next@=\InitHe
\else\ifx\next\h1l\let\next@=\InitHe
\else\let\next@=\InitS@\fi\fi\next0}

The definition of \InitH@ is quite straightforward. For example,

\InitHe \HL 1 {...}

is supposed to (globally) define ‘\HL@J1’ to be ‘. ..’. But we want to give an
error message if the corresponding heading level hasn’t been defined:

\def\InitHO#1#2{\expandafter

\ifx\csname\exstring@#1eC#2\endcsname\relax
\def\next@{\Err@{\noexpand#ilevel #2 not defined
in this stylel}}.

\else
\def\next@{\expandafter
\gdef\csname\exstring@#10J#2\endcsname},

\fi

\next@}

Now we have to reduce \InitS@ to \InitH@. Let’s suppose the argument
of \InitS@ is \chapter, which has been created by

\NameHL1\chapter

so that \chapter@R has the value {HL}{1}. We introduce the combining
construction

\def\InitCo#1#2{\edef\nextii@{\expandafter\noexpand
\csname\csnameitl\endcsname#2}}

(again compare pages 126 and 161 for the \expandafter\noexpand), so that
A) \InitCe{HL}{1}
makes \nextii@ mean \HL1; the point of this is that we can then use

\expandafter\InitHQ\nextii@

—”

23.15. \Initialize 223

Actually, things are not that direct. To get (A) we need

\expandaft er\InitC@\chapt er@R

except that ‘\chapter@R’ will actually have to be specified as

\csname\exstring@#1@R\endcsname

which cannot be used directly in this \expandafter. As on page 218, we will
actually use the combination

\def\next@{\let\next0@=}
\expandafter\next@\csname\exstring@#1@R\endcsname
\expandafter\InitC@\next@

The first two lines make the “nameable” control sequence \next@ have the

save value as \chapter@R, and then the third line makes \nextii@ mean
\HL1.

Putting this all together, our final definition is

\def\InitSe#1#2{\expandafter
\ifx\csname\exstring@#1@R\endcsname\relax
\Err@{\noexpand#inot defined in this style},
\let\next@=\relax

\else
\def\next@{\let\nexte=1}},
\expandafter\next@\csname\exstring@#1@R\endcsname
\expandafter\InitC@\next@
\def\next@{\expandafter\InitHO\nextii@}}

\fi

\next@}

Chapter 24. Accessing and controlling counters, styles, etc.

We are finally ready to examine the various constructions that allow us to
access and manipulate the values that \ref and its relatives give us.

First we will consider the constructions that allow us to access the values:
\value, \Evaluate, \pre, \post, \style, \numstyle, and \fontstyle.

The definition of \value illustrates the basic strategy required: \value\tag
should make sense, and if we \NameHL1\chapter, then \value\chapter
should make sense; on the other hand, \value\list and value\HL should
make sense only when followed by an appropriate number. These two differ-
ent cases are easily distinguished, because \tag@C and \chapter@C are de-
fined, but \1ist@C and \HL@C are not defined, while things like ‘\1ist@C1’
and ‘\HL@C1’ are defined.

The definition of \valueitl first uses the test

\ifx\csname\exstring@#1@C\endcsname\relax

to see whether #1 is a construction like \tag with a single counter. If this
\ifx test is false, so that the counter in question does exist, it simply prints

\number\csname\exstring@#10C\endcsname
If the \ifx test gives a positive result, we want to use the test

\ifx\csname\exstring#0#1@Ci\endcsname\relax

to see if #1 is a construction like \1ist with several counters. If this test also
gives a positive result, we want to give an error message,

\noexpand\value can’t be used with \string#i

(see section 3.4 for the use of \noexpand) but if this second test is false, we
want to call \value@it1, where \value@#1#2 tests whether

\csname\exstring@#1@C#2\endcsname

224

Chapter 24. Accessing and controlli'ng counters, styles, etc. 225

exists, giving an error message if it doesn’t, and typesetting the value of this
counter if it does:

\def\value#1i{\expandafter
\ifx\csname\exstring@#1@C\endcsname\relax
\expandafter\ifx\csname\exstring@#1@Ci\endcsname\relax
\def\next@{\Err@{\noexpand\value can’t be used with
\string#1}}/,
\else
\def\next@{\value@#1}},
\fi
\else
\def\next@{\number\csname\exstring@#1@C\endcsname\relax}
\fi
\next@}

\def\value@#i#2{\expandafter
\ifx\csname\exstring@#1@C#2\endcsname\relax
\def\next@{\Err@{\string\value\string#1 can’t be followed
by \string#2}},
\else
\def\next@{\number\csname\exstringQ@#10C#2\endcsname\relax},
\fi
\next@}

NOTE: In order for this to work properly, it is thus essential that any construc-
tion having any ‘\...@C#’ counter should always have at least the counter
‘\...@C1. In particular, \HL1 should always be defined if any \HL level is
defined, and similarly for \h1.

In the error message for \value@, we used \string\value since it will
generally look better not to have a space after \value, and \string#1i,, rather
than \noexpand#1, since #1 may not be (and usually won’t be) a control
sequence.

We introduce the counter \Value, which holds the value for \Evaluate,

\newcount\Value

226 Chapter 24. Accessing and controlling counters, styles, etc.

but we won’t bother printing the code for \Evaluate, because it is strictly
analogous, except that it globally sets the value of the counter \Value, instead
of printing a number.

The definition of \pre#1 is quite similar, except that instead of typesetting

\number\csname\exstring@#1@C\endcsname
we typeset

{\csname\exstring@#1@P\endcsname}

(we enclose this material inside braces, in case a font change instruction is
involved).

Only the first part of the definition will be given:

\def\pre#i{\expandafter
\ifx\csname\exstring@#10P\endcsname\relax
\expandafter\ifx\csname\exstring@#1@P1\endcsname\relax
\def\next@{\Err@{\noexpand\pre can’t be used
with \string#1}}¥
\else
\def\next@{\pree#1i}}
\fi
\else
\def\next@{{\csname\exstring@#10P\endcsname}}}
\fi
\next@}

Notice that we now use \foo@P and ‘\foo@P1’ rather than \foo@C and
‘\f00@CY’ to determine whether \pre can be used with \foo. So it is possible
for \Reset\foo to be allowed but not \pre\foo and vice versa. This gener-
ality will extend to all our constructions, and will even be of some importance
in Chapter 25.

The definition of \post is strictly analogous to that for \pre, but with ‘Q’
replacing ‘P’ in the tests.

Chapter 24. Accessing and controlling counters, styles, eic. 227

The definition of \style is also analogous, except that we don’t have the
extra set of braces, i.e., we have the clause

\def\next@{\csname\exstring@#1@S\endcsname}

Nevertheless, this definition functions quite differently, because the \next@
that we call will actually be a control sequence that will process its argument
(the following input).

And exactly the same remarks hold for \numstyle.

On the other hand, \fontstyle has to be handled differently, because we
want something like

\fontstyle\claim{...}

to expand to
{\claim@F...}

so \fontstyle#1 must itself be a control sequence with an argument:

\def\fontstyle#i{\expandafter
\ifx\csname\exstring@#1@F\endcsname\relax
\expandafter\ifx\csname\exstring@#1@F1i\endcsname\relax
\def\next@{\Err@{\noexpand\fontstyle can’t be used
with \string#1}}),
\else
\def\next@{\fontstyle@#1i}}
\fi
\else
\def\next@i#t#1{{\csname\exstring@#1eF\endcsname##1}}
\fi
\next@}

228 Chapter 24. Accessing and controlling counters, styles, eic.

\def\fontstyle@#1i#2{\expandafter
\ifx\csname\exstring@#1eF#2\endcsname\relax
\def\next@{\Err@{\string\fontstyle\string#l can’t be
followed by \string#2}}

\else
\def\next@##1i{{\csname\exstring@#1QF#2\endcsname##1}}¥
\fi

\next@}

Next we come to the constructions that allow us to manipulate the values,
namely \Reset, \Offset, and the \new. .. constructions.

\Reset is similar to \fontstyle, in that \Reset\tag, for example, must
be a control sequence with an argument, namely the number following
\Reset\tag.

There is also one new wrinkle. If we \Reset\tag5, for example, then we
want to set the \tag counter, \tag@C, to 4 (since the next use of \tag increases
this counter by 1 before printing the \tag). But if we \Reset\page5, then
we simply want to set \pageno=>5;! this special case is handled by the boxed
code:

\def\Reset#1{\expandafter
\ifx\csname\exstring@#10C\endcsname\relax
\expandafter\ifx\csname\exstring@#1eC1\endcsname\relax
\def\next@{\Err@{\noexpand\Reset can’t be used
with \string#1}}/
\else
\def\next@{\Resete#1}/,
\fi
\else
\def\next@##1{\count@=##1\relax
I\ifx#1\page\else\advance\count@ by -1 \fi|
\global\csname\exstring@#1@C\endcsname=\count@},
\fi
\next@}

! Of course, \Reset\page should only be used at a reasonable place, e.g., after a construction,
like \chapter, that has started a new page.

\.’/

Chapter 24. Accessing and controlling counters, styles, etc. 229

\def\Reset@#1#2{\expandafter
\ifx\csname\exstring@#10C#2\endcsname\relax
\def\next@{\Erre{\string\Reset\string#l can’t be
followed by \string#2}}),
\else
\def\next@##1{\count@=##1\relax\advance\count@ by -1
\global\csname\exstring@#1@C#2\endcsname=\count@}},
\fi
\next@}

We won't repeat the code for \Offset, which is analogous to that for
\Reset, except that we don’t need any special compensation for \page. How-
ever, there is an important point to be made about both \Reset and \0ffset.
Suppose that we have used

\NameHL1\chapter

(see Chapter 23). Then \Reset\chapter sets the value of the counter
\chapter@C, while \Reset\HL1 sets the value of the counter ‘\HL@C1’. But
when we look at the definition of

\NameHL1\chapter

we see (page 219) that it basically involves

\let\chapter@C=‘\HLQC1’

and this means that \chapter@C and ‘\HLOC1’ are simply two different names
for the same counter (e.g., \count47). Consequently, \Reset\chapter and

\Reset\HL1 have exactly the same significance, and the same is true of
\Offset.

This fortunate circumstance will not extend to \newpre, which introduces
numerous new problems. First of all, \newpre is used in a construction like

\newpre\tag{(new pre material)}

230 Chapter 24. Accessing and controlling counters, styles, etc.

So \newpre\tag should essentially define \next@ to be

\def\tageP

and then call \next@, so that we will obtain

\def\tag@P{(new pre material)}

allowing the \def to do the work of scanning the {{new pre material)}.
As a first attempt we might use

\def\newpre#1{\expandafter
\ifx\csname\exstring@#1@P\endcsname\relax
\expandafter\ifx\csname\exstring@#1@P1\endcsname\relax
\def\next@{\Err@{\noexpand\newpre can’t be used
with \string#1}}V
\else
\def\next@{\newpre#1}),
\fi
\else
\def\next@{\expandafter
\def\csname\eoxstring@#1@P\endcsnamel}’,
\fi
\next@}

However, there are two features that need to be added to this definition:

(1) As mentioned on page 192, we really want an \edef rather than a \def.
(2) If we have used \NameHL1\chapter, then, unlike the situation with
\0ffset and \Reset discussed above, \chapter@P and ‘\HLEP1’ are
two independent control sequences, and special efforts are required to
insure that \newpre\chapter and \newpre\HL1 will each change both

\chapter@P and ‘\HL@P1’.

For (1) it would appear that we simply have to replace the

\expandafter\def\csname\exstring@#10P\endcsname

RN

Chapter 24. Accessing and controlling counters, styles, eic. 231

with
\expandafter\edef\csname\exstring@#10P\endcsname

Unfortunately, things are not quite that simple, because, although \newpre
should involve an \edef, we still want this \edef to be carried out while
\noexpands@ is in force!

This would seem to require something like

\begingroup\noexpands@
\expandafter\edef\csname\exstring@#1@P\endcsname

But that means

(@) We need to supply an \endgroup after the \edef is completed.
(b) This \edef must therefore be an \xdef in order to survive the group-
ing.

We can attack these two problems at once by saying

\def\nexte{),
\def\nextii@{\endgroup
\expandafter\let\csname\exstring@#10P\endcsname
) =\Next@Q}
\begingroup\noexpands@\afterassignment\nextii@
\xdef\Next@}
\next@

Thus, \next@

@) first supplies \begingroup\noexpands@,

(i) and then it \xdef’s \Next@ to be the following text;
(iii) after that assignment is completed, it supplies an \endgroup, and
(iv) then it (locally) lets \. . .@P be this (globally defined) \Next@.

We use \Next for this globally assigned scratch token (page 22).

For (2) we have to worry about the fact that a single control sequence to
which \newpre applies, like \chapter, might have an associated pair \HL1
to which \newpre should apply, and conversely, a pair like \HL1 might have
an associated control sequence \chapter.

232 Chapter 24. Accessing and controlling counters, styles, etc.

In section 23.14, we already noted that if \chapter is created by

\NameHL1\chapter

then ‘\HL@R1’ will be defined, with \chapter as its value, and \chapter@R
will be defined and have as value the pair {HL}{1}.

On page 218 of that section, one of the problems associated with this
\...@R... mechanism was handled with the code

\def\nextive{\let\nextiii@=}
\expandafter\nextiv@\csname HLOR1\endcsname

which makes the “nameable” control sequence \nextiii@ have the same value
as ‘\HL@R1’.
More generally, we will define

\def\getRe#1#2{\def\nextive{\let\nextiiio=}}
\expandafter\nextiv@\csname\exstring@#10R#2\endcsname}

which can be used in two ways.
1. First of all

\getR@\chapter{}

will make \nextiii@ be \chapter@R. We will also define

\def\letRO#1#2#3{\expandafter
\let\csname#1Q#3#2\endcsname=\Next@}

Then the effect of

\getR@\chapter{}
\expandafter\letRQ@\nextiii@ P

\1letRQ(expansion of \chapter@R)P .., \letRO{HL}{1}P

e

Chapter 24. Accessing and controlling counters, styles, eic. 233

hence
\let‘\HLOP1’=\Next@
2. On the other hand,

\getR@\HL1

will make \nextiii@ be ‘\HL@R1’. We will also define

\def\letR@@#1#2{\expandafter
\let\csname\exstring@#1@#2\endcsname=\Next@}

Then the effect of

\getRO\HL1
\expandafter\letR@@\nextiii@ P

\letR@@(expansion of ‘\HL@R1’)P ie, \letR@@\chapter P

hence

\let\chapter@P=\Next@

Putting this all together, we can define \newpre as follows:

\def\newpre#i{\expandafter
\ifx\csname\exstring@#10P\endcsname\relax
\expandafter\ifx\csname\exstring@#10P1\endcsname\relax
\def\next@{\Err@{\noexpand\newpre can’t be used
with \string#1}}/
\else
\def\next@{\newpree@#i}/,
\fi

234 Chapter 24. Accessing and controlling counters, styles, etc.

\else

\def\nexte{/,
\def\nextiie{
\endgroup
\expandafter\let\csname\exstringQ@#10P\endcsname

=\Next@

\expandafter\ifx\csname\exstring@#10R\endcsname\relax
\else
\getR@#1{}\expandafter\letRC\nextiii@ P\fil}},
\begingroup\noexpands@\afterassignment\nextii@
\xdef\Next@},

\fi

\next@}

\def\newpre@#1#2{\expandafter
\ifx\csname\exstring@#10P#2\endcsname\relax
\def\next@{\Erre{\string\newpre\string#l can’t be
followed by \string#2}}%
\else
\def\nexte{),
\def\nextiie{)
\endgroup
\expandafter\let\csname\exstring@#10P#2\endcsname
=\Next@
\expandafter\ifx\csname\exstring@#1@R#2\endcsname\relax
\else
\getRO#1{#2}\expandafter\letR@@\nextiii@ P\fi}Y,
\begingroup\noexpands@\afterassignment\nextiie@
\xdef\Nexte}},
\fi
\next@}

Of course, \newpost is strictly analogous, so we won’t write out any of the
code.

The \newstyle command is used in slightly more complicated situations
like

\newstyle\tag(parameter text){(replacement text)}

o

Chapter 24. Accessing and controlling counters, styles, etc. 235

but this can be handled in much the same way as \newpre. For example, we
want \newstyle\tag to define \next@ to be

\def\tag@s
and then call \next@, so that we will obtain .

