
Package tokcycle (v1.41)
Steven B Segletes <SSegletes@verizon.net>

contributor: Christian Tellechea1

June 25, 2021

The tokcycle package helps one to build tools to process tokens from
an input stream. If a macro to process an arbitrary single (non-
macro, non-space) token can be built, then tokcycle can provide
a wrapper for cycling through an input stream (including macros,
spaces, and groups) on a token-by-token basis, using the provided
macro on each successive character.
tokcycle characterizes each successive token in the input stream as
a Character, a Group, a Macro, or a Space. Each of these token
categories are processed with a unique directive, to bring about the
desired effect of the token cycle. If -condition flags are provided to
identify active, implicit, and catcode-6 tokens as they are digested.
The package provides a number of options for handling groups.

Contents
1 The tokcycle macros and environments 2

1.1 Provided (built-in) tokcycle macros and environments 3
1.2 Create your own tokcycle environments 4
1.3 Externally specified directives and directive resets 5

2 Commands in the tokcycle directives 5
2.1 Adding tokens to the output stream: \addcytoks 6

2.1.1 #1 . 6
2.1.2 Transforming the input stream 6

2.2 Group directive: \ifstripgrouping, and \processtoks 7
2.2.1 The \groupedcytoksmacro for more sophisticated group

processing . 7
2.2.2 Implicit grouping tokens: \stripimplicitgroupingcase 8

2.3 Looking ahead at the input stream 8
2.3.1 \tcpeek . 9
2.3.2 \tcpop . 9
2.3.3 \tcpopliteral . 10
2.3.4 \tcpopappto and \tcpopliteralappto 10
2.3.5 \tcpopuntil . 10
2.3.6 \tcpopwhitespace . 10
2.3.7 \tcpush . 11

1I am extremely grateful to Christian <unbonpetit@netc.fr> for his assistance in the de-
velopment of this package. The \addcytoks macro was provided by him. He gave constant
reminders on what the parser should be able to achieve, thus motivating me to spend the
extra time striving for a generality of application that would not come naturally to me. I
value highly his collegiality and hold his expertise in the highest regard.

1

2.3.8 \tcpushgroup . 11
2.3.9 \tcappto#1from#2 . 11

2.4 Truncating the input stream . 12
2.4.1 \truncategroup and \truncategroupiftokis 12
2.4.2 \truncatecycle and \truncatecycleiftokis 13
2.4.3 Truncating from within the Group Directive 13

2.5 Escaping content from tokcycle processing 13
2.6 Flagged tokens . 14

2.6.1 Active characters . 14
2.6.2 Implicit tokens: \ifimplicittok 14
2.6.3 Active-implicit tokens, including spaces 15
2.6.4 Parameter (cat-6) tokens (e.g., #): \ifcatSIX 15
2.6.5 Parameters (#1–#9): \whennotprocessingparameter . . 15

2.7 Misc: general if -condition tools 16
2.8 tokcycle completion: \aftertokcycle and \tcendgroup 16
2.9 Accommodating catcode-1,2 changes: \settcGrouping 16

3 Usage Examples 17

4 Summary of known package limitations 17

1 The tokcycle macros and environments
The purpose of the tokcycle package is to provide a tool to assist the user in de-
veloping token-processing macros and environments. The types of processing are
limited only by the creativity of the user, but examples might include letter-case-
operations, letter spacing, dimensional manipulation, simple-ciphering, {group}
manipulation, macro removal, etc. In one sense, it can be thought of as a stream-
ing editor that operates on LATEX input streams.

The package can be loaded into both plain TEX, by way of the invocation
\input tokcycle.tex as well as LATEX, via \usepackage{tokcycle}. It pro-
vides a total of 6 macros/pseudo environments, based on three criteria:

• Two pseudo-environments with the phrase “tokencycle” in the name,
and four macros containing the phrase “tokcycle”. The pseudo-environ-
ments operate within a group and typeset their result upon completion.
The macros operate within the document’s current scope, but do not
typeset the result automatically. In the case of both macros and pseudo-
environments, the transformed result is available for later use, being stored
in the package token list named \cytoks.

• Two macros and one pseudo-environment containing the phrase “xpress”.
Without the phrase, the macro/environment requires four processing di-
rectives to be explicitly specified, followed by the input stream. With the
phrase present, only the input stream is to be provided. In the xpress case,
the processing directives are to have been separately specified via external

2

macro and/or are taken from the most recent tokcycle macro invocation
(failing that, are taken from the package initialization).

• Two macros containing the phrase “expanded”. When present, the input
stream of the token cycle is subject to the new TEX primitive, \expanded,
prior to processing by the tokcycle macro. Expansion of specific macros
in the input stream can be inhibited in the input stream with the use of
\noexpand. Note that there are no expanded environments in tokcycle, as
tokcycle environments do not pre-tokenize their input stream.

The basic approach of all tokcycle macros/environments is to grab each suc-
cessive token (or group) from the input stream, decide what category it is, and
use the currently active processing directives to make any desired transforma-
tion of the token (or group). Generally, with rare exception, the processed tokens
should be stored in the token register \cytoks, using the tools provided by the
package. The cycle continues until the input stream is terminated.

As tokens/groups are read from the input stream, they are categorized ac-
cording to four type classifications, and are subjected to the user-specified pro-
cessing directive associated with that category of token/group. The tokcycle
categories by which the input stream is dissected include Character , Group,
Macro, and Space (alphabetized for easy recall).

Catcode-0 tokens are directed to theMacro directive for processing. Catcode-
10 tokens are directed to the Space directive. When an explicit catcode-1 token2

is encountered in the tokcycle input stream, the contents of the entire group (sans
the grouping) are directed to the Group directive for further processing, which
may in turn, redirect the individual tokens to the other categories. The handling
options of implicit cat-1 and 2 tokens are described later in this document
(section 2.2.2). Valid tokens that are neither catcode 0, 1, 2, nor 10, except
where noted, are directed to the Character directive for processing.

1.1 Provided (built-in) tokcycle macros and environments
The syntax of the non-xpress macros/environments is

\tokcycle or \expandedtokcycle
{<Character processing directive>}
{<Group-content processing directive>}
{<Macro processing directive>}
{<Space processing directive>}
{<token input stream>}

or, alternately, for the pseudo-environment,
\tokencycle

{<Character processing directive>}
{<Group-content processing directive>}
{<Macro processing directive>}
{<Space processing directive>}<token input stream>\endtokencycle

2Throughout this document the terms catcode- and cat- are used interchangeably.

3

For the xpress macros, the syntax is
\tokcyclexpress or \expandedtokcyclexpress
{<token input stream>}

or, alternately, for the xpress-pseudo-environment,
\tokencyclexpress<token input stream>\endtokencyclexpress

1.2 Create your own tokcycle environments
In addition to the above macros/environments, the means is provided to define
new tokcycle environments:

\tokcycleenvironment\environment_name
{<Character processing directive>}
{<Group-content processing directive>}
{<Macro processing directive>}
{<Space processing directive>}

This will then permit simplified invocations of the form
\environment_name<token input stream>\endenvironment_name

More recently, an even more versatile extended version has been made available:
\xtokcycleenvironment\environment_name

{<Character processing directive>}
{<Group-content processing directive>}
{<Macro processing directive>}
{<Space processing directive>}
{<Set-up code>}
{<Close-out code>}

This will also permit simplified invocations of the form
\environment_name<token input stream>\endenvironment_name

However, with this extended environment definition, additional set-up and close-
out code will be executed prior to and following the token cycle, within the scope
of the environment. The close-out code, while executed after the token cycle,
occurs before the \cytoks token list is actually typeset; therefore the close-out
code can both execute macros and/or add tokens to the imminently-typeset
token list. Any definitions or counters that change as a result of executing the
C-G-M-S directives are, in fact, past tense when the close-out code is executed.

Finally, the set-up and close-out code, as well as the C-G-M-S directives can
invoke \tcafterenv, whose argument is executed upon the exit from the scope
of this defined environment.3 As with all tokcycle environments, those created by
way of \tokcycleenvironment and \xtokcycleenvironment, while operating
in the scope of a group, will preserve the contents of \cytoks when exiting their
scope.

