
TEX in a Nutshell
Petr Olšák

The pure TEX features are described here, no features provided by macro extensions. Only
the last section gives a summary of plain TEX macros.

The main goal of this document is its brevity. So features are described only roughly and
sometimes inaccurately here. If you need to knowmore then you can read free available books,
for example TEX by topic or TEXbook naruby. Try to type texdoc texbytopic in your system.

The OpTEX manual supposes that the user already knows the basic principles of TEX itself.
If you are converting from LATEX to OpTEX for example1 then you may welcome a summary
document that presents these basic principles because LATEXmanuals typically don’t distinguish
between TEX features and features specially implemented by LATEX macros.

I would like to express my special thanks to Barbara Beeton who read my text very carefully
and suggested hundreds of language corrections and improvements and also discovered many
of my real mistakes. Thanks to her, my text is better. But if there are any other mistakes then
they are only mine and I’ll be pleased if you send me a bug report in such case.

Table of contents
1 Terminology . 1
2 Formats, engines . 2
3 Searching data . 3
4 Processing the input . 3
5 Vertical and horizontal modes . 5
6 Groups in TEX . 6
7 Box, kern, penalty, glue . 6
8 Syntactic rules . 8
9 Principles of macros . 9

10 Math modes . 11
11 Registers . 11
12 Expandable primitive commands . 15
13 Primitive commands at the main processor level . 17
14 Summary of plain TEX macros . 24

Index . 27

1 Terminology
The main principle of TEX is that its input files can be a mix of the material which could be
printed and control sequenceswhich give a setting for built-in algorithms of TEX or give a special
message to TEX what to do with the inputted material.

Each control sequence (typically a word prefixed by a backslash) has its meaning. There are
four types of meanings of control sequences:

• the control sequence can be a register; this means it represents a variable which is able to keep
a value. There are primitive registers. Their values influence behavior of built-in algorithms
(e.g., \hsize, \parindent, \hyphenpenalty). On the other hand declared registers are used
by macros (e.g., \medskipamount used in plain TEX or \ttindent used by OpTEX).

1 Congratulations on your decision:-)

https://eijkhout.net/texbytopic/texbytopic.html
http://petr.olsak.net/tbn.html
http://petr.olsak.net/optex

• the control sequence can be a primitive command, which runs a built-in algorithm (e.g., \def
declares a macro, \halign runs the algorithm for tables, \hbox creates a box in typesetting
output).

• the control sequence can be a character constant (declared by \chardef or \mathchardefprim-
itive command) or a font selector (declared by \font primitive command).

• the control sequence can be a macro. When it is read, it is replaced by its replacement text in
the input queue. If there are more macros in the replacement text, all macros are replaced.
This is called the expansion process which ends on the level of text to be printed or primitive
commands or registers or character constants or font selectors.
Example. When TEX reads:
\def\TeX{T\kern-.1667em\lower.5ex\hbox{E}\kern-.125emX}

in a macro file, then the \def primitive command saves the information that \TeX is a control
sequence with meaning “macro”, the replacement text is declared here, and it is a mix of a
material to be typeset: T, E and X and primitive commands \kern, \lower, \hbox with their
parameters in given syntax. Each primitive command has a declared syntax; for example, \kern
must be followed by a dimension specification in the format “decimal number followed by a
unit”. More about this primitive syntax is in sections 11, 12 and 13.

When a control sequence \TeX with meaning “macro” occurs in the input stream, then it is
expanded to its replacement text, i.e. the sequence of typesetting material and primitive com-
mands. The \TeX macro expands to T\kern-.1667em\lower.5ex\hbox{E}\kern-.125emX and
the logo TEX is printed as a result of this processing.

None of the control sequences have their definitive meaning. A control sequence could
change its meaning by re-defining it as a newmacro (using \def), redeclaring it as an arbitrary
object in TEX (using \let), etc. When you re-define a primitive control sequence then the
access to its value or built-in algorithm is lost. This is a reason why OpTEX macros duplicate all
primitive sequences (\hbox and _hbox) with the same meaning and use only “private” con-
trol sequences (prefixed by _). So, a user can re-define \hbox without the loss of the primitive
command _hbox.

2 Formats, engines
TEX is able to start without any macros preloaded in the so-called ini-TEX state (the -ini
option on the command line must be used). It knows only Cca 300 primitive registers and
primitive commands at this state.2 When ini-TEX reads macro files then new control sequences
are declared as macros, declared registers, character constants or font selectors. The primitive
command \dump saves the binary image of the TEX memory (with newly declared control
sequences) to the format file (.fmt extension).

The original intention of existing format files was to prepare a collection of macro declara-
tions and register settings, to load default fonts, and to dump this information to a file for later
use. Such a collection typically declares macros for the markup of documents and for typeset-
ting design. This is the reasonwhywe call these files format files: they give a format of documents
on the output side and declare markup rules for document source files.

When TEX is started without the -ini option, it tries to load a prepared format file into its
memory and to continue with reading more macros or a real document (or both). The starting
point is at the place where \dump was processed during the ini-TEX state. If the format file is
not specified explicitly (by -fmt option on the command line) then TEX tries to read the format
file with the same name which is used for running TEX. For example tex document runs TEX, it
loads the format tex.fmt and reads the document.tex. Or latex document runs TEX, it loads
the format latex.fmt and reads the document.tex.

2 Roughly speaking, if you know all these 300 primitive objects and the syntax of all primitive commands and all the
built-in algorithms, then you know all about TEX. But starting to produce ordinary documents from this primitive level
without macro support is nearly impossible.

2

The tex.fmt is the format file dumped when plain TEX macros3 were read, and latex.fmt
is the format file dumped when LATEX macros were read. This is typically done when a TEX
distribution is installed without any user intervention. So, the user can run tex document or
latex document without worry that these typical format files exist.

From this point of view, LATEX is nothing more than a format of TEX, i.e. a collection of macro
declarations and register settings.

A typical TEX distribution has four common TEX engines, i.e. programs. They implement clas-
sical TEX algorithms with various extensions:

• TEX – only classical TEX algorithms by Donald Knuth,
• pdfTEX – an extension supporting PDF output directly and micro-typographical features,
• X ETEX – an extension supporting Unicode and PDF output,
• LuaTEX – an extension supporting Luaprogramming,Unicode,micro-typographical features

and PDF output.

Each of them is able to run in ini-TEX state or with a format file. For example the command
luatex -ini macros.ini starts LuaTEX at ini-TEX state, reads the macros.ini file and the final
\dump command is supposed here to create a format macros.fmt. Then a user can use the com-
mand luatex -fmt macros document to load macros.fmt and process the document.tex. Or
the command luatex document processes LuaTEX with document.tex and with luatex.fmt
which is a little extension of plain TEX macros. Another example: lualatex document runs
LuaTEX with lualatex.fmt. It is a format with LATEX macros for LuaTEX engine. Final example:
optex document runs LuaTEX with optex.fmt which is a format with OpTEX macros.

3 Searching data
If TEX needs to read something from the file system (for example the primitive command
\input ⟨file name⟩ or \font ⟨font selector⟩= ⟨file name⟩ is used) then the rule “first wins” is ap-
plied. TEX looks at the current directory first or somewhere in the TEX installation second. The
behavior in the second step depends on the used TEX distribution. For example TEXlive pro-
grams are linked with a kpathsea library and they do the following: Search for the given file
in the current directory, then in the ~/texmf tree (data are saved by the user here), then in
the texmf-local tree (data are saved by the system administrator here; they are not removed
when the TEX distribution is upgraded), then in texmf-var tree (data are saved automatically
by programs from the TEX distribution here), and then in the texmf-dist tree (data from the
TEXlive distribution). Each directory tree can be divided into sub-trees: first level tex, fonts,
doc, etc.; the second level is divided by TEX engines or font types, etc.; more levels are typically
organized to keep clarity. New files in the current directory or in the ~/texmf tree are found
without doing anythingmore, but new files in other places have to be registered by the texhash
program (TEX distributions do this automatically during their installation).

4 Processing the input
The lines from input files are first transformed by the tokenizer. It reads input lines and generates
a sequence of tokens. These are the main goals of the tokenizer:

• It converts each control sequence to a single token characterized by its name.
• Other input material is tokenized as “one token per character”.
• A continuous sequence of multiple spaces is transformed into one space token.
• The end of the line is transformed into a space token, so that paragraph text can continue on

the next input line and one space token is added between the last word on the previous line
and the first word on the next line.

3 Plain TEX macros were made by Donald Knuth, the author of TEX. It is a set of basic macros and settings which is
used (more or less) as a subset of all other macro packages.

3

http://petr.olsak.net/optex
https://www.tug.org/texlive

• The comment character % is ignored and all the text after it to the end of line is ignored too.
No space is generated at the end of this line.

• Spaces from the begining of each line are ignored. Thus, you can use arbitrary indentation
in your source file without changing the result.

• Each empty line (or line with only spaces) is transformed to the token \par. This token has
primitive meaning: “finalize the current paragraph”. This implies the general rule in TEX
source files: paragraphs are terminated by empty lines.

The behavior of the tokenizer is not definitive. The tokenizer works with a table of cat-
egory codes. Any change of category codes of characters (done by the primitive command
\catcode`\ ⟨character⟩= ⟨code⟩) influences tokenizer processing. For example, the verbatim en-
vironment is declared using setting all characters to normal meaning.

By default, there are the following characters with special meaning. The tokenizer converts
them or sets them as special tokens used in syntactic rules in TEX later. The corresponding
category codes are mentioned here as an index of the character.

• \0 – starts completion of a control sequence by the tokenizer.
• {1 and }2 – open and close group or have special syntactic meaning. The main syntactic

rule is: each subsequence of tokens treated by macros or primitive commands must have
these pairs of tokens balanced. There is no exception. The tokenizer treats them as special
tokens with meaning “opening character1” and “closing character2”.

• %14 – comment character, removed by the tokenizer, along with everything that follows it
on the line.

• $3, &4, #6, ^7, _8, ~13 – tokenizer treats them as a special tokens with meaning: “math-mode
selector3”, “table separator4”, “parameter prefix formacros6”, “superscript prefix inmath7”,
“subscript prefix in math8”, “active character13” (the active character ~ is defined as no-
breakable space in all typical formats).

• Letters and other characters are tokenized as “letter character11” or “other character12”.

If you need to print these special characters you can use \%, \&, \$, \# or _. These five control
sequences are declared as “print this character” in all typical TEX formats. Another possibility
is to use a verbatim environment (it depends on the used format) Last alternative: you can
use \csstring\ ⟨character⟩ in LuaTEX, because LuaTEX disposes with the primitive command
\csstring which converts \ ⟨character⟩ to ⟨character⟩ 12.

The “active character13” can be declared by \catcode`\ ⟨character⟩=13. Such a ⟨character⟩
behaves like a ⟨control sequence⟩ . For example, you can define it by \def ⟨character⟩{...}. If a
⟨control sequence⟩ is listed in this document, the active character is meant too.

Each control sequence is built by the tokenizer starting from \0. Its name is a continuous
sequence of letters11 finalized by the first non-letter. Note that OpTEX sets _ as letter11, thus
control sequence names can include this character. LATEX sets the @ as letter11 when reading
styles and macro files. You can look to such files and you will see many such characters inside
private control sequence names declared by LATEX macros.

If the first character after \0 is not letter≠11, then the control sequence is finalized with only
this character in its name. So called one-character control sequence is created. Other control se-
quences are multiletter control sequences.

Spaces ␣10 after multi-letter control sequences are ignored, so the space can be used as a
terminating character of the control sequence.Other characters used immediately after a control
sequence are not ignored. So \TeX ! and \TeX! gives the same result: the control sequence \TeX
followed immediately by !12.

The tokenizer’s output (a sequence of tokens) goes to the expand processor and its output
goes to the main processor of TEX. The expand processor performs expansions of macros or a
primitive command which is working at the expand processor level. See a summary of such
commands in section 12.

4

Themain processor performs assignment of registers, declares macros by the \def primitive
command, and runs all primitive commands at the main processor level. Moreover, it creates
the typesetting output as described in the next section.

The very important difference between TEX and other programs is that there are no strings,
only sequences of tokens. We can return to the example \def\TeX{...} above in section 1. The
token \def is a control sequence with meaning “declare a macro”. It gets the following token
\TeX and declares it as a macro with replacement text, which is the sequence of tokens:

T
11

\kern -
12

.
12

1
12

6
12

6
12

7
12

e
11

m
11

\lower .
12

5
12

e
11

x
11

\hbox {
1
E
11

}
2
\kern -

12
.
12

1
12

2
12

5
12

e
11

m
11

X
11

If you are thinking like TEX then you must forget the term “string” because all texts in TEX
are preprocessed by the tokenizer when input lines are read and only sequences of tokens are
manipulated inside TEX.

The tokenizer converts two ^7^7 characters followed by an ASCII uppercase letter to the Ctrl-
letter ASCII code. For example ^^M is Ctrl-M (carriage return). It converts two ^7^7 followed by
two hexadecimal digits (0123456789abcdef) to a one-byte code, for example, ^^0d is Ctrl-M too
because it has code 13. Moreover, the tokenizer of X ETEX or LuaTEX converts ^7^7^7^7 followed
by four hexadecimal digits or ^7^7^7^7^7^7 followed by six hexadecimal digits to one character
with a given Unicode.

5 Vertical and horizontal modes
When the main processor creates the typesetting output, it alternates between vertical and hor-
izontal mode. It starts in vertical mode: all materials are put vertically below in this mode. For
example \hbox{a}\hbox{b}\hbox{c} creates a above b above c in vertical mode.

