
Package tokcycle (v1.11)
Steven B Segletes <steven.b.segletes.civ@mail.mil>

contributor: Christian Tellechea1

February 4, 2020

The tokcycle package helps one to build tools to process tokens from
an input stream. If a macro to process an arbitrary single (non-
macro, non-space) token can be built, then tokcycle can provide
a wrapper for cycling through an input stream (including macros,
spaces, and groups) on a token-by-token basis, using the provided
macro on each successive character.

tokcycle characterizes each successive token in the input stream as
a Character, a Group, a Macro, or a Space. Each of these token
categories are processed with a unique directive, to bring about the
desired e�ect of the token cycle. If -condition �ags are provided to
identify active, implicit, and catcode-6 tokens as they are digested.
The package provides a number of options for handling groups.

Contents

1 The tokcycle macros and environments 2
1.1 Externally speci�ed directives and directive resets 3

2 Commands in the tokcycle directives 4
2.1 Adding tokens to the output stream: \addcytoks 4

2.1.1 #1 . 5
2.2 Group directive: \ifstripgrouping, and \processtoks 5

2.2.1 Implicit grouping tokens: \stripimplicitgroupingcase 5
2.3 Escaping content from tokcycle processing 6
2.4 Flagged tokens . 6

2.4.1 Active characters . 6
2.4.2 Implicit tokens: \ifimplicittok 7
2.4.3 Parameter (cat-6) tokens (e.g., #): \ifcatSIX 7
2.4.4 Parameters (#1�#9): \whennotprocessingparameter . . 7

2.5 Misc: general if -condition tools 8
2.6 tokcycle macro close-out: \aftertokcycle 8
2.7 Accommodating catcode-1,2 changes: \settcGrouping 8

3 Usage Examples 8

4 Summary of known package limitations 9

1I am extremely grateful to Christian <unbonpetit@netc.fr> for his assistance in the de-
velopment of this package. The \addcytoks macro was provided by him. He gave constant
reminders on what the parser should be able to achieve, thus motivating me to spend the
extra time striving for a generality of application that would not come naturally to me. I
value highly his collegiality and hold his expertise in the highest regard.

1

1 The tokcycle macros and environments

The purpose of the tokcycle package is to provide a tool to assist the user in de-
veloping token-processing macros and environments. The types of processing are
limited only by the creativity of the user, but examples might include letter-case-
operations, letter spacing, dimensional manipulation, simple-ciphering, {group}
manipulation, macro removal, etc. In one sense, it can be thought of as a stream-
ing editor that operates on LATEX input streams.

The package can be loaded into both plain TEX, by way of the invocation
\input tokcycle.tex as well as LATEX, via \usepackage{tokcycle}. It pro-
vides a total of 6 macros/pseudo environments, based on three criteria:

• Two pseudo-environments with the phrase �tokencycle� in the name,
and four macros containing the phrase �tokcycle�. The pseudo-environ-
ments operate within a group and typeset their result upon completion.
The macros operate within the document's current scope, but do not
typeset the result automatically. In the case of both macros and pseudo-
environments, the transformed result is available for later use, being stored
in the package token register named \cytoks.

• Two macros and one pseudo-environment containing the phrase �xpress�.
Without the phrase, the macro/environment requires four processing di-

rectives to be explicitly speci�ed, followed by the input stream. With the
phrase present, only the input stream is to be provided. In the xpress case,
the processing directives are to have been separately speci�ed via external
macro and/or are taken from the most recent tokcycle macro invocation
(failing that, are taken from the package initialization).

• Two macros containing the phrase �expanded�. When present, the input
stream of the token cycle is subject to the new TEX primitive, \expanded,
prior to processing by the tokcycle macro. Expansion of speci�c macros
in the input stream can be inhibited in the input stream with the use of
\noexpand. Note that there are no expanded environments in tokcycle, as
tokcycle environments do not pre-tokenize their input stream.

The basic approach of all tokcycle macros/environments is to grab each suc-
cessive token (or group) from the input stream, decide what category it is, and
use the currently active processing directives to make any desired transforma-
tion of the token (or group). Generally, with rare exception, the processed tokens
should be stored in the token register \cytoks, using the tools provided by the
package. The cycle continues until the input stream is terminated.

As tokens/groups are read from the input stream, they are categorized ac-
cording to four type classi�cations, and are subjected to the user-speci�ed pro-
cessing directive associated with that category of token/group. The tokcycle

categories by which the input stream is dissected include Character , Group,
Macro, and Space.