3The \tcafterenv macro is recognized only in the context of an extended
\xtokcycleenvironment definition. It is not available for direct use in the package’s
\tokencycle pseudo-environment, nor in \tokcycleenvironment definitions.

4

1.3 Externally specified directives and directive resets
For use in xpress mode, the directives for the C-G-M-S categories may be ex-
ternally pre-specified, respectively, via the four macros \Characterdirective,
\Groupdirective, \Macrodirective, and \Spacedirective, each taking an
argument containing the particulars of the directive specification.

Each of these directives may be individually reset to the package default
with the following argument-free invocations: \resetCharacterdirective,
\resetGroupdirective, \resetMacrodirective, or \resetSpacedirective.
In addition, \resettokcycle is also provided, which not only resets all four di-
rectives collectively, but it also resets, to the default configuration, the manner
in which explicit and implicit group tokens are processed. Finally, it resets the
\aftertokcycle macro to empty.

The default directives at package outset and upon reset are
\Characterdirective{\addcytoks{#1}}
\Groupdirective{\processtoks{#1}}
\Macrodirective{\addcytoks{#1}}
\Spacedirective{\addcytoks{#1}}
\aftertokcycle{}
\stripgroupingfalse
\stripimplicitgroupingcase{0}

The interpretation of these directives will be explained in the remainder of this
document. Let it suffice for now to say that the default directive settings pass
through the input stream to the output stream, without change.4

2 Commands in the tokcycle directives
The document-level token cycling tools provided in the package are listed in
section 1. For each of those commands and/or pseudo-environments, the user
must (explicitly or implicitly) detail a set of directives to specify the manner
in which the Character , Group, Macro, and Space tokens found in the input
stream are to be processed. The C-G-M-S processing directives consist of normal
TEX/LATEX commands and user-defined macros to accomplish the desired effect.
There are, however, several macros provided by the package to assist the user
in this endeavor.

The recommended way to apply this package is to collect the tokcycle-
transformed results of the input stream in a token register provided by the
package, named \cytoks. Its contents can then be typeset via \the\cytoks.5
The macro for appending things to \cytoks, to be used in the package direc-
tives, is \addcytoks.

4Except, possibly, in the case of catcode-6 tokens, which will be later addressed in sec-
tions 2.6.4 and 2.6.5.

5If a token-cycle input stream contains no macros, or is to be detokenized, or if the input-
stream tokens are not to be typeset, it may be possible (though not required) to bypass
\cytoks and typeset the output directly.

5

2.1 Adding tokens to the output stream: \addcytoks

The macro provided to append tokens to the \cytoks token register is named
\addcytoks[]{}. Its mandatory argument consists of tokens denoting what you
would like to append to the \cytoks register, while the optional argument de-
notes how you would like them appended (valid options include positive integers
[<n>] and the letter [x]).

When the optional argument is omitted, the specified tokens are appended
literally to the register (without expansion). An integer option, call it n, takes
the the mandatory argument, and expands it n-times, and appends the result
to \cytoks. The [x] option employs the \expanded primitive to maximally
expand the argument before appending it to \cytoks.

The [x] option will prove useful when the Character or other directives
involve a transformation that is fully expandable. Its use will allow the expanded
result of the transformation to be placed in the token list, rather than the
unexpanded transformation instructions.

2.1.1 #1

In the context of the C, G, M, and S processing directives, one may refer to
#1 (for example, in the argument to \addcytoks or \processtoks). TEX users
know that the first parameter to a TEX macro is denoted as #1. The specification
of all tokcycle processing directives is structured in such a way that “#1” may be
directly employed to indicate the current token (or group) under consideration
in the input stream.

2.1.2 Transforming the input stream

Within the tokcycle C-G-M-S directives, the command \addcytoks{#1} is used
to echo the token being processed to the output stream that is being collected in
the \cytoks token list. However, one may do more than merely echo the input—
one may transform it. If the user creates a macro, let’s call it \xform, to take a
single character of input and convert it in some way to something else, then this
macro can be used inside the Character directive as \addcytoks{\xform{#1}}.
In this case, if an ‘e’ were the token under consideration by the Character
directive, ‘\xform{e}’ would be added to the \cytoks token list. Since tokcycle
operates upon each successive token in the input stream, this \xform macro that
operates on a single token can be used to completely transform the tokcycle input
stream.

If the \xform macro is expandable, reaching its termination in a known num-
ber, n, of expansions, \addcytoks can take advantage of that with its optional
argument, performing the said number of expansions of \xform before adding
the result to \cytoks. If the expandability of \xform is known, but the number
n is not, the optional argument [x] to \addcytoks may be used to fully expand
the argument (by way of the \expanded primitive). In that case, the resulting
\cytoks result will show no evidence of the \xform macro, but only the results
of its transformation.

6

The accompanying examples document, tokcycle-examples.pdf, is full of
examples showing specific tokcycle-induced transformations.

2.2 Group directive: \ifstripgrouping, and \processtoks

The Group directive is unique, in that it is the only directive whose argument
(#1) may consist of more than a single token. There are two issues to consider
when handling the tokens comprising a group: do I retain or remove the grouping
(cat-1,2 tokens)? Do I process the group’s token content individually through
the token cycle, or collectively as a unit?

Grouping in the output stream is determined by the externally set condition
\ifstripgrouping. The package default is \stripgroupingfalse, such that
any explicit grouping that appears in the input stream will be echoed in the
output stream. The alternative, \stripgroupingtrue, is dangerous in the sense
that it will strip the cat-1,2 grouping from the group’s tokens, thereby affecting
or even breaking code that utilizes such grouping for macro arguments. Apply
\stripgroupingtrue with care.

The issue of treating the tokens comprising the content of a group indi-
vidually or collectively is determined by the choice of macro inside the Group
directive. Within the Group directive, the argument #1 contains the collective
tokens of the group (absent the outer cat-1,2 grouping). The default directive
\processtoks{#1} will recommit the group’s tokens individually to be pro-
cessed through the token cycle. In contrast, the command \addcytoks{#1} in
the Group directive would directly add the collective group of tokens to the
\cytoks register, without being processed individually by tokcycle.

2.2.1 The \groupedcytoks macro for more sophisticated group pro-
cessing

To this point, there have been presented two options for handling grouped ma-
terial in the token cycle: process each of the grouped tokens (via \processtoks)
or echo the grouped tokens (via \addcytoks). Obviously, one may also discard
the grouped tokens altogether by employing neither of the above choices in the
context of the Group directive.

However, there are times where you might wish to perform a macro task
(for example, one that might add additional tokens to \cytoks) immediately
outside of the group, before or after. If you were to add the task macro before
or after the \processtoks invocation (anywhere in the Group directive), it will
still be performed, by default, inside the \cytoks group.

The macro \groupedcytoks allows one to manually specify the grouping
duties of the Group directive. Thus, the following two group-processing config-
urations are functionally identical: the default

\stripgroupingfalse
\Groupdirective{\processtoks{#1}}

and

7

\stripgroupingtrue
\Groupdirective{\groupedcytoks{\processtoks{#1}}}

Therefore, unless the goal is to introduce additional nesting levels into the input
stream, the first rule of using \groupedcytoks is to \stripgroupingtrue before
entering the token cycle. The argument of \groupedcytoks specifies the tasks
that are to occur inside a \cytoks grouping. So, in the following example

\stripgroupingtrue
\Groupdirective{\taskA

\groupedcytoks{\taskB\processtoks{#1}\taskC}%
\taskD}

the tasks A and D will occur outside of the \cytoks group. Tasks B and C
occur inside the group, immediately before and after processing the tokens of
the group, respectively. Thus, the use of \groupedcytoks in this way permits
tokcycle taskings to occur outside of the grouping applied to the output.

If \stripgroupingtrue had been omitted while still using \groupedcytoks,
tasks A and D would have been in the explicit group, and tasks B and C, along
with the grouped tokens #1, would have been nested within an additional group.

