
Guide to pTEX for developers unfamiliar with Japanese

Japanese TEX Development Community∗

version p3.8.3, March 21, 2020

pTEX and its variants, upTEX, 𝜀-pTEX and 𝜀-upTEX, are all TEX engines with native Japanese
support. Its output is always a DVI file, which can be processed by several DVI drivers with
Japanese support including dvips and dvipdfmx. Formats based on LATEX is called pLATEX when
running on pTEX/𝜀-pTEX, and called upLATEX when running on upTEX/𝜀-upTEX.

Purpose of this document

This document is written for developers of TEX/LATEX, who aim to support pTEX/pLATEX and
its variants upTEX/upLATEX. Knowledge of the followings are assumed:

• Basic knowledge of Western TEX (Knuthian TEX, 𝜀-TEX and pdfTEX),

• ... and its programming conventions.

Any knowledge of Japanese (characters, encodings, typesetting conventions etc.) is not
assumed; some explanations are provided in this document when needed. We hope that
this document helps authors of packages or classes to proceed with supporting pTEX family
smoothly.

Note: This English edition (ptex-guide-en.pdf) is not meant to be a complete
translation of Japanese edition (ptex-manual.pdf). For example, this document
does not cover the following aspects of pTEX:
• Typesetting conventions of Japanese characters
• Details of vertical writing

For beginners of writing Japanese texts, please refer to the Japanese edition.

∗https://texjp.org, e-mail: issue(at)texjp.org

1

https://texjp.org

Contents

I Brief introduction 4

1 pTEX and its variants 4

2 Compatibility with Western TEX 4

3 LATEX on pTEX/upTEX — pLATEX/upLATEX 4

4 Eminent characteristics of pTEX/upTEX 5

II Details 6

5 Output format — DVI 6
5.1 Extensions of DVI format in pTEX family . 7
5.2 DVI drivers with Japanese support . 8

5.2.1 Using dvipdfmx . 8
5.2.2 Using dvips . 8

6 Programming on pTEX family 8
6.1 Number of registers and marks . 8
6.2 Number of math families . 9
6.3 Additional primitives and keywords . 9

6.3.1 SyncTEX additions (available in pTEX, upTEX, 𝜀-pTEX, 𝜀-upTEX) 9
6.3.2 pTEX additions (available in pTEX, upTEX, 𝜀-pTEX, 𝜀-upTEX) 10
6.3.3 upTEX additions (available in upTEX, 𝜀-upTEX) 11
6.3.4 𝜀-pTEX additions (available in 𝜀-pTEX, 𝜀-upTEX) 12
6.3.5 𝜀-upTEX additions (available in 𝜀-upTEX) 13

6.4 Omitted primitives and unsupported features 13
6.5 Behavior of Western TEX primitives . 13

6.5.1 Primitives with limitations in handling Japanese 13
6.5.2 Primitives capable of handling Japanese 14

6.6 Case study . 14
6.6.1 Detecting pTEX . 14
6.6.2 Detecting upTEX . 15
6.6.3 Defining large integer constants . 15
6.6.4 Creating a Japanese character token with a specified code 16

6.7 Difference from pdfTEX in DVI mode . 18

2

6.8 Recommendation for file encoding . 18
6.9 Input handling . 18
6.10 Japanese tokens . 18

7 Basic introduction to Japanese typesetting 18
7.1 Automatic insertion of glue and penalties . 18
7.2 Japanese fonts . 18

8 Other strange beasts 19
8.1 Internal kanji encodings . 19

3

Part I

Brief introduction
1 pTEX and its variants

There is no advantage to choose pTEX/upTEX over 𝜀-pTEX/𝜀-upTEX, so we focus mainly on
𝜀-pTEX/𝜀-upTEX.

2 Compatibility with Western TEX

pTEX/upTEX are almost upward compatible with Knuthian TEX, however, they do not pass
the TRIP test. In pTEX/upTEX, input handling is different from Knuthian TEX; if a pair of two
or more 8-bit codes matches Japanese character code, it is regarded as one Japanese character.
There is no difference in handling 8-bit TFM font.

𝜀-pTEX/𝜀-upTEX are almost upward compatible with 𝜀-TEX, however, input handling is
similar to pTEX/upTEX. It does not pass the e-TRIP test. That said, please note that “raw 𝜀-
TEX” is unavailable anymore in TEX Live and derived distributions; they provide a command
‌etex‌ only as “DVI mode of pdfTEX.” We should note that 𝜀-pTEX/𝜀-upTEX are not upward
compatible with DVI mode of pdfTEX, which will be discussed later in section 6.7.