\def\tag@S(parameter text){(replacement text)}

In this case, we want a \def, rather than an \edef, and we don’t need to
enter a group with \noexpands@. Aside from these differences, however, we
simply copy the code for \newpre:

\def\newstyle#i{\expandafter
\ifx\csname\exstring@#10S\endcsname\relax
\expandafter\ifx\csname\exstring@#10Si\endcsname\relax
\def\next@{\Err@{\noexpand\newstyle can’t be used
with \string#1}})
\else
\def\next@{\newstyleO#1}%
\fi
\else
\def\nexte{),
\def\nextii@{%
\expandafter\let\csname\exstring@#1@S\endcsname
=\Next@
\expandafter\ifx\csname\exstring@#10R\endcsname\relax
\else
\getRe#1{}\expandafter\letR@\nextiii@ S\fil}},
\afterassignment\nextii@\gdef\Next@}}
\fi
\next@}

\def\newstyle@#i#2{\expandafter

\ifx\csname\exstring@#1@S#2\endcsname\relax
\def\next@{\Err@{\string\newstyle\string#l can’t be
followed by \string#2}}),

236 Chapter 24. Accessing and controlling counters, styles, eic.

\else
\def\nexte{y
\def\nextiie{y,
\expandafter\let\csname\exstring@#10S#2\endcsname
=\Next@
\expandafter\ifx\csname\exstring@#10R#2\endcsname\relax
\else
\getRe#1{#2}\expandafter\letR@@\nextiii@ S\fi}
\afterassignment\nextii@\gdef\Next@}},
\fi
\next@}

\newnumstyle will be handled a bit differently from \newstyle because
\newnumstyle will usually be used with a single numbering style control se-
quence, like

\newnumstyle\tag{\roman}

and it is natural for the user to think that \roman is simply the second argu-
ment to \newnumstyle, and thus doesn’t need the braces (I kept making this
mistake all the time in version 1 of I4(S-TEX, with disastrous consequences).
So we will make \next@ be a control sequence with an argument—this works
whether or not the user has added the braces. In this case, instead of hav-
ing \def\next@ at the end of our definition of \next®, we have it at the
beginning:

\def\newnumstyle#i{\expandafter
\ifx\csname\exstring@#10N\endcsname\relax

\expandafter\ifx\csname\exstring@#1@N1\endcsname\relax

\def\next@{\Err@{\noexpand\newnumstyle can’t be used
with \string#1}}

\else
\def\next@{\newnumstyle@i#1}),

\fi

Chapter 24. Accessing and controlling counters, styles, eic. 237

\else
\def\nexto##1{)
\gdef\Next@{##1}Y
\expandafter\let\csname\exstring@#10N\endcsname
- =\Next@
\expandafter\ifx\csname\exstring@#10R\endcsname\relax
\else
\getRO#1{}\expandafter\letR@\nextiii@ N\fi}}
\fi
\next@}

\def\newnumstyle@#1#2{\expandafter
\ifx\csname\exstring@#1@N#2\endcsname\relax
\def\next@{\Err@{\string\newnumstyle\string#i can’t be
followed by \string#2}}),
\else
\def\nexto##1{%
\gdef\Nexto{##1}},
\expandafter\let\csname\exstring@#10N#2\endcsname
=\Next@
\expandafter\ifx\csname\exstring@#10R#2\endcsname\relax
\else
\getRO#1{#2}\expandafter\letRO@\nextiii@ N\fi}}
\fi
\next@}

\newfontstyle is exactly analogous to \newnumstyle, so we won’t bother
repeating the code.

The definition of \word is strictly analogous to that of \pre, etc., with W
substituted for P everywhere, and word substituted for pre everywhere.

The definition of \newword follows that for \newstyle, where we want
a \def, rather than an \edef, and dor’t need to enter a group with
\noexpands@.

238 Chapter 24. Accessing and controlling counters, styles, eic.

\def\newword#i{\expandafter
\ifx\csname\exstring@#ieW\endcsname\relax
\expandafter\ifx\csname\exstring@#1eW1\endcsname\relax
\def\next@{\Err@{\noexpand\newword can’t be used
with \string#1}}%
\else
\def\next@{\newwordo#i}¥,
\fi
\else
\def\nexte{
\def\nextiie{}
\expandafter\let\csname\exstring@#1@W\endcsname
=\Next@
\expandafter\ifx\csname\exstring@#1@R\endcsname\relax
\else
\getRO#1{}\expandafter\letR@\nextiii@ W\fil}¥
\afterassignment\nextii@\gdef\Next@}}
\fi
\next@}

\def\newworde#1#2{\expandafter
\ifx\csname\exstring@#10W#2\endcsname\relax
\def\next@{\Erre{\string\newword\noexpand#ican’+
be followed by \string#2}}/
\else
\def\nexto{),
\def\nextiie{}
\expandafter\let\csname\exstring@#1@W#2\endcsname
=\Next@
\expandafter\ifx\csname\exstring0#1@R#2\endcsname\relax

S

Chapter 24. Accessing and controlling counters, styles, eic.

\else
\getRe#1{#2}\expandafter\letROO\nextiii@ W\fi
By
\afterassignment\nextii@\gdef\Next@},
\fi
\next@}

239

Chapter 25. Footnotes

25.1. Preliminaries. In addition to \footnote, M\,S-TEX has \footmark
and \foottext, for special situations like the one indicated on page 52 of
the I44S-TEX Manual. Because of the ways that these three control sequences
interact (page 246), we will need a flag

\newif\iffne

which will be set true at the beginning of \footnote and then false again at
the end.

Next we declare certain constructions associated with \footmark:

\newcount\footmarkeC
\footmark@C=0
\def\footmarkeS#1{$ {#1}$}
\let\footmark@N=\arabic
\def\footmark@F{\rm}

No definitions were given for ‘\footmark@P’ and ‘\footmark@Q’ because
footnote markers almost never have pre- or post- material in their numbers.
Consequently, \pre\footmark, \newpre\footmark, etc., will give error mes-
sages. Of course, a style file could always change this arrangement if it were
necessary.

With this default definition of \footmark@s, the value of \footmarkaF is
actually quite irrelevant, but it might be significant if \newstyle\footmark
were used.

We will also define

\def\foottext@S#i{$ {#1}$}
\def\foottext@F{\rm}

This will allow \newstyle\foottext and \newfontstyle\foottext to
change things about the numbers in the \foottext; as mentioned on page 54
of the #\S-TEX Manual, it is possible to have a different style for printing the
marks within the footnote marker and within the footnote itself. On the other

240

P

25.2. \vfootnote 241

hand, we don’t want to have a separate counter ‘\foottext@C’, since the num-
bers in the marker and in the footnote certainly have to be the same. (Since
\foottext@N is undefined, we also can’t have different numbering styles. If,
for some weird reason, a style wanted something like a footnote mark of 3
referring to a footnote beginning with iii, the necessary modifications should
be pretty obvious.)

25.2. \vfootnote@. Inplain tex, the \footnote macro is defined in terms
of \vfootnote (footnote in vertical mode), which does the main work of
producing an \insert. MuyS-TEX uses \vfootnote@ for this purpose, to
avoid any possible conflict (\vfootnote@ will also work rather differently from
\vfootnote).

In I'54./\/16"'--[E)(3
\vfootnote@#1{___}

will be called when #1 represents something like the footnote marker, which
has already been determined by other I4(S-TEX constructions, while ‘_ _ _’ is
the text that we want to appear at the bottom of the page.

A straightforward definition of \vfootnote@ would be

\def\vfootnote@#1#2{\insert\footins
{\floatingpenalty=20000
\interlinepenalty=\interfootnotelinepenalty
\leftskip=0Opt \rightskip=0Opt
\spaceskip=0pt \xspaceskip=Opt

\rm \splittopskip=\ht\strutbox \splitmaxdepth=\dp\strutbox

\locallabel@\noindent@@{\footmark@F#i}
\strut#2\strut}),
}

(using \noindent@@, see Chapter 8).

The \locallabel@defines \thelabeld, ..., interms of \Thelabel@, ...,
which have been set by the constructions that will call \vfootnote@ (either
\footnote or \foottext); this is for the use of any \label in #2. And
#1 will be something like \foottext@S{\thelabel@@}, which we set at the
beginning of an unindented paragraph (in the font \footmark@F, if that's
relevant). Then the rest of the footnote is typeset in \rm.

242 Chapter 25. Footnotes

The large value of \floatingpenalty, which is the penalty added to a page

when there is a split \insert on it, discourages footnotes from breaking across
a page. \interlinepenalty is the penalty for page breaks between two arbi-
trary lines of a paragraph. It is normally 0, but is here temporarily set equal to
\interfootnotelinepenalty, which plain TEX gives the value 200; so if a foot-
note must split across a page, it will be more likely to split between paragraphs. Other
styles might set other values for \interfootnotelinepenalty.

\leftskip and \rightskip must be set to Opt within the \insert in case it occurs
within text where other values are in force (paragraphs indented on the left or right),
and similarly for \spaceskip and \xspaceskip (paragraphs set \raggedright, for
example).

If a style had a construction that did something else strange, like changing the
value of \parfillskip, then this would normally also have to be changed back
within the \vfootnote®.

The \strut#2\strut adds a strut to the first and last line of the footnote (com-

pare the footnote on page 57). \strut is defined by plain TEX in terms of
\strutbox, which contains a vertical rule of zero width and the desired height and
depth of a \strut; in the default style a \strut has height 8.5pt and depth 3.5pt.
And \splittopskip is made the height of \strutbox so that the space before the
first line of a split footnote will be just the same as if there were a \strut on this line
also; similarly, the value of \splitmaxdepth allows footnotes to go below the bottom
of the page only by the depth of \strutbox. Normally any point-size command, like
\tenpoint, \ninepoint, etc., will redefine \strutbox; in the paper and book styles,
\rm is replaced by \eightpoint, so that the \strutbox then has a smaller height
appropriate for 8 point type; the \rm in this definition has been placed before the
assignments of \splittopskip and \splitmaxdepth, to emphasize that in general,
font size commands must precede them.

Actually, plain TEX uses

\footstrut#2\strut

where \footstrut is defined as \vbox to\splittopskip{}, which thus has height
\ht\strutbox, but no depth. This will be important for a two-line footnote, when-
ever \lineskiplimit happens to have been chosen to be greater than Opt: If a full
\strut appeared on both lines, so that the first line has depth 3.5pt while the sec-
ond line has height 8. 5pt, then these two lines could not be placed together with Opt
glue between them because they would then be closer together than \1lineskiplimit;
consequently, additional \1ineskip glue would intrude.

N

o =

i

25.2. \vfootnote® 243

I4S-TEX also replaces the second \strut by

\lower\dp\strutbox\vbox to\dp\strutbox{}

which has the proper depth, but zero height.

(By the way, Appendix E of The TEXbook, page 416, illustrates a more compli-
cated arrangement; the \strut for the eight-point footnote has a height of 7pt, but
a \smallskip (= \vskip 3pt plus ipt minus 1pt) precedes each footnote, so
\splittopskip is set to the sum, 10pt plus 1pt minus 1pt.)

Aside from being aesthetically unpleasing, struts don’t actually give the right re-

sults. For example, plain TEX, with \baselineskip=12pt, defines a \strut
to have height 8.5pt and depth 3.5pt. If the last line of one footnote actually has
depth Opt, while the first line of the next footnote contains a tall symbol having a
height of 9pt, there should still be 12pt between the baselines (assuming a reasonably
small value of \1ineskiplimit). But the last line of the first footnote will be artifi-
cially increased to 3.5pt by the strut, so the baselines will be separated by a total of
3.5pt +9pt = 12.5pt. Of course, when there are large symbols of this sort, the extra
space probably won't be considered too extravagant.

% A more disquicting disadvantage of struts is the fact that the proper definition of

a \strut for any particular point size is font-dependent. In the Computer Mod-
ern fonts, the parentheses are usually the tallest and deepest characters; in cmr8, for
example, their height is 6pt and their depth is 2pt. Thus, for eight point type and
a \baselineskip of 9pt, a \strut of height 7pt and depth 2pt is appropriate
(compare The TgXbook, page 415). For this manual, which uses a \baselineskip
of 10pt for the \eightpoint footnotes, I originally chose a \strut of height 8pt
and depth 2pt. But this sometimes gave strange inconsistent line spacing; it turns out
that some characters (not parentheses) were deeper than 2pt, and the dimensions had
to be changed to 7.5pt and 2.5pt to work with the Baskerville fonts used here.

Instead of using the straightforward definition, we will follow plain TEX
and use a more complicated construction, which doesn’t consider the group
{-__} as an argument to \vfootnote@, thus allowing category changes
within ‘_ _ _’. In plain TEX this virtuoso performance was provided so that
literal mode constructions could appear in footnotes. In version 1 of 14,S-
TEX, this was needed to allow invisible index entries within a footnote, since
such entries involved category changes. That’s no longer necessary, but we
might as well allow category changes anyway, since plain TEX already sup-
plies most of the necessary machinery, and it is a nice feature to have.!

11t sure made this manual easier!

244 Chapter 25. Footnotes

So the actual definition is more sophisticated, using the “implicit” left brace
\bgroup. Basically, we would like to

\def\vfootnote@#i{\insert\footins
\bgroup . . .
\noindent@e{\foottext@F#1i}\footstrut
\aftergroup\@foot
\bgroup
\let\next@=}

\def\@foot{\lower\dp\strutbox\vbox to\dp\strutbox{}\egroup}
Then when we have

\vfootnote@#i{__ _}

the \1et\next@= is followed by {, so that we \1et\next@={, thereby removing
the {. Consequently, we now have

\insert\footins
\bgroup . .
\noindent@@{\foottext@F#1}\footstrut \bgroup ___}

with the } matching the second \bgroup. And after that }, TEX inserts the
\aftergroup token, \@foot, which gives the \strut and the \egroup that
matches the remaining first \bgroup.

Notice that the ‘{_ _ _}’ ends up staying in a group—the \bgroup_ _ _}—
which wouldn’t happen if we had read in it as an argument. As we will see
later (page 246), this is not irrelevant: it introduces complications, which are
most easily dealt with if the {\foottext@F#1} is followed by an additional
control sequence, ‘\modifyfootnote@ which is initially \relax:

\let\modifyfootnote@=\relax

and which the user can change with \modifyfootnote,

\def\modifyfootnote#i{\def\modifyfootnote@{#1}}

N

. o

25.2. \vfootnote@ 245

We'’ve now essentially established the required definition, except that there’s
always the horrid possibility of a footnote only one token long, which has been
typed without braces, so we actually need a \futurelet\next to worry about
this:

\def\vfootnote@#i{\insert\footins
\bgroup
\floatingpenalty=20000
\interlinepenalty=\interfootnotelinepenalty
\leftskip=0pt \rightskip=0pt
\spaceskip=0Opt \xspaceskip=0pt
\rm \splittopskip=\ht\strutbox \splitmaxdepth=\dp\strutbox
\locallabel@\noindent@@{\foottext@F#1}\modifyfootnote@
\footstrut\futurelet\next\folt}

Here \£o@t calls \f@@t when a group follows, but \f@t otherwise:

\def\fo@t{\ifcat\bgroup\noexpand\next\expandafter\feet\else
\expandafter\fet\fi}

(this is a slight redefinition from plain, using the K-method). Since \£@t is
called when we have a single token following instead of a group, we just insert
that token, followed by \@foot, to be defined presently.

\def\fet#1{#1\@foot}

\£@@t is also slightly changed from plain TEX:

\def\feet{\bgroup\aftergroup\efoot
\afterassignment\FNSSP@\let\next@=}

Here the \afterassignment\FNSSP@ adds \FNSSPQ right after the { that
the \let\next@= swallows, thereby discarding any space that might come
after the {, and also taking care of the possibility that an invisible construction
follows the {.1

!Since \afterassignment works on single tokens, this is the situation where we must have a
single control sequence that is defined to mean \FNSS@\pretendspace@.

246 Chapter 25. Footnotes

Finally, \@foot will be changed in two ways. First, we change \strut to

\lower\dp\strutbox\vbox to\dp\strutbox{}

and we add an \unskip before this, in case a mistaken space appears before
the closing }. In addition, as we will see in sections 5 and 6,

\foottext calls \vfootnote@
while

\footnote sets \fn@true
and calls \footmark \vfootnote®@

Note that although a \footnote is essentially like a \footmark, \foottext
combination, nevertheless, \foottext is never called indirectly, but is used
only when it actually appears in the input file, presumably matching a previous
\footmark that appears directly in the input file.

Now \foottext, which leaves \iffn@ false, begins with \prevanish@,
since it is supposed to be invisible. Consequently, if \1ffn@ is false, we want
to end with a \postvanish@, but if \iffn@ is true, we simply want to reset
\iffn@ false:

\def\@foot{\unskip

\lower\dp\strutbox\vbox to\dp\strutbox{}\egroup
\iffn@\expandafter\fn@false\else
\expandafter\postvanish@\fi}

A style file might replace the \rm in the definition of \vfootnote@ by
\eightpoint, for example, so that footnotes would be set in 8 point type with,
say, \baselineskip=10pt. But a user who tries to change things on the fly,

\footnote{\baselineskipiOpt . . . }

will be sorely disappointed! As noted on page 244, this construction produces

\insert\footins\bgroup . . . baselineskipi()pt .. .egroup

25.3. Fancy footnote numbering 247

and . . . won't be typeset in paragraphs until the \egroup is encountered, by which
time the value of \baselineskip will have been restored to its old value! (This same
difficulty occurs in plain TEX).

On the other hand,

\modifyfootnote{\baselineskip10pt}
\footnote{...}

will have the desired effect, so a user can easily arrange for \footnote’s to be treated
specially within certain constructions.

25.3. Fancy footnote numbering. Footnotes differ from all other automatically
numbered I4S-TEX constructions because of the possibility of “fancy foot-
note numbering”, whereby footnote numbers begin anew on each page. This
section explains the basic strategy to be used in that case.

We will introduce the flag

\newif\ifplainfn@
\plainfn@true
\def\fancyfootnotes{\plainfn@false}

whose default true value indicates that we are using “plain” rather than “fancy”
footnote numbering.