2.2.2 Implicit grouping tokens: \stripimplicitgroupingcase

Implicit grouping tokens (e.g., \bgroup & \egroup) can be handled in one of
three separate ways. Therefore, rather than using an if -condition, the external
declaration \stripimplicitgroupingcase{} is provided, which takes one of 3
integers as its argument (0, 1, or −1). The package-default case of “0” indicates
that the implicit-group tokens will not be stripped, but rather echoed directly
into the output stream. The case of “1” indicates that the implicit-group tokens
will be stripped and not placed into the output stream (as with explicit grouping,
this is a dangerous case and should be specified with care).

Finally, the special case of −1 indicates that the implicit-group tokens should
instead be passed to the Character directive for further handling (note that the
\implicittoktrue condition will be set6). Such a special treatment has limited
application—for example, when the intent is to detokenize these tokens.

2.3 Looking ahead at the input stream
In the normal mode of tokcycle operation, each token of the input stream is
successively digested and sent to one of four user-defined directives for process-
ing. Such an approach works well if there is no interdependency of adjacent
tokens in the input stream. When such an interdepency exists (for example,
the argument associated with an invoked macro), one might typically use flags
that are set or cleared in one directive that can then be status-checked when
the subsequent token is processed. While such an approach is wholly valid, it
can create a complex web of flag setting/checking that can span across multiple
directives.

6as well as the internal condition \tc@implicitgrptrue

8

With the release of v1.4 of the package, an alternative approach to handle
such dependencies has been developed: look-ahead features, so that the occur-
rence of a particular token or condition can provoke an immediate examination
of the input stream to handle a possible dependency, without waiting for the
next iteration of the token cycle.

It should be noted that the use of look-ahead is perhaps more dangerous
than the traditional use of flags—for if it is not performed with care, tampering
with the input stream can destroy its integrity. The commands developed for
these situations will now be described. They are designed to be employed as
part of tokcycle’s Character, Macro, and Space directives for checking and/or
handling successively linked tokens in the input stream. They cannot be used
inside the Group directive.

2.3.1 \tcpeek

When issued witin a directive as, for example \tcpeek\z, the next token from
the input stream is \futurelet into \z. This has several implications. The
input stream remains undisturbed, so that the peeked-at token will still be the
token to be digested in the next iteration of the token cycle. Because it has
been \let, \z does not contain the token from the input stream in the manner
of a \def, but rather it is a separate token possessing the same properties as
the input-stream token. As such, it is ideal to be used for \ifx comparisons.
For example, \ifx\bgroup\z will detect whether a cat-1 group-opening token
is at the head of the input stream, e.g., an opening brace, ‘{’; the comparison
\ifx\tcsptoken\z will detect whether a cat-10 space is at the head of the input
stream. Such comparisons can be useful in directing the logic of the tokcycle
directive.

2.3.2 \tcpop

When issued as, for example \tcpop\z, the next token(s) from the input stream
is immediately digested as an argument and the tokens are placed into the macro
\z. This token (or tokens) will no longer be digested as part of the next iteration
within the token cycle, unless the tokens are subsequently replaced at the head
of the input stream (see \tcpush below).

Beware that when TEX absorbs an argument, leading white space is lost.
Further, if the argument was enclosed in cat-1,2 braces, the braces are stripped
and the whole group is absorbed as the argument. In some cases, if the argu-
ment needs manipulation, this brace-stripping behavior may be desired. How-
ever, if the retention of the leading white space and the braces are desired,
one can use manual techniques (possibly involving macros such as \tcpeek,
\tcpopwhitespace and \tcpushgroup) or one can instead use \tcpopliteral
(see below) in lieu of \tcpop.

If \tcpop is used nonetheless, to aid in such matters when cat-10 space is
at the head of the input stream, the flag \spacepoppedtrue will be set when a
\tcpop is issued. However, even \ifspacepopped will be unable to differentiate

9

explicit “white” space that is lost during argument absorption versus implicit
space (e.g., \@sptoken or active-implicit space) that is not discarded. Another
option for dealing with leading white space is \tcpopwhitespace (see below).

2.3.3 \tcpopliteral

This macro is an alternative to \tcpop, if the retention of leading white space
and possibly braces are required when popping an argument from the input
stream. This can be particularly useful if the popped tokens must later be placed
back into the input stream in their original state. The syntax, \tcpopliteral\z,
pops an argument into \z, while retaining possible leading whitespace and brace
groups.

2.3.4 \tcpopappto and \tcpopliteralappto

When issued as, for example \tcpopappto\z, the next token(s) from the input
stream is absorbed as an argument and appended to the replacement text of \z.
The same group/space provisos affecting \tcpop apply here as well. The control
sequence to be appended, here \z, may not be undefined when \tcpopappto
is invoked. This macro is just a convenient joining of two macros: \tcpop and
\tcappto#1from#2 (see below).

The same applies for the macro \tcpopliteralappto, which conveniently
joins \tcpopliteral and \tcappto#1from#2.

2.3.5 \tcpopuntil

This command pops one or more tokens from the input stream in the manner of
a delimited argument. Thus, when issued as, for example \tcpopuntil 0\z, to-
kens from the input stream are absorbed into \z until an 0 token is reached. Un-
like delimited-argument absorption, however, the delimiter (0 in this example)
is also added to the specified control sequence, in this case \z. This construct
is very useful for obtaining optional-argument tokens from the input stream.
Consider the following code, with an input stream of [1ex]{2ex}:

\tcpeek\z
\ifx[\z\tcpopuntil]\q\else\def\q{}\fi

Since an optional argument is next in the input stream, \q will obtain the
replacement text [1ex], and the input stream will now begin with {2ex}. If an
optional argument had not been next in the input stream, then \q would be
empty and the input stream would still begin with {2ex}.

2.3.6 \tcpopwhitespace

When issued as, for example \tcpopwhitespace\z, leading white space from
the input stream will be absorbed and set in \z, in the manner of a \def. Unlike
the flag \ifspacepopped, leading implicit space will not be indicated by this
macro—only leading explicit white space. If no leading white space is present,

10

\z will be empty following its invocation and no tokens will have been removed
from the input stream.

2.3.7 \tcpush

To this point, several commands have been described for reading and/or extract-
ing tokens from the input stream. There are also a corresponding commands for
placing material at the head of the input stream, should that need arise. With
an invocation of \tcpush\z, the replacement text of \z will be pushed onto the
input stream. Multiple pushes will be handled in a last-in-first-out fashion.

Beware that, because argument absorption in TEX will strip the braces of an
absorbed group, care must be taken. If the input stream leads with a grouped
quantity, such as {abc}, then \tcpop\z\tcpush\z will end up with abc in the
input stream, with the braces missing. The commands \tcpop and \tcpush are
not strictly inverse operations (see \tcpopliteral as an alternative). For this
reason, the command \tcpushgroup is also provided (see below).

The command \tcpush supports an optional argument that functions in the
same manner as that of \addcytoks, to provide additional levels of expansion
beyond the mere replacement text. Thus, \tcpush[2]\z will take the replace-
ment text of \z, expand it twice, and push the result onto the input stream.
In a similar way, \tcpush[x]\z will fully expand the replacement text of \z
and then place those tokens onto the input stream. Whereas \addytoks places
tokens into the output stream (the token list \cytoks), \tcpush places tokens
at the head of the input stream.

2.3.8 \tcpushgroup

The command \tcpushgroup functions in a manner similar to \tcpush, except
that the replacement text of the argument is placed onto the input stream
within a braced (cat-1,2) group. So if the replacement text of \z is abc, then
the invocation \tcpushgroup\z will place {abc} onto the input stream. As with
\tcpush, and with the identical syntax, the command \tcpushgroup supports
an optional argument that directs addition levels of expansion beyond the mere
replacement text.

2.3.9 \tcappto#1from#2

This macro does not touch the input stream, per se. However, as tokens are
popped from the input stream and placed into macros, this command conve-
niently allows for their aggregation Thus, if \q contains abc and the newly
popped \z contains d, then \tcappto \q from \z will append the contents of
\z to \q, so that, upon conclusion, \q will contain the tokens abcd. Unexpand-
able tokens can also be appended directly using this macro, using the syntax of
\tcappto \q from{123}. Expandable tokens can also be added directly with
the use of this macro, by using a leading \noexpand or \empty, as in \tcappto
\q from{\noexpand\today}.