3 LATEX on pTEX/upTEX — pLATEX/upLATEX

Formats based on LATEX is called pLATEX when running on pTEX/𝜀-pTEX, and called upLATEX
when running on upTEX/𝜀-upTEX. In recent versions (around 2011) of TEX Live and its
derivatives, the default engines of pLATEX and upLATEX are 𝜀-pTEX and 𝜀-upTEX. That is, the
command ‌platex‌ starts 𝜀-pTEX (not pTEX) with preloaded format ‌platex.fmt ‌.

In the kernel level (‌platex.ltx‌ and ‌uplatex.ltx‌), pLATEX and upLATEX adds some addi-
tional commands related to the followings:

• Selection of Japanese fonts

• Crop marks (called “tombow”) for printings

• Adjustment for mixing horizontal and vertical texts

For authors, pLATEX/upLATEX are almost upward compatible with original LATEX, except for
the followings:

• Order of float objects; in pLATEX/upLATEX, ⟨bottom float⟩ is placed above ⟨footnote⟩. That is,
the complete order is ⟨top float⟩ → ⟨body text⟩ → ⟨bottom float⟩ → ⟨footnote⟩.

4

For developers, additional care may be needed, for changes in the kernel macros and/or
absence of pdfTEX features.

4 Eminent characteristics of pTEX/upTEX

The most important characteristics of pTEX/upTEX can be summarized as follows:

• Japanese characters are interpreted and handled completely apart from Western charac-
ters.

• Texts can be aligned vertically, called “tate-gumi” (縦組). The horizontal alignment of
texts is called “yoko-gumi” (横組), and both “tate-gumi” and “yoko-gumi” can be mixed
even within a single document.

5

Part II

Details
5 Output format — DVI

The output of pTEX family is always a DVI file. This is in contrast to the mainstream of pdfTEX
in the Western TEX world.

In case you are not familiar with DVI output processing, first we give some general notice
on how to get a “correct” output using LATEX in DVI mode.

• The DVI format is, as its name suggests, inherently driver-independent. However, some
LATEX packages (graphicx, color, hyperref etc.) embed some \special‌ commands into the
DVI, which can be interpreted later by some specific DVI driver. Such a DVI is no longer
driver-independent, thus those are called driver-dependent packages.

• In almost all major TEX distributions (of course including TEX Live), the default DVI
driver is set to ‌dvips‌. When you choose to process the resulting DVI file with a driver
other than dvips (e.g. dvipdfmx) after running LATEX, you need to pass a proper driver
option (e.g. ‌[dvipdfmx] ‌) to all driver-dependent packages.

Now, let’s move on to the situation in Japan, which is slightly complicated due to historical
reasons but may also apply to other countries:

• There are two major conventions to pass a proper driver option to all driver-dependent
packages:

1. To give a driver option to each driver-dependent package:

\documentclass{article}
\usepackage[dvipdfmx]{graphicx}
\usepackage[dvipdfmx]{color}

2. To have a driver option as global:

\documentclass[dvipdfmx]{article}
\usepackage{graphicx}
\usepackage{color}

The former convention has been used for many years since 1990s when the number of
driver-dependent packages was limited. But in recent years (around 2010–), there are
much more driver-dependent packages available. Thus we (Japanese TEX experts) advise

6

a global driver option rather than individual package options for simplicity, but not yet
fully widespread.1

• Many people still see driver options as “optional”; they do without driver options unless
really needed. For example, the convention of having a global driver option does no
harm even when no driver-dependent package is used, but some users choose to omit a
driver option to avoid a warning2:

LaTeX Warning: Unused global option(s):
[dvipdfmx].

5.1 Extensions of DVI format in pTEX family

The DVI format output by pTEX family is fully compatible with Knuthian TEX, as long as the
following conditions are met:
• No Japanese characters are typeset.

• There is no portion of vertical text alignment.
However, some additional DVI commands, which are defined in the standard [1] but

never used in TEX82, can come out.
• ‌set2‌ (129), ‌put2‌ (134): Appears in both pTEX and upTEX DVI. Used to typeset a Japanese

character with 2-byte code.

• ‌set3‌ (130), ‌put3‌ (135): Appears in only upTEX DVI. Used to typeset a Japanese character
with 3-byte code.

When pTEX is going to typeset a Japanese character into DVI, it is encoded in JIS, which is
always a 2-byte code. For this purpose, ‌set2‌ or ‌put2‌ are used. When upTEX is going to output
a Japanese character into DVI, it is encoded in UTF-32. If the code is equal to or less than
‌U+FFFF ‌, the lower 16-bit is used with ‌set2‌ or ‌put2‌. If the code is equal to or greater than
‌U+10000 ‌, the lower 24-bit is used with ‌set3‌ or ‌put3‌.

In addition, pTEX/upTEX defines one additional DVI command.
• ‌dir ‌ (255): Used to change directions of text alignment.