If something is incompatible with the vertical mode principle— a special commandworking
only in horizontal mode or a character itself — then the main processor switches to horizontal
mode: it opens an unlimited horizontal data row for typesetting material and puts material next
to each other. For example \hbox{a}\hbox{b}\hbox{c} creates abc in horizontal mode.

When an empty line is scanned, the tokenizer creates a \par token here and if the main
processor is in horizontal mode, the \par command finalizes the paragraph. More exactly it
returns to vertical mode, it breaks the horizontal data row filled in previous horizontal mode
to parts with the \hsizewidth. These parts are completed as boxes and they are put one below
another in vertical mode. So, a paragraph of \hsize width is created.

Repeatedly: if there is something incompatible with the current vertical mode (typically a
character), then the horizontal mode is opened and all characters (and spaces between them)
are put to the horizontal data row. When an empty line is scanned, then the \par command is
started and the horizontal data row is broken into lines of \hsizewidth and the next paragraph
is completed.

In verticalmode, thematerial is accumulated in a vertical data column called themain vertical
list. If the height of this material is greater than \vsize then its part with maximum \vsize
height is completed as a page box and shipped to the output routine. A programmer or designer
can declare a design of pages using macros in the output routine: header, footer, pagination,
the position of the main page box, etc. The output routine completes the main page box with
other material declared in the output routine and the result is shipped out as one page of the
document. The main processor continues in vertical mode with the rest of the unused material
in the main vertical list. Then it can switch to horizontal mode if a character occurs, etc...

The plain TEX macro \bye (or primitive command \end4) starts the last \par command,
finalizes the last paragraph (if any), completes the last page box, sends it to the output routine,
finalizes the last page in it, and TEX is terminated.

4 LATEX format re-defines this primitive control sequence \end to another meaning which follows the logic of LATEX’s
markup rules.

5

There are internal vertical mode and internal horizontal mode. They are activatedwhen themain
processor is typesetting material inside \vbox{...} or \hbox{...} primitive commands. More
about boxes is in sections 7 and 13.

Understanding of switching betweenmodes is very important for TEX users. There are prim-
itive commands which are context dependent on the current mode. For example, the \par
primitive command (generated by an empty line) does nothing in vertical mode but it final-
izes paragraph in horizontal mode and it causes an error in math mode. Or the \kern primitive
command creates a vertical space in vertical mode or horizontal space in horizontal mode.

The following primitive commands used in vertical mode start horizontal mode: the first
character of a paragraph (most common situation) or \indent, \noindent, \hskip (and its
alternatives), \vrule5 and the plain TEXmacro \leavevmode.When horizontalmode is opened,
an indentation of \parindent width is included. The exception is only if horizontal mode is
started by \noindent; then the paragraph has no indentation.

The following primitive commands used in horizontal mode finalize the paragraph and re-
turn to vertical mode: \par, \vskip (and its alternatives), \hrule, \end and the plain TEXmacro
\bye.

6 Groups in TEX
Each assignment to registers, declaration macros or font selecting is local in groups. When the
current group ends then the assignments made inside the group are forgotten and the values
in effect before this group was opened are restored. The groups can be delimited by {1 and }2
pair or by \begingroup and \endgroupprimitive commands or by \bgroup and \egroup control
sequences declared by plain TEX. For example, plain TEXdeclares themacros \rm (selects roman
font), \bf (selects bold font) and \it (selects italics) and it initializes by \rm font. A user can
write:

The roman font is here {\it here is italics} and the roman font continues.

Not only fonts but all registers are set locally inside a group. The macro designer can declare
a special environment with font selection and with more special typographical parameters in
groups.

The following example is a test of understanding vertical and horizontal modes switching.

{\hsize=5cm This is the first paragraph which should be formatted
to 5\,cm width.}

But it is not true...

Why does the example above not create the paragraphwith a 5 cmwidth? The empty line (\par
command) is placed after the group is finished, so the \hsize parameter has its previous value
at the time when the paragraph is completed, not the value 5 cm. The value of the \hsize regis-
ter6 is used when the paragraph is completed, not at the beginning of the paragraph. This is the
reason why macro programmers explicitly put a \par command into macros before the local
environment is finished by the end of the group. Our example should look like this:

{\hsize=5cm This is the first ... to 5\,cm width.\par}

7 Box, kern, penalty, glue
You can look at one character, say the y. It is represented by three dimensions: height (above
baseline), depth (below baseline) and width. Suppose that there are more characters printed
in horizontal mode and completed as a line of a paragraph. This line has its height equal to

5 The list is not fully completed, but most important commands are mentioned here.
6 and about twenty other registers which declare the paragraph design

6

the maximum height of characters inside it, it has the depth equal to maximum depth of all
characters inside it and it has its width. Such a sequence of characters encapsulated as one
typesetting element with its height, depth and width is called a box. Boxes are placed next to
each other (from left to right7) in horizontal mode or one below another in vertical mode.

The boxes can include individual characters or spaces or boxes. The boxes can include more
boxes. Paragraph lines are boxes. The page box includes paragraph lines (boxes). The finalized
page with a header, page box, pagination, etc., is a box and it is shipped out to the PDF page.
Understanding boxes is necessary for macro programmers and designers.

You can create an individual box by the primitive command \hbox{ ⟨horizontal material⟩} or
\vbox{ ⟨vertical material⟩}. The ⟨horizontal material⟩ is completed in internal horizontal mode
and ⟨vertical material⟩ in internal vertical mode. Both cases open a group, create the material in
a specified mode and close the group, where all settings are local.

The ⟨horizontal material⟩ can include individual characters, boxes, horizontal glues or kerns.
“Glue” is a special term for stretchable or shrinkable and possibly breakable spaces and “kern”
is a term used for fixed nonbreakable spaces.

The ⟨vertical material⟩ can include boxes, vertical glues or kerns. No individual characters.
If you put an individual character in vertical mode (for example in a \vbox) then horizontal
mode is opened. At the end of a \vbox8 or when the \par command is invoked, the opened
paragraph is finished (with current \hsizewidth) and the resulting lines are vertically placed
inside the \vbox.

The completed boxes are unbreakable and they are treated as a single object in the surround-
ing printed material.

The line boxes of a paragraph have the fixed width \hsize, so there must be something
stretchable or shrinkable in order to get the desired fixed width of lines. Typically the spaces
betweenwords have this feature.9 These spaces have declared their default size, their stretchability
and their shrinkability in the font metric data of the currently used font.

You can place such glue explicitly by the primitive command \hskip:

\hskip ⟨default size⟩ plus ⟨stretchability⟩ minus ⟨shrinkability⟩
for example:
\hskip 10pt plus5pt minus2.5pt

This example places the glue with 10 pt default size, stretchable to 15 pt10 and shrinkable to
7.5 pt as its minimal size. All glues in one line are stretched or shrunk equally but with weights
given from their stretchability/shrinkability values.

You can do experiments of this feature if you say \hbox to ⟨size⟩{...}. Then the \hbox is
created with a given width. Probably, the glues inside this \hbox must be stretched or shrunk.
You can see in the log that the total badness is calculated, it represents the amount of a “force”
used for all glue included in such an \hbox.

An infinitely stretchable (to an arbitrary positive value) or shrinkable (to an arbitrary nega-
tive value) glue can exist. This glue is stretched/shrunk and other glues with finite amounts of
stretching or shrinking keep their default size in such case. You can put infinitely stretchable/
shrinkable glue using the reserved unit fil in an \hskip command, for example the command
\hskip 0pt plus 1fil means zero default size but infinitely stretchable. There is a shortcut
for such glue: \hfil. When you type \hbox to\hsize{\hfil ⟨text⟩\hfil} then the ⟨text⟩
is centered. But if the ⟨text⟩ is wider than \hsize then TEX reports an overfull \hbox.
If you want to center a wide ⟨text⟩ too, you can use \hss instead of \hfil. The \hss

7 There is an exception for special languages.
8 before the \vbox group is closed
9 When the microtypographical feature \pdfadjustspacing is activated, then not only spaces are stretchable and

shrinkable but individual characters are slightly deformed (by an invisible amount) too.
10 It can be stretchable ad absurdum (more than 15 pt) but with very considerable badness calculated by TEXwhenever
glues are stretched or shrunk.

7

primitive command is equal to \hskip 0pt plus1fil minus1fil. The ⟨text⟩ printed by
\hbox to\hsize{\hss ⟨text⟩\hss} is now centered in its arbitrary size.

A glue createdwith fill stretchability or shrinkability (double ell) is infinitelymore stretch-
able or shrinkable than glues with only a fil unit. So, glues with fill are stretched or shrunk
and glues with only fil in the same box keep their default size. For example, a macro declares
centering a ⟨text⟩ by \hbox to\hsize{\hss ⟨text⟩\hss} and a user can create the ⟨text⟩ in the
form \hfill ⟨real text⟩ . Then ⟨real text⟩ is printed flushed right because \hfill is a shortcut
to \hskip0pt plus1fill and has greater priority than glues with only a fil unit.

Common usage is \hbox to0pt{ ⟨text⟩\hss} or \hbox to0pt{\hss ⟨text⟩}. The box with
zero width is created and the text overlaps the adjacent text to the right (first example) or
to the left (second example). Plain TEX declares macros for these cases: \rlap{ ⟨text⟩} or
\llap{ ⟨text⟩}.

The last line of each paragraph is finalized by a glue of type \hfil by default. When you
write \hfill ⟨object⟩ in vertical mode (⟨object⟩ is something like a table, image or whatever
else in the box) then ⟨object⟩ is flushed right, because the paragraph is started by the \hfill
space but finalized only by \hfil space. If you type \noindent\hfil ⟨object⟩ then the ⟨object⟩
is centered. And putting only ⟨object⟩ places it to the left side because the common left side is
the default placement rule in vertical mode.

The same principles that apply to horizontal glues are also applicable to vertical modes
where glues are created by \vskip commands instead of \hskip commands. You can write
\vbox to ⟨size⟩{...} and do experiments.

When the paragraph breaking algorithm decides about the suitable breakpoints for creating
lines with the desired width \hsize, then each glue is a potentially breakable point. Each glue
can be preceded by a penalty value (created by the \penalty primitive) in the typical range
−10000 to 10000. The paragraph breaking algorithm gets a penalty if it decides to break line at
the glue preceded by the given penalty value. If no penalty is declared for a given glue, then it
is the same as a penalty equal to zero.11. The penalty value 10000 or more means “impossible to
break”. A negative penalty means a bonus for the paragraph breaking algorithm. The penalty
−10000 or less means “you must break here”.

The paragraph breaking algorithm tries to find an optimumof breakpoint positions concern-
ing to all penalties, to all badnesses of all created lines and to manymore values not mentioned
here in this brief document. The analogous optimal breakpoint is found in vertical material
when TEX breaks it into pages.

The concept “box, penalty, glue” with the optimum-fit breaking algorithms makes TEX
unique among many other typesetting software.

8 Syntactic rules
A primitive command can get its parameters written after it. These parameters must suit
syntactic rules given for each primitive command. Some parameters are optional. For example
\hskip ⟨dimen⟩ plus ⟨stretchability⟩ minus ⟨shrinkability⟩ means that the parameter ⟨dimen⟩
must follow (it must suit syntactic rules for dimensions, see section 11) then the optional
parameter prefixed by keyword plus can follow and then the optional parameter prefixed by
minus can follow. We denote the optional parameters by underline in this document.

Keywords (typically prefixes to some parameters) may have optional spaces around them.
The explicit expressions of numbers (i.e. 75, "4B, `K; see section 11) should be terminated by

one optional space which is not printed. This space can serve as a termination character which
says that “whole number is presented here; no more digits are expected”.

11 More precisely: the paragraph breaking algorithm or page breaking algorithm can break horizontal list to lines (or
vertical list to pages) at penalties (then it gets the given penalty) or at glues (then the penalty is zero). The second case
is possible only if no penalty nor glue precedes. The item where the list is broken (penalty or glue), is discarded and
all immediatelly followed glues, penalties and kerns are discarded too. They are called discardable items

8

If the syntactic rule mentions the pair {, } then these characters are not definitive: other char-
acters may be tokenized with this special meaning but it is not common. The text between this
pair must be balancedwith respect to this pair. For example the syntactic rule \message{ ⟨text⟩}
supposes that ⟨text⟩ must not be ab{cd, but ab{c{}}d is allowed for instance.

By default, all parameters read by primitive commands are got from the input stream, tok-
enized and fully expanded by the expand processor. But sometimes, when TEX reads param-
eters for a primitive command, the expand processor is deactivated. We denote these param-
eters by red color. For example, \let ⟨control sequence⟩= ⟨token⟩ means that these parameters
processed by the \let command are not expanded.

Whenever a syntactic rule mentions the = character (see the previous example with the \let
command), then this is the equal sign tokenized as a normal character and it is optional. The
syntactic rule allows to omit it. Optional spaces are allowed around this equal sign.

The concept of the optional parameters of primitive commands (terminated if something
different from the keyword follows) may bring trouble if a macro programmer forgets to
terminate an incomplete parameter text by the \relax command (\relax does nothing but it
can terminate a list of optional parameters of the previous command). Suppose, for example,
that \mycoolspace is defined by \def\mycoolspace{\penalty42\hskip2mm}. If a user writes
first\mycoolspace plus second then TEX reports the error missing number, treated as
zero in the position of s character and appends: <to be read again> s. A user who is unfa-
miliar with TEX primitive commands and their parameters is totally lost. The correct definition
looks like: \def\mycoolspace{\penalty42\hskip2mm\relax}.

9 Principles of macros
Macros can be declared by the \def primitive command (or \edef, \gdef, \xdef commands;
see below). The syntax is \def ⟨control sequence⟩ ⟨parameters⟩{ ⟨replacement text⟩}.