11

2.4 Truncating the input stream
The basic process of tokcycle is one in which an input stream (or argument)
of tokens is examined and processed based on directives set up by the user.
Typically, the input stream is processed token-by-token to exhaustion, which
occurs when a defined terminating token is reached. In section 2.5, we will see
how a sequence of tokens can be exempted from any processing that would
otherwise occur in the directive, and be passed instead directly to the output
stream.

However, in this section, we will examine how tokcycle can be directed to
dynamically truncate, that is, discard the remaining input stream based on the
tokens found therein. Truncation commands may be issued within the Character,
Macro, and Space directives. More will be said about the Group directive in
section 2.4.3.

Truncation can be made to apply either to the remainder of the current
tokcycle-nesting level (corresponding to an explicit catcode-1,2 group in the
input stream)7 or for the remainder of the total tokcycle input stream.

2.4.1 \truncategroup and \truncategroupiftokis

As to truncating the input stream for the remainder of the tokcycle nesting level,
the command is simply \truncategroup. So, for example, the directive

\Spacedirective{\truncategroup}

would direct tokcycle, if it ever finds a (catcode-10) space token in the input
stream, to discard the remainder of the tokens within the group in which that
space was initially found.

More often, however, one would desire to issue the truncation conditionally.
One could use one of the conditional commands of section 2.7, for example,

\tctestifcon{<condition>}{\truncategroup}{<code if condition not met>}

Alternatively, if the condition is the occurrence of a particular single token in
the input stream, one may use an abbreviated syntax:

\truncategroupiftokis{<tok>}{<code if condition not met>}

Thus, an example to echo macro tokens to the output stream, unless a \relax
token is found, in which case terminate the group, would be

\Macrodirective{\truncategroupiftokis{\relax}{\addcytoks{#1}}}

Obviously, checks for particular character tokens would be placed in the Char-
acter directive, rather than the Macro directive.

7Note that implicit groups (\bgroup...\egroup) do not create a new tokcycle nesting level,
nor do \begingroup...\endgroup. Only explicit catcode-1,2 groups, in the nature of {...},
create a nested tokcycle level. The current tokcycle nesting level may be obtained from the
TEX count \tcdepth, which starts at zero upon tokcycle entry. This count is incremented and
decremented as groups are entered and exited in the input stream. It may be examined within
the C-G-M-S directives in order to guide decisions.

12

2.4.2 \truncatecycle and \truncatecycleiftokis

There are two commands that are in every way analogous to the group-ter-
minating macros of section 2.4.1. These commands are \truncatecycle and
\truncatecycleiftokis. But in this case, all tokens are discarded to the end
of the input stream, not just the current group (i.e., tokcycle-nesting level).
One point to note, however, is that open group levels will be closed by the
\truncatecycle command, so that the tokens, both those being executed as
well as those retained in \cytoks, will be group-balanced.

2.4.3 Truncating from within the Group Directive

The truncate commands described in prior sections may not be executed from
the Group directive, as has already been mentioned. What does termination
even mean in the \Groupdirective context? The Group directive is executed
whenever an explicit catcode-1,2 group is encountered in the input stream. The
argument, #1, to that directive will be the complete contents of the group (sans
the catcode-1,2 delimiters).

So, to truncate the group from the outset, not doing anything with #1 will
accomplish the desired result. For example, to truncate all group-level-3 tokens,
you could say, using the conditional commands of section 2.7,

\Groupdirective{\tctestifnum{\tcdepth=3}{}{\processtoks{#1}}}

There is no need to use an explicit \truncategroup macro to accomplish it.
On the other hand, to truncate the complete token cycle if, for example,

group-level-3 tokens are encountered, you have to set some sort of flag that is
immediately picked up by one of the other directives. Here is an example of how
that can be done:

\Groupdirective{\tctestifnum{\tcdepth=3}{\processtoks{\truncatenow}}%
{\processtoks{#1}}}

\Macrodirective{\truncatecycleiftokis{\truncatenow}{\addcytoks{#1}}}

Note that, as long as \stripgroupingfalse is active, the above examples will
result in empty, rather than absent, level-3 groups, since the group open occurs
before the truncation is processed. If the presence of even an empty group is
to be avoided in such a case, one may employ the \groupedcytoks techniques
described in section 2.2.1.

2.5 Escaping content from tokcycle processing
There are times you may wish to prevent tokens in the tokcycle input stream
from being operated on by tokcycle. Rather, you just want the content passed
through unchanged to the output; that is, with the intent to have multi-token
content bypass the tokcycle directives altogether.

The method developed by the package is to enclose the escaped content
in the input stream between a set of tokcycle escape characters, initially set
to a vertical rule character found on the keyboard: “|”. The main proviso

13

is that the escaped content cannot straddle a group boundary (the complete
group may, however, be escaped). The escape character can be changed with
\settcEscapechar{<escape-token>}.

2.6 Flagged tokens
Certain token types are trapped and flagged via true/false if -conditions. These
if -conditions can be examined within the appropriate directive (generally the
Character directive), to direct the course of action within the directive.

2.6.1 Active characters

\ifactivetok: Active (cat-13) tokens that occur in the input stream result
in the flag \ifactivetok being set \activetoktrue. Note that the expansion
of the token’s active \def occurs after tokcycle processing. With active \let’s,
there is no text substitution; however, the assignment is already active at the
time of tokcycle processing. The only exception to this rule is with pre-expanded
input, \expandedtokcycle[xpress]. If an active token’s substitution is gov-
erned by a \def, the text substitution will have occurred before reaching the
token cycle.

\ifactivetokunexpandable: This flag is similar to \ifactivetok, in that a
token must be active for this to be set true. However, in addition, it is only true
if the active token is \let to a character or a primitive, neither of which can be
expanded. Active characters assigned via \def or else \let to a macro will not
qualify as \activetokunexpandabletrue.

\ifactivechar: This flag, rather than testing the token, tests the character
code of the token, to see if it is set active. Generally, the token and its character
code will be syncronized in their activeness. However, if a token is tokenized
when active, but the corresponding character code is made non-active in the
meantime, prior to the token reaching tokcycle processing, this flag will be set
\activecharfalse. A similar discrepency will arise if a token is not active when
tokenized, but the character code is made active in the interim, prior to tokcycle
processing.

2.6.2 Implicit tokens: \ifimplicittok

Implicit tokens, those assigned via \let to characters8, are flagged with a true
setting for \ifimplicittok. Generally, implicit tokens will be directed to the

8Some clarification may be needed. Control sequences and active characters that are \let
to something other than a cat-0 control sequence will be flagged as implicit. If implicit, a token
will be processed through the Character directive (exceptions noted). On the other hand, if a
control sequence or active character is \let to a cat-0 control sequence, it will be directed to
the Macro directive for processing, without the implicit flag.

14

Character directive for processing. There are, however, two exceptions: i) im-
plicit grouping tokens (e.g., \bgroup and \egroup) will not appear in any direc-
tive unless the \stripimplicitgroupingcase has been set to −1; and ii) im-
plicit space tokens (e.g., \@sptoken) will be processed by the Space directive.

2.6.3 Active-implicit tokens, including spaces

One may occasionally run across a token that is both active and implicit. For
example, in the following code, Q is made both active and implicit:

\catcode‘Q=\active
\let Qx

In general, both \ifactivetok and \ifimplicittok tests can be performed
together to determine such cases.

This is true even in the case of active-implicit catcode-10 spaces, which are
always processed through the Space directive. As of tokcycle v1.4, the actual
active-implicit space, if encountered in the input stream, will be passed as #1 to
the Space directive, as long as the character code of the token is still \active.
If the character code of that token is no longer active, a generic implicit space
token named \tcsptoken is instead passed to the the Space directive as #1. In
either case, the catcode-12 version of the active character that was digested will
be, for that moment, retained in a definition named \theactivespace. This
can be useful if detokenization is required of the spaces. Such an example is
described in the tokcycle-examples adjunct document.

2.6.4 Parameter (cat-6) tokens (e.g., #): \ifcatSIX

Typically, category-code 6 tokens (like #) are used to designate a parameter (e.g.,
#1–#9). Since they are unlikely to be used in that capacity inside a tokcycle input
stream, the package behavior is to convert them into something cat-12 and set
the if -condition \catSIXtrue. In this manner, \ifcatSIX can be used inside
the Character directive to trap and convert cat-6 tokens into something of the
user’s choosing.