When we are using fancy footnote numbering, \footmark@C will continue
to be incremented by 1 at each footnote. But we will have a separate counter

\newcount\fancyfootmarkcount@
\fancyfootmarkcount@=0

in which we store the latest fancy footnote number. We also need a counter
in which to store the number of the most recent page on which a footnote
appeared:

\newcount\lastfnpage@

Initially this should not have the value of any page that has appeared. So we
will initialize it to =10000, presuming that no one will ever start something at
that page number:

248 Chapter 25. Footnotes

\lastfnpage@=-10000

Remember (Chapter 12) that when \fancyfootnotes is in force, I4S-TEX
will write lines of the form

F(number);
F(number)y
F(number)s

to the .lax file, where (number); is the page number on which the first
footnote occurs, (number)s the number on which the second footnote occurs,
etc. And the next time the file is TEX’ed, \document will use these lines to
define \fnpages@ to be

\\(number); \\(number)s\\(number)s .

Now suppose that we have come to the k™ footnote. By looking through
\fnpages®, we can determine the number K of the page on which it occurs
(which might not be the same as the current value of \pageno). If X is greater
than \lastfnpage®, the number of the page on which the previous footnote
occurs, then the current footnote is the first on the page. In this case, we will
set \fancyfooﬁmarkcount@ to 1, and use this value for the number of the
current footnote. Moreover, we will also change \lastfnpage@ to K. But if
K equals \lastfnpage@, so that the previous footnote occurs on this same
page, we will just increase \fancyfootmarkcount@ by 1, and use that value
for the number of the current footnote (in this case, we don’t have to bother
changing \lastfnpage®).

If \footmarkeC has the value £, the following code efficiently sets \Next@ to
the corresponding page number K, or to 10000 if there are fewer than k num-
bers on the list (we use \Next@ because of the global \xdef [see page 22]):

{\let\\=\or
A) \xdef\Next@{\ifcase\number\footmarkeC\fnpages@
\else -10000 \fi}
by

R

RN

25.4. \footmark 249

Roughly speaking, the \xdef makes \Next@ mean

\ifcase k\or(number);\or{number)s\or(number)s...\else -10000 \fi

which immediately picks out either (number);, or -10000 . In reality, how-
ever, things are trickier, and this code works only by a fluke: As TEX expands
\number\footmarkeC, it will have to expand out \fnpages@ (since this might
stand for another digit of the final number that it is looking for); consequently,
all the \\’s in \fnpages@ will be revealed, so that TEX will know how many
\or’s the \ifcase actually has. If we had been “careful” and used

\ifcase\number\footmark@C\relax\fnpages@\else -10000 \fi

then we would always get the case -10000 (being sloppy pays off), so a more
intricate scheme would be needed. This observation will also be important
when we read in data from a .dat file for tables (Volume 2).

25.4. \footmark. In section 1, we introduced the flag \iffn@, which is true
when we are processing a \footnote.

When \footmark is not called indirectly by \footnote, but s called directly
(so that the flag \iffn@ will be false), we will have to store

Vi Vo H Vs {V,}

where Vi, ..., V4 have their usual significance (Chapter 11 et seq.), be-
cause this information will have to be used by some subsequent \foottext (a
\label might appear in the \foottext part, and Vy will be the marker that
will appear at the beginning of the \foottext).

This information will be stored in \justfootmarklist@, initially defined
to be empty,

\let\justfootmarklist@=\empty

In this case it will be more convenient for \justfootmarklist@ to be a
list of the type introduced in The TEXbook, page 378, so we will be using
\rightappend@ (c.f. section 3.7) to append to it.

250 Chapter 25. Footnotes

The definition of \footmark begins with some of the same constructions
used by \footnote in plain to save the space factor (compare page 147),
and add the italic correction to the previous letter:

\let\@sf=\empty
\ifhmode\edef\@sf{\spacefactor\the\spacefactor}\/\fi

Notice that \/ has already been redefined by ApS-TEX to include an \unskip
before the italic correction; so a space before a \footmark (and hence, even-
tually, before a \footnote) is ignored.

We are going to be using a modified compressed format,

\def\footmark{\let\Q@sf=\empty
\ifhmode\edef\@sf{\spacefactor\the\spacefactor}\/\fi

\def\next@{\ifx"\expandafter\nextii@\else
\expandafter\footmark@\fi}

\def\nextii@"#1"{...}

\futurelet\next\next@}

where we will define \footmark@ separately (instead of using \nextiiie,
which we would temporarily define within \footmark). We use this procedure
simply because \footmark@ will turn out to be quite involved, and we don’t
want \footmark to have to make such a complicated definition for \nextiii@
each time it is used.

The first attempt for defining \nextii@ might be

\def\nextii@"#1"{)

{\let\style=\footmark0S \let\numstyle=\footmarkeN
\footmark@F#1
\noexpands@
\let\style=\foottext@S
\Qlabel@{#1}
}

\iffn@\else
{\noexpands@\xdef\Next@{{\Thelabel@}{\Thelabel@@}
{\Thelabel@@e}{\Thelabel@eee}}

.. L

N

—

25.4. \footmark 251

\expandafter\rightappend@\Next@\to\justfootmarklist@
\fi
\@sf\relax}

Here we use \Qlabel@ to create \Thelabel@, ..., \Thelabel@@@®@. If
our \footmark came from a \footnote, which calls the pair \footmark,
\vfootnote@ (sec page 246) then any \label’s within the \footnote will
actually end in the \vfootnote@ part of the construction, and these values will
then be used by the \vfootnote@. However, before using \Qlabel@, we first
change the meaning of \style from \footmarkes to \foottext@S, so that
\Ref within a \footnote{. ..} will refer to the style of the numbering that
is used within the note itself, rather than to the style used for the footmark.

If our \footmark was used directly, so that the flag \if£n@ is false, then
the \iffn@\else...\fi clause stores the appropriate information. In this
case, it is essential that \Thelabel@@ use the value of \foottext@S rather
than \footmark@s, since \Thelabel@@ is what we will print at the beginning
of the corresponding \foottext.

And then, finally, we restore the space factor with

\@sf\relax

The \relax is necessary, because \@sf expands out to

\spacefactor=(number)

and a digit could follow.

Unfortunately, there is problem here, of a type already addressed by ApS-
TEX for the amsppt.sty file: If \footmark is invoked within \text (as in the
example on page 52 of the I4S-TEX Manual), we don’t want to add things
to \justfootmarklist@ 4 times, even though \text sets things 4 times. So
AmS-TEX has a flag \iffirstchoice®, which is usually true, but which is
set to false within the second, third, and fourth choices of the \mathchoice
involved in the definition of \text. We will therefore use

\def\nextii@"#1i"{Y
\iffirstchoice®

{\let\style=\footmark@S \let\numstyle=\footmarkeN
\footmark@F#i

252 Chapter 25. Footnotes

\noexpands@
\let\style=\foottext@S
\Qlabel@{#1}
}
\iffne@\else
{\noexpands@
\xdef\Next@{{\Thelabel@}{\ThelabelQQ}
{\Thelabel@@@}{\Thelabel@QQO}}
}
\expandafter\rightappend@\Next@\to\justfootmarklist@
\fi
\fi
\@sf\relax}

The definition of \footmarkQ, the routine when \footmark is not followed
by a quoted number "...", will be quite a bit more complicated.
First, we want to advance \footmark@C by 1,

\global\advance\footmarkeC by 1

Next we want to define \adjustedfootmark@, which will simply be the
value of \footmark@C for non-fancy footnotes, but which will be the properly
adjusted value when \fancyfootnotes is in force. For the latter case, we use
the strategy explained in section 3. Note that if the test (A) on page 248 makes
\Next@ have the value -10000, then we presumably have some new footnotes,
not recorded on the last run; in this case we just use \footmark@C for deter-
mining the value of \adjustedfootmark@ (another run will be necessary to
get everything right):

\ifplainfn@
\xdef\adjustedfootmark@{\number\footmarkeC}
\else
{\let\\=\or

\xdef\Next@{\ifcase\number\footmark@C\fnpages@\else-10000 \fi}}
\ifnum\Next@=-10000

\xdef\adjustedfootmark@{\number\footmarkeC}

25.4. \footmark 253

\else
\ifnum\Next@=\lastfnpage®
\globalladvance\fancyfootmarkcount@ by 1
\else
\global\fancyfootmarkcount@=1
\global\lastfnpage@=\Next@
\Ei
\xdef\adjustedfootmark@{\number\fancyfootmarkcount@}
\fi
\fi

Then we define \Thelabel, ..., \Thelabel@@@@, in case it will be needed
by a succeeding \vfootnote@. Since there is no pre- or post- material,
\Thelabel@@@@ will just be the same as \Thelabel@:

{\noexpands@
\xdef\Thelabel@0@{\adjustedfootmarke}
\xdefThelabel@\footmarkeN
\xdef\Thelabel@@@@{\Thelabel@}
\xdefThelabel@@\foottext@S
}

Notice that in the last step we used \foottext@S instead of \footmarkes,
for the same reasons as with the definition of \nextii@.

As before, we then add informaton to \justfootmarklist@ unless
\iffn@ is true:

\iffn@\else
{\noexpands@
\xdef\Next@{{{\Thelabel@}{\Thelabel@@}
{\Thelabel@0@}{\Thelabelo0Q@}}

\expandafter\rightappend@\Next@\to\justfootmarklist@
\fi

Finally, if we have fancy footnote numbering, we want to write an appropriate
line

F(current page number)

254 Chapter 25. Footnotes

to the .lax file. To do this we will use

\ifplainfn@\else

\edef\next@{\write\laxwrite@{F\noexpand\the\pageno}}
\next@
\fi

In this \edef, the \laxwrite@ is not expanded because it was created with
\newwrite and thus with \chardef (compare page 55), and plain TEX’s
\pageno is also not expanded, since it was created with a \countdef (compare
page 179). Consequently, the \edef makes \next@ mean

\write\laxwrite@{F\the\pageno}

When this (delayed) write is executed, it will consequently print the proper
page number.
And, finally, \footmark@ will end with \@sf\relax, just like \nextiie.

But again, we have to perform most of this definition only when
\iffirstchoiceQ is true, since we don’t want to increase the counter 4 times,
etc.

Thus, the whole definition of \footmark reads:

\def\footmark{\let\@sf=\empty
\ifhmode\edef\@sf{\spacefactor\the\spacefactor}\/\fi
\def\next@{\ifx"\next\expandafter\nextii@\else

\expandafter\footmark@\fi}
\def\nextii@"##1"{)
\iffirstchoice
{\let\style=\footmarkeS \let\numstyle=\footmarkeN
\footmark@F##1J,
\noexpands@
\let\style=\foottext@S
\Qlabel@{##1}Y
Y

l\.wv,./'

N

25.4. \footmark 255

\iffn@\else
{\noexpands@
\xdef\Next@{{\Thelabel@}{\Thelabel@al}},
{\Thelabel@@@}{\Thelabel@@@Q}}}
Y
\expandafter\rightappend@\Next@\to\justfootmarklist@
\fi
\fi
\@sf\relax}),
\futurelet\next\next@}

\def\footmarke{}
\iffirstchoice@
\global\advance\footmark@C by 1
\ifplainfne@
\xdef\adjustedfootmark@{\number\footmarkeC}/,
\else
{\let\\=\or
\xdef\Next@{\ifcase\number\footmark@C\fnpages@
\else-10000 \fi}}}
\ifnum\Next@=-10000
\xdef\adjustedfootmark@{\number\footmarkeC}y,
\else
\ifnum\Next@=\lastfnpage®
\global\advance\fancyfootmarkcount by 1
\else
\global\fancyfootmarkcount@=1
\global\lastfnpage@=\Next@
\fi
\xdef\adjustedfootmark@{\number\fancyfootmarkcount@}y,
\fi
\fi
{\noexpandse
\xdef\Thelabel@@@{\adjustedfootmark@}¥
\xdefThelabel@\footmarkeN

256 Chapter 25. Footnotes

\xdef\Thelabel@@@@{\Thelabel@}}
\xdefThelabel@@\foottext@S
Y
\iffn@\else
{\noexpands@\xdef\Next@{{\Thelabel@}{\Thelabel@@}/,
{\Thelabel@@@}{\Thelabel0@@@}}}}
\expandafter\rightappend@\Next@\to\justfootmarkliste@
\fi
\ifplainfn@
\else
\edef\next@{\write\laxwrite@{F\noexpand\the\pageno}}\next@
\fi
\fi
\footmark@S{\footmarkeN{\adjustedfootmarke}}/,
\@sf\relax}

25.5. \foottext. The \foottext construction has to get its informa-
tion from \justfootmarklist@, since (compare page 246) \footext’s
should only occur after sufficiently many \footmark’s have been used. If
\justfootmarklist@ is

\\{(stuff); \\{(stuff)s}\\. . .
and we define
\def\next@\\#1#2\next@{\def\next@{#1}\gdef\justfootmarkliste{#2}}
then

\expandafter\next@\justfootmarklist@\next@

defines \next@ to be (stuff);, while \justfootmarklist@ is redefined as

The definition of \foottext will begin with \prevanish@. Then we will
first test whether \justfootmarkliste@ is empty, and if so, we will issue an
€IToT message

There is no \footmark for this \foottext.

S

R

N’

25.5. \foottext 257

Assuming this hasn’t happened, we will use the process just described to
make \next@ be the first thing on \justfootmarklist@, and to redefine
\justfootmarklist@ to be the remainder.

And then we will use

\expandafter\foottext@\next@

so that \foottext@ can use the four values of \next@:

\def\foottext{\prevanish@
\ifx\justfootmarklist@\empty
\Err@{There is no \noexpand\footmark for this
\string\foottext}\fi
\def\next@\\##1##2\next@{\def \next@{##1}/
\gdef\justfootmarklist@{##2}}%
\expandafter\next@\justfootmarklist@\next@
\expandafter\foottext@\nextQ}

Once again, for the \noexpand in the error message, see section 3.4.

\foottext@simply uses the next four values for defining \Thelabelg, ...,
\Thelabel@@@Q, and then calls \vfootnote® with the value of \thelabel@@
(the \locallabel@ part of \vfootnote@ sets this to the current value of
\Thelabel@®, namely the second value of \next@):

\def\foottextQ#1#2#3#4{{\noexpands@
\xdef\Thelabel@{#1}\xdef\Thelabel@a{#2}Y
\xdef\ThelabelQQQ{#3}\xdef\Thelabeleeea{#4}}
\vfootnote@{\thelabel@a}}

The \vfootnote@ will put in a \postvanish@ at the end, to match
the \prevanish@ at the beginning, since \iffn@ will not be true when
\foottext is processed. The only thing left to do now, is to

\rightadd@\foottext\to\vanishlist@

258 Chapter 25. Footnotes

25.6. \footnote. Finally, the definition of \footnote holds no special sur-
prises. It is practically the same as the combination \footmark, \foottext,
except that we use \vfootnote@ explicitly instead of \foottext, so that the
flag \1iffn@, which we now set to be true, will function properly:

\def\footnote{\fnetrue

\let\@sf=\empty

\ifhmode\edef\@sf{\spacefactor\the\spacefactor}\/\fi

\def\next@{\ifx"\next\expandafter\nextii@
\else\expandafter\nextiii@\fil}},

\def\nextii@"##1"{\footmark"##1"Y,
\vfootnote@{\let\style=\foottext@s

\let\numstyle=\footmarkQN##1}}Y

\def\nextiii@{\footmark
\viootnote@{\foottext@S{\footmarkeN{\adjustedfootmark@}}}}Y%

\futurelet\next\nextQ}

Part IV

Mascellaneous
Constructions

S

Chapter 26. Literal mode

The basic mechanism for literal mode is really not all that complicated. How-
ever, the final I4yS-TEX definitions are complicated indeed, because of

e special features that we want to incorporate;
o subtle possibilities for bugs;
o the desire for generality.

In order to temporarily eliminate the third complicating factor, we will first
consider what is needed to define the particular version of literal mode in
which * is the delimiter and " is used to serve as the escape character in literal
mode.

26.1. In-line literal mode. The basic idea of in-line literal mode, with * as the
delimiter and " as the escape character, is to

\def\lit*{\begingroup\litcodes@\litdefs@\tt\1it@}
\def\lit@#1x{#1\endgroup}

where \1itdefs@ is the abbreviation
\def\litdefs@{\let\0=\empty\def\1{\char42 }\def\ {\char32 }\def\"{\char34 }}

and \litcodes@ changes all the category codes,

\def\litcodes@{\catcode‘\\=12
\catcode‘\{=12 \catcode‘\}=12
\catcode‘\$=12 \catcode*\&=12
\catcode ‘\#=12
\catcode‘\"=12 \catcode‘_=12
\catcode‘\@=12 \catcode‘\~=12
\catcode‘\%=12 \catcode‘\"=0 }

so that these new category codes are in force before \11t@ reads in its argu-
ment.

The first line of this definition says that \ will be an ordinary character once
\litcodes@ appears. The next two lines make ordinary characters out of the

261

262 Chapter 26. Literal mode

characters with category codes 1, 2, 3 and 4. Category 5 (end of line) isn’t
changed for in-line-literal mode, so the next line just handles the character #
with category code 6, and the next line handles category codes 7 and 8. We
dorn’t bother with category 9 (ignored character) and category 10 (space) will
be attended to in a moment. Categories 11 and 12 (letter and other character)
need no special treatment. The next line handles category 13 (active); the final
line handles category 14 (comment character), leaving category 15 (invalid)
alone, and then finally makes " the escape character.

Then \1it*...* will print out ‘. ..’, with each of the tokens \, {, }, $, &,
#, ~, _, @, 7, Y being printed in the \tt font. Moreover, within the \1it*. . .*
region, "0 will stand for \empty, "1 will stand for character 42 on the \tt
font, which is the * symbol, ‘" ’ will stand for character 32, which is the
symbol, and """ will stand for character 34 on the \tt font, which is the "
symbol.