The ⟨parameters⟩ are a sequence of formal parameters of the declared macro written in the
form #1, #2, etc. They must be numbered from one and incremented by one. The maximum
number of declared parameters is nine. These parameters can be used in the ⟨replacement text⟩ .
This specifies the place where the real parameter is positioned when the macro is expanded.
For example:

\def\test #1{here is "#1".}
\test A % expands to: here is "A".
\def\swap #1#2{#2#1}
\swap AB % expands to: BA
\test {param} % expands to: here is "param".
\swap A{param} % expands to: paramA

Note that there are two possibilities of how to write real macro parameters when a macro is
in use. The parameter is one token by default but if there is { ⟨something⟩} then the parame-
ter is ⟨something⟩ . The braces here are delimiters for the real parameter (the TEX group is not
open/close here).

The example above shows a declaration of unseparated parameters. The parameters were de-
clared by #1 or #1#2with no text appended to such a declaration. But there is another possibility.
Each formal parameter can have a text appended in its declaration, so the general syntax of the
declaration of formal parameters is #1 ⟨text1⟩#2 ⟨text2⟩ etc. If such ⟨text⟩ is appended then we
say that the parameter is separated or delimited by text. The same delimiter must be used when
the macro is in use. For example

\def\Test #1#2..#3 {first "#1", second "#2", third "#3".}
\Test ABC..DEF G % expands to: first "A", second "BC", third "DEF".

% the letter G follows after expansion.

9

In the example above the #1 parameter is unseparated (one token is read as a real parameter
if the syntax { ⟨parameter⟩} is not used). The #2 parameter is delimited by two dots and the #3
parameter is delimited by space.

There may be a ⟨text0⟩ immediately before #1 in the parameter declaration. This means that
the declared macro must be used with the same ⟨text0⟩ immediately appended. If not, TEX
reports the error. The general rule for declaration of a macro with three parameters should be:
\def ⟨control sequence⟩ ⟨text0⟩#1 ⟨text1⟩#2 ⟨text2⟩#3 ⟨text3⟩{ ⟨replacement text⟩}.

The rule “everything must be balanced” is applied to separated parameters too. It means
that \Test AB{C..DEF G}.. H from the example above reads B{C..DEF G} to the #2 parameter
and the #3 parameter is empty because the space (the delimiter of #3 parameter) immediately
follows two dots.

The separated parameter can bring a potential problem if the user forgets the delimiter or the
delimiter is specified incorrectly. Then TEX reports an error. This error is reportedwhen the first
\par is scanned as part of the parameter (probably generated from an empty line). If you really
want to scan as part of the parameter more paragraphs including \par between them, then
you can use the \long prefix before \def. For example \long\def\scan#1\stop{...} reads
the parameter of the \scan macro up to the \stop control sequence, and this parameter can
include more paragraphs. If the delimiter is missing when a \long defined macro is processed,
then TEX reports an error at the end of the file.

When a real parameter of amacro is scanned then the expand processor is deactivated.When
the ⟨replacement text⟩ is processed then the expand processor works normally. This means that
if parameters are used in the ⟨replacement text⟩ , then they are expanded here.

If a macro declaration is used inside the ⟨replacement text⟩ of another macro then the number
of # must be doubled for inner declaration. Example:

\def\defmacro#1#2{%
\def#1##1 ##2 {##1 says: #1 ##2.}%

}
\defmacro \hello {hello} % expands to \def\hello#1 #2 {#1 says: hello #2.}
\defmacro \goobye {good bye}
\hello Jane Eric % expands to: Jane says: hello Eric.
\goodbye Eric John % expands to: Eric says: good bye John.

The exact implementation of the feature above: when TEX reads macro body (during \def,
\edef, \gdef, \xdef) then each double #6 is converted to single #6 and each (unconverted yet)
single #6 followedby adigit is converted to an internalmark of future parameter. Thismark is re-
placed by real prameter when the definedmacro is used. This rule of conversion of macro body
has one exception: \edef{...\the\toks...} keeps the toks content unexpanded and without
conversion of hashes. And there exists a reverse conversion from internal marks to #12 ⟨number⟩
and from #6 to #12#12 when TEX writes macro body by \meaning primitive.

Note the % characters used in the \defmacro definition in the exmample above. They mask
the end of lines. If you don’t use them, then the space tokens are included here (gener-
ated by the tokenizer at the end of each line). The ⟨replacement text⟩ of \defmacro will be
⟨space⟩\def#1...{...} ⟨space⟩ in such a case. Each usage of \defmacro generates two un-
wanted spaces. It is not a problem if \defmacro is used in the vertical mode because spaces
are ignored in this mode. But if \defmacro is used in horizontal mode then these spaces are
printed.12

The macro declaration behaves as another assignment, so the information about such a dec-
laration is lost if it is used in a group and the group is left. But you can use a \global prefix
before \def or the primitive \gdef. Then the assignment is global regardless of groups.

When \def or \gdef is processed then ⟨replacement text⟩ is readwith the deactivated expand
processor. We have alternatives \edef (expanded def) and \xdef (global expanded def) which

12 More precisely, they are transformed into horizontal glues used between words.

10

read their ⟨replacement text⟩ expanded by the expand processor. The summary of \def syntax
is:

\def ⟨control sequence⟩ ⟨parameters⟩{ ⟨replacement text⟩} % local assignment
\gdef ⟨control sequence⟩ ⟨parameters⟩{ ⟨replacement text⟩} % global assignment
\edef ⟨control sequence⟩ ⟨parameters⟩{ ⟨replacement text⟩} % local assignment
\xdef ⟨control sequence⟩ ⟨parameters⟩{ ⟨replacement text⟩} % global assignment

If you set \tracingmacros=2, you can see in the log file how the macros are expanded.

10 Math modes
The $3 ⟨math text⟩$3 specifies a math formula inside a line of the paragraph. It processes the
⟨math text⟩ in a group and in internal math mode. The $3$3 ⟨math text⟩$3$3 generates a separate
line with math formula(s). It processes the ⟨math text⟩ in a group and in display math mode.

The fonts in math mode are selected in a very specific manner which is independent of the
current text font. Six different math objects are automatically detected in math mode: \mathord
(normal material), \mathop (big operators), \mathbin (binary operators), \mathrel (rela-
tions), \mathopen (open brackets), \mathclose (close brackets), \mathpunct (punctuation).
They can be processed in four styles \displaystyle (default in the displaymode), \textstyle
(default in the internal math mode), \scriptstyle (used for indexes or exponents, smaller
text) and \scriptscriptstyle (used in indexes of indexes, even smaller text).

The math typesetting algorithms were implemented in TEX by its author with great care. All
typographical traditions of math typesetting were taken into account. There are three chapters
about math typesetting in his TEXbook. Moreover, there is the detailed appendix G containing
the exact specification of generatingmath formulae. This topic is unfortunately out of the scope
of this short text.

There is a good a piece of news: all formats (including LATEX) take the default TEX syntax
for ⟨math text⟩ . So, LATEX manuals or LATEX documents serve a good source if you want to get to
know the rules of math typesetting by TEX. There is only one significant difference. Fractions
are constructed at the primitive level by the \over primitive: { ⟨numerator⟩\over ⟨denominator⟩}
but LATEXuses amacro \frac in the syntax \frac{ ⟨numerator⟩}{ ⟨denominator⟩}. Plain TEXusers
(including the author of TEX) prefer the syntaxwhich follows the principle “howahuman reads
the formula”. On the other hand, the \frac syntax is derived frommachine languages. You can
define the \frac macro by \def\frac#1#2{{#1\over#2}} if you want.

11 Registers
There are four types of registers used in TEX:

• Counters; their values are integer numbers. Counters are declared by \newcount ⟨register⟩ 13

or they are primitive registers (\linepenalty for example). TEX interprets primitive com-
mands which represent an integer from an internal table as counter type register too (exam-
ples: \catcode`A, \lccode`A).

• Dimen type; their values are dimensions. They are declared by \newdimen ⟨register⟩ or they
are primitive registers (\hsize, for example). TEX interprets primitive commandswhich rep-
resent a dimension value as dimen type register too (example: \wd0).

• Glue type; their values are triples like in general \hskip parameters. They can be declared by
\newskip ⟨register⟩ or they are primitive registers (\abovedisplayskip for example).14

• Token lists; their values are sequences of tokens. They are declared by \newtoks ⟨register⟩ or
they are primitive registers (\everypar for example).

13 The declarators \newcount, \newdimen, \newskip and \newtoks are plain TEXmacros used in all knownTEX formats.
They provide ⟨address⟩ allocation and use the \count ⟨address⟩, \dimen ⟨address⟩, \skip ⟨address⟩ and \toks ⟨address⟩
TEX registers. The \countdef, \dimendef, \skipdef and \toksdef primitive commands are used internally.
14 Very similar muglue type for math glues exists too but it is not described in this text.

11

The following example shows how registers are declared, how a value is saved to the register,
and how to print the value of the register.

\newcount \mynumber
\newdimen \mydimen
\newskip \myskip
\newtoks \mytoks
\mynumber = 42
\mydimen = -13cm
\myskip = 10mm plus 12mm minus1fil
\mytoks = {abCd ef}
To print these values use the primitive command "the":
\the\mynumber, \the\mydimen, \the\myskip, \the\mytoks.
\bye

This example prints: To print these values use the primitive command ”the”: 42, -369.88582pt,
28.45274pt plus 34.1433pt minus 1.0fil, abCd ef. Note that the human readable dimensions are
converted to typographical points (pt).

The general syntactic rule for storing values to registers is ⟨register⟩= ⟨value⟩ where the equal
sign is optional and it can be surrounded by optional spaces. Syntactic rules for each type of
⟨value⟩ depending on type of the register (i.e. ⟨number⟩ , ⟨dimen⟩ , ⟨skip⟩ and ⟨toks⟩) follows.

• The ⟨number⟩ could be
1) a register of counter type;
2) a character constant declared by \chardef or \mathchardef primitive command.
3) an integer decimal number (with optional + or - prefixed)
4) " ⟨hexa number⟩ where ⟨hexa number⟩ can include digits 0123456789ABCDEF ;
5) ' ⟨octal number⟩ where ⟨octal number⟩ can include digits 01234567 ;
6) ` ⟨character⟩ (the prefix is the reverse single quote `). It returns the code of the ⟨character⟩ .

Examples: `A or one-character control sequence `\A). Both examples represent the num-
ber 65. The Unicode of the character is taken here if LuaTEX or X ETEX is used;

7) \numexpr ⟨num. expression⟩ .15 The ⟨num. expression⟩ uses operators +, -, * and / and brack-
ets (,) in normal sense. The operands are ⟨number⟩ s. It is terminated by something incom-
patible with the syntactic rule of ⟨num. expression⟩ or by \relax. The \relax (if it is used
as a separator) is removed. If the result is non-integer, then it is rounded (not truncated).

The rules 3)–6) can be terminated by one optional space.
• The ⟨dimen⟩ could be

1) a register of dimen type or counter type;
2) a decimal number with an optional decimal point (and optional + or - prefixed) followed

by ⟨dimen unit⟩ . The ⟨dimen unit⟩ is pt (point)16 or mm or cm or in or bp (big point) or dd
(Didot point) or pc (pica) or cc (cicero) or sp (scaled point) or em (quad of current font)
or ex (ex height of current font) or a register of dimen type;

3) \dimexpr ⟨dimen expression⟩ . The ⟨dimen expression⟩ uses operators +, -, * and / and brack-
ets (,) in their normal sense. The operands of + and - are ⟨dimen⟩ s, the operators of * or
/ are the pair ⟨dimen⟩ and ⟨number⟩ (in this order). The ⟨dimen expression⟩ is terminated
by something incompatible with the syntactic rule of ⟨dimen expression⟩ or by \relax. The
\relax (if it is used as a separator) is removed.

The rule 2) can be terminated by one optional space.
• The ⟨skip⟩ could be:

- a register of glue type or dimen type or counter type;

15 This is a feature of the 𝜀TEX extension. It is implemented in pdfTEX, X ETEX and LuaTEX.
16 1 pt = 1/72.27 in ≐ 0.35mm ; 1 pc = 12pt ; 1 bp = 1/72 in ; 1 dd ≐ 1.07 pt ; 1 cc = 12dd ; 1 sp = 2−16 pt = TEX accuracy.

12

- ⟨dimen⟩plus ⟨generalized dimen⟩ minus ⟨generalized dimen⟩ . The ⟨generalized dimen⟩ is the
same as ⟨dimen⟩ , but normal ⟨dimen unit⟩ or pseudo-unit fil or fill or filll can be
used.

• The ⟨toks⟩ could be
- ⟨expandafters⟩{ ⟨text⟩}. The ⟨expandafters⟩ is typically a sequence of \expandafter primi-
tive commands (zero ormore). The ⟨text⟩ is scannedwithout expansion but the exception
can be given by ⟨expandafters⟩ .

The main processor reads input tokens (from the output of activated or deactivated expand
processor) in two contexts: do something or read parameters. By default it is in the context do
something. When a primitive which allows parameters is read, the main processor reads the
parameters in the context read parameters.

Whenever the main processor reads a register in the context do something it assumes that
an assignment of a value to the register is declared here. The following text (equal sign and
⟨value⟩) is read in the context read parameters. If the following text isn’t compliant to the appro-
priate syntactic rule, TEX reports an error.