As to the default nature of this conversion (if no special actions are taken),
explicit cat-6 characters are converted into the identical character with category
code of 12. On the other hand, implicit cat-6 macros (e.g., \let\myhash#) are
converted into a fixed-name macro, \implicitsixtok, whose cat-12 substitu-
tion text is a \string of the original implicit-macro name.

2.6.5 Parameters (#1–#9): \whennotprocessingparameter

While, generally, one would not intend to use parameters in the tokcycle input
stream, the package provides, not a flag, but a macro to allow it. The macro is
to be used within the Character directive with the syntax:

\whennotprocessingparameter#1{<non-parameter-processing-directive>}

Here, the #1 doesn’t refer to #1 as it might appear in the input stream, but
to the sole parameter of the Character directive, referring to the current token

15

being processed. With this syntax, when the token under consideration is a
parameter (e.g., #1–#9), that parameter is added to the \cytoks register. If the
token under consideration is not a parameter, the code in the final argument is
executed.

2.7 Misc: general if -condition tools
TEX comes equipped with a variety of \if... condition primitives. When deal-
ing with macros for which the order of expansion is important, the \else and
\fi can sometimes get in the way of proper expansion and execution. These
four restructured if macros came in handy writing the package, and may be of
use in creating your directives, preventing \else and \fi from getting in the
way:

\tctestifcon{<TeX-if-condition>}{<true-code>}{<false-code>}
\tctestifx{<\ifx-comparison-toks>}{<true-code>}{<false-code>}
\tctestifnum{<\ifnum-condition>}{<true-code>}{<false-code>}
\tctestifcatnx<tok1><tok2>{<true-code>}{<false-code>}

Note that unlike those macros requiring three arguments, the lone exception is
\tctestifcatnx, which requires four, comparing the catcodes of the two input
toks without expansion (nx denotes \noexpand).

2.8 tokcycle completion: \aftertokcycle and \tcendgroup

The tokcycle macros, upon completion, do nothing. Unlike \tokencycle en-
vironments, they don’t even output \the\cytoks token register. A command
has been provided, \aftertokcycle, which takes an argument to denote the
actions to be executed following completion of all subsequent tokcycle macro in-
vocations within the scope of the current group. It might be specified as simply
as \aftertokcycle{\the\cytoks}, so as to have the output stream automati-
cally typeset by future invocations of the \tokcycle macro.

The meaning of \aftertokcycle can be reset with \aftertokcycle{}, but
is also reset as part of \resettokcycle. Unlike macros, the tokcycle environ-
ments are unaffected by \aftertokcycle, as they actually set it locally (within
their grouped scope) to accomplish their own purposes.

Speaking of the tokcycle environments, there is a command employed by the
environments \tokencycle and \tokencyclexpress that is likewise available
to the user: \tcendgroup. This is a version of \endgroup that additionally
transmits the current value of the \cytoks token list outside of the group. So if
a user wishes to confine certain tokcycle activity inside a group, but wishes to
have access to the \cytoks result afterward, he may simply wrap the activity
in \begingroup...\tcendgroup.

2.9 Accommodating catcode-1,2 changes: \settcGrouping

In order to avoid making the tokcycle parser overly complex, requiring multiple
passes of the input stream, the package defaults to using catcode-1,2 braces

16

{ } to bring about grouping in the output stream, regardless of what the actual
cat-1,2 tokens are in the input stream. As long as their sole purpose in the token
cycle is for grouping and scoping, this arrangement will produce the expected
output.

However, if the actual character-code of these tokens is important to the re-
sult (e.g., when detokenized), there is one other option. The package allows the
external specification of which cat-1,2 tokens should be used in the tokcycle out-
put stream. The syntax is \settcGrouping{{#1}}, to use the standard braces
for this purpose (default). If angle-brackets < > were to be the new grouping
tokens, then, after their catcodes were changed, and \bgroup and \egroup were
reassigned, one would invoke \settcGrouping<<#1>>. These will then be the
grouping tokens in the tokcycle output stream until set to something else.

3 Usage Examples
See the adjunct file, tokcycle-examples.pdf, for an array of tokcycle examples.

4 Summary of known package limitations
The goal of this package is not to build the perfect token-stream parser. It is,
rather, to provide the means for users to build useful token-processing tools for
their TEX/LATEX documents.

What follows are the known limitations of the package. which arise, in part,
from the single-pass parsing algorithm embedded in the package. Surely, there
are more cases associated with arcane catcode-changing syntax that are not
accounted for; I encourage you to bring them to my attention. If I can’t fix
them, I can at least disclaim and declaim them below:

• One must inform the package (via \settcGrouping) of changes to the
cat-1,2 tokens if there is a need to detokenize the output with the speci-
fied bracing group; however, grouping will still be handled properly (i.e.,
cat-1,2 tokens will be detected), even if the package is not notified. See
section 2.9.

• Should one need to keep track of the names of implicit cat-6 tokens (e.g.,
\svhash following \let\svhash#), care must be exercised. When encoun-
tered in the input stream, a cat-12 \string of the implicit-cat-6 token
name is stored in the \implicitsixtok macro. It is the \implicitsixtok
token which is passed to the Character directive as #1, in lieu of the ac-
tual cat-6 token. If there is at most a single implicit-cat-6 named token in
the input stream, then \implicitsixtok will reflect its name. However,
if there is more than one, \implicitsixtok will be redefined on the fly
with each occurrence.
Therefore, should one intend to add more than one such token name
to the token list by way of \addcytoks, it must be expanded first (e.g.,

17

\addcytoks[1]{#1}), in order to capture the name of that particular cat-
6 implicit token, rather than the name of the last one in the input stream.
There is no similar problem for explicit cat-6 tokens. In any event, all
cat-6 tokens are trapped and flag as true the \ifcatSIX condition, which
is how the user should detect their presence.

• A similar warning is to be made for active-implicit spaces as was made
for implicit-cat-6 tokens. In the case of active-implicit spaces, the name
(a cat-12 string) of the active character is momentarily stored in the
\theactivespace macro. If one wishes to output the active name to the
\cytoks token list, one must make sure that \theactivespace is ex-
panded once before being added to the token list.
One difference here, however, is that, unlike a cat-6 token, an active-
implicit space (and not a string of it) is actually passed to the Space
directive as #1. In all but one special case, the active-implicit #1 will
match that which occurred in the input stream (see section 2.6.3).

Acknowledgments
In addition to Christian Tellechea, a contributor to this package, the author
would like to thank Dr. David Carlisle for his assistance in understanding some of
the nuances of token registers. Likewise, his explanation about how a space token
is defined in TEX (see https://tex.stackexchange.com/questions/64197/
pgfparser-module-and-blank-spaces/64200#64200) proved to be useful here.
The tex.stackexchange site provides a wonderful opportunity to interact with
the leading developers and practitioners of TEX and LATEX.

Source Code

tokcycle.sty
\input tokcycle.tex
\ProvidesPackage\tcname[\tcdate\space V\tcver\space Cycle through and transform

a stream of tokens]
\endinput

18

tokcycle.tex
\def\tcname {tokcycle}
\def\tcver {1.41}
%
\def\tcdate {2021/06/25}
%
% Author : Steven B Segletes, Christian Tellechea (contributor)
% Maintainer : Steven B Segletes
% License : Released under the LaTeX Project Public License v1.3c
% or later, see http://www.latex-project.org/lppl.txt
% Files : 1) tokcycle.tex
% 2) tokcycle.sty
% 3) tokcycle-doc.tex
% 4) tokcycle-doc.pdf
% 5) tokcycle-examples.tex
% 6) tokcycle-examples.pdf
% 7) README
%%%
% MACRO FORM
\long\def\tokcycle#1#2#3#4#5{\tokcycraw{#1}{#2}{#3}{#4}#5\endtokcycraw}
% \expanded-ARGUMENT MACRO FORM
\long\def\expandedtokcycle#1#2#3#4#5{\cytoks{\tokcycraw{#1}{#2}{#3}{#4}}%