Catcode-0 tokens are directed to theMacro directive for processing. Catcode-
10 tokens are directed to the Space directive. When an explicit catcode-1 token is

2

encountered in the tokcycle input stream, the contents of the entire group (sans
the grouping) are directed to the Group directive for further processing, which
may in turn, redirect the individual tokens to the other categories. The handling
options of implicit cat-1 and 2 tokens are described later in this document. Valid
tokens that are neither catcode 0, 1, 2, nor 10, except where noted, are directed
to the Character directive for processing.

The syntax of the non-xpress macros/environments is

\tokcycle or \expandedtokcycle

{<Character processing directive>}
{<Group-content processing directive>}
{<Macro processing directive>}
{<Space processing directive>}
{<token input stream>}

or, alternately, for the pseudo-environment,

\tokencycle

{<Character processing directive>}
{<Group-content processing directive>}
{<Macro processing directive>}
{<Space processing directive>}<token input stream>\endtokencycle

For the xpress macros, the syntax is

\tokcyclexpress or \expandedtokcyclexpress

{<token input stream>}

or, alternately, for the xpress-pseudo-environment,

\tokencycleexpress<token input stream>\endtokencyclexpress

In addition to the above macros/environments, the means is provided to
de�ne new tokcycle environments:

\tokencycleenvironment\environment_name

{<Character processing directive>}
{<Group-content processing directive>}
{<Macro processing directive>}
{<Space processing directive>}

This will then permit simpli�ed invocations of the form

\environment_name<token input stream>\endenvironment_name

1.1 Externally speci�ed directives and directive resets

For use in xpress mode, the directives for the C-G-M-S categories may be ex-
ternally pre-speci�ed, respectively, via the four macros \Characterdirective,
\Groupdirective, \Macrodirective, and \Spacedirective, each taking an
argument containing the particulars of the directive speci�cation.

Each of these directives may be individually reset to the package default
with the following argument-free invocations: \resetCharacterdirective,

3

\resetGroupdirective, \resetMacrodirective, or \resetSpacedirective.
In addition, \resettokcycle is also provided, which not only resets all four di-
rectives collectively, but it also resets, to the default con�guration, the manner
in which explicit and implicit group tokens are processed. Finally, it resets the
\aftertokcycle macro to empty.

The default directives at package outset and upon reset are

\Characterdirective{\addcytoks{#1}}

\Groupdirective{\processtoks{#1}}

\Macrodirective{\addcytoks{#1}}

\Spacedirective{\addcytoks{#1}}

\aftertokcycle{}

\stripgroupingfalse

\stripimplicitgroupingcase{0}

The interpretation of these directives will be explained in the remainder of
this document. Let it su�ce for now to say that the default directive settings
pass through the input stream to the output stream, without change.

2 Commands in the tokcycle directives

The command-line token cycling tools provided in the package are listed in
section 1. For each of those commands and/or pseudo-environments, the user
must (explicitly or implicitly) detail a set of directives to specify the manner
in which the Character , Group, Macro, and Space tokens found in the input
stream are to be processed. The C-G-M-S processing directives consist of normal
TEX/LATEX commands and user-de�ned macros to accomplish the desired e�ect.
There are, however, several macros provided by the package to assist the user
in this endeavor.

The recommended way to apply this package is to collect the tokcycle-
transformed results of the input stream in a token register provided by the
package, named \cytoks. Its contents can then be typeset via \the\cytoks.
The macro for appending things to \cytoks, to be used in the package direc-
tives, is \addcytoks.

2.1 Adding tokens to the output stream: \addcytoks

The macro provided to append tokens to the \cytoks token register is named
\addcytoks[]{}. Its mandatory argument consists of tokens denoting what you
would like to append to the \cytoks register, while the optional argument de-
notes how you would like them appended (valid options include positive integers
[<n>] and the letter [x]).

When the optional argument is omitted, the speci�ed tokens are appended
literally to the register (without expansion). An integer option, call it n, takes
the the mandatory argument, and expands it n-times, and appends the result
to \cytoks. The [x] option employs the \expanded primitive to maximally
expand the argument before appending it to \cytoks.

4

The [x] option will prove useful when the Character directive involves a
transformation that is fully expandable. Its use will allow the expanded result
of the transformation to be placed in the token register, rather than the unex-
panded transformation instructions.

2.1.1 #1

In the context of the C, G, M, and S processing directives, one may refer to #1

(e.g., in the argument to \addcytoks). TEX users know that the �rst parameter
to a TEX macro is denoted as #1. The speci�cation of all tokcycle processing
directives is structured in such a way that �#1� may be directly employed to
indicate the current token (or group) under consideration in the input stream.

