
A small tutorial on the multilingual features of

PatGen2

Yannis Haralambous

(This document is released under the GNU General Public License, version 2
or any later version.)

I will very briefly discuss and illustrate by an example the features of PatGen21,
related to the translation file.

1 Syntax of the translation file

1.1 What is the problem

The problem is that in our (non-English, non-Latin, non-Indonesian2) lan-
guages, we have more characters than just the 26 letters of the Latin alphabet.
Not to mention that alphabetical orders can be quite different (remember: in
Spanish, cucaracha comes before chacal), and that there can be many ways to
express these additional characters: for example the French œ (like in ¡¡ Histoire
de l’œil ¿¿ by Georges Bataille) can be given to TEX as an 8-bit character, or
as \oe , or as \oe{}, or as ^^f7 (since we are all now working with DC fonts)
and so forth.

Now let’s make (or enhance the) hyphenation patterns for our language(s).
Fred Liang has not provided PatGen with the extensibility feature: before Pat-
Gen2, if your language had less than 26 letters you could hack patterns by
substituting letters, if it had more. . . then the odds were against you.

So the problem is to express additional characters in the patterns, in some
understandable way (and if possible to get the results in the appropriate alpha-
betical order).

1.2 The solution

PatGen2 allows you to include more characters than the 26 letters of the al-
phabet. You can specify arbitrary many input forms for each of them (these

1the extension to PatGen by Peter Breitenlohner, author of many beautiful and extremely

useful TEXware, such as TEX–XET, DVIcopy etc.
2As far as I know, English, Latin and Indonesian are the only languages without diacritics

or special characters...

1



forms will be identified internally), and you can specify the alphabetical order
of your language. The latter feature is only interesting when you want to study
the patterns file to correct bugs, it doesn’t affect the result.

These informations are transmitted to PatGen2 by means of a translation

file (usually with the extension .tra). The syntax of this file is not very user-
friendly, but if you deal with PatGen you are supposed to be a hacker anyway,
and hackers just love weird-but-efficient-syntaxes [the proof: we all like TEX!3].

On the first line you specify the \lefthyphenmin and \righthyphenmin

values. The seven first positions of this line are used as follows: two positions
for \lefthyphenmin, two positions for \righthyphenmin, and one position for
substitute symbols of each of ., -, * in the output file. This can be useful if you
are going to use the dot the asterisk or the hyphen to describe your additional
characters (for example one may use the dot to specify the dot accent on a
letter).

The next lines concern letters of the alphabet of our language. The first
position of each line is the delimiter of our fields. You know from languages like
C or awk that it is very useful to define our own delimiter (instead of the blank
space) if for any reason we want to include a blank space into our fields. This
will be the case in the example: one usually leaves a blank space after a TEX
macro without argument.

Otherwise just leave the first position blank. Next comes the standard rep-
resentation of our character (preferably lowercase). This is how the character
will appear in the patterns and in the hyphenated output file.

Follows again a delimiter, and all the equivalent representations of your char-
acter: its uppercase form, and as many other input forms we wish, always fol-
lowed by a delimiter.

The order of lines specifies the alphabetical order of your characters.
When PatGen sees two consecutive delimiters, it stops reading; so we can

include comments after that.

2 An example

To illustrate this I have taken some Greek words (people who know Xάρρυ

Kλύνν and his album Πατάτǫς will recognize some of these words. . . ) and
included an α with accent, and a variant representation of π, in form of a macro
\varpi . Also I followed the Greek alphabetical order in the translation file.

Here is my list of words:

A-NU-PO-TA-QTOS

A-KA-TA-M’A-QH-TOS

A-EI-MNH-STOS

MA-NA

3. . . just joking

2



TOUR-KO-GU-FTIS-SA

NU-QO-KO-PTHS

LI-ME-NO-FU-LA-KAS

MPRE-LOK

A-GA-\varpi A-EI

PEI-RAI-’AS

(file greek.dic); and here is my translation file (greek.tra):

1 1

a A

’a ’A

b B

g G

d D

e E

z Z

h H

j J

i I

k K

l L

m M

n N

o O

#p#P#\varpi ##

r R

s S

t T

u U

f F

q Q

y Y

w W

(yes, yes, that’s not a joke; Greek really uses values 1 and 1 for minimal
right and left hyphenations!). As you see, I have chosen # as delimiter in the
case of π, because \varpi is supposed to be followed by a blank space. And
then I wrote two delimiters (##) to show PatGen2 that I finished talking about
π.

Here is what I got on my console:

PatGen -t greek.tra -o greek.out greek.dic

This is PatGen, C Version 2.1 / Macintosh Version 2.0

Copyright (c) 1991-93 by Wilfried Ricken. All rights reserved.