However, we also want spaces to act specially. plain TEX’s \obeyspaces
makes spaces active, and defines each active space to give one space in the
output. But we will want a different definition for literal mode. If we first use

{\obeyspaces
\gdef\defspace@{\def {\hskip.Semminus.15em}}}

so that \defspace@ makes the active space give spacing suitable for literal
mode, then we can simply add

\obeyspaces\defspace@

to the end of the definition of \1itcodes@.
Actually, we will use

{\obeyspaces
\gdef\defspace@{\def {\allowbreak\hskip.5emminus.15em}}}

Then a line break can occur between spaces. For example, \1it*A B%,
with four spaces between the letters, could split after the second, giving ‘A

B’; two spaces remain at the end of the first line, although all subsequent spaces
disappear before the second letter. Note that \allowbreak is not only shorter
than \penalty0, but much preferable in this case, since we cannot afford to
leave a space after the 0, so would have to add \relax to be on the safe side.

26.1. In-line literal mode 263

I made this choice so that the first line could at least indicate that more than one

\O 5 space was involved, but it looked too weird to have spaces at the beginning of the

next line. If that more literal sort of literal mode is preferred, it is only necessary to
define the active space to mean

\allowbreak\hbox to.5em{}\hskipOemminus.1i5em

In practice, one would presumably be printing s if the number of spaces needs to be
emphasized.

The \allowbreak at the beginning of the definition of a space in literal
mode does introduce one slight complication: we should

\def\lit*{\leavevmode\begingroup . . .}

—otherwise a ‘\1it#* ’ at the beginning of a paragraph will contribute an
\allowbreak in wertical mode, possibly overruling a \nobreak that occurs
before it.

Moreover, the definition of \1it@ should be changed to

\def\lit@#1*{#1\endgroup\null}

so that a \1it*...* construction ending with a space won’t have this space
deleted by any succeeding \unskip.

Making spaces active means that we don’t have to say \frenchspacing,
since now there aren’t any spaces after punctuation. However, as The TEXbook
points out (page 381), there’s another slight problem, because the \tt font
has the ligatures 7° and ! ¢, which print as ; and ; respectively (sigh). So we
must

{\catcode‘\‘=\active\gdef ‘{\relax\1q}}
and then use
\catcode‘\ ‘=\active\obeyspaces\defspace@

at the end of the definition of \1itcodes®@.

264 Chapter 26. Literal mode

Finally, we want to set the \hyphenchar of the \tentt font (selected by
\tt) to -1, so that hyphenation won’t be allowed:

\def\1lit*{\leavevmode\begingroup\litcodes@\litdefs@
\tt\hyphenchar\tentt=-1 \1it@}

If the possibility of hyphenation is preferred, this last clause can simply be omitted.
Or one could add

\def\-{\discretionary{\charss }{}{}}

to the \1itdefs@, so that "~ could be used for a discretionary hyphen.

In the ES-TEX Manual, \tt means \tentt for the usual 10 point text, but

\ninett in 9 point type (used for these “small print” sections), and \eighttt
in 8 point (used for the footnotes). The style file for the manual simply sets the
\hyphenchar of all three to ~1 at the beginning, but a more complicated scheme could
be used. For example, we could have \tenpoint define \pointsize@ to be t, and
\ninepoint define \pointsizeQ to be n, and \eightpoint define \pointsize@
to be e. And then we could replace the clause

\hyphenchar\tentt=-1
with
\if\pointsize@ t\hyphenchar\tentt=—1 \else

\if\pointsize@ n\hyphenchar\ninett=-1 \else
\hyphenchar\eighttt=-1 \£i\fi

(As a matter of fact, the style file for the Manual does make use of \pointsize®, for
defining the I44S-TFX logo, since the A, M, and S need to be selected from different
fonts for different sizes.)

26.2. Displayed literal mode. For “displayed” literal mode, we are going to
use \obeylines to make ~"M active, but we will need a new definition of the
active ~"M. It will be convenient to use

{\obeylines\gdef\letM@{\let~"M=\CtrlMe}}

R—

26.2. Displayed literal mode 265

where \CtrlMe@ will be defined in a moment, so that \1etM@ will make ~~M
have the meaning of \Ctr1M@ once \obeylines has appeared.
We can begin defining \Lit* by:

\def\Lit*#{\bigskip\begingroup
\litcodes@\obeylines\letMQ\tt\Lit@}

We don’t need to disable hyphenation, since we are going to be setting each
line as a separate \hbox (and therefore the shrink in the definition of the
active space will also be irrelevant). For reasons to be discussed in section 3,
\1litdefs@ hasn’t been included yet.

\Lit@ will begin setting an \hbox, so we first declare

\newbox\1litbox@
and then

\def\Lit@{\setbox\1litbox@=\hbox\bgroup\litdefs@}

Thus, the \Lit@ will start setting \box\1itbox@ to be whatever is on the
current line, with the literal codes in effect, as well as the temporary definitions
from \litdefs@. When we get to the end of the line, we will encounter a
~~M, which will have the meaning of \Ctr1Me, which we can define by

\def\CtriMe{\egroup
\box\1itbox@
\Lite}

so that the ~~M will simply cause the \hbox containing the line to be added to
the vertical list, and then start setting another \box\1itboxe@.

In order to have the closing * end the literal display, the simplest method
is to make the * active during the display and have it defined by

\def*{\egroup\endgroup\bigskip}

The \egroup ends the \box\1itbox@ that started being set at the beginning
of the line containing the *, but instead of adding this (presumably empty)

266 Chapter 26. Literal mode

box to the vertical list, we simply supply the \endgroup that matches the
\begingroup contributed by \Lit*.
In order to do this, we need to do something like

{\catcode‘*=\active
\gdef\defstare{\def*{\egroup\endgroup\bigskip}}
}

so that \defstar@ will define * properly once it is active, and then

\def\Lit*{\bigskip\begingroup
\litcodes@
\catcode‘*=\active\defstar@
\obeylines\letM@\tt\Lit@}

The only slight problem with our definition is that the very first line of a

\Lit*

contributes an empty box. To take care of this, and for later purposes (sec-
tions 4 and 8), we will declare a counter

\newcount\litlines@

which \Lit* will set to 0, and then we will have \CtrlMe (page 265) simply
increase \1itlines@ by 1 if it is 0, but add \box\1itbox@ if \1itlines@ is
not 0.

26.3. Notes for the wary. Although we still have many features to add, there
are already some important point to be made about our definitions.

First of all, \Lit* ends up processing only one line at a time. Consequently,
there is no limit on the number of lines before the ending *.

Second, we were careful to arrange that \1itdefs@ will be in force only
within each individual \box\1itbox@.

R !

R

26.4. Prohibiting page breaks 267

And this is extremely important: After any particular \box\1itbox@ hasbeen
placed on the main vertical list, TEX may decide to exercise the \output
routine, possibly long before the \endgroup supplied by the final *. If we had
put \1itdefs@ right into the definition of \Lit*, then \1itdefs@ would be
in effect when the \output routine is invoked, which could lead to havoc. For
example, suppose that in the book style we have typed

\chapter The \LamSTeX\ Co\"op\endchapter

so that even-numbered pages will use

The \LamSTeX\ Co\'"op

in the running heads. Then if this running head happened to be typeset while
the literal mode definitions are in force, we would end up with

The I\S-TEX-Co” op

since the ’ symbol is \char32 in the Computer Modern fonts, while \char34
is ”. Similarly, the user should be able to define \0 and \1, and have them
used in running heads, without worrying about them changing definitions if
the output routine is invoked in the middle of literal mode.

26.4. Prohibiting page breaks. Normally, we want to prohibit breaks between
lines of displayed literal material, so we also want to add a penalty after
\box\1litbox@. We will declare a new counter

\newcount\interlitpenalty@
\interlitpenalty@=10000

and we will have \Ctr1M@ (page 265) add \penalty\interlitpenalty@
before the current \box\1itbox@ except for the very first box (other con-
structions, see section 8, can insert other penalties, or give different values
to \interlitpenalty@). The following definition takes care of this, to-
gether with the fact that we also don’t want the empty box from the first

268 Chapter 26. Literal mode

line (page 266):

\def\CtriMe{\egroup

\ifcase\litlines@
\advance\litlines@ by 1

\or
\box\1itbox@ \advance\litlines@ by 1
\else
\penalty\interlitpenalty@\box\1litbox@
\fi

\Lit@

Notice that with this arrangement, \penalty\litpenalty@ ends up being
added after each \box\1litbox@, except the last box, so that a page break
can occur at the \bigskip supplied by the closing * (page 265); an explicit
\penalty could be added before the \bigskip if we wanted to discourage
or encourage a page break at that point.

26.5. Indentation. We usually want displayed literal constructions to be in-
dented by a certain amount. So we declare a new dimension

\newdimen\litindent

with the default value
\litindent=20pt

and we add \hskip\litindent at the beginning of each box:
\def\Lit@{\setbox\1litbox@=\hbox\bgroup\litdefs@\hskip\litindent}

26.6. TAB’s. Proper interpretation of the TAB character (" "I) is another fea-
ture that we want to add. We will use

{\catcode‘\""I=\active\gdef\1letTABQ{\let~~I=\TABQ}}

so that \1etTAB@ will make an active “~I mean \TAB@, which we will define
in a moment, and then we will add

\catcode‘\""I=\active\letTAB®@

o s

. R

26.6. TAB’s 269

to the definition of \Lit*, before the \obeylines.
For \TAB@, we want, first of all, to allow for variances in the spacing for
TAB’s. So we will create a new counter, with the default value 8,

\newcount\littab@
\littab@=8

as well as the construction \1ittab, to change the value,
\def\littab#1{\1littab@=#1\relax}

Every time that we encounter a ~~I while we \setbox\1itbox@, we want
to supply an \egroup, so that \box\1litbox@ will be complete, add extra
space at the end of \box\1itbox@ so that it has the requisite width (namely
the next multiple of \1ittab@ times the width of \hbox{\tt0}), and then
include all this at the beginning of another

\setbox\litbox@=\hbox\bgroup\litdefs@

The TEXbook, page 391, gives a simple way to find the required extra space: If
\dimen@ is the width of our box, and \dimen@ii is \1ittab@ times the width
of \hbox{\tt0}, then to see how many times \dimen@ fits within \dimen@ii,
we can simply

\divide\dimen@ii by \dimen@
\multiply\dimen@ii by \dimen@

Here \dimen@ will be converted to its equivalent in scaled points (i.e., 1pt
will become 65536). At the end, \dimen@ii will be the largest multiple of
\dimen@ that is < \dimen@ii, so we will just have to increase \dimen@ by
\1littab@ times the width of \hbox{\tt0} to move to the next tab.! We have
to remember, however, that all our boxes begin with an extra \litindent
amount of space:

\def\TAB@{\egroup
\dimen@=\wd\1litbox@
\advance\dimen@ by -\litindent

! Although TFX indicates dimensions with decimal points, internally all dimensions are expressed
in terms of scaled points. Consequently, these calculations will not have any rounding errors.

270 Chapter 26. Literal mode

\setbox0=\hbox{\tt0},

\dimen@ii=\1littab@\wdO

\divide\dimen@ by \dimen@ii

\multiply\dimen@ by \dimen@ii

\advance\dimen@ by \littab@\wdo

\advance\dimen@ by \litindent
\setbox\litbox@=\hbox\bgroup\litdefs@\hbox to\dimen@
{\unhbox\1itbox@\hfil}}

26.7. Widow control. In order to provide control over widow lines before lit-
eral displays, we will make literal displays behave very much like displayed
formulas. We first use

\def\Lit*{\ifhmode
$$\abovedisplayskip=\bigskipamount
\abovedisplayshortskip=\bigskipamount
\belowdisplayskip=0Opt \belowdisplayshortskip=0pt
\postdisplaypenalty=10000
$$\vskip-\baselineskip\else\bigskip\fi
\begingroup .

to produce an empty displayed formula right above the displayed literal mode
material. The settings for \abovedisplayskip and for the ‘short’ ver-
sion ensure that a \bigskip will precede this formula. The settings for
\belowdisplay and for the ‘short’ version ensure that there is no extra
space between this empty displayed formula and the displayed literal mode
material. The \vskip-\baselinekip deletes the extra space that this empty
formula contributes. Finally, the empty display and the display literal mode
material are kept on the same page by the \postdisplaypenalty.

Consequently, TEX’s page breaking decisions before \Lit* material, will be
the same as before displayed formulas.

If we are already in vertical mode, we just add the \bigskip (we don’t want
to add an empty formula in that case, since $$. . . §$ in vertical mode actually
produces an extra blank line [The TEXbook, page 316]).

As mentioned on page 85 of the I44S-TEX Manual, changing the values of
\abovedisplayskip, etc., in this definition will change the amount of space

26.7. Widow control 271

before a literal display. One could even add a clause

\predisplaypenalty=. ..

changing \predisplaypenalty from its default value of 10000, to allow, or encour-
age, page breaks before a literal display (if this done, then a \penalty of that amount
should be added before the \bigskip in the \else clause above). However, the last
line on page 85 is just wrong: changing \displaywidowpenalty within the formula
won'’t affect anything.

As with displayed formulas (compare section 16.1), special care is required
in the definition of * made by \defstar@ (page 265), in case an invisible
construction follows. Basically we need to augment the definition to

\egroup\endgroup\bigskip
\vskip-\parskip
\noindent@@\futurelet\next\pretendspace®

to start a \noindent’ed paragraph, and take care of the fact that an invisi-
ble construction may follow (compare page 146). But now we have an extra
complication: we must skip over the space following the * before adding the
\noindent@@, so that our \noindent’ed paragraph doesn’t begin with an
extra space. So we really need

\egroup\endgroup\bigskip

\vskip-\parskip
\def\next@{\noindent@@\futurelet\next\pretendspace@}
\FNSS@\next@

As in the case of a displayed formula (page 101), users must be warned against
adding “invisible” constructions at the end of a literal display that ends a para-

graph.

The treatment of the end of display literal mode has been changed from ver-

sion 1 of I4,S-TEX, where a displayed formula was added at the end also (with
undesirable side effects).

272 Chapter 26. Literal mode

26.8. Page breaks. Within a literal display we want \displaybreak to force a
page break when it appears on a line by itself; similarly \allowdisplaybreak
should allow a page break, and \allowdisplaybreaks should allow a page
break at that line and all succeeding lines.

Within the definition of \Lit* we will add

\def\displaybreak{\egroup\break\litlines@=0 \Lit@}

The first \egroup ends the \box\1itbox@ that was being set at the beginning
of the line containing the

"displaybreak

The “"M at the end of this line is still there, and will end an empty
\box\1itbox@ started by the \Lit@. Since we have set \1it1lines@=0, how-
ever, this box will not appear on the vertical list, nor will a penalty appear
before the next \box\1litboxe@.

Thus,

(a line of the literal display)
"displaybreak
(the next line of the literal display)

will produce

(a line of the literal display)
\penalty -10000

appropriate \baselineskip glue for next box
(the next line of the literal display)

The appropriate \baselineskip glue will disappear after the page break at
the \penalty-10000, so the next page will start with the second line (pre-
ceded by suitable \topskip glue).

Similarly, we will define

\def\allowdisplaybreak{\egroup\allowbreak\litlines@=0 \Lit@}

S

N o

—

‘_//’

26.8. Page breaks 273

Then

(a line of the literal display)
"allowdisplaybreak
(the next line of the literal display)

will produce

(a line of the literal display)

\penalty O

appropriate \baselineskip glue for next box
(the next line of the literal display)

Finally, we will define

\def\allowdisplaybreaks{\egroup\allowbreak
\interlitpenalty=0 \litlines@=0 \Lite}

In this case,

(a line of the literal display)
Yallowdisplaybreaks
(the next line of the literal display)

produces

(a line of the literal display)

\penalty 0

appropriate \baselineskip glue for next box
(the next line of the literal display)

\penalty O

with a \penaltyO after all succeeding lines of the literal display, except the
very last (see page 268).

274 Chapter 26. Literal mode

This manual contains numerous page references to material in a literal display.

But a \pagelabel right before or right after the literal display couldn’t be
counted upon to give the proper page number, especially since many displays were
allowed to split across pages. So the style file contains the definition

\def\8#1\8{\pagelabel{#1}}

Then on page 219 I could type

\rightadde#2\to\overlongliste
\edef\next@{\global\let\csname\exstring@#20C\endcsname
=\expandafter\noexpand\csname HLQC#1\endcsname}\next@ "“8NameHLcounter"8

so that \ref{NameHLcounter} could be used on page 229 to refer to the page con-
taining this line.

26.9. \Litbox. For the construction
\Litbox#1i=+
*

we can first use

{\catcode‘*=\active

\gdef\defboxstar@{\def*{\egroup\egroup\endgroup}}
}

so that \defboxstar@ defines * once * is active, in a different manner than
\defstar@ did (adding an extra \egroup, and omitting the remaining ma-
terial). Then we want a definition like

\def\Litbox#1=+{\begingroup\defboxstar@
\litcodes@\tt\catcode‘\""I=\active\letTAB@
\obeylines\letM@\global\setbox#i=\vbox\bgroup
\litindent=0pt \litlines@=0 \Lit@}

The \litindent=0pt eliminates extra space at the beginning of each
\box\1itbox@. All these boxes are simply stacked inside the \vbox, and

' \y“/

S

26.10. The general definition 275

then the closing * supplies an \egroup to end the (empty) \box\1litbox@
already begun, another \egroup to end the \vbox, and a final \endgroup to
match the \begingroup.