The DVI format in the preamble is always set to 2, as with TEX82. On the other hand, the DVI
ID in the postamble can be special. Normally it is set to 2, as with TEX82; however, when ‌dir‌
(255) appears at least once in a single pTEX/upTEX DVI, the ‌post_post ‌ table of postamble
contains ID = 3.

1The fact that there had been a mismatch in option names ([dvipdfm] vs. [dvipdfmx]) between packages may
also have been part of it; geometry did not understand [dvipdfmx] option until 2018!

2Since LATEX 2𝜀 2020-02-02, this warning is effectively gone. This is due to preloading of expl3 into the format,
and the driver-dependent code of expl3 interprets the global driver option.

7

5.2 DVI drivers with Japanese support

There are some DVI drivers with Japanese support. The most eminent drivers are dvips and
dvipdfmx. Nowadays most of casual Japanese users are using dvipdfmx as a DVI driver. On the
other hand, users of dvips are unignorable, especially those working in publishing industry.
In recent years, most of major driver-dependent packages support both two drivers.

5.2.1 Using dvipdfmx

A DVI file which is output by pTEX can be converted directly to a PDF file using dvipdfmx.
For Japanese fonts to be used in the output PDF, dvipdfmx refers to ‌kanjix.map‌ generated by
the command ‌updmap ‌. You can use the script ‌kanji-config-updmap‌ to change font settings;
please refer to its help message or documentation.

5.2.2 Using dvips

A DVI file which is output by pTEX can be converted to a PostScript file using dvips. For
Japanese fonts to be used in the output PostScript, dvips refers to psfonts.map generated by
the command updmap. You can use the script ‌kanji-config-updmap‌ to change font settings;
please refer to its help message or documentation.

The resulting PostScript file can then be converted to a PDF file using Ghostscript (ps2pdf)
or Adobe Distiller. When using Ghostscript, a proper setup of Japanese font must be done
before converting PostScript into PDF. An easy solution for the setup is to run a script
‌cjk-gs-integrate‌ developed by Japanese TEX Development Community.

6 Programming on pTEX family

We focus on programming aspects of pTEX and its variants.

6.1 Number of registers and marks

pTEX and upTEX have exactly the same number (= 256) of registers (count, dimen, skip,
muskip, box, and token) as Knuthian TEX. 𝜀-pTEX and 𝜀-upTEX in extended mode have more
registers; there are 65536, which is twice as many as 32768 of 𝜀-TEX. Similarly 𝜀-pTEX and
𝜀-upTEX have 65536 mark classes, which is twice as many as 32768 of 𝜀-TEX.

The following code presents an example of detecting the number of regsiters and mark
classes available:

\ifx\eTeXversion\undefined
% Knuthian TeX, pTeX, upTeX:
% 256 registers, 1 mark

8

\else
\ifx\omathchar\undefined
% e-TeX, pdfTeX (in extended mode):
% 32768 registers, 32768 mark classes

\else
% e-pTeX, e-upTeX (in extended mode):
% 65536 registers, 65536 mark classes

\fi
\fi

Here a primitive \omathchar‌, which is derived from Ω, is used as a marker of a change file
fam256.ch.3

6.2 Number of math families

In pTEX and upTEX, the number of math fonts is restricted to 16, each of which can contain 256
characters (same as Knuthian TEX). In 𝜀-pTEX and 𝜀-upTEX, a change file fam256.ch, which
is derived from Ω, extends the upper limit to 256. As a consequence, 𝜀-pTEX and 𝜀-upTEX
allows 256 math fonts, each of which can contain 256 characters.4

For pLATEX/upLATEX users to use more than 16 math fonts, it is necessary to use macros
which exploitΩ-derived primitives such as \omathchar‌. Recent (u)pLATEX (since 2016/11/29)
partially supports this, and the maximum number of math alphabets that can be defined
by ‌\DeclareMathAlphabet‌ is extended to 256 (‌\e@mathgroup@top‌) without needing any
extension package. However, symbol fonts are restricted to 16 as ‌\DeclareMathSymbol‌ etc
still use the standard \mathchar‌ etc. A simple solution to use more symbol fonts as well as
math alphabets is to load a package mathfam2565 though it’s still preliminary.

6.3 Additional primitives and keywords

Here we provide only complete lists of additional primitives of pTEX family in alphabetical
order. The features of each primitive can be found in Japanese edition.

6.3.1 SyncTEX additions (available in pTEX, upTEX, 𝜀-pTEX, 𝜀-upTEX)

In the standard build of TEX Live, SyncTEX extension is unavailable in Knuthian TEX; however,
it is enabled in pTEX family.

3There is another pTEX-derived engine named pTEX-ng (or Asiatic pTEX) https://github.com/clerkma/
ptex-ng; it is based on 𝜀-TEX and upTEX, but currently does not adopt fam256.ch so it has the same number of
registers and mark classes as 𝜀-TEX.