\expandafter\the\expandafter\cytoks\expanded{#5}\endtokcycraw}
% ENVIRONMENT FORM
\long\def\tokencycle#1#2#3#4{\begingroup\let\endtokencycle\endtokcycraw

\aftertokcycle{\the\cytoks\tcendgroup}\tokcycraw{#1}{#2}{#3}{#4}}
% XPRESS-INTERFACE MACRO FORM
\long\def\tokcyclexpress#1{\tokcycrawxpress#1\endtokcycraw}
% XPRESS-INTERFACE \expanded-ARGUMENT MACRO FORM
\long\def\expandedtokcyclexpress#1{%

\expandafter\tokcycrawxpress\expanded{#1}\endtokcycraw}
% XPRESS-INTERFACE ENVIRONMENT FORM
\def\tokencyclexpress{\begingroup\let\endtokencyclexpress\endtokcycraw

\aftertokcycle{\the\cytoks\tcendgroup}\tokcycrawxpress}
% INITIALIZATION & INTERNAL TOOLS
\def\tcendgroup{\expandafter\endgroup\expandafter\tcenvscope\expandafter{\the\cytoks}}
\def\tcenvscope{\cytoks}% CAN SET TO \global\cytoks TO OVERCOME SCOPE LIMITS
\edef\restorecatcode{\catcode\number‘\@=\number\catcode‘\@\relax}
\catcode‘\@11
\newif\iftc@implicitgrp
\newif\if@argnext
\newtoks\tc@tok
\newcount\tcdepth
\def\tc@gobble#1{}
\def\tc@deftok#1#2{\let#1= #2\empty}
\tc@deftok\tc@sptoken{ }
\expandafter\def\expandafter\tc@absorbSpace\space{}
\def\tc@ifempty#1{\tc@testxifx{\expandafter\relax\detokenize{#1}\relax}}
\def\tc@defx#1{\tc@earg{\def\expandafter#1}}
\long\def\tc@earg#1{\expandafter#1\expandafter}
\long\def\tc@xarg#1#2{\tc@earg#1{\expanded{#2}}}
\long\def\tc@exfirst#1#2{#1}
\long\def\tc@exsecond#1#2{#2}
\long\def\tc@testxifx{\tc@earg\tctestifx}
\long\def\test@ifmacro#1{\tctestifcatnx#1\relax}
\def\tc@addtoks#1#2{\toks#1\expandafter{\the\toks#1 #2}}
\def\add@tcdepth{\advance\tcdepth 1\relax}

19

\def\sub@tcdepth{\advance\tcdepth-1\relax}
\def\tc@resetifs{\activetokfalse\implicittokfalse\tc@implicitgrpfalse\catSIXfalse

\activecharfalse\activetokunexpandablefalse\def\theactivespace{}}
\long\def\count@stringtoks#1{\tc@earg\count@toks{\string#1}}
\long\def\count@toks#1{\the\numexpr-1\count@@toks#1.\tc@endcnt}
\long\def\count@@toks#1#2\tc@endcnt{+1\tc@ifempty{#2}{\relax}{\count@@toks#2\tc@endcnt}}
\def\sv@hash{##}
\def\def@popname{\expandafter\def\tc@popname}
% EXTERNAL TOOLS
\let\tcsptoken= \tc@sptoken
\long\def\tctestifcon#1{#1\expandafter\tc@exfirst\else\expandafter\tc@exsecond\fi}
\long\def\tctestifcatnx#1#2{\tctestifcon{\ifcat\noexpand#1\noexpand#2}}
\long\def\tctestifx#1{\tctestifcon{\ifx#1}}
\long\def\tctestifnum#1{\tctestifcon{\ifnum#1\relax}}
\newif\ifstripgrouping
\def\stripimplicitgroupingcase#1{\edef\@implicitgroupingcase{\the\numexpr1-#1}}
\newif\ifcatSIX
\newif\ifimplicittok
\newif\ifactivetok
\newif\ifactivechar
\newif\ifactivetokunexpandable
\newif\ifspacepopped
\newtoks\cytoks
\long\def\tokcycleenvironment#1#2#3#4#5{\expandafter\def\expandafter#1%

\expandafter{\expandafter\let\csname end\expandafter\tc@gobble
\string#1\endcsname\endtokcycraw\tokencycle{#2}{#3}{#4}{#5}}}

\long\def\xtokcycleenvironment#1#2#3#4#5#6#7{\expandafter\def\expandafter
#1\expandafter{\expandafter\let\csname end\expandafter\tc@gobble
\string#1\endcsname\endtokcycraw\begingroup
\long\def\tcafterenv####1{\tc@defx\tcendgroup{\tcendgroup####1}}%
\aftertokcycle{#7\the\cytoks\tcendgroup}#6\tokcycraw{#2}{#3}{#4}{#5}}}

\long\def\processtoks#1{\@tokcycle#1\endtokcycraw}
\def\whennotprocessingparameter#1#2{\tctestifcon\if@argnext{\@argnextfalse\cytoks

\expandafter{\the\cytoks###1}}{\tctestifcon\ifcatSIX{\@argnexttrue}{#2}}}
\long\def\truncategroup#1{\tctestifx{\endtokcycraw#1}{#1}{\truncategroup}}
\long\def\truncatecycle#1{\tctestifx{\endtokcycraw#1}{\tctestifnum{\tcdepth=0}

{#1}{\truncatecycle}}{\tctestifx{\sub@tcdepth#1}{#1}
{\tctestifx{\exit@grouped#1}{#1}{}}\truncatecycle}}

\long\def\truncategroupiftokis#1#2{\tctestifx{\tc@next#1}{\truncategroup}{#2}}
\long\def\truncatecycleiftokis#1#2{\tctestifx{\tc@next#1}{\truncatecycle}{#2}}
% ESSENTIAL METHOD: STREAMING MACRO WITH TERMINATOR:
% \tokcycraw{<Char>}{<Group>}{<Macro>}{<Space>}<input-stream>\endtokcycraw
\long\def\tokcycraw#1#2#3#4{\def\@chrT##1{#1}\long\def\@grpT##1{#2}%

\long\def\@macT##1{#3}\def\@spcT##1{#4}\tokcycrawxpress}
% ENTRY POINT FOR XPRESS METHOD WITHOUT EXPLICIT ARGUMENTS
\def\tokcycrawxpress{\cytoks{}\tcdepth=0\relax\@tokcycle}
% CODE TO EXECUTE AT COMPLETION
\long\def\aftertokcycle#1{\def\@aftertokcycle{#1}}
\def\endtokcycraw{\tctestifnum{\tcdepth=0}{\@aftertokcycle}{}}
% LOOP ENTRY POINT
\def\@tokcycle{\tc@resetifs\futurelet\tc@next\detect@CANTabsorb}
\def\detect@CANTabsorb{\tctestifx{\tc@next\tc@sptoken}{\stringify\@@@@@@spcT}%

{\tctestifx{\tc@next\bgroup}{\stringify\@@@@grpT}{\can@absorb}}}
% NON cat1,10 TOKENS
\long\def\can@absorb#1{\tc@tok{#1}\trapcatSIX{#1}\expandafter\can@absorb@

\the\tc@tok}
\long\def\can@absorb@#1{\tctestifnum{\count@stringtoks{#1}>1}%

20

{\tctestifx{\endtokcycraw#1}{#1}{\backslashcmds#1\@tokcycle}}%
{\trapactives#1\tc@trapescape#1{\tc@escapecytoks}{\can@absorb@@#1}}}

\long\def\can@absorb@@#1{\let\@tmp=#1\test@ifmacro\@tmp{\implicittokfalse
\@macT#1}{\trapimplicitegrp#1\implicitgrpfork#1}\@tokcycle}

%CONVERT NEXT (SPACE OR BEGIN-GROUP) TOKEN TO STRING
\def\stringify#1{\expandafter#1\string}% #1 WILL BE \@@@@@@spcT or \@@@@grpT
%SPACE DECODE
\def\@@@@@@spcT{\futurelet\tc@str\@@@@@spcT}
\def\@@@@@spcT{%
\tctestifx{\tc@str\tc@sptoken}%
{\def\@tmp{\@@spcT{ }}\expandafter\@tmp\tc@absorbSpace}% EXPLICIT SPACE
{\implicittoktrue\tctestifcon{\if\expandafter\@firstoftwo\string\\\tc@str}%