Examples of register manipulations:

\newcount\mynumber \newdimen\mydimen \newdimen\myskip
\hsize = .7\hsize % see the rule for <dimen>, unit could be a register
\hoffset = \dimexpr 10mm - (\parindent + 1in) \relax % usage of \dimexpr
\myskip = 10pt plus15pt minus 3pt
\mydimen = \myskip % the information "plus15pt minus 3pt" is lost
\mynumber = \mydimen % \mynumber = 10*2^16 because \mydimen = 10*2^16 sp

Each dimension is saved internally as an integer multiple of the sp unit in TEX. When we need
a conversion ⟨dimen⟩ → ⟨number⟩ , then simply the internal unit sp is omitted.

The summary ofmost commonly used primitive registers including their default value given
by plain TEX follows.

• \hsize=6.5in, \vsize=8.9in are paragraph width and page height.
• \hoffset=0pt, \voffset=0pt give left margin and top margin of the page. They are

calculated from the page origin which is defined by coordinates \pdfvorigin=1in and
\pdfhorigin=1in measured from left upper corner of the page.

• \parindent=20pt is the indentation of the first line of each paragraph.
• \parfillskip=0pt plus 1fil is horizontal glue added to the last line of the paragraph.
• \leftskip=0pt, \rightskip=0pt. Glues added to each line in the paragraph from the left

and the right side. If the stretchability is declared here, then the paragraph is ragged
left/right.

• \parskip=0pt plus 1pt is the vertical space between paragraphs.
• \baselineskip=12pt, \lineskiplimit=0pt, \lineskip=1pt. The \baselineskip rule says:

Two consecutive lines in the vertical list have the baseline distance given by \baselineskip
by default. The appropriate real glue is inserted between the lines. But if this real glue
(between boxes) is less than \lineskiplimit then only \lineskip is inserted between the
boxes.

• \topskip=10pt is the distance between the top of the page box and the baseline of the first
line.

• \linepenalty=10, \hyphenpenalty=50, \exhyphenpenalty=50, \binoppenalty=700,
\relpenalty=500, \clubpenalty=150, \widowpenalty=150, \displaywidowpenalty=50,
\brokenpenalty=100, \predisplaypenalty=10000, \postdisplaypenalty=0,
\interlinepenalty=0, \floatingpenalty=0, \outputpenalty=0. These penalties apply to
various places in the vertical or horizontal list. Most important are \clubpenalty (inserted
below the first line of a paragraph) and \widowpenalty (inserted before the last line of a
paragraph). Typographical rules often demand us to set these registers to 10000 (no page
break is allowed here).

13

• \looseness=0 allows us to create of a “suboptimal” paragraph. The page-building
algorithm tries to build the paragraph with \looseness lines more than the optimal
solution. If the \tolerance does not have a sufficiently large value then this setting is
simply ignored. It is reset to zero after each paragraph is completed.

• \spaceskip=0pt, \xspaceskip=0pt. If non-negative they are used as glues between words.
Default values are read from the font metric data of the current font.

• \pretolerance=100, \tolerance=200, \emergencystretch=0pt
\doublehyphendemerits=10000, \finalhyphendemerits=5000, \adjdemerits=10000,
\hfuzz=0.1pt, \vfuzz=0.1pt are parameters for the paragraph building algorithm (not
described here in detail).

• \hbadness=1000, \vbadness=1000. TEX reports a warning about badness on the terminal
and to the log file if it is greater than these values. The warning has the form underfull
\hbox or underfull \vbox. The value 100 means that the plus limit for glues is reached.

• \tracingonline=0, \tracingmacros=0, \tracingstats=0, \tracingparagraphs=0,
\tracingpages=0, \tracingoutput=0, \tracinglostchars=1, \tracingcommands=0,
\tracingrestores=0, \tracingscantokens=0, \tracingifs=0, \tracinggroups=0,
\tracingassigns=0. If these registers have positive values then TEX reports details about
the processing of built-in algorithms to the log file. If \tracingonline>0 then the same
output is shown on the terminal.

• \showboxbreadth=5, \showboxdepth=3, \errorcontextlines=5. The amount of
information shown when boxes are traced to the log file or an error is reported.

• \language=0. TEX is able to load more hyphenation patterns for more languages. This
register points to the index of currently used hyphenation patterns. Zero means English.

• \lefthyphenmin=2, \righthyphenmin=3. Maximum letters left or right in hyphenated
words.

• \defaulthyphenchar=`\-. This character is used when words are hyphenated.
• \globaldefs=0. If it is positive then all settings are global.
• \hangafter=1, \hangindent=0pt. If \hangindent is positive, then after \hangafter lines

all following lines are indented. Negative/positive values of \hangindent or \hangafter
applies indentation from left or right and from the top or bottom of the paragraph. The
\hangindent is set to 0 after each paragraph.

• \mag=1000. Magnification factor of all used dimensions. The value 1000 means 1:1.
• \escapechar=`\\ use this character in the \string primitive.
• \newlinechar=-1. If positive, this character is interpreted as the end of the line when

printing to the log or by the \write primitive command.
• \endlinechar=`^^M. This character is appended to the end of each input line. The

tokenizer converts it (the Ctrl-M character) to the space token.
• \time=now, \day=now, \month=now, \year=now. The values about current time/date are set

here when TEX starts to process the document. The \time counts minutes after midnight.
• \prevdepth=* includes the depth of the last box in vertical mode.
• \prevgraph=* includes the number of lines of the paragraph when \par finishes.
• \overfullrule=5pt. A rectangle to this width is appended after each overfull \hbox.
• \mathsurround=0pt is the space inserted around a formula in internal math mode.
• \abovedisplayskip=12pt plus3pt minus9pt, \abovedisplayshortskip=0pt plus3pt,

\belowdisplayskip=12pt plus3pt minus9pt,
\belowdisplayshortskip=7pt plus3pt minus 4pt. These spaces are inserted above and
below a formula generated in math display mode.

• \tabskip=0pt is used by the \halign primitive command for creating tables.
• \output={\plainoutput}, \everypar={}, \everymath={} \everydisplay={},

\everyhbox={} \everyvbox={} \everycr={}, *\everyeof={}, \everyjob={}. These token
lists are processed when an algorithm of TEX reaches a corresponding situations
respectively: opens output routine, paragraph, internal math mode, display math mode,
\vbox, \hbox, is at the end of a line in a table, at the end of an input file, or starts the job.

14

12 Expandable primitive commands
Notes about notation are in this and the following sections. If the documented command is from
the 𝜀TEX extension (i.e. implemented in pdfTEX, X ETEX and LuaTEX) then one * is prefixed. If it
is from the pdfTEX extension (implemented in X ETEX and LuaTEX too) then two ** are prefixed.
If it is a LuaTEX only command then three *** are prefixed.

• \string ⟨control sequence⟩ expands to “the \escapechar” followed by the name of the con-
trol sequence. “The \escapechar” means a character with code equal to \escapechar or
nothing if its value is out of range of character codes. All characters of the output are “other
characters12”, only spaces (if any exist) are kept as space tokens ␣10.

• ***\csstring ⟨control sequence⟩ works like\string but without \escapechar.
• *\detokenize ⟨expandafters⟩{ ⟨text⟩} re-tokenizes all tokens in the text. Control sequences

used in ⟨text⟩ are re-tokenized like the \string primitive, spaces are tokens ␣10, and all
other tokens are set as “other characters12”.

• \the ⟨register⟩ expands to the value of the register. Examples appear in the previous section.
The output is tokenized like of \detokenize. The exception is \the ⟨tokens register⟩ : the out-
put is the value of the ⟨tokens register⟩ without re-tokenizing and the expand processor does
not expand this output in \edef, \write, \message, etc., arguments.

• \scantokens ⟨expandafters⟩{ ⟨text⟩} re-tokenizes ⟨text⟩ using the actual tokenizer setting.
The behavior is the same as when writing ⟨text⟩ to a virtual file and reading this file im-
mediately.

• ***\scantextokens ⟨expandafters⟩{ ⟨text⟩} is the same as \scantokens but removes problems
with end-of-virtual-file.

• \meaning ⟨token⟩ expands to the meaning of the ⟨token⟩ . The text is tokenized like the
\detokenize output.

• \csname ⟨text⟩\endcsname creates a control sequencewith name ⟨text⟩ . If it is not already de-
fined, then it gets the \relaxmeaning. For example \csname TeX\endcsname is the same as
\TeX. The ⟨text⟩ must be expandable to characters only. Non-expandable control sequences
(a primitive command at the main processor level, a register, a character constant, a font se-
lector) are disallowed here. TEX reports the error missing \endcsname when this rule isn’t
compliant.

Example: \csname foo:\the\mynumber\endcsname expands to control sequence \foo:42
if the \mynumber is a register with the value 42. Another example: a macro programmer
should implement a key/value dictionary using this primitive:

\def\keyval #1 #2 {\expandafter\def\csname dict:#1\endcsnme{#2}}
\def\value #1 {\csname dict:#1\endcsname}
\keyval Peter 21 % key=Peter, value=21, saved to the dictionary

% it does \def\dict:Peter{21}
\value Peter % expands to \dict:Peter which expands to 21.

• \expandafter ⟨token 1⟩ ⟨token 2⟩ does the transformation ⟨token 1⟩ ⟨expanded token2⟩ . The to-
ken processor will expand ⟨token 1⟩ after such a transformation. The ⟨expanded token2⟩ is
only the first level of expansion. For example, a macro is transformed to its ⟨replacement text⟩
but without expansion of ⟨replacement text⟩ at this time. Or the \csname...\endcsname pair
creates a control sequence but does not expand it at this time.

If ⟨token 2⟩ is not expandable then \expandafter silently does nothing.
The example above (the \keyvalmacro) shows the usage of \expandafter. We need not

define \csname by \def; we want to define a \dict:key. The \expandafter helps here.
The ⟨token 2⟩ should be another \expandafter. We can see \expandafter chains in many

macro files. For example \expandafter A\expandafter B\expandafter CD is processed as
ABC ⟨expanded D⟩ .

The ⟨expandafters⟩{ ⟨text⟩} syntax rule enables us to prepare ⟨text⟩ by \expandafter(s).
For example \detokenize{\macro} expands to \12m12a12c12r12o12. But if you need to detok-

15

enize the ⟨replacement text⟩ of the \macro then use \detokenize\expandafter{\macro}. Not
only \expandafters should be here. The expand processor does full expansion here until an
opening brace {1 is found.

• The general rule for all \if* commands is ⟨if condition⟩ ⟨true text⟩\else ⟨false text⟩\fi. The
⟨if condition⟩ is evaluated and ⟨true text⟩ or ⟨false text⟩ is skipped or processed depending
on the result of ⟨if condition⟩ . When the expand processor is skipping the text due to an \if*
command, it expands nothing in the skipped text. But it is noticing all control sequences
with meaning \if*, \else and \fi during skipping in order to skip correctly all nested
\if*...\else...\fi constructions.

The following ⟨if condition⟩ s are possible:
∘ \if ⟨token 1⟩ ⟨token 2⟩ is true if

a) both tokens are characters with the same Unicode (or ASCII code in classical TEX) or
b) both tokens are control sequences (with arbitrary meaning but not “the character”) or
c) one token is a character, second is a control sequence equal to the character (by \let) or
d) both tokens are control sequences, their meaning (set by \let) is the same character code.
Example: you can say \let\test=a then \if\test a returns true.

∘ \ifx ⟨token 1⟩ ⟨token 2⟩ is true if the meanings of ⟨token 1⟩ and ⟨token 2⟩ are the same.
∘ \ifnum ⟨number 1⟩ ⟨relation⟩ ⟨number 2⟩ . The ⟨relation⟩ could be < or = or >. It returns true if

the comparison of the two numbers is true.
∘ \ifodd ⟨number⟩ returns true if the ⟨number⟩ is odd.
∘ \ifdim ⟨dimen⟩ ⟨relation⟩ ⟨dimen⟩ The ⟨relation⟩ could be < or = or >. It returns true if the

comparison of the two dimensions is true.
∘ \iftrue returns constantly true, \iffalse returns constantly false.
∘ \ifhmode, \ifvmode, \ifmmode – true if the current mode is horizontal, vertical, math.
∘ \ifinner returns true if the current mode is internal vertical, internal horizontal or internal

math mode.
∘ \ifhbox ⟨box number⟩ , \ifvbox ⟨box number⟩ , \ifvoid ⟨box number⟩ returns true if the spec-

ified ⟨box number⟩ represents \hbox, \vbox, void box respectively.
∘ \ifcat ⟨token 1⟩ ⟨token 2⟩ is true if the category codes of ⟨token 1⟩ and ⟨token 2⟩ are equal.
∘ \ifeof ⟨file number⟩ is true if the file attached to the ⟨file number⟩ by the \openin primitive

does not exist, or the end of file was reached by the \read primitive.
• *\unless ⟨if condition⟩ negates the result of ⟨if condition⟩ before skipping or processing the

following text.
• \ifcase ⟨number⟩ ⟨case 0⟩\or ⟨case 1⟩\or ⟨case 2⟩ ... \or ⟨case n⟩\else ⟨else text⟩\fi. This

processes the branch given by ⟨number⟩ . It processes ⟨else text⟩ (or nothing if no ⟨else text⟩
is declared) when a branch with a given ⟨number⟩ does not exist.

• \noexpand ⟨token⟩ . The expand processor does not expand the ⟨token⟩ if it is expanding the
text in \edef, \write, \message or similar lists.

• *\unexpanded ⟨expandafters⟩{ ⟨text⟩} returns ⟨text⟩ and applies \noexpand to all tokens in
the ⟨text⟩ .