4Ω allows 256 math fonts, each of which can contain 65536 characters.
5https://www.ctan.org/pkg/mathfam256

9

https://github.com/clerkma/ptex-ng
https://github.com/clerkma/ptex-ng
https://www.ctan.org/pkg/mathfam256

▶ \synctex‌

6.3.2 pTEX additions (available in pTEX, upTEX, 𝜀-pTEX, 𝜀-upTEX)

▶ \autospacing‌
▶ \autoxspacing‌
▶ \disinhibitglue‌ — New primitive since p3.8.2 (TEX Live 2019)
▶ \dtou‌
▶ \euc‌
▶ \ifdbox ‌ — New primitive since p3.2 (TEX Live 2011)
▶ \ifddir ‌ — New primitive since p3.2 (TEX Live 2011)
▶ \ifjfont‌ — New primitive since p3.8.3 (TEX Live 2020)
▶ \ifmbox ‌ — New primitive since p3.7.1 (TEX Live 2017)
▶ \ifmdir ‌
▶ \iftbox ‌
▶ \iftdir ‌
▶ \iftfont‌ — New primitive since p3.8.3 (TEX Live 2020)
▶ \ifybox ‌
▶ \ifydir ‌
▶ \inhibitglue‌
▶ \inhibitxspcode‌
▶ \jcharwidowpenalty‌
▶ \jfam ‌
▶ \jfont‌
▶ \jis‌
▶ \kanjiskip‌
▶ \kansuji‌
▶ \kansujichar‌
▶ \kcatcode‌
▶ \kuten‌
▶ \noautospacing‌

10

▶ \noautoxspacing‌
▶ \postbreakpenalty‌
▶ \prebreakpenalty‌
▶ \ptexminorversion‌ — New primitive since p3.8.0 (TEX Live 2018)
▶ \ptexrevision‌ — New primitive since p3.8.0 (TEX Live 2018)
▶ \ptexversion‌ — New primitive since p3.8.0 (TEX Live 2018)
▶ \scriptbaselineshiftfactor‌ — New primitive since p3.7 (TEX Live 2016)
▶ \scriptscriptbaselineshiftfactor‌ — New primitive since p3.7 (TEX Live 2016)
▶ \showmode‌
▶ \sjis‌
▶ \tate‌
▶ \tbaselineshift‌
▶ \textbaselineshiftfactor‌ — New primitive since p3.7 (TEX Live 2016)
▶ \tfont‌
▶ \xkanjiskip‌
▶ \xspcode‌
▶ \ybaselineshift‌
▶ \yoko‌
▶ H

▶ Q

▶ zh

▶ zw

6.3.3 upTEX additions (available in upTEX, 𝜀-upTEX)

▶ \disablecjktoken‌
▶ \enablecjktoken‌
▶ \forcecjktoken ‌
▶ \kchar‌
▶ \kchardef ‌
▶ \ucs‌
▶ \uptexrevision ‌ — New primitive since u1.23 (TEX Live 2018)
▶ \uptexversion‌ — New primitive since u1.23 (TEX Live 2018)

11

6.3.4 𝜀-pTEX additions (available in 𝜀-pTEX, 𝜀-upTEX)

▶ \currentspacingmode‌ — New primitive since 191112 (TEX Live 2020)
▶ \currentxspacingmode‌ — New primitive since 191112 (TEX Live 2020)
▶ \epTeXinputencoding‌ — New primitive since 160201 (TEX Live 2016)
▶ \epTeXversion‌ — New primitive since 180121 (TEX Live 2018)
▶ \expanded‌ — New primitive since 180518 (TEX Live 2019)
▶ \hfi‌
▶ \ifincsname‌ — New primitive since 190709 (TEX Live 2020)
▶ \ifpdfprimitive‌ — New primitive since 150805 (TEX Live 2016)
▶ \lastnodechar‌ — New primitive since 141108 (TEX Live 2015)
▶ \lastnodesubtype‌ — New primitive since 180226 (TEX Live 2018)
▶ \odelcode‌
▶ \odelimiter‌
▶ \omathaccent‌
▶ \omathchar‌
▶ \omathchardef ‌
▶ \omathcode‌
▶ \oradical‌
▶ \pagefistretch‌
▶ \pdfcreationdate‌ — New primitive since 130605 (TEX Live 2014)
▶ \pdfelapsedtime‌ — New primitive since 161114 (TEX Live 2017)
▶ \pdffiledump‌ — New primitive since 140506 (TEX Live 2015)
▶ \pdffilemoddate‌ — New primitive since 130605 (TEX Live 2014)
▶ \pdffilesize‌ — New primitive since 130605 (TEX Live 2014)
▶ \pdflastxpos‌
▶ \pdflastypos‌
▶ \pdfmdfivesum ‌ — New primitive since 150702 (TEX Live 2016)
▶ \pdfnormaldeviate‌ — New primitive since 161114 (TEX Live 2017)
▶ \pdfpageheight‌
▶ \pdfpagewidth‌