2.2 Group directive: \ifstripgrouping, and \processtoks

The Group directive is unique, in that it is the only directive whose argument
(#1) may consist of more than a single token. There are two issues to consider
when handling the tokens comprising a group: do I retain or remove the grouping
(cat-1,2 tokens)? Do I process the group's token content individually through
the token cycle, or collectively as a unit?

Grouping in the output stream is determined by the externally set condition
\ifstripgrouping. The package default is \stripgroupingfalse, such that
any explicit grouping that appears in the input stream will be echoed in the
output stream. The alternative, \stripgroupingtrue, is dangerous in the sense
that it will strip the cat-1,2 grouping from the group's tokens, thereby a�ecting
or even breaking code that utilizes such grouping for macro arguments. Modify
\ifstripgrouping with care.

The issue of treating the tokens comprising the content of a group indi-
vidually or collectively is determined by the choice of macro inside the Group

directive. Within the Group directive, the argument #1 contains the collective
tokens of the group (absent the outer cat-1,2 grouping). The default directive
\processtoks{#1} will recommit the group's tokens individually to be pro-
cessed through the token cycle. In contrast, the command \addcytoks{#1} in
the Group directive would directly add the collective group of tokens to the
\cytoks register, without being processed individually by tokcycle.

2.2.1 Implicit grouping tokens: \stripimplicitgroupingcase

Implicit grouping tokens (e.g., \bgroup & \egroup) can be handled in one of
three separate ways. Therefore, rather than using an if -condition, the external
declaration \stripimplicitgroupingcase{} is provided, which takes one of 3
integers as its argument (0, 1, or −1). The package-default case of �0� indicates
that the implicit-group tokens will not be stripped, but rather echoed directly
into the output stream. The case of �1� indicates that the implicit-group tokens
will be stripped and not placed into the output stream (as with explicit grouping,
this is a dangerous case and should be speci�ed with care).

5

Finally, the special case of −1 indicates that the implicit-group tokens should
instead be passed to the Character directive for further handling (note that the
\implicittoktrue condition will be set2). Such a special treatment has limited
application�for example, when the intent is to detokenize these tokens.

2.3 Escaping content from tokcycle processing

There are times you may wish to prevent tokens in the tokcycle input stream
from being operated on by tokcycle. Rather, you just want the content passed
through unchanged to the output; that is, with the intent to have multi-token
content bypass the tokcycle directives altogether.

The method developed by the package is to enclose the escaped content
in the input stream between a set of tokcycle escape characters, initially set
to a vertical rule character found on the keyboard: � |�. The main proviso is
that the escaped content cannot straddle a group boundary (the complete
group may, however, be escaped). The escape character can be changed with
\settcEscapechar{<escape-token>}.

2.4 Flagged tokens

Certain token types are trapped and �agged via true/false if -conditions. These
if -conditions can be examined within the appropriate directive (generally the
Character directive), to direct the course of action within the directive.

2.4.1 Active characters

\ifactivetok: Active (cat-13) tokens that occur in the input stream result
in the �ag \ifactivetok being set \activetoktrue. Note that the expansion
of the token's active \def occurs after tokcycle processing. With active \let's,
there is no text substitution; however, the assignment is already active at the
time of tokcycle processing. The only exception to this rule is with pre-expanded
input, \expandedtokcycle[xpress]. If an active token's substitution is gov-
erned by a \def, the text substitution will have occurred before reaching the
token cycle.

\ifactivetokunexpandable: This �ag is similar to \ifactivetok, in that a
token must be active for this to be set true. However, in addition, it is only true
if the active token is \let to a character or a primitive, neither of which can be
expanded. Active characters assigned via \def or else \let to a macro will not
qualify as \activetokunexpandabletrue.

\ifactivechar: This �ag, rather than testing the token, tests the character
code of the token, to see if it is set active. Generally, the token and its character
code will be syncronized in their activeness. However, if a token is tokenized

2as well as the internal condition \tc@implicitgrptrue

6

when active, but the corresponding character code is made non-active in the
meantime, prior to the token reaching tokcycle processing, this �ag will be set
\activecharfalse. A similar discrepency will arise if a token is not active when
tokenized, but the character code is made active in the interim, prior to tokcycle

processing.

2.4.2 Implicit tokens: \ifimplicittok

Implicit tokens, those assigned via \let to characters3, are �agged with a true

setting for \ifimplicittok. Generally, implicit tokens will be directed to the
Character directive for processing. There are, however, two exceptions: i) im-
plicit grouping tokens (e.g., \bgroup and \egroup) will not appear in any direc-
tive unless the \stripimplicitgroupingcase has been set to −1; and ii) im-
plicit space tokens (e.g., \@sptoken) will be processed by the Space directive.