We might as well also add in the definition of \allowdisplaybreak and
\allowdisplaybreaks, in case the created box is later \unvbox’ed.

But there is a slight problem with our whole scheme, because we don’t want
the assignment \setbox#1 to be global when #1 is even (section 1.8). To get
around this, we will declare a new box

\newbox\Litbox@

and \globallsetbox\Litbox@, and then after the \endgroup supplied by
the concluding * we will \setbox#1\box\Litbox@ for even #1, but add a
\global for odd #1:

\def\Litbox#1=+{\begingroup
\ifodd#1\relax\aftergroup\global\fi
\aftergroup\setbox\aftergroup#1i/,
\aftergroup\box\aftergroup\Litbox@

\defboxstar@
\litcodes@\tt\catcode‘\""I=\active\letTABQ
\obeylines\letM@\global\setbox\Litbox@=\vbox\bgroup
\litindent=0Opt \litlines@=0 \Lit@}

The various \aftergroup tokens—\global (if #1 is odd), \setbox, #1,
\box, and \Litbox@—are saved up and performed after the final \egroup
provided by the final *; in other words, \setbox#1\box\Litbox@ is per-
formed after \box\Litbox@ has been (\globallly) set.

26.10. The general definition. Now that we have all the pieces, let’s try to put
them together, and allow for greater generality.

We begin with things that don’t depend on the particular choice of the literal
delimiter or backslash.

276 Chapter 26. Literal mode

\newdimen\litindent
\litindent=20pt
\newbox\1litbox@
\newbox\Litbox@
\newcount\interlitpenalty@
\interlitpenalty@=10000
\newcount\litlines@

{\obeyspaces\gdef\defspace{),
\def {\allowbreak\hskip.5emminus.1i5em\relax}}}

{\obeylines\gdef\letMa{\let~"M=\CtrlMe}}
{\catcode‘\“=\active\gdef ‘{\relax\1q}}

\def\CtriMe{\egroup

\ifcase\litlines@

\advance\litlines@ by 1

\or

\box\1litbox@ \advance\litlines@ by 1
\else

\penalty\interlitpenalty@ \box\litboxe@
\fi

\Lit@}

\def\Lit@{\setbox\litbox@=\hbox\bgroup\litdefse
\hskip\litindent}

\newcount\littabe@
\littab@=8
\def\littab#1{\1littab@=#1\relax}

{\catcode‘*"I=\active\gdef\letTAB@{\let~~I=\TAB@}}

L K

P

26.10. The general definition 277

\def\TAB@{\egroup
\dimen@=\wd\litboxe
\advance\dimen@ by -\litindent
\setbox0=\hbox{\tt0}
\dimen@ii=\1ittab@\wdo
\divide\dimen@ by \dimen@ii
\multiply\dimen@ by \dimen@ii
\advance\dimen@ by \littab@\wd0
\advance\dimen@ by \litindent
\setbox\1itbox@=\hbox\bgroup\litdefse
\hbox to\dimen@{\unhbox\litbox@\hfil}}

We want to allow the possibility that no literal backslash has been chosen.
For this purpose, we will first

\let\litbs@=\relax
and then have \litdelimiter#1 redefine \1itbs@, so that we can insert

‘} \1itbs@ within our definitions whether or not a literal backslash has been
4 chosen.

\litdelimiter#1l must define \1itbs@ so that it first sets the category
code of #1 to 0 For this we can use

\edef\1litbs@{\catcode‘\string#1=0

In this \edef, the only thing that gets expanded is the \string#1. Since this
gives us a character C of type 12,

\catcode‘C=0

without the usual \ after the ¢ is quite legitimate; that’s fortunate, since
\catcode‘\#1=0

would be totally misinterpreted as

\catcode 351=0 (35 is the category code of #)

278 Chapter 26. Literal mode

When we say \litdelimiter" we also want \1itbs@ to save away the
definition

\def\"{\char‘\string"}

in \1itbs@@, and similarly for any other argument that may be used with
\litdelimiter. Here we will need our old \expandafter\noexpand trick
(pages 126 and 161):

\let\litbs@=\relax
\let\1litbs@@=\relax

\def\litbackslash#1{},
\edef\litbse{Y
\catcode‘\string#1=0
\def\noexpand\1itbs@@{\def\expandafter\noexpand

\csname\string#1\endcsname{\char‘\string#1}}}/%
Y

\litcodes can now be defined by

\def\litcodes@{\catcode‘\\=12

\catcode‘\{=12 \catcode‘\}=12

\catcode‘\$=12 \catcode‘\&=12

\catcode‘\#=12

\catcode‘\"=12 \catcode‘_=12

\catcode‘\0=12 \catcode‘\“=12 \catcode‘\"=12
\catcode‘\;=12 \catcode‘\:=12

\catcode‘\!=12 \catcode‘\?=12

\catcode‘\%=12
\litbs@\catcode‘\‘=\active\obeyspaces\defspace@}

Notice that we need the \catcode ‘\"=12 since " is normally active in I4S-
TEX. The \1itbs@ is placed after all the other \catcode’s, since it may effect

a further category code change (e.g., the category code of " may then be
changed to 0).

26.10. The general definition 279

The extra \catcode’s for ; and : and ! and ? are inserted just in case
any of these have been made active for French styles (compare 3.10).

Now comes a tricky part. \Llitdelimiter#1 will define \Lit#1, and part
of this definition will be to make #1 active and then properly define it. So we
want a construction, \activate@itl, which will define #1 properly when it is
active. But putting

\def#1{...}

in our definition won’t work, since the #1 will be read in before #1 actually is
active! So we will resort to the \lowercase trick. We first use

\lccode‘\"=‘#1

to make the \1ccode of the active character ~ be #1 (only an ordinary character
is allowed for the literal delimiter, so the ‘#1 is fine). This means that when ~
appears within a \lowercase it will be turned into an active #1.

So then we can do something like

\lowercase{y,
\gdef\defdelimiter@{\def~{...}}
+

so that \defdelimiter@ will define our delimiter #1 properly once it is active.
We will need a similar, but different, definition for the redefinition of #1 for
\Litbox, so we will let \activate®@ have two arguments—the first, which
will always be either 0 or 1, determining which value the global scratch token
\Next@ (see page 22) will be given:

\def\activate@#1#2{{\1lccode\ "= #2),
\lowercase{),
\ifo#1Y,

\gdef\Next@{\def“{\egroup\endgroup
\bigskip\vskip-\parskip
\def\next@{\noindent@@\futurelet\next\pretendspace@},

\FNSS@\next@}}

280 Chapter 26. Literal mode

\else
\gdef\Next@{\def “{\egroup\egroup\endgroup}}%
\fi
hyA
3}

Another thing \litdelimiter#1 will do is to set \1itdelim@ to be the
character code for #1:

\edef\litdelim@{\char‘#1}

since this will be used by \1itdefs@:

\def\litdefs@{\let\0=\empty\def\1{\litdelime@}¥
\def\ {\char32 }\litbsee}

Remember that \1itbs@@ is cither \relax or the proper definition of \" if
\litdelimiter" has been used, etc.

Finally, \1itdelimiter#1 then defines \1it#1, \Lit#1 and the construc-
tion \Litbox##1i=#1. The definitions are just those in the previous sections,
except that \Lit#1 will use

\catcode‘#i=\active \activate@O#i\Next@

to get the literal delimiter #1 active, and give it the proper definition, while
\Litbox##1i=#1 will use

\catcode‘#1=\active \activate@i#i\Next@

to get the proper definition for that case:

\def\litdelimiter#i{)
\edef\litdelim@{\char #1}},
\def\1lit#1{\leavevmode\begingroup\litcodes@\litdefs@
\tt\hyphenchar\tentt=-1 \1it@}},
\def\lit@##1#1{##1\endgroup\null}y

e

11. Nicer syntax 281

\def\Lit#1{\ifhmode$$abovedisplayskip=\bigskipamount
\abovedisplayshortskip=\bigskipamount
\belowdisplayskip=0Opt \belowdisplayshortskip=0pt
\postdisplaypenalty=1000
$$\vskip-\baselineskip\else\bigskip\fi
\begingroup\1litlines@=0
\catcode‘#1=\active \activate@O#1\Nexte@
\def\displaybreak{\egroup\break\litlines@=0 \Lit@}}
\def\allowdisplaybreak{\egroup\allowbreak\litlines@=0

\Lite}}
\def\allowdisplaybreaks{\egroup\allowbreak
\interlitpenalty@=0 \litlines@=0 \Lit@}
\litcodes@\tt\catcode‘\""I=\active\letTABQ

\obeylines\letM@\Lit@}}

\def\Litbox##1=#1{\begingroup
\ifodd##1\relax\aftergroup\global\fi
\aftegroup\setbox\aftergroup##i\aftergroup\box

\aftergroup\Litbox@
\def\allowdisplaybreak{\egroup\allowbreak

\litlines@=0 \Lit@}
\def\allowdisplaybreaks{\egroup\allowbreak

\interlitpenalty@=0 \litlines@=0 \Lit@}}
\catcode‘#1=\active \activate@i#1\Next@
\litcodes@\tt\catcode‘\""I=\active\letTABQ
\obeylines\letM@\global\setbox\Litbox@
=\vbox\bgroup\litindent=0pt \litlines@=0 \Lit@}Y

26.11. Nicer syntax. Long before I wrote literal mode for I4S-TgX, I had my
own literal mode, based upon making * permanently active, with

282 Chapter 26. Literal mode

giving in-line literal mode, and

%k

*k

giving displayed literal mode. Thus, * worked quite analogously to $, except that it
gave literal mode instead of math mode.

Based on the constructions of the previous section, we might implement this ap-
proach as follows:

\catcode ‘*#=\active
\def*{\futurelet\next\stare}
\def\star@{\ifx\next+\expandafter\starQQ\else
\expandafter\star@Qe\fi}
\def\starQQe{(previous definition for \1it*)}
\def\star@@*{(previous definition for \Lit*)}

except that \star@@ should then (temporarily) redefine * as

\def**{\egroup\endgroup ... }

Actually, there is a subtle bug here: The \futurelet\next causes TEX to read the
token after the *, and since this has been done before the \1itcodes@, this next token
will have the wrong category code permanently imprinted on it. Consequently, we
have to start with

\catcode‘\#=\active
\def*{\begingroup\litcodes@\futurelet\next\stare}

to get things right.
Also, the syntax for \Litbox should be changed correspondingly, to

\Litboxn=+*
%k
I found this arrangement so much more pleasant than the \1it and \Lit syntax

(even after I had abbreviated \1it to \1 and \Lit to \L) than I have used it through-
out this manual.

.‘\._/ ’

3
ey

11. Nicer syntax 283

Making * active does necessitate some small changes in other parts of I4,S-TEX.
First of all, I changed the plain definition of \ast to

\def\ast{\string+}

so that \ast just gives the category 12 *, and can thus be used both in text and in
math mode (giving the symbol * in text, but * in math).
Then I had to examine all the places where # already appears in lanstex.tex.

(1) Its appearance in the definition of \fnsymbol requires no change, since the *
appearing there is a type 12 *,

(2) However, the definition of \starparts@ needs to be restated, after * has been
made active, because it uses a * as part of the syntax for the subsidiary control
sequence \nextQ.

(8) Similarly, the definition of \starparts@Q@ uses ¥ as part of its syntax, so it
needs to be restated.

(4) And the same was true of \iabbrev. Moreover, in this case, the * in the
replacement text needs to be replaced with \noexpand#.

There are also a few definitions for mathematics where % appears.

(1) The first is in the definition of \keybin@ (section 3.10). Since \ast would now
be used instead of * in a math formula, in the definition of \keybin@ the

\ifx\next*
clause needs to be replaced with
\ifx\next\ast

(2) It also appears in \boldkey. Although \boldkey is meant to be used with
symbols on the keyboard, rather than control sequences, it would probably be
reasonable to change the clause

\ifx#1*\mathcharii@203 \else
to
\ifx#i\ast\mathcharii®203 \else

and agree that \boldkey can also be used with \ast.

284 Chapter 26. Literal mode

I would have loved to use this nicer syntax no matter what delimiter the user chooses,
but it seemed utterly hopeless to arrange this. Nevertheless, to encourage people, here
in its entirety is the additional code that makes * and " the literal delimiter and escape
character with this nicer syntax. With almost no modifications, it should function for
other pairs, although one must then look carefully through all the I44S-TEX macros
to see what modifications may be needed because of the fact that another character
has been made active. It is doubly easier than the code of the previous section, not
only because we are dealing with a specific choice of literal delimiter and backslash, but
also because the literal delimiter is active to begin with. Nevertheless, the subtle bug
mentioned on page 282 introduces the possibility for an even yet more subtle bug, so
there is an additional detail that is discussed at length starting on page 286.

\catcode ‘*=\active
\def\ast{\string*} % can be used both in text and in math

\def\iabbrev*#i#2{\ifindexing@\tokse{#2}%
\immediate\write\ndx@
{\noexpand\abbrev\noexpand#\noexpand#1{\the\toks@}\fi}

\def*{\begingroup\litcodes@\futurelet\next\stare}

\def\litcodes@{\catcode\\=12

\catcode‘\{=12 \catcode‘\}=12

\catcode‘\$=12 \catcode‘\&=12

\catcode‘\#=12

\catcode‘\"=12 \catcode‘_=12

\catcode‘\@=12 \catcode‘\“=12

\catcode‘\%=12

\catcode‘\‘=\active \catcode‘\"=0 \obeyspaces\defspace@}

\def\star@{\ifx\next+\expandafter\star@@\else\expandafter\star@@e\fi}
%%% Code for *...*
\def\star00e{\leavevmode\litdefsQ\tt\hyphenchar\tentt=—1 \starQQoe}}%

\def\star@QeQ#i*{#1i\endgroup}

11. Nicer syntax 285

\def\litdefs@{\let\0=\empty\def\1{\char42 }\def\"{\char34 }\def\ {\char32 }}

%%h% Code for #x .., **

\def\newstarQ{\def*+{\egroup\endgroup
\bigskip\vskip-\parskip
\def\next@{\noindent@@\futurelet\next\pretendspace@}’,

\FNSS@\next@}}

\def\star(o(o*{ifhmode$$\abovedisplayskip=\bigskipamount
\abovedisplayshortskip=\bigskipamount

\belowdisplayskip=0Opt \belowdisplayshortskip=0pt
\postdisplaypenalty=10000
$$\vskip-\baselineskip\else\bigskip\fi

I\begingroup\litcodes@!

\1itlines@=0

\newstarQ

\def\displaybreak{\egroup\break\litlines@=0 \LitQ}¥%
\def\allowdisplaybreak{\egroup\allowbreak\litlines@=0 \Lit@}¥%
\def\allowdisplaybreaks{\egroup\allowbreak
\interlitpenalty@=0 \litlines@=0 \Lit@}%

\tt\catcode ‘\"~I=\active\letTABQ\obeylines\letMQ\LitQ}

\def\boxstare{\def++{\egroup\egroup\endgroup}>

\def\Litbox#1=+*{\begingroup

\ifodd#1i\relax\aftergroup\global\fi

\aftergroup\setbox

\aftergroup#1\aftergroup\box\aftergroup\Litbox@

\boxstar@

\def\allowdisplaybreak{\egroup\allowbreak\litlines®=0 \Lit@}}
\def\allowdisplaybreaks{\egroup\allowbreak

\interlitpenalty@=0 \litlines@=0 \Lit@}%
\tt\litcodes@\catcode‘\""I=\active\letTAB@\obeylines\letMaQy,
\global\setbox\Litbox@=\vbox\bgroup\litindent=0pt \litlines@=0 \LitQ}

\catcode‘\@=\active

286 Chapter 26. Literal mode

The boxed additions to the definition of \star@Q@ are needed because of a strange
TEX “feature”.

Suppose we type

\hangafter-2 \hangindent=20pt
Here are several ...

lines of text.

\vskipiin

Here are several ...

lines of text.

Here are several ...
lines of text.

Then the first paragraph, implicitly ended by the \vskipiin, will have hanging in-
dentation of 20 points for the first two lines (like these small print notes), while the
next two paragraphs will be treated normally. But now suppose we type

\hangafter-2 \hangindent=20pt
Here are several .

lines of text.

{\vskipiin}

Here are several ...

lines of text.

Here are several ...
lines of text.

Then the second paragraph will also having hanging indentation for the first two lines!!
Reason: The \vskipiin, implicitly ending the first paragraph, causes TEX to restore
\hangafter and \hangindent to their default values, as with any other locally de-
fined TEX parameters.! So, after the } that follows the \vskipiin, the values of
\hangafter and \hangindent ar still -2 and 20pt, respectivelyl!

1 The TEXbook, page 103, states that “TEX automatically restores [the values of \ha.ngindent and
\hangafter] at the end of every paragraph, and (by local definitions) whenever it enters internal
vertical mode. For example, hanging indentation that might be present outside of a \vbox
construction won't occur inside that vbox, unless you ask for it inside.” I would take that to mean
that the restoration of values is done globally at other times (i.e., when ending a paragraph), but
apparently that is not the case.

11. Nicer syntax 287

r@ If our definition of \star@@ didn’t have the \endgroup before the
i

fhmode$$. . . $$
\vskip-\baselineskip\else\bigskip\fi

then something like

\hangafter-2 \hangindent=20pt
Here are several ...

lines of text.