12

▶ \pdfprimitive‌ — New primitive since 150805 (TEX Live 2016)
▶ \pdfrandomseed ‌ — New primitive since 161114 (TEX Live 2017)
▶ \pdfresettimer ‌ — New primitive since 161114 (TEX Live 2017)
▶ \pdfsavepos‌
▶ \pdfsetrandomseed‌ — New primitive since 161114 (TEX Live 2017)
▶ \pdfshellescape‌ — New primitive since 141108 (TEX Live 2015)
▶ \pdfstrcmp ‌
▶ \pdfuniformdeviate‌ — New primitive since 161114 (TEX Live 2017)
▶ \readpapersizespecial‌ — New primitive since 180901 (TEX Live 2019)
▶ \Uchar‌ — New primitive since 191112 (TEX Live 2020)
▶ \Ucharcat‌ — New primitive since 191112 (TEX Live 2020)
▶ \vfi‌
▶ fi

6.3.5 𝜀-upTEX additions (available in 𝜀-upTEX)

▶ \currentcjktoken‌ — New primitive since 191112 (TEX Live 2020)

6.4 Omitted primitives and unsupported features

Compared to Knuthian TEX and 𝜀-TEX, some primitives are omitted due to conflict with
Japanese handling. One is encTEX extension, such as ‌\mubyte ‌. The MLTEX extension, such as
‌\charsubdef‌, is included but not well-tested.

6.5 Behavior of Western TEX primitives

Here we provide some notes on behavior of Knuthian TEX and 𝜀-TEX primitives when used
within pTEX family.

6.5.1 Primitives with limitations in handling Japanese

Each of the following primitives allows only character codes 0–255; other codes will give an
error “! Bad character code.”

‌\catcode‌, ‌\sfcode ‌, ‌\mathcode‌, ‌\delcode‌, ‌\lccode ‌, ‌\uccode‌.

Each of the following primivies has ‌\...char ‌ in its name, however, the effective values
are restricted to 0–255.

13

‌\endlinechar‌, ‌\newlinechar‌, ‌\escapechar‌, ‌\defaulthyphenchar‌, ‌\defaultskewchar‌.

6.5.2 Primitives capable of handling Japanese

The following primitives are extended to support Japanese characters:

▶ \char‌ ⟨character code⟩, \chardef ‌ ⟨control sequence⟩=⟨character code⟩
In addition to 0–255, internal codes of Japanese characters are allowed. For putting

Japanese characters, a Japanese font is chosen. More information can be found in 6.6.3.

▶ \font‌, \fontname‌, \fontdimen‌

▶ \accent ‌ ⟨character code⟩=⟨character⟩
▶ \if ‌ ⟨token1⟩ ⟨token2⟩, \ifcat‌ ⟨token1⟩ ⟨token2⟩

Japanese character token is also allowed. In that case,

• ‌\if‌ tests the internal character code of the Japanese character.
• ‌\ifcat‌ tests the ‌\kcatcode‌ of the Japanese character.

� TEXbook describes the behavior of ‌\if ‌ and ‌\ifcat‌ as follows;

If either token is a control sequence, TEX considers it to have character code 256
and category code 16, unless the current equivalent of that control sequence has
been ‌\let‌ equal to a non-active character token.

However, this includes a lie; in the real implementation of tex.web, a control sequence is
considered to have a category code 0.

6.6 Case study

Here we provide some code examples which may be useful for package developers.

6.6.1 Detecting pTEX

Since the primitive ‌\ptexversion‌ is rather new (added in 2018), the safer solution for detect-
ing pTEX is to test if a primitive ‌\kanjiskip‌ is defined.

\ifx\kanjiskip\undefined
\else
% pTeX / upTeX / e-pTeX / e-upTeX

\fi

14

6.6.2 Detecting upTEX

upTEX/𝜀-upTEX are almost upward compatible with pTEX/𝜀-pTEX respectively, however, there
are two major differences:

1. Improvements in the\kcatcode ‌ business, mainly for better handling of Latin-1 characters
and CJK tokens.

2. Unicode as the default internal kanji encoding, for direct use of its huge character set.

The first difference can be detected by checking if \...cjktoken‌ primitive is defined.

\ifx\enablecjktoken\undefined
\else
% upTeX/e-upTeX

\fi

The second difference can be detected by checking if the character 0x2121 (fullwidth
space in JIS encoding) is stored as "3000 internally.