• **\expanded{ ⟨tokens⟩} expands ⟨tokens⟩ and reads these expanded ⟨tokens⟩ again.
• *\numexpr ⟨num. expression⟩ , *\dimexpr ⟨dimen expression⟩ . Documented in the ⟨dimen⟩ and

⟨number⟩ syntax rules in section 11.
• \number ⟨number⟩ , \romannumeral ⟨number⟩ prints ⟨number⟩ in decimal digits or as a roman

numeral (with lowercase letters).
• \topmark (last from previous page), \firstmark (first on current page), \botmark (last on

current page). They expand to the corresponding \mark included in the current or previous
page-box. Usable for implementing running headers in the output routine.

• \fontname ⟨font selector⟩ expands to the file name ***(or font name) of the font given by its
⟨font selector⟩ . The \fontname\font expands to the file name of the current font.

• \jobname expands to the name of the main file of this document (without extension .tex).
• \input ⟨file name⟩ ⟨space⟩ (classical TEX) or \input" ⟨file name⟩" or \input{ ⟨file name⟩}

opens the given ⟨file name⟩ and starts to read input from it. If the ⟨file name⟩ doesn’t exist

16

then TEX tries again to open ⟨file name⟩.tex. If that doesn’t exist, TEX reports an error. The
alternative syntax with "..." or {...} allows having spaces in the file names.

• \endinput. The current line is the last line of the file being input. The file is closed and read-
ing continues from the place where \input of this file was started. \endinput done in the
main file causes future reading from the terminal and a headache for the user.

• ***\directlua { ⟨text⟩} runs a Lua script given in ⟨text⟩ .

13 Primitive commands at the main processor level
Commands used for declaration of control sequences

• \def \edef \gdef \xdef were documented in section 9.
• \long is a prefix; it can be used before \def, \edef, \gdef, \xdef. The declaredmacro accepts

the control sequence \par in its parameters.
• *\private is a prefix; it can be used before \def, \edef, \gdef, \xdef. The declared macro

is not expanded by the expand processor in \write, \message, \edef, etc., parameters.
• \outer is a prefix; it can be used before \def, \edef, \gdef, \xdef. The declared macro must

be used only when the main processor is in the context do something or TEX reports an error.
• \global is a prefix; it can be used before any assignment (commands from this subsection

and ⟨register⟩= ⟨value⟩ settings). The assignment is global regardless of the current group.
• \chardef ⟨control sequence⟩= ⟨number⟩ , \mathchardef ⟨control sequence⟩= ⟨number⟩ declares

a constant ⟨number⟩ . When the main processor is in the context do something and it gets a
\chardef-ed control sequence, it prints the character with Unicode (ASCII code) ⟨number⟩
to the typesetting output. If it gets a \mathchardef-ed control sequence, it prints a math
object (it works only in math mode, not documented here).

• \countdef ⟨control sequence⟩= ⟨number⟩ declares ⟨control sequence⟩ as an equivalent to the
\count ⟨number⟩ which is a register of counter type. The ⟨number⟩ here means an address in
the array of registers of counter type. The \count0 is reserved for the page number. Macro
programmers rarely use direct addresses (1 to 9), more common is using the allocation
macro \newcount ⟨control sequence⟩ .

• \dimendef, \skipdef, \muskipdef, \toksdef followed by ⟨control sequence⟩= ⟨number⟩ de-
clare analogically equivalents to \dimen ⟨number⟩ , \skip ⟨number⟩ , \muskip ⟨number⟩ and
\toks ⟨number⟩ . Usage of allocation macros \newdimen, \newskip, \newmuskip, \newtoks
are preferred.

• \font ⟨font selector⟩= ⟨file name⟩ ⟨space⟩ ⟨size specification⟩ declares ⟨font selector⟩ of a font im-
plemented in the ⟨file name⟩.tfm. The ⟨size specification⟩ can be at ⟨dimen⟩ or scaled ⟨factor⟩ .
The ⟨factor⟩ equal to 1000 means 1:1. New syntax (supported by Unicode engines) is

\font ⟨font selector⟩=" ⟨font name⟩: ⟨font features⟩" ⟨size specification⟩ % or
\font ⟨font selector⟩="[⟨font file⟩]: ⟨font features⟩" ⟨size specification⟩

The ⟨font file⟩ is a file name without an .otf or .ttf extension. The ⟨font features⟩ are font
features prefixed by + or - and separated by a semicolon. The otfinfo -f ⟨file name⟩.otf
command (on command line) can list them. LuaTEX supports alternative syntax: {...} in-
stead of "...". Example: \font\test={[texgyretermes-regular]:+onum;-liga} at12pt.

• \let ⟨control sequence⟩= ⟨token⟩ sets to the ⟨control sequence⟩ the samemeaning as ⟨token⟩ has.
The ⟨token⟩ can be whatever, a character or a control sequence.

• \futurelet ⟨control sequence⟩ ⟨token 1⟩ ⟨token 2⟩ works in two steps. In the first step it does
\let ⟨control sequence⟩= ⟨token 2⟩ and in the second step ⟨token 1⟩ ⟨token 2⟩ is processed with
activated token processor. Typically ⟨token 1⟩ is a macro that needs to know the next token.

Commands for box manipulation

• \hbox{ ⟨cmds⟩} or \hbox to ⟨dimen⟩{ ⟨cmds⟩} or \hbox spread ⟨dimen⟩{ ⟨cmds⟩} creates
a box. The material inside this box is a ⟨horizontal list⟩ generated by ⟨cmds⟩ in horizon-
tal mode in a group. The width of the box is the natural width of the ⟨horizontal list⟩ or

17

⟨dimen⟩ given by the to ⟨dimen⟩ parameter or it is spread by the ⟨dimen⟩ given by the
spread ⟨dimen⟩ parameter. The height of the box is the maximum of heights of all elements
in the ⟨horizontal list⟩ . The depth of the box is the maximum of depths of all such elements.
These elements are set on the common baseline (exceptions can be given by \lower or
\raise commands).

• \vbox{ ⟨cmds⟩} or \vbox to ⟨dimen⟩{ ⟨cmds⟩} or \vbox spread ⟨dimen⟩{ ⟨cmds⟩} creates a
box. The material inside this box is a ⟨vertical list⟩ generated by ⟨cmds⟩ in vertical mode in a
group. The height of the box is the natural height of the ⟨vertical list⟩ (eventually modified
by values from to or spread parameters) without the depth of the last element. The depth
of the last element is set as the depth of the box. The width of the box is the maximum of
widths of elemens in the ⟨vertical list⟩ . All elements are placed at the common left margin of
the box (exceptions can be given by \moveleft or \moveright commands).

• \vtop{ ⟨cmds⟩} (with optional to or spread parameters) is the same as \vbox, but the base-
line of the resulting box goes through the baseline of the first element in the ⟨vertical list⟩
(note that \vbox has its baseline equal to the baseline of the last element inside).

• \vcenter{ ⟨cmds⟩} (with optional to or spread parameters) is equal to \vbox, but its math
axis17 is exactly in themiddle of the box. So its baseline is appropriately shifted. The \vcenter
can be used only in math modes but given ⟨cmds⟩ are processed in vertical mode.

• \lower ⟨dimen⟩ ⟨box⟩ , \raise ⟨dimen⟩ ⟨box⟩ move the ⟨box⟩ up or down by the ⟨dimen⟩ in
horizontal mode. \moveleft ⟨dimen⟩ ⟨box⟩ , \moveright ⟨dimen⟩ ⟨box⟩ move the ⟨box⟩ by the
⟨dimen⟩ in vertical mode.

• \setbox ⟨box number⟩= ⟨box⟩ . TEX has a set of box registers addressed by ⟨box number⟩ and
accessed via \box ⟨box number⟩ or alternatives described below. The \setbox command saves
the given ⟨box⟩ to the register addressed by ⟨box-number⟩ .

Macro programmers use only 0 to 9 ⟨box numbers⟩ directly. Other addresses to box reg-
isters should be allocated by the \newbox ⟨control sequence⟩ macro. The ⟨control sequence⟩ is
equivalent to a ⟨box number⟩ , not to the box register itself.

The \setbox command does an assignment, so the \global prefix is needed if you want
to use the saved box outside the current group.

• \box ⟨box number⟩ returns the box from ⟨box number⟩ box register. Example: you can do
\setbox0=\hbox{abc}. This \hbox isn’t printed but saved to the register 0. At a different
place you use \box0, which prints \hbox{abc}, or you can do \setbox0=\hbox{cde\box0}
which saves the \hbox{cde\hbox{abc}} to the register 0.

• \copy ⟨box number⟩ returns the box from ⟨box number⟩ box register and keeps the same box
in this box register. Note that the \box ⟨box number⟩ returns the box and empties the register
⟨box number⟩ immediately. If you don’t want to empty the register, use \copy.

• \wd ⟨box number⟩ , \ht ⟨box number⟩ , \dp ⟨box number⟩ . You can measure or use the width,
height and depth of a box saved in a register addressed by ⟨box number⟩ . Examples
\mydimen=\ht0, \hbox to\wd0{...}. You can re-set the dimensions of a box saved in a
register addressed by ⟨box number⟩ . For example \setbox0=\hbox{abc} \wd0=0pt \box0
gives the same result as \hbox to0pt{abc} but without the warning about overfull \hbox.

• \unhbox ⟨box number⟩ ,\unvbox ⟨box number⟩ ,\unhcopy ⟨box number⟩ ,\unvcopy ⟨box number⟩
do the same work as \box or \copy but they don’t return the whole box but only its contents,
i.e. the horizontal or vertical material. Example: try to do \setbox0=\hbox{abc} and later
\setbox0=\hbox{cde\unhbox0} saves the \hbox{cdeabc} to the box register 0.

The \unhbox and \unhcopy commands return the \hbox contents and \unvbox, \unvcopy
commands return the \vbox contents. If incompatible contents are saved, then TEX reports
an error. You can test the type of saved contents by \ifhbox or \ifvbox.

• \vsplit ⟨box number⟩ to ⟨dimen⟩ does a column break. The ⟨vertical material⟩ saved in the
box ⟨box number⟩ is broken into a first part of ⟨dimen⟩ height and the rest remains in the

17 The math axis is a horizontal line which goes through centers of + and − symbols. Its distance from the baseline is
declared in the math font metrics.

18

box ⟨box number⟩ . The broken part is saved as a \vbox which is the result of this oper-
ation. For example, you can say \newbox\column \setbox\column=\vbox{...} and later
\setbox0=\vsplit\column to5cm. The \box0 is a \vbox containing the first 5cm of saved
material.

• \lastbox returns the last box in the current vertical or horizontal material and removes it.

Commands for rules (lines in the typesetting output) and patterns

• \hrule creates a horizontal line in the current vertical list. If it is used in horizontal mode, it
finishes the paragraph by \par first. \hrule width ⟨dimen⟩ height ⟨dimen⟩ depth ⟨dimen⟩
creates (in general, with given parameters) a full rectangle (something like a box, but it
isn’t treated as the box) with given dimensions. Default values are: “width” =width of outer
\vbox, “height” =0.4 pt, “depth” =0pt.

• \vrule creates a vertical line in the current horizontal list. If it is used in vertical mode, it
opens the horizontal mode first. \vrule width ⟨dimen⟩ height ⟨dimen⟩ depth ⟨dimen⟩ cre-
ates (in general, with given parameters) a full rectangle with given dimensions. Default val-
ues are: “width” =0.4 pt, “height” =height of outer \hbox, “depth” =depth of outer \hbox.

The optional parameters of \hrule and \vrule can be specified in arbitrary order and
they can be specified more than once. In such a case, the rule “last wins” is applied.

• \leaders ⟨rule⟩ ⟨glue⟩ creates a glue (maybe shrinkable or stretchable) filled by a full rect-
angle. The ⟨rule⟩ is \vrule or \hrule (maybe with its optional parameters). If the ⟨glue⟩ is
specified by an \hskip command (maybe with its optional parameters) or by its alternatives
\hss, \hfil, \hfill, then the resulting glue is horizontal (can be used only in horizontal
mode) and its dimensions are: width derived from ⟨glue⟩ , height plus depth derived from
⟨rule⟩ . If the ⟨glue⟩ is specified by a \vskip command (maybe with its optional parameters)
or by its alternatives \vss, \vfil, \vfill, then the resulting glue is vertical (can be used
only in vertical mode) and its dimensions are: height derived from ⟨glue⟩ , width derived
from ⟨rule⟩ , depth is zero.

• \leaders ⟨box⟩ ⟨glue⟩ creates a vertical or horizontal glue filled by a pattern of repeated
⟨box⟩ . The positions of boxes are calculated from the boundaries of the outer box. It is used
for the dots patterns in the table of contents. \cleaders ⟨box⟩ ⟨glue⟩ does the same, but the
pattern of boxes is centered in the space derived by the ⟨glue⟩ . Spaces between boxes are
not inserted. \xleaders ⟨box⟩ ⟨glue⟩ does the same, but the spaces between boxes are inserted
equally.

More commands for creating something in typesetting output

• \par closes horizontal mode and finalizes a paragraph.
• \indent, \noindent. They leave vertical mode and open a paragraph with/without para-

graph indentation. If horizontal mode is current then \indent inserts an empty box of
\parindent width; \noindent does nothing.

• \hskip, \vskip. They insert a horizontal/vertical glue. Documented in section 7.
• \hfil, \hfill, \hss, \vfil, \vfill, \vss are alternatives of \hskip, \vskip, see section 7.
• \hfilneg, \vfilneg are shortcuts for \hskip 0pt plus-1fil and \vskip 0pt plus-1fil.
• \kern ⟨dimen⟩ puts unbreakable horizontal/vertical space depending on the current mode.
• \penalty ⟨number⟩ puts the penalty ⟨number⟩ on the current horizontal/vertical list.
• \char ⟨number⟩ prints the characterwith code ⟨number⟩. The “character itself” does the same.
• \accent ⟨number⟩ ⟨character⟩ places an accent with code ⟨number⟩ above the ⟨character⟩ .
• \␣ is the control space. In horizontal mode, it inserts the space glue (like normal space but

without modification by the \spacefactor). In vertical mode, it opens horizontal mode and
puts the space. Note that normal space does nothing in vertical mode.