2.4.3 Parameter (cat-6) tokens (e.g., #): \ifcatSIX

Typically, category-code 6 tokens (like #) are used to designate a parameter (e.g.,
#1�#9). Since they are unlikely to be used in that capacity inside a tokcycle input
stream, the package behavior is to convert them into something cat-12 and set
the if -condition \catSIXtrue. In this manner, \ifcatSIX can be used inside
the Character directive to trap and convert cat-6 tokens into something of the
user's choosing.

As to the default nature of this conversion (if no special actions are taken),
explicit cat-6 characters are converted into the identical character with category
code of 12. On the other hand, implicit cat-6 macros (e.g., \let\myhash#) are
converted into a �xed-name macro, \implicitsixtok, whose cat-12 substitu-
tion text is a \string of the original implicit-macro name.

2.4.4 Parameters (#1�#9): \whennotprocessingparameter

While, generally, one would not intend to use parameters in the tokcycle input
stream, the package provides, not a �ag, but a macro to allow it. The macro is
to be used within the Character directive with the syntax:

\whennotprocessingparameter#1{<non-parameter-processing-directive>}

Here, the #1 doesn't refer to #1 as it appears in the input stream, but to the
sole parameter of the Character directive, referring to the current token being
processed. With this syntax, when the token under consideration is a parameter
(e.g., #1�#9), that parameter is added to the \cytoks register. If the token under
consideration is not a parameter, the code in the �nal argument is executed.

3Some clari�cation may be needed. Control sequences and active characters that are \let

to something other than a cat-0 control sequence will be �agged as implicit. If implicit, a token
will be processed through the Character directive (exceptions noted). On the other hand, if a
control sequence or active character is \let to a cat-0 control sequence, it will be directed to
the Macro directive for processing, without the implicit �ag.

7

2.5 Misc: general if -condition tools

TEX comes equipped with a variety of \if... condition primitives. When deal-
ing with macros for which the order of expansion is important, the \else and
\fi can sometimes get in the way of proper expansion and execution. These
four restructured if macros came in handy writing the package, and may be of
use in creating your directives, without \else and \fi getting in the way:

\tctestifcon{<TeX-if-condition>}{<true-code>}{<false-code>}
\tctestifx{<\ifx-comparison-toks>}{<true-code>}{<false-code>}
\tctestifnum{<\ifnum-condition>}{<true-code>}{<false-code>}
\tctestifcatnx<\ifcat\noexpand-comparison-toks>{<true-code>}{<false-code>}

2.6 tokcycle macro close-out: \aftertokcycle

The tokcycle macros, upon completion, do nothing. Unlike \tokencycle en-
vironments, they don't even output \the\cytoks token register. A command
has been provided, \aftertokcycle, which takes an argument to denote the ac-
tions to be executed following completion of all subsequent tokcycle invocations.
It might be as simple as \aftertokcycle{\the\cytoks}, to have the output
stream automatically typeset.

The meaning of \aftertokcycle can be reset with \aftertokcycle{}, but
is also reset as part of \resettokcycle. Unlike macros, the tokcycle environ-
ments are una�ected by \aftertokcycle, as they actually set it locally (within
their scope) to accomplish their own purposes.

2.7 Accommodating catcode-1,2 changes: \settcGrouping

In order to avoid making the tokcycle parser overly complex, requiring multiple
passes of the input stream, the package defaults to using catcode-1,2 braces { }

to bring about grouping in the output stream, regardless of what the actual cat-
1,2 tokens are in the input stream. As long as their sole purpose in the token
cycle is for grouping and scoping, this arrangement will produce the expected
output.

However, if the actual character-code of these tokens is important to the re-
sult (e.g., when detokenized), there is one other option. The package allows the
external speci�cation of which cat-1,2 tokens should be used in the tokcycle out-
put stream. The syntax is \settcGrouping{{#1}}, to use the standard braces
for this purpose (default). If angle-brackets < > were to be the new grouping
tokens, then, after their catcodes were changed, and \bgroup and \egroup were
reassigned, one would invoke \settcGrouping<<#1>>. These will then be the
grouping tokens in the tokcycle output stream until set to something else.

3 Usage Examples

See the adjunct �le, tokcycle-examples.pdf, for an array of tokcycle examples.

8

4 Summary of known package limitations

The goal of this package is not to build the perfect token-stream parser. It is,
rather, to provide the means for users to build useful token-processing tools for
their TEX/LATEX documents.