*k

*k

would entail a \vskip within a group, and thus give rise to this problem: text following
the closing #%, which is really a new paragraph, would continue to have the same
hanging indentation. Once we are safely past that \vskip, we reinsert the

\begingroup\litcodes@

that we initially bad.
As if that weren't confusing enough, it has to be admitted that this extra
code really isn’t needed, after all, because \newstar@ defines ** in terms

of \noindentQ@, so that the closing #* essentially contributes a

\endgroup
\bigskip\vskip-\parskip
\noindent@@

and thus essentially

\endgroup
\bigskip\vskip-\parskip
\par

\noindent@

Now the \par causes the values of \hangafter and \hangindent to be restored to
their default values, outside the group ended by the \endgroup (but \noindent@
alone doesn’t end a paragraph—it merely starts an unindented paragraph in vertical
mode, and has no effect in horizontal mode).

But there’s obviously no point tempting fate by relying on \noindent@@ always
being used instead of \noindente@.

'\O'% Chapter 27. Literal mode in heading levels

As mentioned in Chapter 25, our definitions allow literal mode to work within
\footnote’s. It might seem that it should be just as easy to allow literal
mode constructions within heading levels, but here the situation is much more
complex.

Remember that something like

\h1li{Extra \1lit*}* errors}
must not only typeset ‘Extra } errors’, it must also send

Extra \lit*}* errors

off to the .toc file, and it'’s not very clear how we are going to get
these tokens, with unbalanced braces, stored inside a control sequence!!
Moreover, a \footnote, no matter how formatted, usually involves an
\insert\footins{...}, so a style file designer who wants to change the
appearance of a \footnote probably won’t to have to worry about the trick-
ery involved in allowing category changes. But it seems much less reasonable
to commit heading levels to something like

\global\setboxi=\vbox{...}

since heading levels for other style files might have to be handled quite differ-
ently.

Of course, in the great majority of cases, even when literal mode is used, it
won’t be needed in header levels. And even when literal mode material does
occur in header levels, usually only small snatches are needed, which can be

'If we are willing to process the argument a token at a time, appropriately changing category
codes each time we hit a \1it token, then it can be done (although we might have problems
if the user has substituted some other control sequence for \1it). But it wouldn't be pleasant:
since we can’t put individual, unbalanced, braces into a token list, each time we hit a (non-literal-
mode) { we would have to record this fact, and then add the { back in when the matching } is
discovered, i.e., we would practically have to rewrite TEX's scanner in TEX macros.

288

~—

27.1. Literal mode in \HL and \h1l 289

handled quite easily with special definitions. For example, for this manual,
where control sequences appear quite often in heading levels, I defined

\def\CS#1{{\tt\char’134 #1}}
so that the next section could be typed as
\section{Literal mode in \CS{HL} and \CS{hll}}

With a few definitions for the backslash \ and the curly braces { and }, virtually
any literal mode material can be included in heading levels.

For this reason, lamstex.tex does not directly address the problem of
literal mode in heading levels. However, there is a subsidiary file, 1ithl.tex,
which adds new definitions that allow literal mode to be incorporated, albeit
somewhat indirectly, within heading levels.

27.1. Literal mode in \HL and \hl. If the file 1ithl.tex is \input, before
a \litdelimiter and \litbackslash are declared, then \1it#...% will
generally act as before, but two special extensions will be introduced:

(1) On the one hand, we can type
\litn*...*

forn = 0,...,9. This will not typeset ... in literal mode, but simply
store the corresponding literal mode tokens in a special storage space,
one for each of 0, ..., 9.

(2) On the other hand, the combination

\litn

(where the next symbol is not a *) will simply give a copy of whatever
is stored in storage space n.

So, for example, the current section could be typed as
\1itO*\HLx*

\lit1*\hl*
\section{Literal mode in \1it0 and \1liti}

290 Chapter 27. Literal mode in heading levels

1lithl.tex creates new boxes
\expandafter\newbox\csname 1it@0\endcsname
\expandafter\newbox\csname 1it@i\endcsname
for the storage locations, and makes \1it a control sequence with an argu-
ment,

\lit#1

If * is going to be the literal delimiter, then when the argument #1 is * we
use \1it@e®, which is essentially the old \1it*, but if #1 is not * (and thus
presumably one of 0, ... , 9), we set

\count@=#1
and then use

\futurelet\next\1itQ@

The \futurelet is nceded to see whether the next character is a * or not.
If it isn’t (so that we have something like ‘\1it0 and’), then we simply use

\unhcopy\csname 1it@\number\count@\endcsname\null

(the \null is added for the same reason that is was added to the original
definition of \1it@ [page 263]). But if we now have a *, so that we are in the
case

\litn*...*

we use the routine \1i11000@.
We might define \11t0€0Q by

\def\1it@eee+{\prevanish@\begingroup
\litcodes@\litdefs@\1lit@eQEQ}

i o

27.1. Literal mode in \HL and \h1l 291

\def\1lit@eeee#1x{\toks@={i#1}
\global\expandafter\setbox
\csname 1lit@\number\count@\endcsname
=\hbox{\tt\the\toks@}
\endgroup\postvanish@}

with \prevanish@ and \postvanish@ added to make constructions like
\litn*...* invisible, just in case they get used in a paragraph.
With such definitions,

\1itO*\HLx*
\1lit1x\h1l*1
\section{Literal mode in \1it0 and \lit1}

will indeed produce the current section title. On the other hand, if we are
making a .toc file, then this section will simply appear as

\section{27.1}
{Literal mode in \1it0 and \1lit1}

so we will also want to have

\1itO*\HL*
\1lit1*\hl*

written to the .toc file first.

This might seem fairly straightforward (after all the trickery to which we’ve
become accustomed),

\def\lit@eeee#1i*{\toks0={#1}
\iftoc@
\edef\next@{\write\toce{\noexpand\noexpand
\noexpand\lit\number\count@*\the\toks@*}\next@
\fi

but, alas, it can fail in a subtle way.

292 Chapter 27. Literal mode in heading levels

Suppose that we wanted a heading like

1. Comparing \|, and \space

and therefore typed

\LitO*\" *
\liti*\space*
\HL1 Comparing \1itO and \liti\endHL

Then the first line would cause the .toc file to contain

\1it0 *\\ *

Reason: When we have dutifully established \1itcodes@ and \litdefs@
before exercising \11t000@@, the token list \toks@ contains two tokens: the
first token is a type 12 \, and the second token is ‘control-space’, i.e., the
control sequence whose name is ‘' ’ when " is the escape character, and ‘\ ’
when \ is the escape character, etc. When TEX goes to print that control
sequence in the .toc file, it will simply print it as ‘\ ’. To put it another way,
the tokens ‘\\ ’ that get written really consist of a type 12 \ followed by a
type 0 \ followed by a space, but once the tokens are written, the category
codes become irrelevant.

To get around this problem, we use the following byzantine strategy. After
using \1itcodes@ to change the category codes, we add

\catcode‘\"=12

so that " is just an ordinary character. Then \toks@ will be just the ones that
we want to write to the .toc file. The problem, of course, is that they are no
longer the tokens that we want to put in the \hbox: we really have to read
in the *. . .* material once again, this time without making the special change
for ". Although we cannot get TEX to back up and read the argument again,
nevertheless we can reread the argument, by first writing the token list \toks@
to a temporary file, and then reading it in again with the proper codes!

\newwrite\tempwrite@
\newread\tempread@

27.1. Literal mode in \HL and \h1l 293

\def\1lit@ee@e*{\prevanish@\begingroup\litcodes@
\catcode‘\"=12 \lit@eeea}

\def\1it@0QQ0Q#1*{)
\toks@={#1}},
\iftoc
\edef\next@{\write\toc@{\noexpand\noexpand
\noexpand\lit\number\count@*\the\toks@x}\next@
\fi
\immediate\openout\tempwrite@=\jobname.tmp
\immediate\write\tempwrite@{\the\tokse}
\immediate\closeout\tempwrite@
\catcode‘\"=0 \litdefs@
\immediate\openin\tempread@=\jobname.tmp
\read\tempread@ to \next@
\immediate\closein\tempread@
\global\expandafter
\setbox\csname 1it@\number\count@\endcsname
=\hbox{\tt\next@}
\endgroup
\postvanish@}

Unfortunately, that doesn’t quite work either, because there is no way that
\next@ can reflect the exact number of spaces that occurred at the end of
the *...* sequence that we wrote to \tempwrite, since spaces at the end
of a line are always stripped off by TEX as it reads. So yet another fillip has
to be added: We will always add a * at the end of the sequence (this * can’t
occur within the sequence, although "1 can appear to indicate this character),
and then we will strip off the * and everything following (presumably just the
space inserted by the “~M at the end of the line) from \next@:

\def\1it0eeae#1*{Y)
\toks@={#11}/,
\iftoc
\edef\next@{\write\toc@{\noexpand\noexpand
\noexpand\lit\number\count@+\the\toks@*}\next@
\fi

294 Chapter 27. Literal mode in heading levels

\immediate\openout\tempwrite@=\jobname.tmp
\immediate\write\tempwrite@{\the\toks@*]}/
\immediate\closeout\tempurite@

\catcode‘\"=0 \litdefs@
\immediate\openin\tempread@=\jobname.+tmp
\read\tempread@ to \next@
\immediate\closein\tempread@
\def\nextii@##1x##2\nextiio{\def \next@{#i#1}} I
\expandafter\nextii@\next@\nextii@|
\global\expandafter

\setbox\csname 1it@\number\count@\endcsname
=\hbox{\tt\next@}

\endgroup

\postvanish@}

27.2. The general definitions. The previous section indicated definitions to be
used when * is the literal delimiter, and " is the literal backslash. Now we will
give the code in general.

The file 1ithl.tex begins, like lamstex.tex itself, with

\catcode‘\@=11

As illustrated here, we will always use double horizontal lines for code that is
in subsidiary files, rather than in lamstex.tex itself.

Since we are going to use \new. . . constructions we then declare (compare
page 38)

\let\alloc@=\alloc@@

First we declare new boxes,

\expandafter\newbox\csname 1it@0\endcsname

\expandafter\newbox\csname 1it@9\endcsname

and the input and output streams for the .tmp file,

R

27.2. The general definitions 295

\newwrite\tempwrite@
\newread\tempread®@

Since we are going to be changing the category code of the literal backslash,
if it has been chosen, \1itbackslash will have to store extra information that
allows us to do this. We declare a counter, initially with value -1,

\newcount\1litbackslashno@
\litbackslashno@=-1

and we change the definition of \litbackslash#1i so that it sets the value of
\litbackslashno@ to the character code of #1:

\def\litbackslash#1{%
\edef\next@{\1litbackslashno@=‘\string#i}\nextQ
\edef\litbse{

\catcode‘\string#1=0
\def\noexpand\1itbs@e{\def\expandafter\noexpand
\csname\string#i\endcsname{\char‘\string#1}}}}

Then we add the necessary definitions of \1it@ et al. to the definition
of \1litdelimiter, with the category code of character \1itbackslashno@
changed back to 0 if \1itbackslashno@ isn’t -1 (if it is, we haven’t declared
an escape character for literal mode, so we don't have to worry about things
like \"):

\def\litdelimiter#i{y

\edef\litdelim@{\char‘#1}¥,
\def\lit##1{\ifx##1#1\let\next@=\1it@\else
\count@=##1\relax\def\next@{\futurelet\next@\1it@@}\fi
\next@}Y,
\def\1it@{\leavevmode\begingroup\litcodes@\litdefs@
\tt\hyphenchar\tentt=-1 \1it@ee}},

296 Chapter 27. Literal mode in heading levels

\def\lit@eQ##1#1{##1\endgroup\null}

\def\lit@@{\ifx\next#1i\let\next0=\1itQQee@\eclse
\def\next@{\unhcopy\csname 1lit@\number\count@\endcsname

\null}\fi
\next@}}

\def\lit@eee#i{\prevanish@
\begingroup\litcodes@\ifnum\litbackslashno@=-1 \else
\catcode\litbackslashno@=12 \fi\lit@eeee}},

\def\liteeaoe##1#1{\tokse={H##1}}

\iftoc@

\edef\next@{\write\toc@{\noexpand\noexpand
\noexpand\lit\number\count@#1\the\toks@#1}}\next@
\fi

\ifnum\litbackslashno@=-1 \def\next@{\the\toks0}\else
\immediate\openout\tempwrite@=\jobname.tmp
\immediate\write\tempwrite@{\the\toks@#1}¥
\immediate\closeout\tempwrite@
\catcode\litbackslashno@=0 \litdefs@
\immediate\openin\tempread@=\jobname.tmp
\read\tempread@ to\next@
\immediate\closein\tempread®@
\def\nextiii@####1#1####2\nextiiie{\def \next@{##i#t#1}}Y
\expandafter\nextiii@\next@\nextiii@

\fi

\global\expandafter

\setbox\csname 1lit@\number\count@\endcsname
=\hbox{\tt\nexta@}y,

\endgroup\postvanish@}Y,

\def\Lit#1{\ifhmode\abovedisplayskip=\bigskipamount
\abovedisplayshortskip=\bigskipamount
\belowdisplayskip=0Opt \belowdisplayshortskip=0pt
\postdisplaypenalty=1000
$$\vskip-\baselineskip\else\bigskip\fi
\begingroup\litlines@=0
\catcode‘#1=\active \activate@O#1\Next@
\def\displaybreak{\egroup\break\1litlines@=0

\Lit@}},

5

N

27.2. The general definitions 297

\def\allowdisplaybreak{\egroup\allowbreak
\litlines@=0 \Lit@}Y
\def\allowdisplaybreaks{\egroup\allowbreak
\interlitpenalty@=0 \litlines@=0 \Lit@}
\litcodes@\tt\catcode‘\"“I=\active\letTABQ
\obeylines\letM@\Lit@}}
\def\Litbox##1=#1{\begingroup
\ifodd##1i\relax\aftergroup\global\fi
\aftergroup\setbox
\aftergroup##i\aftergroup\box\aftergroup\Litboxe
\def\allowdisplaybreak{\egroup\allowbreak
\litlines@=0 \Lit@}
\def\allowdisplaybreaks{\egroup\allowbreak
\interlitpenalty@=0 \litlines@=0 \Lit@}},
\catcode‘#1=\active \activate@i#i\Next@
\litcodes@\tt\catcode‘\""I=\active\letTAB@
\obeylines\letM@\global\setbox\Litbox@=\vbox),
\bgroup\litindent=0pt \1litlines@=0 \Lit@}},
}

Finally, we reassign \alloc@its original definition from plain TEX, and make
@ active again:

\def\alloc@#1#2#3#4#5{\global\advance\counti#iby\@ne
\ch@cki#1#4#2\allocationnumber=\counti#i
\global#3#5=\allocationnumber
\wlog{\string#6=\string#2\the\allocationnumber}}

\catcode‘\@=\active

A :E If the alternate syntax of section 26.11 is used, something different would be
needed. For example, we might create \SL and \UL (store literal mode material
and use literal mode material), so that \SL# *. . . * stores the material in location 7,
while \UL 7 uses it. With a little work, we could even arrange for *n. ..* to work like
\SL##*. . .%*, so that only \UL would be needed. (For the case of literal mode material
that happened to begin with a digit, like 0. . ., we would then have to use *"00. . .*

to print it.)

Chapter 28. Title, author, etc., in the default style

There is, happily, not much interesting about \title, \author, \affil, and
\date in the default style, except that, for the sake of economy, we carefully
arrange to avoid introducing any flags to tell us which of these constructions
have been used.

We allow the possibility of an empty title, so we declare

\newbox\titlebox@
\setbox\titlebox@=\vbox{}

and we

\righadd@\title\to\overlonglist@

since we want \overlong\title to work. Then \title...\endtitle
will just set \box\titlebox@. This box won't actually be printed until the
\maketitle appears; the main purpose of this sort of arrangement is to al-
low \title, \author, \affil, and \date to occur in any order before the
\maketitle, so that the user doesn’t need to know in which order these var-
ious elements have to be specified.

The \title...\endtitle instructions for setting \box\titlebox@ are
similar to those used for setting the \vbox in ‘\HL@1’ (page 210), except that
we might as well follow other AyS-TEX constructions and allow \title and
\endtitle to function separately, instead of having \endtitle be part of the
syntax for \title:!

\def\title{\begingroup\Let@
\global\setbox\titlebox@=\vbox\bgroup\tabskip\hss@
\halign to\hsize\bgroup

\bf\hfil\ignorespaces##\unskip\hil\cr}

\def\endtitle{\crcr\egroup\egroup\endgroup
\overlong@false}

! There was really no point doing that for \HL. . .\endHL, since something like \chapter. ..
\endchapter would have to be defined in terms of \HL. . . \endHL anyway.

298

Chapler 28. Title, author, eic., in the default style 299

Although \maketitle is going to print \box\titlebox@ even if it is empty
(the idea is to leave some space for a hand-written title, or perhaps a title with
some weird special symbols, etc.), no author information is going to be printed
unless \author. . .\endauthor explicitly appears.

The definition of \author is exactly analogous to the definition of \tit1le,

\newbox\authorbox@
\rightadd@\author\to\overlonglist@
\def\author{\begingroup\Let@
\global\setbox\authorbox@=\vbox\bgroup\tabskip\hss@
\halign to\hsize\bgroup

\rm\hfil\ignorespaces##\unskip\hfil\cr}
\def\endauthor{\crcr\egroup\egroup\endgroup
\overlong@false}

except that initially \box\authorbox@ will be void; thus, \maketitle will be
able to use the test \ifvoid\authorbox@ to tell whether \author has been
used. \rm was added just in case some other font has already been selected,
for some weird reason.