{\expandafter\@@@spcT\tc@gobble}% IMPLICIT MACRO SPACE
{\activetoktrue\@@@@spcT}}}% IMPLICIT ACTIVE SPACE

\def\@@@@spcT#1{\def\theactivespace{#1}\trapactivechar{#1}\ifactivechar\edef\tc@spc
{\scantokens{#1\noexpand}}\else\def\tc@spc{\tcsptoken}\fi\expandafter\@@spcT
\expandafter{\tc@spc}}

\def\@@@spcT{\csmk{\expandafter\@@spcT\thecs}}
\def\@@spcT#1{\@spcT{#1}\@tokcycle}
% GROUP DECODE
\def\@@@@grpT{\futurelet\tc@str\@@@grpT}
\def\@@@grpT#1{\tctestifnum{\number\catcode‘#1=1}%

{\expandafter\@@grpT\expandafter{\iffalse}\fi}% {
{\implicittoktrue\tc@implicitgrptrue%

\tctestifnum{‘#1=92}% WORKS EVEN IF CAT-0 HAS CHANGED
{\csmk{\expandafter\backslashcmds\thecs\@tokcycle}}% \bgroup
{\begingroup\catcode‘#1=\active \xdef\@tmp{\scantokens{#1\noexpand}}\endgroup

\expandafter\implicitgrpfork\@tmp\@tokcycle}% ACTIVE CHAR \bgroup
}}

\long\def\@@grpT#1{\add@tcdepth\tctestifcon{\ifstripgrouping}{%
\@grpT{#1}}{\groupedcytoks{\@grpT{#1}}}\sub@tcdepth\@tokcycle}

% \ COMMANDS (MACROS AND IMPLICITS)
\long\def\backslashcmds#1{%

\test@ifmacro#1{\tctestifcon\ifcatSIX{\implicittoktrue\@chrT#1}{\@macT#1}}%
{\implicittoktrue\trapimplicitegrp#1\implicitgrpfork#1}}

% FORK BASED ON IMPLICIT GROUP TREATMENT
\def\implicitgrpfork#1{\tctestifcon{\iftc@implicitgrp}{\ifcase

\@implicitgroupingcase\or\addcytoks{#1}\or\@chrT{#1}\fi}{\@chrT#1}}
% SET UP ESCAPE MECHANISM
\def\settcEscapechar#1{\let\@tcEscapeptr#1%

\def\tc@escapecytoks##1#1{\addcytoks{##1}\@tokcycle}}
\def\tc@trapescape#1{\tctestifx{\@tcEscapeptr#1}}
% TRAP CAT-6
\long\def\trapcatSIX#1{\tctestifcatnx#1\relax{}{\trapcatSIXb#1}}
\def\trapcatSIXb#1{\expandafter\tctestifcatnx\sv@hash#1{\catSIXtrue\trapcatSIXc#1}{}}
\def\trapcatSIXc#1{\tctestifnum{\count@stringtoks{#1}>1}{\tc@defx\six@str{\string#1}%

\global\let\implicitsixtok\six@str\tc@tok{\implicitsixtok}}%
{\tc@tok\expandafter{\string#1}\tctestifnum{\number\catcode‘#1=6}%
{}{\activetoktrue\implicittoktrue}}}

% DIRECTIVES FOR HANDLING GROUPED OUTPUT; DEFINE tokcycle GROUPING CHARS
\long\def\groupedcytoks#1{\begingroup\cytoks{}#1\exit@grouped}
\def\defineexit@grouped#1{\def\exit@grouped{\expandafter\endgroup\expandafter

\addcytoks\expandafter{\expandafter#1}}}
\def\settcGrouping#1{\def\@tmp##1{#1}\tc@defx\@@tmp{\@tmp{\the\cytoks}}%

\tc@earg\defineexit@grouped{\@@tmp}}
% FAUX TOKENIZATION OF COMMAND NAME (WHEN \ AND COMMAND-NAME TOKS ARE NOW cat12)
\def\csmk#1{\def\csaftermk{#1}\toks0{}\@csmkA}

21

\def\@csmkA{\futurelet\@tmp\@csmkB}
\def\@csmkB{\tctestifx{\@tmp\tc@sptoken}%

{\toks0{ }\expandafter\@csmkF\tc@absorbSpace}{\@csmkCA}}
\def\@csmkCA#1{\tc@addtoks0{#1}\tctestifnum{\number\catcode‘#1=11}%

{\futurelet\@tmp\@csmkD}{\@csmkF}}
\def\@csmkC#1{\tctestifnum{\number\catcode‘#1=11}

{\tc@addtoks0{#1}\futurelet\@tmp\@csmkD}{\@csmkE#1}}
\def\@csmkD{\tctestifcatnx 0\@tmp\@csmkC\@csmkE}
\def\@csmkE{\tctestifx{\@tmp\tc@sptoken}%

{\expandafter\@csmkF\tc@absorbSpace}{\@csmkF}}
\def\@csmkF{\tc@defx\thecs{\csname\the\toks0\endcsname}\csaftermk}
% TRAP IMPLICIT END GROUP TOK (e.g., \egroup); SET \iftc@implicitgrp
\def\trapimplicitegrp#1{\tctestifx{#1\egroup}{%

\implicittoktrue\tc@implicitgrptrue}{}}
% TRAP ACTIVE TOK
\def\trapactives#1{\trapactivechar{#1}\trapactivetok{#1}}
\def\trapactivechar#1{\tctestifnum{\number\catcode‘#1=13}{\activechartrue}{}}
\def\trapactivetok#1{\tctestifcatnx~#1{\activetoktrue}{\trapactivetokunexpandable#1}}
%% WILL ALSO TRAP ACTIVE \let TO PRIMITIVES AS IMPLICIT; UNDO LATER IN \can@absorb@@
\def\trapactivetokunexpandable#1{\tctestifcon{\expandafter\if

\detokenize{#1}#1}{}{\activetoktrue\activetokunexpandabletrue\implicittoktrue}}
% FEATURES TO LOOK-AHEAD INTO THE INPUT STREAM (INTRODUCED v1.4)
\long\def\tcpeek#1#2\@tokcycle{\def\tc@tmp{\ifx#1\endtokcycraw

\let#1=\empty\fi#2\@tokcycle}\futurelet#1\tc@tmp}%___________________________PEEK_
\def\tcpopliteral#1{\tcpopwhitespace#1\tcpeek\@tmp\ifx\@tmp\bgroup

\tcpop\@tmp\def\tc@tmp{\tcappto#1from}\expandafter\tc@tmp\expandafter
{\expandafter{\@tmp}}\else\tcpopappto#1\fi}

\def\tcpop{\long\def\tc@@@pop##1{\tctestifx{\endtokcycraw##1}{\def@popname{}%
\tc@tmp\endtokcycraw}{\def@popname{##1}\tc@tmp}}\tc@pop}

\long\def\tcpopuntil#1{\long\def\tc@@@pop##1#1{\def@popname{##1#1}\tc@tmp}\tc@pop}
\long\def\tc@pop#1#2\@tokcycle{\def\tc@popname{#1}\def\tc@tmp

{#2\@tokcycle}\futurelet\tc@futuretok\tc@@pop}
\def\tc@@pop{\tc@trapescape\tc@futuretok{\def@popname{}\tc@tmp}{\tctestifx{%

\endtokcycraw\tc@futuretok}{\def@popname{}\tc@tmp}{\tctestifx{\tc@sptoken%
\tc@futuretok}{\spacepoppedtrue\tc@@@pop}{\spacepoppedfalse\tc@@@pop}}}}%_____POP_

\def\tcappto#1from#2{%
\expandafter\tc@defx\expandafter#1\expandafter{\expandafter#1#2}}

\def\tcpopliteralappto#1{\tcpopliteral\@@tmp\tcappto#1from\@@tmp}
\def\tcpopappto#1{\tcpop\@tmp\tcappto#1from\@tmp}%___________________________APPEND_
\long\def\tcpopwhitespace#1#2\@tokcycle{\def\tc@popname{#1}\def@popname{}%