\ifx\kanjiskip\undefined
\else
\ifnum\jis"2121="3000
% upTeX/e-upTeX with internal Unicode

\else
% pTeX/e-pTeX
% or, upTeX/e-upTeX with internal EUC-JP or Shift-JIS

\fi
\fi

Please note that the format-build setting of ‌-kanji-internal=(sjis|euc)‌ with upTEX makes
it effectively pTEX regarding the character set, which means that only JIS X 0208 character set
is supported.

6.6.3 Defining large integer constants

According to [2] (Section 3.3),

A control sequence that has been defined with a \chardef ‌ command can also be
used as a ⟨number⟩. This fact is used in allocation commands such as ‌\newbox ‌.
Tokens defined with \mathchardef ‌ can also be used this way.

Here is the list of primitives which can be used for this purpose in pTEX family:

15

▶ \chardef ‌ ⟨control sequence⟩=⟨character code⟩
Defines a control sequence to be a synonym for \char‌ ⟨character code⟩.

▶ \kchardef ‌ ⟨control sequence⟩=⟨character code⟩ (for upTEX/𝜀-upTEX)
Defines a control sequence to be a synonym for \kchar‌ ⟨character code⟩.

▶ \mathchardef ‌ ⟨control sequence⟩=⟨15-bit number⟩
Defines a control sequence to be a synonym for \mathchar‌ ⟨15-bit number⟩.

▶ \omathchardef ‌ ⟨control sequence⟩=⟨27-bit number⟩ (for 𝜀-pTEX/𝜀-upTEX)
Defines a control sequence to be a synonym for \omathchar‌ ⟨27-bit number⟩.

The first two (\chardef ‌ and \kchardef ‌) are usable only when the integer being defined
is in the range of valid character codes, which is not necessarily continuous (see 8.1). The
most efficient and convenient way of defining integer constants is as follows:

• 0–255: \chardef ‌

• 256–32767: \mathchardef ‌

• 32768–134217727: \omathchardef ‌ (only for 𝜀-pTEX/𝜀-upTEX)

• (optional) 256–2147483647: \chardef ‌ (only for upTEX/𝜀-upTEX)

6.6.4 Creating a Japanese character token with a specified code

Short version:

• With 𝜀-pTEX 191112 or later (TEX Live 2020), you can use expandable primitives \Uchar‌
and \Ucharcat ‌.

• Otherwise, use the “\kansuji‌ trick”.

■ The “\kansuji‌ trick”
This is a modified version of the “\lowercase‌ trick” available in pTEX family.� Short note on the “\lowercase ‌ trick”: to create a character token with a specified code value

between 0–255 with Knuthian TEX, the “\lowercase ‌ trick” can be used; for example,

\begingroup
\lccode`\?=\mycount
\lowercase{\endgroup \def\X{?}}

16

defines ‌\X ‌ which expands to a character number ‌\mycount‌ while the \catcode‌ of ‌? ‌ (12) is
preserved. However, the trick cannot be applied to Japanese characters, since pTEX family does
not support \lccode ‌ outside 0–255.

\kansuji‌ is an expandable primitive like \number ‌ or \romannumeral‌, and it converts an
integer into its corresponding kanji notation called “kansuji” (漢数字). The important point
here is that the number-kanji mapping can be altered by \kansujichar‌.

Example 1: equivalent to ‌\def\X{あ} ‌ (JIS code 0x2422 is “あ”):

\begingroup
\kansujichar1=\jis"2422 \xdef\X{\kansuji1}

\endgroup

Example 2: equivalent to ‌\def\日本{Japan} ‌.
\begingroup
\kansujichar5=\jis"467C\relax
\kansujichar6=\jis"4B5C\relax
\expandafter\gdef\csname\kansuji56\endcsname{Japan}

\endgroup

Since \kansujichar ‌ accepts only Japanese character code, the “\kansuji‌ trick” and the
“\lowercase‌ trick” should be used complementarily.

■ \Uchar‌, \Ucharcat‌
The “\kansuji‌ trick” above includes an assignment of \kansujichar‌ which is unex-

pandable. 𝜀-pTEX 191112 or later (TEX Live 2020) provides expandable primitives \Uchar‌
and \Ucharcat‌, which are derived from X ETEX. Regardless of their names, and unlike X ETEX
or LuaTEX, these primitives do not necessarily take a Unicode value as an argument. These
primitives in 𝜀-pTEX and 𝜀-upTEX take a valid character code (see 8.1) based on the internal
kanji encoding.

▶ \Uchar‌ ⟨character code⟩
Expands to a character token with specified slot ⟨character code⟩.
• When an 8-bit number (0–255) is given, it expands to a Latin character token with

category code 12, except for a space character (32) which has category code 10.
• When a Japanese character code greater than 255 is given, it expands to a Japanese

character token with its current category code; 16–18 for 𝜀-pTEX, 16–19 for 𝜀-upTEX.