What follows are the known limitations of the package. which arise, in part,
from the single-pass parsing algorithm embedded in the package. Surely, there
are more cases associated with arcane catcode-changing syntax that are not
accounted for; I encourage you to bring them to my attention. If I can't �x
them, I can at least disclaim and declaim them.

• One must inform the package (via \settcGrouping) of changes to the
cat-1,2 tokens if there is a need to detokenize the output with the speci-
�ed bracing group; however, grouping will still be handled properly (i.e.,
cat-1,2 tokens will be detected), even if the package is not noti�ed. See
section 2.7.

• Should one need to keep track of the names of implicit tokens, then only
one named implicit cat-6 token (e.g., \let\svhash#) may appear in the
input stream (though it can appear multiple times). There is no limit on
explicit cat-6 toks. This limitation occurs because implicit cat-6 tokens
are converted into the �xed-name implicit macro \implicitsixtok which
contains the \string of the most recently used implicit cat-6 token name.
In any event, all cat-6 tokens are trapped and �ag true the \ifcatSIX

condition.

Acknowledgments

In addition to Christian Tellechea, a contributor to this package, the author
would like to thank Dr. David Carlisle for his assistance in understanding some of
the nuances of token registers. Likewise, his explanation about how a space token
is de�ned in TEX (see https://tex.stackexchange.com/questions/64197/

pgfparser-module-and-blank-spaces/64200#64200) proved to be useful here.
The tex.stackexchange site provides a wonderful opportunity to interact with
the leading developers and practitioners of TEX and LATEX.

Source Code

tokcycle.sty

\input tokcycle.tex

\ProvidesPackage\tcname[\tcdate\space V\tcver\space Cycle through and transform

a stream of tokens]

\endinput

9

tokcycle.tex

\def\tcname {tokcycle}

\def\tcver {1.11}

%

\def\tcdate {2020/02/04}

%

% Author : Steven B Segletes, Christian Tellechea (contributor)