And \affil is exactly analogous:

\newbox\affilbox@

\def\affil{\begingroup\Let@
\global\setbox\affilbox@=\vbox\bgroup\tabskip\hss@
\halign to\hsize\bgroup

\rm\hfil\ignorespaces##\unskip\hfil\cr}/,

\def\endaffil{\crcr\egroup\egroup\endgroup

\overlong@false}

\date is a little different, since we don’t create a box. Instead, we define
\date@, initially set equal to \relax:

\let\date@=\relax
\def\date#1{\gdef\date@{\ignorespaces#i\unskip}}

We add the appropriate \ignorespaces and \unskip at this stage, since that
is much easier than trying to insert them into an already defined \date@ later
on.

300 Chapter 28. Tille, authoy; etc., in the defauls style

The definition of \today is taken right from The TEXbook (page 406):

\def\today{\ifcase\month\or January\or February\or
March\or Aprillor May\or June\or July\or August\or
September\or October\or November\or December\fi
\space\number\day, \number\year}

And then, finally, \maketitle simply puts everything together. We use

\hrule \heightOpt \vskip-\topskip
to get to the very top of the page, and then

\vskip24pt plusi2pt minusi2pt
\unvbox\titlebox@

to put (stretchable) space before the (possibly empty) title. Then we add some
more space and the author(s), but only if there are some,

\ifvoid\authorbox@\else
\vskip12pt plus6pt minus3pt\unvbox\authorbox@ \fi

The affiliation and date are handled similarly, except that the date is put
inside a \centerline (with \rm explicitly stated). And then, finally, some
extra space is added before the first material of the document proper:

\def\maketitle{\hrule \heightOpt \vskip-\topskip

\vskip24pt plusi2pt minusi2pt
\unvbox\titlebox@
\ifvoid\authorbox@ \else

\vskipi2pt plus6pt minus3pt \unvbox\authorbox@ \fi
\ifvoid\affilbox@ \else

\vskip1Opt plus5pt minus2pt \unvbox\affilbox@ \fi
\ifx\date@\relax\else

\vskip6pt plus2pt minusipt \centerline{\rm\date@} \fi
\vskip18pt plusi2pt minus6pt}

Chapter 29. The bibliography

I4S-TEX's bibliography constructions, an extension of those originally used
in amsppt . sty, are really quite adequate for most bibliography requirements.
They show that various “fields” of information, allowed to appear in any or-
der, can be put together properly by TEX itself, without resorting to an ex-
ternal program like BIBTEX. Moreover, as explained on page 98 of the I4\S-
TEX Manual, the bibliographic entries can be labelled, and thus cited within
the text using \ref, so that the proper number for a bibliographic entry is
printed automatically (after enough passes).

Of course, BIBTEX also allows bibliographic entries to be selected from a
data base and sorted in any of numerous desired ways. Moreover, the BIBTEX
approach has the advantage that the final result (the .bbl file) consists of
standard (well, almost standard) TEX code, and is thus easily edited and mod-
ified. By contrast, it may be quite difficult to coerce M S-TEX’s bibliography
macros into performing as desired, and many special sorts of TEX trickery had
to be built into the macros for this purpose. (With either approach, careful
proofreading of the bibliography—rarely attempted by the authors, alas—is
advisable, to check that special situations have been handled correctly.

Since many people have already made extensive data bases for BIBTEX,
which they presumably don’t want to go to waste, I4,S-TEX now provides an
interface with BIBTEX, as explained in the next chapter. (Of course, it would
be nice if there were a LIBTEX program, working like BIBTEX, but producing
a .bbl file with I44S-TEX code instead of IATEX code.)

Others may prefer using I4yS-TEX’s bibliography macros, however, espe-
cially since they provide features missing from BIBTEX. I have added all fea-
tures that the AMS has added to amsppt.sty (though often with modified
syntax), not to mention a few more of my own. All in all, this was a rather
harrowing experience—1I now understand the perils of creeping featureism. 1
ended up deferring the bibliography macros to the very end, rightly dreading
all the details that would be involved. On the other hand, when I finally came
to writing this chapter, it turned out that the description of the macros, and
the strategy behind them, went rather smoothly.

Most important of all, from the point of view of the user or style file designer,
once IyS-TEX’s hidden macros have taken care of all the messy details, the
final process of printing the information from all the fields, in the proper

301

302 Chapter 29. The bibliography

order, and with proper punctuation and spacing, is fairly straightforward,
and thus easily modified if some other sort of arrangement is needed.

29.1. \cite. The amsppt.sty has a \cite construction, which simply prints
its argument within brackets. When we are interfacing with BIBTEX, \cite
will work essentially the same as in IATEX, but we will first give a default
definition. We will still allow \cite to producing something like [Knuth1984,
page 123], but the syntax for indicating the additional information ‘page 123’
will be changed, to

\cite(page~123){Knuth1984}
This is close to IATEX’s
\cite[page~1231{...}

syntax for optional arguments; however the use of the brackets has been
avoided because they represent letters on Scandinavian keyboards. Of course,
any)’s in the additional text must be hidden in braces,

\cite({section 1(a)}){...} [...,section 1(a)]

There’s nothing very surprising about the definition of \cite, which uses
standard techniques:

\def\cite{}

\def\nextii@(##1)##2{{\rm[}{##2}, {##1\/F{\rm]1}}%
\def\nextiii@##1{{\rm[F{##1\/F{\rml}}%
\def\next@{\ifx\next(\expandafter\nextii@\else
\expandafter\nextiii@\fi}}
\futurelet\next\next@}

Note that we always specify \rm [and]. We put ##1 and ##2 inside braces, in case
a font change instruction is added. (When we are interfacing with BIBTEX, a font
change instruction will only be allowed in the optional argument #1 (see page 349).

.

29.2. Features of UpS-TFEXs bibliography macros 303

29.2. Features of BmS-TEX s bibliography macros. The original amsppt.sty
command \Refs is called

\makebib

in I4yS-TEX, and this \makebib now requires a matching

\endmakebib

at the end of the entries. With the
\makebib
\;ném;kebib

region, the general amsppt . sty syntax
\ref ... \endref

has been changed to
\bib ... \endbib

since \ref already has another use in 4S-TEX.
Within \bib...\endbib we can use the fields

\no \key

\by \bysame

\paper \jour \vol \issue \yr \toappear
\pg \pp

\book \inbook \publ \publaddr
\paperinfo \bookinfo \finalinfo

which correspond to those from the original amsppt.sty, with \pg and \pp
replacing \page and \pages, since \page has another use in I4S-TEX.
Some changes have been made in conformity with changes by the AMS:

o \key now automatically adds brackets, and sets its field in \bf. Thus,
\key C1 gives [C1], which was previously typed as \key \bf C1.

304 Chapter 29. The bibliography

e \inbook normally prints only the book title, not preceded by ‘in ’
[which many people don’t like very much], although, as discussed be-
low, this can be changed.

e \issue now prints ‘no. ’ before its field, though I think that’s very bad
(\issue was originally designed for something like ‘Special commem-
orative issue’).

e The AMS has also changed \finalinfo, so that it is preceded by a
comma, rather than a period after all the previous information. I think
that’s even worse, and have kept the old arrangement (see page 312 for
further discussion of this particular point.)

As in the AMS’s new amsppt . sty, there is no longer a \manyby to indicate
the start of a sequence of \bysame’s. The first reference is simply typed as
\by, with \bysame used for the subsequent ones. In addition, \bysame now
prints a horizontal rule of fixed width, rather than one that varies with the
width of the first instance. (This makes the macros considerably easier to write,
but it’s what journals always use anyway, so there’s no point apologizing for
the shortcut.)

\moreref has been changed to \morebib. As before, something like

\bib \no 2 \by L. Auslander
\paper On the Euler characteristic of
compact locally affine spaces
\jour Comment. Math. Helv. \vol 35 \yr 1961 \pp25--27
\morebib
\paper \rm II
\jour Bull. Amer. Math. Soc. \vol67 \yri961 \pp 405--406
\endbib

will produce

r 7
2. L. Auslander, On the Euler characteristic of compact locally affine spaces, Com-

ment. Math. Helv. 35 (1961), 25-27; I1, Bull. Amer. Math. Soc. 67 (1961),

L 405-406. y

If part I of this paper had appeared in the same Jjournal, but in a different

29.2. Features of MS-TFX's bibliography macros 305

volume,

\bib \no 2 \by L. Auslander

\paper On the Euler characteristic of

compact locally affine spaces

\jour Comment. Math. Helv. \vol 35 \yr 1961 \pp25--27
\morebib

\paper \rm II

\vol36 \yri961 \pp 13--15

\endbib

the output would look like

r Bl
2. L. Auslander, On the Euler characteristic of compact locally affine spaces, Com-

ment. Math. Helv. 35 (1961), 25-27; I 36 (1961), 13-15.

L -

\morebib remembers that there was a \jour before, so it prints the \vol,
\yr, and \pp fields for the second title even though no \ jour is given for that
title.

By the way, this example illustrates one of those innumerable circumstances
where a completely automated system won’t give the optimal results: jour-
nal volume numbers in the default style happen to be printed without com-
mas following the preceding field, which looks just fine for the 35 following
‘Comment. Math. Helv.’, but not so fine after the shortened title ‘IT’; in this
case we would probably want to change the input to

\paper \rm II,

(see also page 311).

This “remembering” feature of \morebib is generally quite convenient, but

306 Chapter 29. The bibliography

it doesn’t give the desired results in certain other situations. For example,

\bib

\no 3 \by Stefan Banach

\paper Sur la d\’ecomposition des ensembles de points
en parties respectivement congruents

\jour Fund. Math. \vol 6 \yr 1925 \pp 244--277
\morebib

\book \OE uvres

\publ \’Editions Scientifiques de Pologne

\publaddr Warzaw \yr 1967

\endbib

will produce

r 7
3. Stefan Banach, Sur la décomposition des ensembles de poinis en parties respective-
ment congruents, Fund. Math. 6 (1925), 244-277; (1967), GEuvres, Editions

Scientifiques de Pologne, Warzaw. r

Here the 1967 got printed first, as if it were the \yr for a \jour, because
\morebib remembered that a \ jour appeared before.

So there is now \anotherbib, which clears out such information. If we use
\anotherbib instead of \morebib we will get the desired result:

r 1
3. Stefan Banach, Sur la décomposition des ensembles de points en pariies respective-
ment congruents, Fund. Math. 6 (1925), 244-277; (Euvres, Editions Scien-

tifiques de Pologne, Warzaw, 1967. g

By the way, the AMS does not seem to have retained this “remembering”
feature for \morebib. At any rate, the ApS-TEX Version 2.0 User’s Guide

. S

29.2. Features of B S-TEX's bibliography macros 307

gives an example like

\bib \no 7

\by P. D. Lax and C. D. Levermore

\paper The small dispersion limit for the KdV equation.“\rm I
\jour Comm. Pure Appl. Math. \vol 36 \yr1983
\pp 253--290

\morebib\paper \rm II

\jour Comm. Pure Appl. Math.

\vol 36 \yr 1983 \pp 571--594
\morebib\paper \rm III

\jour Comm. Pure Appl. Math.

\vol 36 \yr 1983 \pp 809--829

\endbib

to produce

r A
7. P. D. Lax and C. D. Levermore, The small dispersion limit for the KAV equa-
tion. I, Comm. Pure Appl. Math. 36 (1983), 253-290; II, Comm. Pure
Appl. Math. 36 (1983), 571-594; 111, Comm. Pure Appl. Math. 36 (1983),

L 809-829. ¥

which is an obvious example of overkill. The listing

r A
7.P. D. Lax and C. D. Levermore, The small dispersion limit for the KdV equa-
tion. I, Comm. Pure Appl. Math. 36 (1983), 253-290; 11, 571-594; 111,

L 809-829. ¥

would have been preferable by far.

There are now four new fields, as added by the AMS:

e \ed and \eds are for one editor, or several editors, respectively, of a
book; the first adds “ed.” after the editor’s name, while the second adds
“eds”; all the information is enclosed in parentheses.

e \lang, for the original language of a translation, prints its information,
enclosed in parentheses, at the very end, after the final punctuation
for the \bib entry. I have followed the AMS macros in this regard—
\lang basically becomes \finalinfo—although I don’t think that’s
the optimal solution.

308 Chapter 29. The bibliography

e \transl is for translation information, preceding the \ jour or \book
to which it pertains; thus, an entry with \transl may well have more
than one \jour or \book—in essence, \transl functions something
like \anotherbib.

As examples,

\bib\no9 \by S. Kripke

\paper Semantical analysis of intuitionistic logic \rm I
\inbook Formal Systems and Recursive Functions

\eds J. Corssely and M. A. E. Dummett

\publ North-Holland \yri1965 \pp92--130

\endbib

produces

-
9. S. Kripke, Semantical analysis of intuitionistic logic 1, Formal Systems and
Recursive Functions (J. Corssely and M. A. E. Dummett, eds.), North-

Holland, 1965, pp. 92-130. r

and

\bib\no6 \by 0. A. Ladyzhenskaya

\book Mathematical problems in the dynamics of a viscous
incompressible fluid \bookinfo 2nd rev. aug. ed.

\publ ‘‘Nauka’’ \publaddr Moscow \yr 1970

\lang Russian

\transl English transl. of 1st ed.

\book The mathematical theory of viscous
incompressible flow

\publ Gordon and Breach \publaddr New York

\yr 1963; rev. 1969

\endbib

produces

. .

29.2. Features of EaS-TFX's bibliography macros 309

r T
6. O. A. Ladyzhenskaya, Mathematical problems in the dynamics of a viscous incom-

pressible fluid, 2nd rev. aug. ed., “Nauka”, Moscow, 1970 (Russian); English
transl. of 1st ed., The mathematical theory of viscous incompressible flow, Gordon

and Breach, New York, 1963; rev. 1969.

L .

As you can see from these examples, the default style, in conformity with the
AMS’s changes, now prints both paper titles and book titles in italics, except for
book titles produced by \inbook. However, there are new AMS constructions

\bookinquotes
\paperinquotes

which have also been added in IyS-TEX. Typing

\bookinquotes

after \makebib will cause all the book entries to be placed in quotes (and in
roman type), and similarly for \paperinquotes.

\paperinquotes and \bookinquotes can be used together, but I person-
ally feel that one, and only one, of these commands should always be used, to
distinguish between papers and books. The necessity for this is well illustrated
by one of the AMS’s examples in the User’s Guide:

r N
4. V. L. Arnol'd, A. N. Varchenko, and S. M. Gusein-Zade, Singularities of

differentiable maps. 1, “Nauka”, Moscow, 1982. (Russian) r

Unitil I looked at the input,

\bib \no 4 \by V. I. Arnol$’$d, A. N. Varchenko,
and S. M. Guse\u\i n-Zade

\book Singularities of differentiable maps.”\rm I
\publ ‘‘Nauka’’ \publaddr Moscow \yr 1982

\lang Russian

\endbib

I didn’t know this was a book! (Normally a book would have something like
“Volume 1’ in its dtle.)

310 Chapter 29. The bibliography

The Kripke example on page 308 appears on page 263 of the second edition
of The Joy of TEX, but with

\inbook in Formal Systems and Recursive Functions

to explicitly add ‘in * before the book title. Unfortunately, that won’t work very
well if \bookinquotes has been specified! Instead, I have added

\ininbook

to add ‘in’ before all book titles specified by \inbook; if \bookinquotes has
also been specified, the quotes will go only around the book title itself.

The AMS has extended the use of (the old) \nofrills within the bibliogra-
phy: \nofrills after a field suppresses the punctuation that would normally
occur. The above mentioned example was actually given as

\bib

\no9 \by S. Kripke

\paper\nofrills Semantical analysis of
intuitionistic logic \rm I;

\inbook in Formal Systems and Recursive Functions
\eds J. Corssely and M. A. E. Dummett

\publ North-Holland \yri1965 \pp92--130

\endbib

to produce

9. S. Kripke, Semantical analysis of intuitionistic logic 1; in Formal Systems and
Recursive Functions (J. Corssely and M. A. E. Dummett, eds.), North-

Holland, 1965, pp. 92-130.

L .|

\nofrills has been replaced by \nopunct and \nospace in I4yS-TEX
(and its positioning has been changed), and this usage now extends to bibli-
ography items also: In I44S-TEX the above example could be typed as

\ininbook

29.2. Features of nS-TEX’s bibliography macros 311

\bib

\no9 \by S. Kripke

\nopunct\paper Semantical analysis of
intuitionistic logic \rm I;

\inbook Formal Systems and Recursive Functions
\eds J. Corssely and M. A. E. Dummett

\publ North-Holland \yri965 \pp92--130

\endbib

Note that on page 305 we might use
\nopunct \paper \rm II,

if we weren’t sure about the treatment of punctuation for the next field.

The AMS also allows \nofrills to occur before a field name, in order to
suppress punctuation after the previous field. For I4S-TEX, where \nopunct
and \nospace always precede the fields, I have added

\noprepunct
\noprespace

For example, to print

r T
7. P. D. Lax and C. D. Levermore, The small dispersion limit for the KdV equa-
tion. I, Comm. Pure Appl. Math. 36 (1983), 253-290 (overview); II, 571—

594; 111, 809-829.