▶ \Ucharcat‌ ⟨character code⟩ ⟨category code⟩
Expands to a character token with slot ⟨character code⟩ and ⟨category code⟩ specified.

• With 𝜀-pTEX:

17

– Only 8-bit number (0–255) are allowed for ⟨character code⟩; that is, only Latin
characters can be generated.

– The values allowed for ⟨category code⟩ are 1–4, 6–8, 10–13.
• With 𝜀-upTEX:

– When ⟨character code⟩ is between 0–127, only Latin characters can be generated.
Thus, the values allowed for ⟨category code⟩ are 1–4, 6–8, 10–13.

– When ⟨character code⟩ is between 128–255, both Latin and Japanese characters
can be generated depending on the specified ⟨category code⟩; 1–4, 6–8, 10–13:
Latin character, 16–19: Japanese character.

– When ⟨character code⟩ is greater than 255, only Japanese characters can be gen-
erated. Thus, the values allowed for ⟨category code⟩ are 16–19.

6.7 Difference from pdfTEX in DVI mode

As stated above, 𝜀-pTEX/𝜀-upTEX are not upward compatible with DVI mode of pdfTEX.

6.8 Recommendation for file encoding

6.9 Input handling

For simplicity, first we introduce of input handling of 𝜀-upTEX.

6.10 Japanese tokens

7 Basic introduction to Japanese typesetting

This section does not aim to explain Japanese typesetting completely; here we provide a
minimum requirement for “getting away” with Japanese.

7.1 Automatic insertion of glue and penalties

Sometimes pTEX family automatically inserts glue and penalties between characters.

7.2 Japanese fonts

pTEX family can have 3 different “current” fonts at the same time; a Latin font, a Japanese font
for horizontal writing (“yoko-gumi”), and a Japanese font for vertical writing (“tate-gumi”).
The first one is the same as in the Knuthian TEX, which is defined in a standard TFM format.

18

The latter two are specific to pTEX family, which are defined in a JFM (Japanese TEX font
metric) format.6

While typesetting, pTEX family automatically switches between these 3 fonts, depending
on the character code and the writing direction:

• For typesetting Latin characters, the current Latin font shown by ‌\the\font ‌ is selected.

• For typesetting Japanese characters, the current Japanese font suitable for the current
writing direction is selected. It is shown by ‌\the\jfont ‌ for horizontal writing and
‌\the\tfont‌ for vertical writing.

In Knuthian TEX, the primitive \nullfont‌ refers to an “empty font” in which all characters
are undefined. However in pTEX family, this is regarded as a Latin font and there is no
equivalent to “Japanese \nullfont ‌” by design. To elaborate, it is possible only when no
Japanese font is set globally, i.e. in iniTEX mode. Once a valid Japanese font is selected, there
is no way of selecting “Japanese \nullfont‌” to discard all characters.

Moreover, pTEX and friends assume that each Japanese font (except “Japanese \nullfont ‌”
in iniTEX mode) contains all valid Japanese character code. In other words, all Japanese fonts
share the same character set corresponding to the whole valid Japanese character code range.

8 Other strange beasts

8.1 Internal kanji encodings

The ⟨character code⟩ is a union of the following two:

• Range of numbers between 0–255, and

• Numbers allowed for internal code of Japanese characters.

The former is the same as Knuthian TEX, but the latter is a problem. In upTEX/𝜀-upTEX with
-kanji-internal=uptex (default on), the range is very simple:

𝑐 ≥ 0

However in pTEX/𝜀-pTEX, only legacy encodings (EUC-JP as ‌euc ‌, or Shift-JIS as ‌sjis‌) are
available for -kanji-internal. In this case, the range can be represented as follows:

𝑐 = 256𝑐1 + 𝑐2 (𝑐𝑖 ∈ 𝐶𝑖)

6A JFM is a modified version of the standard TFM. It can be created by (u)pPLtoTF, and decoded by (u)pTFtoPL.
Please also refer to the man pages of these programs (ppltotf.man1.pdf and ptftopl.man1.pdf).

19

where{
𝐶1 = 𝐶2 = {"a1, . . . , "fe} (euc),
𝐶1 = {"81, . . . , "9f} ∪ {"e0, . . . , "fc}, 𝐶2 = {"40, . . . , "7e} ∪ {"80, . . . , "fc} (sjis).

Therefore, the overall range of ⟨character code⟩ is not continuous.
To check whether an integer is a valid Japanese character code or not, you can use

\iffontchar‌ with 𝜀-pTEX 190709 or later (TEX Live 2020). Suppose a count register ‌\mycount‌
stores an integer, you can do it as follows:

\iffontchar\jfont\mycount
% \mycount is a valid Japanese character code

\fi

Here the primitive \jfont‌ is used merely as a representative non-empty7 Japanese font
containing all valid Japanese character code (see 7.2).