3



left_hyphen_min = 1, right_hyphen_min = 1, 24 letters

0 patterns read in

pattern trie has 266 nodes, trie_max = 290, 0 outputs

hyph_start: 1

hyph_finish: 2

pat_start: 2

pat_finish: 4

good weight: 1

bad weight: 1

threshold: 1

processing dictionary with pat_len = 2, pat_dot = 1

0 good, 0 bad, 31 missed

0.00 %, 0.00 %, 100.00 %

69 patterns, 325 nodes in count trie, triec_max = 440

25 good and 42 bad patterns added (more to come)

finding 29 good and 0 bad hyphens, efficiency = 1.16

pattern trie has 333 nodes, trie_max = 349, 2 outputs

processing dictionary with pat_len = 2, pat_dot = 0

29 good, 0 bad, 2 missed

93.55 %, 0.00 %, 6.45 %

45 patterns, 301 nodes in count trie, triec_max = 378

2 good and 43 bad patterns added

finding 2 good and 0 bad hyphens, efficiency = 1.00

pattern trie has 339 nodes, trie_max = 386, 6 outputs

processing dictionary with pat_len = 2, pat_dot = 2

31 good, 0 bad, 0 missed

100.00 %, 0.00 %, 0.00 %

47 patterns, 303 nodes in count trie, triec_max = 369

0 good and 47 bad patterns added

finding 0 good and 0 bad hyphens

pattern trie has 344 nodes, trie_max = 386, 13 outputs

51 nodes and 11 outputs deleted

total of 27 patterns at hyph_level 1

pat_start: 2

pat_finish: 4

good weight: 1

bad weight: 1

threshold: 1

processing dictionary with pat_len = 2, pat_dot = 1

4



31 good, 0 bad, 0 missed

100.00 %, 0.00 %, 0.00 %

27 patterns, 283 nodes in count trie, triec_max = 315

0 good and 27 bad patterns added

finding 0 good and 0 bad hyphens

pattern trie has 295 nodes, trie_max = 386, 4 outputs

processing dictionary with pat_len = 2, pat_dot = 0

31 good, 0 bad, 0 missed

100.00 %, 0.00 %, 0.00 %

27 patterns, 283 nodes in count trie, triec_max = 303

0 good and 27 bad patterns added

finding 0 good and 0 bad hyphens

pattern trie has 320 nodes, trie_max = 386, 6 outputs

processing dictionary with pat_len = 2, pat_dot = 2

31 good, 0 bad, 0 missed

100.00 %, 0.00 %, 0.00 %

24 patterns, 280 nodes in count trie, triec_max = 286

0 good and 24 bad patterns added

finding 0 good and 0 bad hyphens

pattern trie has 328 nodes, trie_max = 386, 9 outputs

35 nodes and 7 outputs deleted

total of 0 patterns at hyph_level 2

hyphenate word list? y

writing PatTmp.2

31 good, 0 bad, 0 missed

100.00 %, 0.00 %, 0.00 %

Time elapsed: 0:37:70 minutes.

and here are the results: first of all the patterns (file greek.out)

a1g

a1e

a1k

a1m

a1n

a1p

a1t

a1q

’a1q

e1l

e1n

5



h1t

i1’a

i1m

i1r

1ko

o1g

o1p

o1t

o1f

r1k

s1s

1st

u1l

u1p

u1f

u1q

As you see, o1t comes before o1f: (smile) simply because we are talking
about o1τ and o1φ. So the alphabetical order is well respected. Also you
see that PatGen2 has read the word A-GA-\varpi A-EI exactly as if it were
A-GA-PA-EI and has made out of it the pattern a1p (if you look in the input
words there is no other reason for this pattern to exist).

And here is our result (file PatTmp.2):

a*nu*po*ta*qtos

a*ka*ta*m’a*qh*tos

a*ei*mnh*stos

ma*na

tour*ko*gu*ftis*sa

nu*qo*ko*pths

li*me*no*fu*la*kas

mpre*lok

a*ga*pa*ei

pei*rai*’as

(Of course, it is correct; you think I would have shown it if it weren’t correct?)
As you see there is no \varpi anymore: PatGen2 has really replaced it by p,
and so A-GA-\varpi A-EI has become a*ga*pa*ei.

3 Where do I find more information?

I voluntarily didn’t discussed the various parameters used for pattern generation.
For these there is very good litterature:

• the TEXbook, by the Grand Wizard of TEX arcana, appendix H;

6



• LATEX Erweiterungsmöglichkeiten, by Helmut Kopka, Addison-Wesley, Pages
482–489;

• Swedish Hyphenation for TEX, by Jan Michael Rynning, [sorry, I don’t
know where this paper is published];

• Word Hy-phen-a-tion by Com-put-er, Stanford University Report STAN-CS-83-977;

• forthcoming paper by Dominik Wujastyk, on British hyphenation;

• Hyphenation Patterns for Ancient Greek and Latin, TUGboat 13 (4),
pages 457–469.

• and many others. . .

Where to get PatGen2? probably everywhere, but certainly in Stuttgart (IP
129.69.1.12), soft/tex/systems/pc/utilities/patgen.zip (take a look also
at soft/tex/systems/knuth/texware/patgen.version2.1/patgen.README).

4 Go forth, etc etc

OK, once againGo Forth and make masterpieces of hyphenation patterns. . .but
please get in touch with the TWGMLC (Technical Working Group on Multiple
Language Coordination) first, since people there are working on many languages:
maybe they have already done what you need and are still testing it; or maybe
they haven’t and in that case you could help us a lot.

7