L J

we€ can use

\bib \no 7

\by P. D. Lax and C. D. Levermore

\paper The small dispersion limit for the KdV equation.”\rm I
\jour Comm. Pure Appl. Math. \vol 36 \yr1983

\pp 253--290

\noprepunct\finalinfo (overview)

\morebib\paper \rm II

\pp 571--594

312 Chapter 29. The bibliography

\morebib\paper \rm III
\pp 809--829
\endbib

thereby suppressing the punctuation on the field immediately preceding the
\finalinfo (we might not be sure just which field this is).
As another example, note that in M4,S-TEX the input

\bib

\key C \by H. Cartan

\paper Operations dans les construction acycliques
\inbook Seminaire H. Cartan 1954--55

\bookinfo Expos\’e 6 \publ ENS \publaddr Paris
\finalinfo Reprinted by W. A. Benjamin, New York (1967)
\endbib

produces

[C] H. Cartan, Operations dans les construction acycliques, Seminaire H. Cartan
1954-55, Exposé 6, ENS, Paris. Reprinted by W. A. Benjamin, New York

. (1967). 4

with the information from the \finalinfo field following a period after all
the other ficlds (see page 304). To print this in the AMS’s manner,

[C] H. Cartan, Operations dans les construction acycliques, Seminaire H. Cartan
1954-55, Exposé 6, ENS, Paris, reprinted by W. A. Benjamin, New York

(1967).

L .

we can type

\publ ENS \publaddr Paris
\noprespace\noprepunct\finalinfo , reprinted by
W. A. Benjamin, New York (1967).

\endbib

Notice also that, once again in conformity with the AMS’s changes, punc-
tuation is supplied automatically after \finalinfo, unless it is preceded by
\nopunct.

~ -

e’

29.3. Storing the fields 313

Finally, it turned out that one more such modifier was needed. When book
or paper titles are printed in quotes, we sometimes want to suppress the quo-
tation marks. For example,

2. L. Auslander, “On the Euler characteristic of compact locally affine
spaces,” Comment. Math. Helv. 35 (1961), 25-27; “I1,” Bull. Amer. Math.
Soc. 67 (1961), 405-406.

L J

looks much better if we suppress the quotations around the 11,

2. L. Auslander, “On the Euler characteristic of compact locally affine
spaces,” Comment. Math. Helv. 35 (1961), 25-27; II, Bull. Amer. Math.

Soc. 67 (1961), 405-406. r

To obtain this, we would type
\morebib

\noquotes\paper \rm II

29.3. Storing the fields. One of the basic problems in the bibliography macros
is that we want to be able to type things like

\by ... \paper ... \jour .
instead of

\by {...} \paper {...} \jour {...}

but we also don’t want to force the various elements to be typed in a particular
order, or force all of them to appear.

The solution to this problem is to have boxes, say \bybox@, \paperbox®@,
\jourbox@, ..., in which to store the information from these various fields,
and to make definitions like

\def\by{\unskip\egroup \setbox\bybox@=\hbox\bgroup}
\def\paper{\unskip\egroup \setbox\paperbox@=\hbox\bgroup}

314 Chaper 29. The bibliography

The idea is that the \egroup matches the \bgroup from the previous field,
and then we start storing the current field. (The \unskip before the \egroup
simply removes any extraneous space at the end of the previous field; it is
convenient to get rid of this space at the very outset, instead of worrying about
itlater.) The definition of \bib will have to start with an extra \bgroup, which
will be closed by the \egroup of the first field that follows, while \endbib will
supply a final \egroup, and then take the material in all these boxes, and
suitably arrange them. '

This whole idea works because \hbox can be ended by \egroup, rather
than an explicit }. However, several details intrude:

(1) If the user adds one of the line breaking commands, \nolinebreak,
\allowlinebreak, \linebreak, or \newline at the end of a field, we want
the corresponding \penalty to be inserted afler the punctuation that will
follow the field when it is printed, not before.

Recall (section 3.5) that the I4yS-TEX definitons of \nolinebreak,
\allowlinebreak, and \linebreak have an extra element \1lkerns@ at the
end, while \newlines has \nkerns@. Originally these are both \relax, but
now we will change them, so that they involve very small kerns like

\kern-1sp \kernisp

The presence of such \kern’s, presumably not ever explicitly inserted by the
user, will allow us to recognize that such commands were typed, and to deal
with them suitably (details are presented in section 10).

(2) Some people like to prepare a “template” with all possible fields,

\bib
\no
\key
\paper

and then fill in only the necessary fields. So we have to deal with the possibility
that certain fields are empty.

(3) Finally, there is the phenomenon reported by Michael Downes in
TUGBOAT, Volume 11, No. 4. Normally when TEX is setting text it inserts
a discretionary break after hyphens, en- and em-dashes, and explicitly typed

N L

~—

29.4. Stariing the bibliography macros 315

discretionary hyphens \-. But these are omitted when setting an \hbox (in
restricted horizontal mode). If the \hbox is later \unhbox’ed, and made part
of a paragraph, TEX will attempt hyphenation, as usual, if it can’t set the
paragraph without hyphenation. But when this second attempt is made, hy-
phenations are inserted only by the hyphenation algorithm—possible break
points after hyphens, dashes and discretionary hyphens are not added at this
stage. Since the possible break points after hyphens, dashes and discretionary
hyphens weren’t added in the original \hbox, they have thus been lost forever.
So, for example, a compound word like “Nebraska—Lincoln” will not be able
to break properly at the end of a line.

The solution to this problem will be to set everything as a \noindent’ed
paragraph within a \vbox with \hsize=\maxdimen, and then take the \vbox
apart. So we will be using definitions like

\def\paper{\unskip\egroup
\setbox\paperbox@=\vbox\bgroup \hsize=\maxdimen }

A)

In this situation, line breaking commands at the end of a field have to be
handled a bit differently. We will add things like

\null\kern-1isp\kernisp

so that the \null will keep the \kern’s from disappearing at the end of the
line.

29.4. Starting the bibliography macros. The definition of \makebib begins

\def\makebib@{Bibliography}

\def\makebib{\begingroup
\rm
\bigbreak
\centerline{\smc\makebib@W}
\nobreak\medskip
\sfcode‘\.=1000 \everypar={}\parindent=0pt

We use \makebib@W instead of specifying ‘Bibliography’ explicitly, so that
\newword\makebib can be used to change this heading (compare section 23.6
and Chapter 24). \rm is added, just in case another font has been selected.

316 Chapter 29. The bibliography

The space factor code of the period is changed to 1000 because almost all
periods in a bibliography will come from abbreviations (except for the periods
at the ends of each entry, and those occur at the ends of paragraphs). We add
\everypar={} justin case \everypar was non-empty before, since each entry
begins as a nonindented paragraph, and we might as well set \parindent
to Opt, though that shouldn’t matter.

Once \makebib has appeared, we might be using not only \nopunct and
\nospace, but also \noprepunct and \noprespace and \noquotes before
various elements of a \bib. ..\endbib entry. Since all of these can precede
almost any construction, we want to save ourselves all the agony of section 20.1,
and simply have each of these set a flag. \nopunct and \nospace, which
already have definitions, will thus have to be changed by \makebib, and, to
be on the safe side, we will reset the flags to be false,

\def\makebib{\bigbreak

\centerline{\smc Bibliography}
\nobreak\bigskip

\sfcode‘\.=1000 \everypar={}\parindetn=0pt
\def\nopunct{\nopunct@true}
\def\nospace{\nospace@true}
\nopunct@false\nospace@false

As mentioned in section 3, \1kerns@, and \nkerns@ have to be changed
for the bibliography macros; these new definitions also have to be added to
\makebib:

\def\makebib{\bigbreak

\centerline{\smc Bibliography}/
\nobreak\bigskip

\sfcode‘\.=1000 \everypar={}\parindent=0pt
\def\nopunct{\nopunct@truel}y,
\def\nospace{\noprepunct@truel}’,
\nopunct@false\nospace@false
\def\lkerns@{\null\kern-isp\kernisp}’
\def\nkerns@{\null\kern-2sp\kern2spl}}

29.4. Stariing the bibliography macros 317

The \endmakebib simply supplies the \endgroup that matches the
\begingroup with which \makebib begins:

\let\endmakebib=\endgroup

Next we add the flags and definitions

\newif\ifnoprepuncte
\newif\ifnoprespace@
\newif\ifnoquotes@
\def\noprepunct{\noprepunct@true}
\def\noprespace{\noprespace@true}
\def\noquotes{\noquotes@true}

And then we declare all the boxes needed to hold various constructions:

\newbox\nobox@
\newbox\keybox@
\newbox\bybox@
\newbox\paperbox@
\newbox\paperinfobox@
\newbox\ jourbox@
\newbox\volbox@
\newbox\issuebox@
\newbox\yrbox@
\newbox\pgbox@
\newbox\ppbox@
\newbox\bookbox@
\newbox\inbookbox@
\newbox\bookinfobox@
\newbox\publbox@
\newbox\publaddrbox@
\newbox\edbox@
\newbox\edsbox@
\newbox\langbox@
\newbox\translbox@
\newbox\finalinfobox@

318 Chaper 29. The bibliography

29.5. \bibinfo@. Each of various constructions within a \bib...\endbib
entry, like \paper, \jour, ..., may be preceded by \nopunct, ...,
\noquotes, and we need an easy way to keep track of this information. We
will store all the necessary information for a \bib. . .\endbib entry in a con-
trol sequence \bibinfoQ@ (initially empty at the beginning of each \bib). Each
field like \paper, \jour, ..., will first update \bibinfo®@, based on the cur-
rent values of the flags \ifnopunctg, ..., \ifnoquotes@—these values will
simply depend on whether \nopunct, ..., \noquotes occurred before this
field (but after the preceding field).

Remember that \paperbox@, \jourbox@, ..., are simply TEX integers,!
which we can produce with \the\paperbox@, \the\jourboxe, If
\paperbox@ happens to have the value 28 (it did the last time I checked),
and \jourbox@ happens to have the value 30, and \paper and \jour are

preceded by any of \nopunct, ..., \noquotes, then we want \bibinfo@ to
be

28,X1X9X3X4X530,¥1Y2Y3Y4Y5

[or 30,7172Y3y4y528 , X1X0XsX4Xs5 if \jour appears before \paper], where
. { 1 if \nopunct precedes \paper
x; is
! 0 otherwise

. { 1 if \nospace precedes \paper

Xo IS
0 otherwise

) 1 if \noprepunct precedes \paper
¥ B { 0 otherwise

. 1 if \noprespace precedes \paper
B { 0 otherwise

. 1 if \noquotes precedes \paper
¥ { 0 otherwise

and similarly for yy, ..., ys.

'Io conserve memory, and allow subsequent macros to work quickly, we want
\bibinfo@ to contain only necessary information; boxes not preceded by any
of \nopunct, ..., \noquotes simply shouldn’t show up.

! More precisely (The TEXbook, page 121), the \newbox routine will \chardef\paperbox@, etc.,
and TgX allows \chardef’d quantities to be used as integers.

29.5. \bibinfo®@ 319

The routine \setbibinfo@#1, used when #1 is \paperbox@, ..., suit-
ably expands \bibinfo@ if necessary, based on the current values of the flags
\ifnopunctg, ..., \ifnoquotes@:

\def\setbibinfo@#1{\edef\next@{\ifnopunct@i\elseO\fi
\ifnospace@l\elseO\fi\ifnoprepunct@i\elseO\fi
\ifnoprespace@i\elseO\fi\ifnoquotes@i\elseO\fil}}
\def\nextii@{000003}%

\ifx\next@\nextii®@

\else
\xdef\bibinfo@{\bibinfo@\the#1, \nexte}
\fi}

Here we first set \next@ to the proper x; ...x5. Then, if this sequence is

00000 (because none of \nopunct, ... , \noquotes appeared) we do nothing;
otherwise, we add

\the#1,X;XoX3X4X5

to \bibinbfo@. An \xdef was needed to define \bibinfoe globally because
we will be using \setbibino@ within a group, to pass information on beyond
that group (section 12).

There is a corresponding \getbibinfo@#1, which will \let\next@=x,,
.- » \Let\nextv@=x5 when ‘\the#1,’ appears in \bibinfo@, or simply \let
them =0 otherwise:

\def\getbibinfo@#1{Y,
\ifx\bibinfo@\empty
\let\next@=0\let\nextii@=0\1let\nextiii@=07
\let\nextive=0\1let\nextve=0Y

320 Chapter 29. The bibliography

\else
\edef\next@{\def
\noexpand\next@####1i\the
#1, HHH2BHHSHEF B4R R RIS HH#HO#HHRT \nOexpand \next
{\let\noexpand\next@=####2\let\noexpand\nextii@=i#iit#3),
\let\noexpand\nextiii@=####4\1let\noexpand\nextive=#ii##5},
\let\noexpand\nextvo=####6}

\noexpand\next@\bibinfo@\the#1,00000\noexpand\next@}Y
\next@

\fi}

By now it should be no problem to unravel this (compare page 82 and
Chapter 17). For the sake of speed, we have made a special clause for the
(usual) case where \bibinfo@ is empty. We use the rather rare assignments
\let\next@=0 or \let\next@=1, etc., so that later we can use simple \if
tests,

\if\nexta@1

to test for the value.

Note, finally, that these definitions work because \paperbox®, ..., all Tep-
resent 2-digit numbers. There would be ambiguity if, for example, one had
the value 9 and another had the value 19; fortunately, that can’t happen, since
\newbox only creates numbers greater than 9.

29.6. Additional flags. Next we introduce the flags for determining the weat-
ment of paper and book titles:

\newif\ifbookinquotes@
\def\bookinquotes{\bookinquotes@true}
\newif\ifpaperinquotes@
\def\paperinquotes{\paperinquotes@true}
\newif\ifininbook@
\def\ininbook{\ininbook@true}

We will also need a flag

\newif\ifopenquotes@

e’

29.7. \bib 321

which we will set true after printing each \paper or \book title that has begun
with ¢ ‘. The next field will then supply the closing *’ at the right time, and
reset the flag to false, using the routine

\def\closequotes@{\ifopenquotes@’’\openquotes@false\fi}

In addition, we need special flags to deal with the possibilities of \morebib,
\anotherbib, and \transl. The definitions of these constructions aren’t
given until section 14, but some discussion is necessary now. These three con-
structions act almost like an \endbib \bib pair, first printing the information
already collected (but without ending the paragraph), and then collecting new
information. For efficiency, these constructions and \endbib all call upon a
common construction, \endbib@, which does all the work of printing the ac-
cumulated information, except that certain flags will have to be set differently
for the various constructions.

First we have the flags

\newif\ifbeginbib@
\newif\ifendbib@

The flag \ifbeginbib@ will, for example, determine whether or not we
should print \no and \key information; it will be true when we are setting the
first part of a \bib. . .\endbib entry, but false if we are printing a \morebib
part. The flag \ifendbib@ will, for example, determine whether we should
print the final period at the end of the entry; it will be false if we are printing
the first part of an entry that has a \morebib part to follow, though it will be
true when we then set the \morebib part.
We also need the flags

\newif\ifprevjoure
\newif\ifprevbooke@

to pass information to \morebib and \anotherbib about a \jour or \book
in the main part.

29.7. \bib. For defining \bib we first introduce a new dimension

\newdimen\bibindent@

322 Chapter 29. The bibliography

with the default value

\bibindent@=20pt

in terms of which the hanging indentation for \bib items will be specified.
This makes it easier to add commands to change this indentation. (The default
style doesn’t have any such commands, but other styles do.) Then we define

\def\bib{\global\let\bibinfo@=\empty
\global\let\translinfo@=\relax
\beginbib@true
\begingroup
\noindent@\hangindent\bibindent@ \hangafteri
\bibe}

The \global\let\bibinfo@=\empty clears out \bibinfo@ from the previ-
ous \bib..\endbib. \translinfo@, which will play a role later, also has to
be cleared out. Then we set \ifbeginbib@ to be true, begin a group, start a
\noindent@ed paragraph with hanging indentation \bibindent@ after the
first line, and call \bib@.

\bib@ has to start by setting \nobox@, \keybox@, ..., to void boxes. We
introduce the abbreviation

\def\veidi#i{\setbox#1=\box\voidbox}

and then

\def\bib@{\v@id\nobox@ \v@id\keybox@ \v@id\byboxe
\v@id\paperbox@ \v@id\paperinfobox@

\v@id\jourbox@ \v@id\volbox@ \v@id\issuebox@ \v@id\yrbox@
\v@id\pgbox@ \v@id\ppbox@

\v@id\bookbox@ \v@id\inbookbox@ \v@id\bookinfobox@
\v@id\publbox@ \v@id\publaddrbox@

\v@id\edbox@ \v@id\edsbox@

\v@id\langbox@ \v@id\translbox@ \v@id\finalinfobox@
\bgroup}

As explained in section 3, the \bgroup will immediately be closed by an
\egroup at the beginning of the \no or \key or ... that occurs next.

29.8. The basic construction 323

29.8. The basic construction. The basic definition (A) on page 315 is going to
be changed in several ways. First of all, when #1 is \paperbox@, \jourbox@,
etc., we want to add

\unskip|\setbibinfo#i\egroup
\setboxi#i=\vbox\bgroup .

so that \bibinfo@ will have the proper information regarding any \nopunct,
..., \noquotes that precede \paper, \jour, Since the information in
\bibinfo@ is recorded using \xdef’s, this can be done before the \egroup;
note also that since each \nopunct, ..., \noquotes will occur within a field,
and thus eventually within some \bgroup. . . \egroup, we don’t have to worry
about their effects unexpectedly promulgating to another field.

Inside the \vbox we will want to have
\hsize=\maxdimen
as well as
\leftskip=0pt \rightskip=0pt

(even if, for some strange reason, the bibliography is being set with other
values, we want to have \leftskip and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>