• \discretionary{ ⟨pre break⟩}{ ⟨post break⟩}{ ⟨no break⟩}works in horizontal mode. It prints
⟨no break⟩ in normal cases but if there is a line break then ⟨pre break⟩ is used before and
⟨post break⟩ after the breaking point. German Zucker/Zuk-ker (sugar) can be implemented
by Zu\discretionary{k-}{k}{ck}er.

19

• \- is equal to \discretionary{\char\hyphenchar ⟨font⟩}{}{}. The \hyphenchar ⟨font⟩ is
used as a hyphenation character. It is set to \defaulthyphenchar value when the font is
loaded, but it can be changed.

• \/ does an italic correction. It puts a little space if the last character is slanted.
• \unpenalty, \unskip removes the last penalty/last glue from the current horizontal/vertical

list.
• \vadjust{ ⟨cmds⟩}. This works in horizontal mode. The ⟨cmds⟩ must create a ⟨vertical list⟩

and \vadjust saves a pointer to this list into the current horizontal list. When \par creates
lines of the paragraph and distributes them to a vertical list, each line with the pointer from
\vadjust has the corresponding ⟨vertical list⟩ immediately appended after this line.

• \insert ⟨number⟩{ ⟨cmds⟩}. The ⟨cmds⟩ create a ⟨vertical list⟩ and \insert saves a pointer
to such a ⟨vertical list⟩ into the current list. The output routine can work with such
⟨vertical list⟩s. The footnotes or floating objects (tables, figures) are implemented by the
\insert primitive.

• \halign{ ⟨declaration⟩\cr ⟨row 1⟩\cr ⟨row 2⟩\cr...\cr ⟨row n⟩\cr} creates a table of boxes
in vertical mode. The ⟨declaration⟩ declares one or more column patterns separated by &4.
The rows use the same character to separate the items of the table in each row. The \halign
works in two passes. First it saves all items to boxes and the second pass performs \hbox to𝑤
for each saved item, where 𝑤 is the maximum width of items in each actual column.

Detailed documentation of \halign is out of scope of this manual. Only one example
follows: the macro \putabove puts #1 above #2 centered. The width of the resulting box is
equal to the maximum of widths of these two parameters. The ⟨declaration⟩ \hfil##\hfil
means that the items will be centered:
\def\putabove#1#2{\vbox{\halign{\hfil##\hfil\cr#1\cr#2\cr}}}.

• \valign does the same as \halign but rows ↔ columns. It is not commonly used.
• \cr, \crcr, \span, \omit, \noalign{ ⟨cmds⟩} are primitives used by \halign and \valign.
Commands for register calculations
• \advance ⟨register⟩by ⟨value⟩ does (formally) ⟨register⟩= ⟨register⟩+ ⟨value⟩ . The ⟨register⟩ is

counter type or dimen type. The ⟨value⟩ is ⟨number⟩ or ⟨dimen⟩ (depending on the type of
⟨register⟩).

• \multiply ⟨register⟩by ⟨number⟩ does ⟨register⟩= ⟨register⟩* ⟨number⟩ .
• \divide ⟨register⟩by ⟨number⟩ does ⟨register⟩= ⟨register⟩/ ⟨number⟩ . If the ⟨register⟩ is number

type then the result is truncated.
• See *\numexpr and *\dimexpr, expandable primitives documented in sections 11 and 12.
Internal codes
• \catcode ⟨number⟩ is category code of the character with ⟨number⟩ code. Used by tokenizer.
• \lccode ⟨number⟩ is the lowercase alternative to the \char ⟨number⟩ . If it is zero then a lower-

case alternative doesn’t exist (for example for punctuation). Used by the \lowercase prim-
itive and when breaking points are calculated from hyphenation patterns.

• \uccode ⟨number⟩ is the uppercase alternative to the \char ⟨number⟩ . If it is zero, then the
uppercase alternative doesn’t exist. Used by the \uppercase primitive.

• \lowercase ⟨expandafters⟩{ ⟨text⟩}, \uppercase ⟨expandafters⟩{ ⟨text⟩} transform ⟨text⟩ to
lowercase/uppercase using the current \lccode or \uccode values. Returns transformed
⟨text⟩ where catcodes of tokens and tokens of type ⟨control sequence⟩ are unchanged.

• \sfcode ⟨number⟩ is the spacefactor code of the \char ⟨number⟩ . The \spacefactor register
keeps (roughly speking) the \sfcode of the last printed character. The glue between words
is modified (roughly speaking) by this \spacefactor. The value 1000 means factor 1:1 (no
modification is done). It is used for enlarging spaces after periods and other punctuation in
English texts.18

18 This feature is not compliant with other typographical traditions, so the \frenchspacing macro which sets all
\sfcodes to 1000 is used very often.

20

Commands for reading or writing text files

• Note that themain input stream is controlled by \input and \endinput expandable primitive
commands documented in section 12.

• \openin ⟨file number⟩ = ⟨file name⟩ ⟨space⟩ (or \openin ⟨file number⟩ = { ⟨file name⟩}) opens
the file ⟨file name⟩ for reading and creates a file descriptor connected to the ⟨file number⟩ .19

If the file doesn’t exist nothing happens but a macro programmer can test this case by
\ifeof ⟨file number⟩ .

• \read ⟨file number⟩to ⟨control sequence⟩ does \def ⟨control sequence⟩{ ⟨replacement text⟩}
where the ⟨replacement text⟩ is the tokenized next line from the file declared by \openin as
⟨file number⟩ .

• \openout ⟨file number⟩= ⟨file name⟩ ⟨space⟩ (or \openout ⟨file number⟩=" ⟨file name⟩") opens
the ⟨file name⟩ for writing and creates a file descriptor connected to ⟨file number⟩ . If the file
already exists, then its contents are removed.

• \write ⟨file number⟩{ ⟨text⟩} writes a line of ⟨text⟩ to the file declared by \openout as
⟨file number⟩ . But this isn’t done immediately. TEX does not know the value of the current
page when the \write command is processed because the paragraph building and page
building algorithms are processed asynchronously. But a macro programmer typically
needs to save current page to the file in order to read it again and to create a Table of
contents or an Index.

\write ⟨file number⟩{ ⟨text⟩} saves ⟨text⟩ into memory and puts a pointer to this memory
into the typesetting output. When the page is shipped out (by output routine), then all such
pointers from this page are processed: the ⟨text⟩ is expanded at this time and its expansion
is saved to the file. If (for example) the ⟨text⟩ includes \the\pageno then it is expanded to
the correct page number of this page.

• \closein ⟨file number⟩ , \closeout ⟨file number⟩ closes the open file. It is done automatically
when TEX terminates its job.

• \immediate is a prefix. It can be used before \openout, \write and \closeout in order to do
the desired action immediately (without waiting for the output routine).

Others primitive commands

• \relax does nothing. Used for terminating incomplete optional parameters, for example.
• \begingroup opens group, \endgroup closes group. The {1 and }2 do the same butmoreover,

they are syntactic constructors for primitive commands andmath lists (inmathmode). These
two types of groups (declared bymentioned commands or bymentioned characters) cannot
be mixed, i.e. \begingroup...} gives an error. Plain TEX declares \bgroup and \egroup con-
trol sequences as equivalents to {1 and }2. They can be used instead of {1 and }2 when we
need to open/close a group, to create a math list, or when a box is constructed. For example,
\hbox\bgroup ⟨text⟩\egroup is syntactically correct.

• \aftergroup ⟨token⟩ saves the ⟨token⟩ and puts it back in the input queue immediately after
the current group is closed. Then the expand processor expands it (if it is expandable). More
\aftergroups in one group create a queue of ⟨token⟩ s used after the group is closed.

• \afterassignment ⟨token⟩ saves the ⟨token⟩ and puts it back immediately after a following
assignment (⟨register⟩= ⟨value⟩ , \def, etc.) is done.

• \lastskip, \lastpenalty return the value of the last element in the current horizontal or
vertical list if it is a glue/penalty. It returns zero if the element found is not the last.

• \ignorespaces ignores spaces in horizontal mode until the next primitive command occurs.
• \mark{ ⟨text⟩} saves ⟨text⟩ to memory and puts a pointer to it in the typesetting output.

The ⟨text⟩ is used as expansion output of \firstmark, \topmark and \botmark expansion
primitives in the output routine.

19 Note that ⟨file number⟩ is an address to the file descriptor. Macro programmers don’t use these addresses directly
but by the \newread ⟨control sequence⟩ and \newwrite ⟨control sequence⟩ allocation macros.

21

• \parshape ⟨number⟩ ⟨𝐼1⟩ ⟨𝑊1⟩ ⟨𝐼2⟩ ⟨𝑊2⟩ ... ⟨𝐼𝑛⟩ ⟨𝑊𝑛⟩ enables to set arbitrary shape of the
paragraph. The ⟨𝑛𝑢𝑚𝑏𝑒𝑟⟩ declares the amount of data: the ⟨𝑛𝑢𝑚𝑏𝑒𝑟⟩ pairs of ⟨𝑑𝑖𝑚𝑒𝑛⟩ s fol-
low. The 𝑖-th line of the paragraph is shifted by ⟨𝐼𝑖⟩ to the right and its width is ⟨𝑊𝑖⟩ . The
\parshape data are re-set after each paragraph to zero values (normal paragraph).

• \special{ ⟨text⟩} puts the message ⟨text⟩ into the typesetting output. It behaves as a zero-
dimension pointer to ⟨text⟩ and it can be read by printer drivers. It is recommended to not
use this old technology when PDF output is created directly.

• \shipout ⟨box⟩ outputs the ⟨box⟩ as one page. Used in the output routine.
• \end completes the last page and terminates the job.
• \dump dumps the memory image to a file named \jobname.fmt and terminates the job.
• \patterns{ ⟨data⟩} reads hyphenation patterns for the current \language.
• \hyphenation{ ⟨data⟩} reads hyphenation exceptions for current \language.
• \message{ ⟨text⟩} prints ⟨text⟩ on the terminal and to the log file.
• \errmessage{ ⟨text⟩} behaves like \message{ ⟨text⟩} but TEX treats it as an error.
• Job processing modes can be set by \scrollmode (don’t pause at errors), \nonstopmode

(don’t pause at errors or missing files), \batchmode (\nonstopmode plus no output to the
terminal). Default is \errorstopmode (stop at errors).

• \inputlineno includes the number of the current line from current file being input.
• \show ⟨control sequence⟩ , \showbox ⟨box number⟩ , \showlists, and \showthe ⟨register⟩ are

tracing commands. TEX prints desired result on the terminal and to the log file and pauses.

Commands specific for PDF output (available in pdfTEX, X ETEX and LuaTEX)

• \pdfliteral{ ⟨text⟩} puts the ⟨text⟩ interpreted in a low level PDF language to the typeset-
ting output. All PDF constructs defined in the PDF specification are allowed. The dimensions
of the \pdfliteral object in the output are considered zero. So, if ⟨text⟩ moves the current
typesetting point then the notion about its position from the TEX point of view differs from
the real position. A good practice is to close ⟨text⟩ to q...Q PDF commands. The command
\pdfliteral is typically used for generating graphics and for linear transformation.

• \pdfcolorstack ⟨number⟩ ⟨op⟩{ ⟨text⟩} (where ⟨op⟩ is push or pop or set) behaves like
\pdfliteral{ ⟨text⟩} and it is used for color switchers. For examplewhen ⟨text⟩ is 1 0 0 rg
then the red color is selected. TEX sets the color stack at the top of each page to the color
stack opened at the bottom of the previous page.

• \pdfximage height ⟨dimen⟩ depth ⟨dimen⟩ width ⟨dimen⟩ page ⟨number⟩{ ⟨file name⟩} loads
the image from ⟨file name⟩ to the PDF output and returns the number of such a data object in
the \pdflastximage register. Allowed formats are PDF, JPG, PNG. The image is not drawn
at this moment. A macro programmer can save \mypic=\pdflastximage and draw the im-
age by \pdfrefximage\mypic (maybe repeatedly). Data of the image are loaded to the PDF
output only once. The \pdfximage allows more parameters; see pdfTEX documentation.

• \pdfsetmatrix { ⟨𝑎⟩ ⟨𝑏⟩ ⟨𝑐⟩ ⟨𝑑⟩ }multiplies the current transformationmatrix (used for lin-
ear transformations) by \matrix{ ⟨𝑎⟩ & ⟨𝑐⟩ \cr ⟨𝑏⟩ & ⟨𝑑⟩ }.

• \pdfdest name{ ⟨label⟩} ⟨type⟩\relax declares a destination of a hyperlink. The ⟨label⟩ must
match with the ⟨label⟩ used in \pdfoutline or \pdfstartlink. The ⟨type⟩ declares the
behavior of the pdf viewer when the hyperlink is used. For example, xyz means without
changes of the current zoom (if not specified). Other types should be fit, fith, fitv, fitb.

• \pdfstartlink height ⟨dimen⟩ depth ⟨dimen⟩ ⟨attributes⟩ goto name{ ⟨label⟩} declares the
beginning of a hyperlink. A text (will be sensitive onmouse click) immediately follows and it
is terminated by \pdfendlink. The height anddepth of the sensitive area and the ⟨label⟩ used
in \pdfdest are declared here. More parameters are allowed; see the pdfTEX documentation.