7This assumption is always safe after one of the standard pTEX formats (e.g. plain pTEX, pLATEX) is loaded.

20

References

[1] TUG DVI Standards Working Group, The DVI Driver Standard, Level 0.
https://ctan.org/pkg/dvistd

[2] Victor Eĳkhout, TEX by Topic, A TEXnician’s Reference, Addison-Wesley, 1992.
https://www.eijkhout.net/texbytopic/texbytopic.html

21

https://ctan.org/pkg/dvistd
https://www.eijkhout.net/texbytopic/texbytopic.html

Index
Symbols

\accent . 14
\autospacing . 10
\autoxspacing 10
\char . 14
\chardef . 14, 16
\currentcjktoken 13
\currentspacingmode 12
\currentxspacingmode 12
\disablecjktoken 11
\disinhibitglue 10
\dtou . 10
\enablecjktoken 11
\epTeXinputencoding 12
\epTeXversion 12
\euc . 10
\expanded . 12
\font . 14
\fontdimen . 14
\fontname . 14
\forcecjktoken 11
\hfi . 12
\if . 14
\ifcat . 14
\ifdbox . 10
\ifddir . 10
\ifincsname . 12
\ifjfont . 10
\ifmbox . 10
\ifmdir . 10
\ifpdfprimitive 12
\iftbox . 10
\iftdir . 10
\iftfont . 10
\ifybox . 10
\ifydir . 10
\inhibitglue . 10

\inhibitxspcode 10
\jcharwidowpenalty 10
\jfam . 10
\jfont . 10
\jis . 10
\kanjiskip . 10
\kansuji . 10
\kansujichar . 10
\kcatcode . 10
\kchar . 11
\kchardef 11, 16
\kuten . 10
\lastnodechar 12
\lastnodesubtype 12
\mathchardef . 16
\noautospacing 10
\noautoxspacing 11
\odelcode . 12
\odelimiter . 12
\omathaccent . 12
\omathchar . 12
\omathchardef 12, 16
\omathcode . 12
\oradical . 12
\pagefistretch 12
\pdfcreationdate 12
\pdfelapsedtime 12
\pdffiledump . 12
\pdffilemoddate 12
\pdffilesize . 12
\pdflastxpos . 12
\pdflastypos . 12
\pdfmdfivesum 12
\pdfnormaldeviate 12
\pdfpageheight 12
\pdfpagewidth 12
\pdfprimitive 13

22

\pdfrandomseed 13
\pdfresettimer 13
\pdfsavepos . 13
\pdfsetrandomseed 13
\pdfshellescape 13
\pdfstrcmp . 13
\pdfuniformdeviate 13
\postbreakpenalty 11
\prebreakpenalty 11
\ptexminorversion 11
\ptexrevision 11
\ptexversion . 11
\readpapersizespecial 13
\scriptbaselineshiftfactor 11
\scriptscriptbaselineshiftfactor . . 11
\showmode . 11
\sjis . 11
\synctex . 10
\tate . 11
\tbaselineshift 11
\textbaselineshiftfactor 11
\tfont . 11
\Uchar . 13, 17
\Ucharcat 13, 17
\ucs . 11
\uptexrevision 11
\uptexversion 11
\vfi . 13
\xkanjiskip . 11
\xspcode . 11
\ybaselineshift 11
\yoko . 11

F
fi . 13

H
H . 11

Q
Q . 11

Z
zh . 11
zw . 11

23

	I Brief introduction
	pTeX and its variants
	Compatibility with Western TeX
	LaTeX on pTeX/upTeX ― pLaTeX/upLaTeX
	Eminent characteristics of pTeX/upTeX

	II Details
	Output format ― DVI
	Extensions of DVI format in pTeX family
	DVI drivers with Japanese support
	Using dvipdfmx
	Using dvips

	Programming on pTeX family
	Number of registers and marks
	Number of math families
	Additional primitives and keywords
	SyncTeX additions (available in pTeX, upTeX, -pTeX, -upTeX)
	pTeX additions (available in pTeX, upTeX, -pTeX, -upTeX)
	upTeX additions (available in upTeX, -upTeX)
	-pTeX additions (available in -pTeX, -upTeX)
	-upTeX additions (available in -upTeX)

	Omitted primitives and unsupported features
	Behavior of Western TeX primitives
	Primitives with limitations in handling Japanese
	Primitives capable of handling Japanese

	Case study
	Detecting pTeX
	Detecting upTeX
	Defining large integer constants
	Creating a Japanese character token with a specified code

	Difference from pdfTeX in DVI mode
	Recommendation for file encoding
	Input handling
	Japanese tokens

	Basic introduction to Japanese typesetting
	Automatic insertion of glue and penalties
	Japanese fonts

	Other strange beasts
	Internal kanji encodings