\def\tc@tmp{#2\@tokcycle}\futurelet\tc@futuretok\tc@popspc}
\def\tc@popspc{\tctestifx{\tc@sptoken\tc@futuretok}{\discern@space}{\tc@tmp}}
\def\discern@space{\begingroup\def\@@spcT##1{\tctestifcon\ifimplicittok{\gdef

\tc@nxt{\tc@tmp##1}}{\gdef\tc@nxt{\def@popname{##1}\tc@tmp}}\endgroup
\tc@nxt}\stringify\@@@@@@spcT}%___SPACE_

\long\def\@tcpush#1#2\@tokcycle{\def\tc@tmp{#2\@tokcycle}\expandafter\tc@tmp#1}
\long\def\@tcpushgroup#1#2\@tokcycle{\def\tc@tmp{#2\@tokcycle}\expandafter\tc@tmp

\expandafter{#1}}
% ...BORROW \addcytoks OPTIONAL ARGUMENT EXPANSION FEATURE FOR \tcpush[group]
\def\tcpush{\bgroup\long\def\tc@addtotoks##1{\egroup

\@tcpush{##1}}\futurelet\nxttok\addcytoks@A}
\def\tcpushgroup{\bgroup\long\def\tc@addtotoks##1{\egroup

\@tcpushgroup{##1}}\futurelet\nxttok\addcytoks@A}%___________________________PUSH_
% EXPRESS-INTERFACE - ALLOWS TO EXTERNALLY DEFINE DIRECTIVES
\def\Characterdirective{\def\@chrT##1}
\def\Groupdirective{\long\def\@grpT##1}
\def\Macrodirective{\long\def\@macT##1}

22

\def\Spacedirective{\def\@spcT##1}
% EXPRESS-INTERFACE - DEFAULT DIRECTIVES
\def\resetCharacterdirective{\Characterdirective{\addcytoks{##1}}}
\def\resetGroupdirective{\Groupdirective{\processtoks{##1}}}
\def\resetMacrodirective{\Macrodirective{\addcytoks{##1}}}
\def\resetSpacedirective{\Spacedirective{\addcytoks{##1}}}
\def\resettokcycle{\resetCharacterdirective\resetGroupdirective

\resetMacrodirective\resetSpacedirective\aftertokcycle{}%
\stripgroupingfalse\stripimplicitgroupingcase{0}}

% SUPPORT MACROS FOR TOKENIZED OUTPUT: \addcytoks[<expansion level>]{<arg>}
% (CONTRIBUTED BY CHRISTIAN TELLECHEA)
\def\addcytoks{\futurelet\nxttok\addcytoks@A}
\long\def\tc@addtotoks#1{\cytoks\expandafter{\the\cytoks#1}}
\def\addcytoks@A{\tctestifx{[\nxttok}\addcytoks@B\tc@addtotoks}
\long\def\addcytoks@B[#1]#2{\tc@ifempty{#1}\tc@addtotoks

{\tctestifx{x#1}{\tc@xarg\tc@addtotoks}{\addcytoks@C{#1}}}{#2}}
\def\addcytoks@C#1{\tctestifnum{#1>0}{\tc@earg\addcytoks@C

{\the\numexpr#1-1\expandafter}\expandafter}\tc@addtotoks}
% SET INITIAL PARAMETERS
\settcGrouping{{#1}}% E.G. <<#1>> IF cat-1,2 SET TO < AND >
\settcEscapechar{|}% BYPASS TOKCYCLE PROCESSING BETWEEN |...|
\resettokcycle% WHICH ALSO CONTAINS THE FOLLOWING 3 RESETS:
% \stripimplicitgroupingcase{0}% DEFAULT RETAIN UNALTERED \b/e-groups
% \stripgroupingfalse% DEFAULT RETAIN UNALTERED {} GROUPING
% \aftertokcycle{}% NO DEFAULT CODE EXECUTED AFTER EACH TOKCYCLE INVOCATION
\restorecatcode
\endinput

EDIT HISTORY
v1.0 2019/08/21

- Initial release

v1.1 2019/09/27
- Introduced \ifactivechar, \ifactivetokunexpandable
- Tightened up consistent definition of implicit (to exclude primitives)
- Rewrote active token trapping logic, to differentiate between active

token vs. active character code, in the event that an earlier tokenized
token no longer shares the current characteristics of the character code

- Added ability to handle active-implicit grouping tokens
- Added ability to handle active-implicit cat-6 tokens

v1.11 2020/02/04
- Fixed bug in \can@absorb@@ macro, which prevented the proper absorption/

handling of the = token.

v1.12 2020/02/11
- Documentation correction: \tokcycleenvironment, not \tokencycleenvironment
- Documentation correction: misspelling in tokcycle-examples.tex
- Redefined \tc@defx and \tc@earg to omit #2 as part of definition
- Corrected \trapcatSIXb definition to account for revised \tc@earg definition.

v1.2 2020/10/01
- Added/fixed capability to handle active-implicit spaces. While the

#1 passed to the \Spacedirective, in such a case, is an implicit
space \tc@sptoken, the name of the active character from whence it
originated in the input stream is stored as an explicit cat-12 token
in the definition \theactivespace. The flags \implicittok and \activetok

23

are both set true, and the \activechar flag is checked, as well.

v1.3 2021/03/10
- Introduced \xtokcycleenvironment, similar to \tokcycleenvironment, but

allows two additional arguments, defining the setup and trailing code
that will be run prior to the invocation and following conclusion of the
token cycle.

- Introduced \truncategroup, a directive to discard remaining tokens in the
current token-cycle group and close the group.

- Introduced \truncatecycle, a directive to discard remaining tokens in the
token-cycle input stream, but closing any open groups.

- Introduced \truncategroupiftokis{}{} to conditionally issue a \truncategroup
if the current token under consideration matches the 1st argument.

- Introduced \truncatecycleiftokis{}{} to conditionally issue a \truncatecycle
if the current token under consideration matches the 1st argument.

- Introduced \tcendgroup as a form of \endgroup that saves contents of
\cytoks upon group exit. Gives clarity to definitions of \tokencycle
and \tokencyclexpress environments. Available for general used.

- Fixed bug. Made \@@grpT \long, in the event that \par occurs inside a
group.

- Fixed bug. Added \relax to end of \add@tcdepth definition, the absence
of which had prevented timely update of the \tcdepth count.

- Documentation correction: improved explanation of implicit-cat-6 token
limitations. Likewise, added warning regarding active-implicit spaces.

- Documentation prepared with lmodern font, rather than default cm,
for reasons of better PDF hinting.

- Introduced \exit@grouped to the \groupedcytoks definition, for clarity and
ease of \expandafter.

- Reworked logic so that \tcdepth is associated with nested calls to the
Group directive, rather than with each invocation of \processtoks.
This primarily required redefinition of \@@grpT and its components.

- Changed name of \tc@depth to \tcdepth, as it may be a useful parameter for
users to check the token-cycle nesting depth. Therefore, also renamed
\subtc@depth to \sub@tcdepth, \addtc@depth to \add@tcdepth.

- Excised \sub@tcdepth from \endtokcycraw as part of new logic making
\tcdepth associated with the Group directive (also, outer token cycle
operates with depth = 0 rather than 1).

- Renamed \@defgroupedcytoks to \defineexit@grouped, to better match function.

v1.4 2021/05/26
- Concerning the \@@@@spcT macro: previously, active-implicit spaces

were passed to the Spacedirective as \tc@sptoken, with the \string of the
active char passed in \theactivespace. Now, the active-implicit space token
itself is passed to the Spacedirective instead of \tc@sptoken, but only *IF*
the charcode of that character is currently active; otherwise, a generic
implicit space, \tcsptoken is passed.

- Introduced a set of "look ahead" macros: \tcpeek, \tcpop, \tcpopliteral,
\tcpopappto, \tcpopliteralappto, \tcappto#1from#2, \tcpopuntil,
\tcpopwhitespace, \tcpush, and \tcpushgroup.

- Bug fixed in \tc@addtoks definition, in the event that #2 was a number.

v1.41 2021/06/25
- Bug fix in \tcpopliteralappto (\@tmp interfered with itself). Altered,

substituting \@@tmp.

24