• \pdfoutline goto name{ ⟨label⟩} count ⟨number⟩ { ⟨text⟩} creates one item with ⟨text⟩ in
PDF outlines. ⟨label⟩ must be used somewhere by \pdfdest name{ ⟨label⟩}. The ⟨number⟩ is
the number of direct descentants in the outlines tree.

• \pdfinfo { ⟨key⟩(⟨text⟩)} saves to PDF the information which can be listed by the com-
mand pdfinfo ⟨file⟩.pdf on the command line for example. More ⟨key⟩(⟨text⟩) should

22

be here. The ⟨key⟩ can be /Author, /Title, /Subject, /Keywords, /Creator, /Producer,
/CreationDate, /ModDate. The last two keywords need a special format of the ⟨text⟩ value.
All ⟨text⟩ values (including ⟨text⟩ used in the \pdfoutline) must be ASCII encoded or they
can use a very special PDFunicode encoding.

• \pdfcatalog enables us to set of a default behavior of the PDF viewer when it starts.
• \pdfsavepos saves an internal invisible point to the typesetting output. These points are pro-

cessedwhen the page is shipped out: the numeric registers \pdflastxpos and \pdflastypos
get values for the absolute position of this invisible point (measured from the left upper cor-
ner of the page in sp units). The macro programmer can follow \pdfsavepos by the \write
command and save these absolute positions to a text file which can be read in the next run
of TEX in order to get these absolute positions by macros.

Microtypographical extensions (available in pdfTEX, LuaTEX and not all of them in X ETEX)

• \pdffontexpand ⟨font selector⟩ ⟨stretching⟩ ⟨shrinking⟩ ⟨step⟩ declares a possibility to de-
form the characters from the font given by ⟨font selector⟩ . This deformation is used when
stretching or shrinking paragraph lines or doing \hbox to{...} in general. I.e. not only
glues are stretchable and shrinkable. The numeric parameters are given in 1/1000 of the
font size. ⟨stretching⟩ and ⟨shrinking⟩ are the maximum allowed values. The stretching or
shrinking are not applied continuously but by the given ⟨step⟩ . To activate this feature you
must set the \pdfadjustspacing numeric register to a positive value.

• \rpcode ⟨font selector⟩ ⟨char. code⟩= ⟨number⟩ , \lpcode ⟨font selector⟩ ⟨char. code⟩= ⟨number⟩
allows the declaration of hanging punctuation. Such punctuation is slightly moved to the
right margin (if \rpcode is declared and the character is at the right margin) or to the left
margin (for \lpcode by analogy). The ⟨number⟩ gives the amount of such movement in
1/1000 of the font size. To activate this feature youmust set \pdfprotrudechars to a positive
value (2 or more means a better algorithm).

• \letterspacefont ⟨control sequence⟩ ⟨font selector⟩ ⟨number⟩ declares a new font selec-
tor ⟨control sequence⟩ as a font given by the ⟨font selector⟩ . Additional space declared by
⟨number⟩ is added between each two characters when the font is used. The ⟨number⟩ is
1/1000 of the font size. Unicode fonts support an analogous letterspace= ⟨number⟩ font
feature.

• The following commands have the same syntax as \rpcode: \knbscode (added space after
the character), \stbscode (added stretchability of the glue after the character), \shbscode
(added shrinkability after the character), \knbccode (added kern before the character),
\knaccode (added kern after the character). To activate this feature you must to set
\pdfadjustinterwordglue to a positive value. This feature is supported by pdfTEX only.

Commands used in math mode

• \displaystyle, \textstyle, \scriptstyle, \scriptscriptstyle switch to the specified
style.

• \mathord, \mathop, \mathbin, \mathrel, \mathopen, \mathclose, \mathpunct followed by
{ ⟨math list⟩} create a math object of the given type.

• { ⟨numerator⟩\over ⟨denominator⟩} creates a fraction. The primitive commands \atop (with-
out fraction rule), \above ⟨dimen⟩ (fraction rule with given thickness) should be used in
the same manner. The commands \atopwithdelims, \overwithdelims, \abovewithdelims
allow us to specify brackets around the generalized fraction.

• \left ⟨delimiter⟩ ⟨formula⟩\right ⟨delimiter⟩ creates a math ⟨formula⟩ and gives ⟨delimiter⟩ s
around itwith an appropriate size (compatiblewith the size of the formula). The ⟨delimiter⟩ s
are typically brackets.

• *\middle ⟨delimiter⟩ can be used inside the ⟨formula⟩ surronded by \left, \right. The given
⟨delimiter⟩ gets the same size as delimiters declared by appropriate \left, \right.

• Exponents and scripts are typically at the right side of the preceding math object. But if this
object is a “big operator” (summation, integral) then exponents and scripts are printed above

23

and below this operator. The commands \limits, \nolimits, \displaylimits used before
exponents and scripts constructors (^7 and _8) declare an exception from this rule.

• $$ ⟨formula⟩\eqno ⟨mark⟩$$ puts the ⟨mark⟩ to the right margin as \llap{$ ⟨mark⟩$}. Anal-
ogously, $$ ⟨formula⟩\leqno ⟨mark⟩$$ puts it to the left margin.

14 Summary of plain TEX macros
Allocators

• \newcount, \newdimen, \newskip, \newmuskip, \newtoks followed by a ⟨control sequence⟩
allocate a new register of the given type and set it as the ⟨control sequence⟩ . \newbox,
\newread, \newwrite followed by a ⟨control sequence⟩ allocate a new address to given data
(to a box register or to a file descriptor) and set it as the ⟨control sequence⟩ . All these alloca-
tion macros are declared as \outer in plain TEX, unfortunately. This brings problems when
you need to use them in skipped text or in macros (in ⟨replacement text⟩ for example). Use
\csname newdimen\endcsname \yoursequence in such cases.

• \newif ⟨control sequence⟩ sets the ⟨control sequence⟩ as a boolean variable. It must begin
with if; for example \newif\ifsomething. Then you can set values by \somethingtrue or
\somethingfalse and you can use this variable by \ifsoemthing which behaves like other
\if* primitive commands.

Vertical skips

• \bigskip does \vskip by one line, \medskip does \vskip by one half of a line and
\smallskip does the vertical skip by one quarter of a line. The registers \bigskipamount,
\medskipamount and \smallskipamount are allocated for this purpose.

• \nointerlineskip ignores the \baselineskip rule for the following box in the current ver-
tical list. This box is appended immediately after the previous box. \offinterlineskip ig-
nores the \baselineskip rule for all following boxes until the current group is closed.

• All vertical glues at the top of the page inserted by \vskip are ignored.Macro \vglue behaves
like the \vskip primitive command but its glue is not ignored at the top of the page.

• Sometimes we must switch off the \baselineskip rule (by the \offinterlineskip macro
for example). This is common in tables. But we need to keep the baseline distances equal.
Then the \strut can be inserted on each line. It is an invisible box with zero width and with
height+depth=\baselineskip.

• \normalbaselines sets the registers for vertical placement \baselineskip, \lineskip and
\lineskiplimit to default values given by the format. The user can set other values for a
while and then he/she can restore \normalbaselines.

Penalties

• \break puts penalty −10000, so a line/page break is forced here. \nobreak puts penalty
10000, so a line/page break is disabled here. It should be specified before a glue, which is
“protected” by this penalty. \allowbreak puts penalty 0; it allows breaking similar to a nor-
mal space.

• \goodbreak puts penalty −500 in vertical mode, this is a “recommended” point for a page
break.

• \filbreak breaks the page only if it is “almost full” or if a big object (that doesn’t fit the
current page) follows. The bottom of such a page is filled by a vertical glue, i.e. the default
typographical rule about equal positions of all bottoms of common pages is broken here.

• \eject puts penalty −10000 in the vertical list, i.e. it breaks the page.

Miscellaneous macros

• \magstep ⟨number⟩ expands to a magnification factor 1.2𝑥 where 𝑥 is the given ⟨number⟩ .
This follows old typographical traditions that all sizes (of fonts) are distinguished by factors

24

1, 1.2, 1.44, etc. For example, \magstep2 expands to 1440, because 1.22 = 1.44 and 1000 is
factor 1:1 in TEX. The \magstephalf macro expands to 1095 which corresponds to 1.2(1/2).

• \nonfrenchspacing sets special space factor codes (bigger spaces after periods, commas,
semicolons, etc.). This follows English typographical traditions. \frenchspacing sets all
space factors as 1:1 (usable for non English texts).

• \endgraf is equivalent to \par; \bgroup and \egroup are equivalents to {1 and }2.
• \space expands to space, \empty is an empty macro and \null is an empty \hbox{}.
• \quad is horizontal space 1 em (size of the font), \qquad is double \quad, \enspace is kern

0.5 em, \thinspace is kern 1/6 em, and \negthinspace makes kern −1/6 em.
• \loop ⟨body 1⟩ ⟨if condition⟩ ⟨body 2⟩\repeat repeats ⟨body 1⟩ and ⟨body 2⟩ in a loop until

the ⟨if condition⟩ returns false. Then ⟨body 2⟩ is not processed and the loop is finished.
• \leavevmode opens a paragraph like \indent but it does nothing if the horizontal mode is

already in effect.
• \line{ ⟨text⟩} creates a box of line width (which is \hsize). \leftline, \rightline,

\centerline do the same as \line but ⟨text⟩ is shifted left / right / is centered.
• \rlap{ ⟨text⟩} makes a box of zero size, the ⟨text⟩ is stuck out to the right. \llap{ ⟨text⟩}

does the same and the ⟨text⟩ is pushed left.
• \ialign is equal to \halign but the values of the registers used by \halign are set to default.
• \hang starts the paragraph where all lines (except for the first) are indented by \parindent.
• \texindent{ ⟨mark⟩} starts a paragraph with \llap{ ⟨mark⟩}.
• \item{ ⟨mark⟩} starts the paragraph with \hang and with \llap{ ⟨mark⟩}. Usable for item

lists. \itemitem{ ⟨mark⟩} can be used for the second level of items.
• \narrower sets wider margins for paragraphs (\parindent is appended to both sides); i.e.

the paragraphs are narrower.
• \raggedright sets the paragraph shape with the ragged right margin. \raggedbottom sets

the page-setting shape with the ragged bottoms.

Floating objects

• \footnote{ ⟨mark⟩}{ ⟨text⟩} creates a footnote with given ⟨mark⟩ and ⟨text⟩ .
• \topinsert ⟨object⟩\endinsert creates the ⟨object⟩ as a floating object. It is printed at the top

of the current page or on the next page. \midinsert ⟨object⟩\endinsert does the same as
\topinsert but it tries if the ⟨object⟩ fits on the current page. If it is true then it is printed to
its current position; no floating object is created.

Controlling of input, output

• \obeyspaces sets the space as normal, i.e. it deactivates special treatment of spaces by the
tokenizer: more spaces will be more spaces and spaces at the beginning of the line are not
ignored.

• \obeylines sets the end of each line as \par. Each line in the input is one paragraph in the
output.

• \bye finalizes the last page (or last pages if more floating objects must be printed) and termi-
nates the TEX job. The \end primitive command does the same but without worrying about
floating objects.

Macros used in math modes

• Spaces inmathmode are \, (thin space), \> (medium space) \; (thick space, but still small),
\! (negative thin space).

• { ⟨above⟩\choose ⟨below⟩} creates a combination number with brackets around it.
• \sqrt{ ⟨math list⟩} creates the square root symbol with the ⟨math list⟩ under it.
• \root ⟨n⟩\of{ ⟨math list⟩} creates a general root symbol with the order of the root ⟨n⟩ .
• \cases{ ⟨case 1⟩& ⟨condition 1⟩\cr...\cr ⟨case n⟩& ⟨condition n⟩} creates a list of variants

(preceded by a brace {) in math mode.

25

• \matrix{ ⟨a⟩& ⟨b⟩...& ⟨e⟩\cr...\cr ⟨u⟩& ⟨v⟩...& ⟨z⟩} creates a matrix of given values in
math mode (without brackets around it). \pmatrix{ ⟨𝑑𝑎𝑡𝑎⟩ } does the same but with ().

• $$\displaylines{ ⟨𝑓 𝑜𝑟𝑚𝑢𝑙𝑎 1⟩ \cr...\cr ⟨𝑓 𝑜𝑟𝑚𝑢𝑙𝑎 𝑛⟩ }$$ prints multiple (centered) for-
mulae in display mode.

• $$\eqalign{ ⟨𝑓 𝑜𝑟𝑚.1 𝑙𝑒𝑓 𝑡⟩ & ⟨𝑓 𝑜𝑟𝑚.1 𝑟𝑖𝑔ℎ𝑡⟩ \cr...\cr ⟨𝑓 𝑜𝑟𝑚.𝑛 𝑙𝑒𝑓 𝑡⟩ & ⟨𝑓 𝑜𝑟𝑚.𝑛 𝑟𝑖𝑔ℎ𝑡⟩ }$$
prints multiple formulae aligned by & character in display mode.

• \eqalignno behaves like \eqalign but a second & followed by a ⟨𝑚𝑎𝑟𝑘⟩ can be in some lines.
These lines place the ⟨𝑚𝑎𝑟𝑘⟩ in the right margin. \leqalignno does the same as \eqalignno
but ⟨𝑚𝑎𝑟𝑘⟩ is put to the left margin.