% Maintainer : Steven B Segletes

% License : Released under the LaTeX Project Public License v1.3c

% or later, see http://www.latex-project.org/lppl.txt

% Files : 1) tokcycle.tex

% 2) tokcycle.sty

% 3) tokcycle-doc.tex

% 4) tokcycle-doc.pdf

% 5) tokcycle-examples.tex

% 6) tokcycle-examples.pdf

% 7) README

%%%

% MACRO FORM

\long\def\tokcycle#1#2#3#4#5{\tokcycraw{#1}{#2}{#3}{#4}#5\endtokcycraw}

% \expanded-ARGUMENT MACRO FORM

\long\def\expandedtokcycle#1#2#3#4#5{\cytoks{\tokcycraw{#1}{#2}{#3}{#4}}%

\expandafter\the\expandafter\cytoks\expanded{#5}\endtokcycraw}

% ENVIRONMENT FORM

\long\def\tokencycle#1#2#3#4{\begingroup\let\endtokencycle\endtokcycraw

\aftertokcycle{\the\cytoks\expandafter\endgroup\expandafter\tcenvscope

\expandafter{\the\cytoks}}\tokcycraw{#1}{#2}{#3}{#4}}

% XPRESS-INTERFACE MACRO FORM

\long\def\tokcyclexpress#1{\tokcycrawxpress#1\endtokcycraw}

% XPRESS-INTERFACE \expanded-ARGUMENT MACRO FORM

\long\def\expandedtokcyclexpress#1{%

\expandafter\tokcycrawxpress\expanded{#1}\endtokcycraw}

% XPRESS-INTERFACE ENVIRONMENT FORM

\def\tokencyclexpress{\begingroup\let\endtokencyclexpress\endtokcycraw

\aftertokcycle{\the\cytoks\expandafter\endgroup\expandafter\tcenvscope

\expandafter{\the\cytoks}}\tokcycrawxpress}

% INITIALIZATION & INTERNAL TOOLS

\def\tcenvscope{\cytoks}% CAN SET TO \global\cytoks TO OVERCOME SCOPE LIMITS

\edef\restorecatcode{\catcode\number`\@=\number\catcode`\@\relax}

\catcode`\@11

\newif\iftc@implicitgrp

\newif\if@argnext

\newtoks\tc@tok

\newcount\tc@depth

\def\tc@gobble#1{}

\def\tc@deftok#1#2{\let#1= #2\empty}

\tc@deftok\tc@sptoken{ }

\expandafter\def\expandafter\tc@absorbSpace\space{}

\def\tc@ifempty#1{\tc@testxifx{\expandafter\relax\detokenize{#1}\relax}}

\def\tc@defx#1#2{\tc@earg{\def\expandafter#1}{#2}}

\long\def\tc@earg#1#2{\expandafter#1\expandafter{#2}}

\long\def\tc@xarg#1#2{\tc@earg#1{\expanded{#2}}}

\long\def\tc@exfirst#1#2{#1}

\long\def\tc@exsecond#1#2{#2}

\long\def\tc@testxifx{\tc@earg\tctestifx}

\long\def\test@ifmacro#1{\tctestifcatnx#1\relax}

\def\tc@addtoks#1#2{\toks#1\expandafter{\the\toks#1#2}}

10

\def\addtc@depth{\advance\tc@depth 1}

\def\subtc@depth{\tc@depth=\numexpr\tc@depth-1\relax}

\def\tc@resetifs{\activetokfalse\implicittokfalse\tc@implicitgrpfalse

\catSIXfalse\activecharfalse\activetokunexpandablefalse}

\long\def\count@stringtoks#1{\tc@earg\count@toks{\string#1}}

\long\def\count@toks#1{\the\numexpr-1\count@@toks#1.\tc@endcnt}

\long\def\count@@toks#1#2\tc@endcnt{+1\tc@ifempty{#2}{\relax}{\count@@toks#2\tc@endcnt}}

\def\sv@hash{##}

% EXTERNAL TOOLS

\long\def\tctestifcon#1{#1\expandafter\tc@exfirst\else\expandafter\tc@exsecond\fi}

\long\def\tctestifcatnx#1#2{\tctestifcon{\ifcat\noexpand#1\noexpand#2}}

\long\def\tctestifx#1{\tctestifcon{\ifx#1}}

\long\def\tctestifnum#1{\tctestifcon{\ifnum#1\relax}}

\newif\ifstripgrouping

\def\stripimplicitgroupingcase#1{\edef\@implicitgroupingcase{\the\numexpr1-#1}}

\newif\ifcatSIX

\newif\ifimplicittok

\newif\ifactivetok

\newif\ifactivechar

\newif\ifactivetokunexpandable

\newtoks\cytoks

\long\def\tokcycleenvironment#1#2#3#4#5{\expandafter\def\expandafter#1%

\expandafter{\expandafter\let\csname end\expandafter\tc@gobble

\string#1\endcsname\endtokcycraw\tokencycle{#2}{#3}{#4}{#5}}}

\long\def\processtoks#1{\addtc@depth\@tokcycle#1\endtokcycraw }

\def\whennotprocessingparameter#1#2{\tctestifcon\if@argnext{\@argnextfalse\cytoks

\expandafter{\the\cytoks###1}}{\tctestifcon\ifcatSIX{\@argnexttrue}{#2}}}

% ESSENTIAL METHOD: STREAMING MACRO WITH TERMINATOR:

% \tokcycraw{<Char>}{<Group>}{<Macro>}{<Space>}<input-stream>\endtokcycraw

\long\def\tokcycraw#1#2#3#4{\def\@chrT##1{#1}\long\def\@grpT##1{#2}%

\long\def\@macT##1{#3}\def\@spcT##1{#4}\tokcycrawxpress}

% ENTRY POINT FOR XPRESS METHOD WITHOUT EXPLICIT ARGUMENTS

\def\tokcycrawxpress{\cytoks{}\tc@depth=1\relax\@tokcycle}

% CODE TO EXECUTE AT COMPLETION

\long\def\aftertokcycle#1{\def\@aftertokcycle{#1}}

\def\endtokcycraw{\subtc@depth\tctestifnum{\tc@depth=0}{\@aftertokcycle}{}}

% LOOP ENTRY POINT

\def\@tokcycle{\tc@resetifs\futurelet\tc@next\detect@CANTabsorb}

\def\detect@CANTabsorb{\tctestifx{\tc@next\tc@sptoken}{\stringify\@@@@@spcT}%

{\tctestifx{\tc@next\bgroup}{\stringify\@@@@grpT}{\can@absorb}}}

% NON cat1,10 TOKENS

\long\def\can@absorb#1{\tc@tok{#1}\trapcatSIX{#1}\expandafter\can@absorb@

\the\tc@tok}

\long\def\can@absorb@#1{\tctestifnum{\count@stringtoks{#1}>1}%

{\tctestifx{\endtokcycraw#1}{#1}{\backslashcmds#1\@tokcycle}}%

{\trapactives#1\tc@trapescape#1{\tc@escapecytoks}{\can@absorb@@#1}}}

\long\def\can@absorb@@#1{\let\@tmp=#1\test@ifmacro\@tmp{\implicittokfalse

\@macT#1}{\trapimplicitegrp#1\implicitgrpfork#1}\@tokcycle}

%CONVERT NEXT (SPACE OR BEGIN-GROUP) TOKEN TO STRING

\def\stringify#1{\expandafter#1\string}% #1 WILL BE \@@@@@spcT or \@@@@grpT

%SPACE DECODE

\def\@@@@@spcT{\futurelet\tc@str\@@@@spcT}

\def\@@@@spcT{\tctestifx{\tc@str\tc@sptoken}%

{\def\@tmp{\@@spcT{ }}\expandafter\@tmp\tc@absorbSpace}% EXPLICIT SPACE

{\implicittoktrue\expandafter\@@@spcT\tc@gobble}}% IMPLICIT SPACE

\def\@@@spcT{\csmk{\expandafter\@@spcT\thecs}}

\def\@@spcT#1{\@spcT{#1}\@tokcycle}

11

% GROUP DECODE

\def\@@@@grpT{\futurelet\tc@str\@@@grpT}

\def\@@@grpT#1{\tctestifnum{\number\catcode`#1=1}%

{\expandafter\@@grpT\expandafter{\iffalse}\fi}% {

{\implicittoktrue\tc@implicitgrptrue%

\tctestifnum{`#1=92}% WORKS EVEN IF CAT-0 HAS CHANGED

{\csmk{\expandafter\backslashcmds\thecs\@tokcycle}}% \bgroup

{\begingroup\catcode`#1=\active \xdef\@tmp{\scantokens{#1\noexpand}}\endgroup

\expandafter\implicitgrpfork\@tmp\@tokcycle}% ACTIVE CHAR \bgroup

}}

\def\@@grpT#1{\tctestifcon\ifstripgrouping{\@grpT{#1}}%

{\groupedcytoks{\@grpT{#1}}}\@tokcycle}

% \ COMMANDS (MACROS AND IMPLICITS)

\long\def\backslashcmds#1{%

\test@ifmacro#1{\tctestifcon\ifcatSIX{\implicittoktrue\@chrT#1}{\@macT#1}}%

{\implicittoktrue\trapimplicitegrp#1\implicitgrpfork#1}}

% FORK BASED ON IMPLICIT GROUP TREATMENT

\def\implicitgrpfork#1{\tctestifcon{\iftc@implicitgrp}{\ifcase

\@implicitgroupingcase\or\addcytoks{#1}\or\@chrT{#1}\fi}{\@chrT#1}}

% SET UP ESCAPE MECHANISM

\def\settcEscapechar#1{\let\@tcEscapeptr#1%

\def\tc@escapecytoks##1#1{\addcytoks{##1}\@tokcycle}}

\def\tc@trapescape#1{\tctestifx{\@tcEscapeptr#1}}

% TRAP CAT-6

\long\def\trapcatSIX#1{\tctestifcatnx#1\relax{}{\trapcatSIXb#1}}

\def\trapcatSIXb#1{\tc@earg\tctestifcatnx\sv@hash#1{\catSIXtrue\trapcatSIXc#1}{}}

\def\trapcatSIXc#1{\tctestifnum{\count@stringtoks{#1}>1}{\tc@defx\six@str{\string#1}%

\global\let\implicitsixtok\six@str\tc@tok{\implicitsixtok}}%

{\tc@tok\expandafter{\string#1}\tctestifnum{\number\catcode`#1=6}%

{}{\activetoktrue\implicittoktrue}}}

% DIRECTIVES FOR HANDLING GROUPS RECURSIVELY; DEFINE tokcycle GROUPING CHARS

\def\@defgroupedcytoks#1{\long\def\groupedcytoks##1{%

\begingroup\cytoks{}##1\expandafter\endgroup\expandafter

\addcytoks\expandafter{\expandafter#1}}}

\def\settcGrouping#1{\def\@tmp##1{#1}\tc@defx\@@tmp{\@tmp{\the\cytoks}}%

\tc@earg\@defgroupedcytoks{\@@tmp}}

% FAUX TOKENIZATION OF COMMAND NAME (WHEN cat0 TOKEN HAS BEEN MADE cat12)