26

Index
\& 4
\; 25
\, 25
\$ 4
\! 25
\> 25
\# 4
\- 20
\/ 20
\% 4
\␣ 19
\above 23
⟨above⟩ 25
\abovedisplayshortskip 14
\abovedisplayskip 11, 14
\abovewithdelims 23
\accent 19
active character 4
⟨address⟩ 11
\adjdemerits 14
\advance 20
\afterassignment 21
\aftergroup 21
\allowbreak 24
\atop 23
\atopwithdelims 23
⟨attributes⟩ 22
badness 7, 14
balanced text 9
\baselineskip 13, 24
\baselineskip rule 13
\batchmode 22
\begingroup 6, 21
⟨below⟩ 25
\belowdisplayshortskip 14
\belowdisplayskip 14
\bf 6
\bgroup 6, 21, 25
\bigskip 24
\bigskipamount 24
\binoppenalty 13
\botmark 16, 21
box 5, 7
⟨box⟩ 18–19, 22
\box 18
box register 18
⟨box number⟩ 16, 18–19, 22
⟨box-number⟩ 18
bp 12
\break 24
\brokenpenalty 13
\bye 5–6, 25
⟨case n⟩ 16
⟨case 0⟩ 16
⟨case 1⟩ 16
⟨case 2⟩ 16
\cases 25
\catcode 4, 11, 20
cc 12
\centerline 25
\char 19

⟨char. code⟩ 23
⟨character⟩ 4, 12, 19
character constant 2
\chardef 2, 12, 17
\choose 25
\cleaders 19
\closein 21
\closeout 21
\clubpenalty 13
cm 12
⟨cmds⟩ 17–18, 20
⟨code⟩ 4
context do something 13
— read parameters 13
control space 19
control sequence 1
⟨control sequence⟩ 4, 9, 11, 15, 17–18,

20–24
\copy 18
\countdef 11, 17
counter type register 11
\cr 20
\crcr 20
\csname 15
\csstring 4, 15
⟨data⟩ 22
\day 14
dd 12
⟨declaration⟩ 20
declared register 1
\def 2, 4–5, 9–10, 17
default size of space 7
⟨default size⟩ 7
\defaulthyphenchar 14, 20
delimited parameter 9
⟨delimiter⟩ 23
⟨denominator⟩ 11, 23
depth 6
\detokenize 15
⟨dimen⟩ 8, 12–13, 16–20, 22–23
\dimen 17
dimen type register 11
⟨dimen expression⟩ 12, 16
⟨dimen unit⟩ 12–13
\dimendef 11, 17
\dimexpr 12, 16
\directlua 17
discardable item 8
\discretionary 19
display math mode 11
\displaylimits 24
\displaylines 26
\displaystyle 11, 23
\displaywidowpenalty 13
\divide 20
do something context 13
\doublehyphendemerits 14
\dump 2, 22
\edef 10, 17
\egroup 6, 21, 25
\eject 24

\else 16
⟨else text⟩ 16
em 12
\emergencystretch 14
\empty 25
\end 5–6, 22, 25
\endcsname 15
\endgraf 25
\endgroup 6, 21
\endinput 17
\endinsert 25
\endlinechar 14
\enspace 25
\eqalign 26
\eqalignno 26
\eqno 24
equal sign 9
\errmessage 22
\errorcontextlines 14
\errorstopmode 22
\escapechar 14–15
\everycr 14
\everydisplay 14
\everyeof 14
\everyhbox 14
\everyjob 14
\everymath 14
\everypar 11, 14
\everyvbox 14
ex 12
\exhyphenpenalty 13
expand processor 4
\expandafter 15
⟨expandafters⟩ 13, 15–16, 20
\expanded 16
expansion 2
— process 2
⟨factor⟩ 17
⟨false text⟩ 16
\fi 16
fil 7–8
\filbreak 24
⟨file⟩ 22
⟨file name⟩ 3, 16–17, 21–22
⟨file number⟩ 16, 21
fill 8
\finalhyphendemerits 14
\firstmark 16, 21
floating object 20, 25
\floatingpenalty 13
\font 2–3, 17
⟨font⟩ 20
⟨font features⟩ 17
⟨font file⟩ 17
⟨font name⟩ 17
⟨font selector⟩ 3, 16–17, 23
\fontname 16
\footnote 25
format 2
— file 2
⟨formula⟩ 23–24

27

\frac 11
\frenchspacing 25
\futurelet 17
\gdef 10, 17
⟨generalized dimen⟩ 13
\global 10, 17–18
\globaldefs 14
glue 7
⟨glue⟩ 19
glue type register 11
\goodbreak 24
\halign 2, 20
\hang 25
\hangafter 14
\hangindent 14
\hbadness 14
\hbox 2, 5–8, 14, 16–18, 25
height 6
⟨hexa number⟩ 12
\hfil 7–8, 19
\hfill 8, 19
\hfilneg 19
\hfuzz 14
\hoffset 13
horizontal mode 5
⟨horizontal list⟩ 17–18
⟨horizontal material⟩ 7
\hrule 6, 19
\hsize 1, 5–8, 11, 13, 25
\hskip 6–8, 11, 19
\hss 7, 19
\hyphenation 22
\hyphenchar 20
\hyphenpenalty 1, 13
\ialign 25
\if 16
⟨if condition⟩ 16, 25
\ifcase 16
\ifcat 16
\ifdim 16
\ifeof 16
\iffalse 16
\ifhbox 16, 18
\ifhmode 16
\ifinner 16
\ifmmode 16
\ifnum 16
\ifodd 16
\iftrue 16
\ifvbox 16, 18
\ifvmode 16
\ifvoid 16
\ifx 16
\ignorespaces 21
\immediate 21
in 12
\indent 6, 19
ini-TeX state 2
\input 3, 16
\inputlineno 22
\interlinepenalty 13
internal horizontal mode 6
— math mode 11

— vertical mode 6
\it 6
italic correction 20
\item 25
\itemitem 25
\jobname 16
\kern 2, 6, 19
kern 7
⟨key⟩ 22–23
keyword 8
\knaccode 23
\knbccode 23
\knbscode 23
Knuth, Donald 3
kpathsea 3
⟨label⟩ 22
\language 14, 22
\lastbox 19
\lastpenalty 21
\lastskip 21
LATEX macros 3
\lccode 11, 20
\leaders 19
\leavevmode 6, 25
\left 23
\lefthyphenmin 14
\leftline 25
\leftskip 13
\leqalignno 26
\leqno 24
\let 2, 9, 17
\letterspacefont 23
\limits 24
\line 25
\linepenalty 11, 13
\lineskip 13, 24
\lineskiplimit 13, 24
\llap 8, 25
\long 10, 17
\loop 25
\looseness 14
\lower 2, 18
\lowercase 20
\lpcode 23
LuaTEX 3
macro 2
\mag 14
\magstep 24
\magstephalf 25
main processor 4
— vertical list 5
\mark 16, 21
⟨mark⟩ 24–25
math axis 18
— mode display 11
— — internal 11
— — selector 4
⟨math list⟩ 23, 25
⟨math text⟩ 11
\mathbin 11, 23
\mathchardef 2, 12, 17
\mathclose 11, 23
\mathop 11, 23

\mathopen 11, 23
\mathord 11, 23
\mathpunct 11, 23
\mathrel 11, 23
\mathsurround 14
\matrix 26
\meaning 10, 15
meaning of control sequence 1
\medskip 24
\medskipamount 1, 24
\message 9, 17, 22
\middle 23
\midinsert 25
minus 8
mm 12
mode horizontal 5
— vertical 5
\month 14
\moveleft 18
\moveright 18
multiletter control sequence 4
\multiply 20
\muskip 17
\muskipdef 17
⟨n⟩ 25
\narrower 25
\negthinspace 25
\newbox 18, 24
\newcount 11, 24
\newdimen 11, 17, 24
\newif 24
\newlinechar 14
\newmuskip 17, 24
\newread 21, 24
\newskip 11, 17, 24
\newtoks 11, 17, 24
\newwrite 21, 24
⟨no break⟩ 19
\noalign 20
\nobreak 24
\noexpand 16
\noindent 6, 8, 19
\nointerlineskip 24
\nolimits 24
\nonfrenchspacing 25
\nonstopmode 22
\normalbaselines 24
\null 25
⟨num. expression⟩ 12, 16
⟨number⟩ 10, 12–13, 16–17, 19–20,

22–24
\number 16
⟨number 1⟩ 16
⟨number 2⟩ 16
⟨numerator⟩ 11, 23
\numexpr 12, 16
\obeylines 25
\obeyspaces 25
⟨object⟩ 8, 25
⟨octal number⟩ 12
\offinterlineskip 24
\omit 20
one character control sequence 4

28

⟨op⟩ 22
\openin 16, 21
\openout 21
OpTEX 1–3
\outer 17
\output 14
output routine 5, 22
\outputpenalty 13
\over 11, 23
overfull box 7, 14, 18
\overfullrule 14
\overwithdelims 23
page box 5
— origin 13
\par 4–7, 10, 19, 25
parameter delimited 9
— prefix 4
— separated 9
— unseparated 9
⟨parameters⟩ 9, 11
\parfillskip 13
\parindent 1, 6, 13
\parshape 22
\parskip 13
\patterns 22
pc 12
\pdfadjustinterwordglue 23
\pdfadjustspacing 7, 23
\pdfcatalog 23
\pdfcolorstack 22
\pdfdest 22
\pdfendlink 22
\pdffontexpand 23
\pdfhorigin 13
\pdfinfo 22
\pdflastximage 22
\pdflastxpos 23
\pdflastypos 23
\pdfliteral 22
\pdfoutline 22
\pdfprotrudechars 23
\pdfrefximage 22
\pdfsavepos 23
\pdfsetmatrix 22
\pdfstartlink 22
pdfTEX 3
\pdfvorigin 13
\pdfximage 22
penalty 8
\penalty 8, 19
plain TeX 8
plain TEX macros 3
plus 8
⟨post break⟩ 19
\postdisplaypenalty 13
⟨pre break⟩ 19
\predisplaypenalty 13
\pretolerance 14
\prevdepth 14
\prevgraph 14
primitive command 2
— register 1
\private 17

pt 12
\qquad 25
\quad 25
\raggedbottom 25
\raggedright 25
\raise 18
\read 16, 21
read parameters context 13
register 1, 11
⟨register⟩ 11–12, 15, 17, 20–22
⟨relation⟩ 16
\relax 9, 21
\relpenalty 13
\repeat 25
replacement text 2
⟨replacement text⟩ 9–11, 15–16, 21,

24
\right 23
\righthyphenmin 14
\rightline 25
\rightskip 13
\rlap 8, 25
\rm 6
\romannumeral 16
\root 25
\rpcode 23
⟨rule⟩ 19
\scantextokens 15
\scantoken 15
\scriptscriptstyle 11, 23
\scriptstyle 11, 23
\scrollmode 22
separated parameter 9
\setbox 18
\sfcode 20
\shbscode 23
\shipout 22
\show 22
\showbox 22
\showboxbreadth 14
\showboxdepth 14
\showlists 22
\showthe 22
shrinkability 7
⟨shrinkability⟩ 7–8
⟨shrinking⟩ 23
⟨size⟩ 7–8
⟨size specification⟩ 17
⟨skip⟩ 12
\skip 17
\skipdef 11, 17
\smallskip 24
\smallskipamount 24
⟨something⟩ 9
sp 12
⟨space⟩ 10, 16–17, 21
\space 25
\spacefactor 19
\spaceskip 14
\span 20
\special 22
spread 18
\sqrt 25

\stbscode 23
⟨step⟩ 23
stretchability 7
⟨stretchability⟩ 7–8
⟨stretching⟩ 23
\string 15
\strut 24
subscript prefix 4
superscript prefix 4
table separator 4
\tabskip 14
\TeX 2, 5
TEX engines 3
— live 3
texmf tree 3
\textindent 25
\textstyle 11, 23
\the 15
\thinspace 25
\time 14
to 18
⟨token⟩ 9, 15–17, 21
token type register 11
tokenizer 3
⟨tokens⟩ 16
⟨tokens register⟩ 15
⟨toks⟩ 12–13
\toks 17
\toksdef 11, 17
\tolerance 14
\topinsert 25
\topmark 16, 21
\topskip 13
\tracingassigns 14
\tracingcommands 14
\tracinggroups 14
\tracingifs 14
\tracinglostchars 14
\tracingmacros 11, 14
\tracingonline 14
\tracingoutput 14
\tracingpages 14
\tracingparagraphs 14
\tracingrestores 14
\tracingscantokens 14
\tracingstats 14
⟨true text⟩ 16
\ttindent 1
⟨type⟩ 22
\uccode 20
underfull box 14
\unexpanded 16
\unhbox 18
\unhcopy 18
\unless 16
\unpenalty 20
unseparated parameter 9
\unskip 20
\unvbox 18
\unvcopy 18
\uppercase 20
\vadjust 20
\valign 20

29

⟨value⟩ 12–13, 17, 20–21
\vbadness 14
\vbox 6–8, 14, 16, 18
\vcenter 18
vertical mode 5
⟨vertical list⟩ 18, 20
⟨vertical material⟩ 7, 18
\vfil 19
\vfill 19
\vfilneg 19

\vfuzz 14
\vglue 24
\voffset 13
\vrule 6, 19
\vsize 5, 13
\vskip 6, 8, 19, 24
\vsplit 18
\vss 19
\vtop 18
\wd 11, 18

\widowpenalty 13
width 6
\write 14, 17, 21
\xdef 10, 17
X ETEX 3
\xleaders 19
\xspaceskip 14
\year 14

Petr Olšák petr@olsak.net
Czech Technical University in Prague
Version of the text: 0.6 (2021-03-17)

30

	Terminology
	Formats, engines
	Searching data
	Processing the input
	Vertical and horizontal modes
	Groups in TeX
	Box, kern, penalty, glue
	Syntactic rules
	Principles of macros
	Math modes
	Registers
	Expandable primitive commands
	Primitive commands at the main processor level
	Summary of plain TeX macros
	Index