\def\csmk#1{\def\csaftermk{#1}\toks0{}\@csmkA}

\def\@csmkA{\futurelet\@tmp\@csmkB}

\def\@csmkB{\tctestifx{\@tmp\tc@sptoken}%

{\toks0{ }\expandafter\@csmkF\tc@absorbSpace}{\@csmkCA}}

\def\@csmkCA#1{\tc@addtoks0{#1}\tctestifnum{\number\catcode`#1=11}%

{\futurelet\@tmp\@csmkD}{\@csmkF}}

\def\@csmkC#1{\tctestifnum{\number\catcode`#1=11}

{\tc@addtoks0{#1}\futurelet\@tmp\@csmkD}{\@csmkE#1}}

\def\@csmkD{\tctestifcatnx 0\@tmp\@csmkC\@csmkE}

\def\@csmkE{\tctestifx{\@tmp\tc@sptoken}%

{\expandafter\@csmkF\tc@absorbSpace}{\@csmkF}}

\def\@csmkF{\tc@defx\thecs{\csname\the\toks0\endcsname}\csaftermk}

% TRAP IMPLICIT END GROUP TOK (e.g., \egroup); SET \iftc@implicitgrp

\def\trapimplicitegrp#1{\tctestifx{#1\egroup}{%

\implicittoktrue\tc@implicitgrptrue}{}}

% TRAP ACTIVE TOK

\def\trapactives#1{\trapactivechar{#1}\trapactivetok{#1}}

\def\trapactivechar#1{\tctestifnum{\number\catcode`#1=13}{\activechartrue}{}}

\def\trapactivetok#1{\tctestifcatnx~#1{\activetoktrue}{\trapactivetokunexpandable#1}}

%% WILL ALSO TRAP ACTIVE \let TO PRIMITIVES AS IMPLICIT; UNDO LATER IN \can@absorb@@

12

\def\trapactivetokunexpandable#1{\tctestifcon{\expandafter\if

\detokenize{#1}#1}{}{\activetoktrue\activetokunexpandabletrue\implicittoktrue}}

% EXPRESS-INTERFACE - ALLOWS TO EXTERNALLY DEFINE DIRECTIVES

\def\Characterdirective{\def\@chrT##1}

\def\Groupdirective{\long\def\@grpT##1}

\def\Macrodirective{\long\def\@macT##1}

\def\Spacedirective{\def\@spcT##1}

% EXPRESS-INTERFACE - DEFAULT DIRECTIVES

\def\resetCharacterdirective{\Characterdirective{\addcytoks{##1}}}

\def\resetGroupdirective{\Groupdirective{\processtoks{##1}}}

\def\resetMacrodirective{\Macrodirective{\addcytoks{##1}}}

\def\resetSpacedirective{\Spacedirective{\addcytoks{##1}}}

\def\resettokcycle{\resetCharacterdirective\resetGroupdirective

\resetMacrodirective\resetSpacedirective\aftertokcycle{}%

\stripgroupingfalse\stripimplicitgroupingcase{0}}

% SUPPORT MACROS FOR TOKENIZED OUTPUT: \addcytoks[<expansion level>]{<arg>}

% (CONTRIBUTED BY CHRISTIAN TELLECHEA)

\def\addcytoks{\futurelet\nxttok\addcytoks@A}

\long\def\tc@addtotoks#1{\cytoks\expandafter{\the\cytoks#1}}

\def\addcytoks@A{\tctestifx{[\nxttok}\addcytoks@B\tc@addtotoks}

\long\def\addcytoks@B[#1]#2{\tc@ifempty{#1}\tc@addtotoks

{\tctestifx{x#1}{\tc@xarg\tc@addtotoks}{\addcytoks@C{#1}}}{#2}}

\def\addcytoks@C#1{\tctestifnum{#1>0}{\tc@earg\addcytoks@C

{\the\numexpr#1-1\expandafter}\expandafter}\tc@addtotoks}

% SET INITIAL PARAMETERS

\settcGrouping{{#1}}% E.G. <<#1>> IF cat-1,2 SET TO < AND >

\settcEscapechar{|}% BYPASS TOKCYCLE PROCESSING BETWEEN |...|

\resettokcycle% WHICH ALSO CONTAINS THE FOLLOWING 3 RESETS:

% \stripimplicitgroupingcase{0}% DEFAULT RETAIN UNALTERED \b/e-groups

% \stripgroupingfalse% DEFAULT RETAIN UNALTERED {} GROUPING

% \aftertokcycle{}% NO DEFAULT CODE EXECUTED AFTER EACH TOKCYCLE INVOCATION

\restorecatcode

\endinput

EDIT HISTORY

v1.0 2019/8/21

- Initial release

v1.1 2019/9/27

- Introduced \ifactivechar, \ifactivetokunexpandable

- Tightened up consistent definition of implicit (to exclude primitives)

- Rewrote active token trapping logic, to differentiate between active

token vs. active character code, in the event that an earlier tokenized

token no longer shares the current characteristics of the character code

- Added ability to handle active-implicit grouping tokens

- Added ability to handle active-implicit cat-6 tokens

v1.11 2020/02/04

- Fixed bug in \can@absorb@@ macro, which prevented the proper absorption/

handling of the = token.

13

