
401

The DVItype processor

(Version 3.6, December 1995)

Section Page
Introduction . 1 402
The character set . 8 405
Device-independent file format . 13 407
Input from binary files . 21 414
Reading the font information . 29 418
Optional modes of output . 41 423
Defining fonts . 57 428
Low level output routines . 67 431
Translation to symbolic form . 71 432
Skipping pages . 95 442
Using the backpointers . 100 444
Reading the postamble . 103 445
The main program . 107 447
System-dependent changes . 112 449
Index . 113 450

The preparation of this report was supported in part by the National Science Foundation
under grants IST-8201926 and MCS-8300984, and by the System Development Foundation.
‘TEX’ is a trademark of the American Mathematical Society.

March 9, 2021 at 15:17

402 INTRODUCTION DVI type §1

1. Introduction. The DVItype utility program reads binary device-independent (“DVI”) files that are
produced by document compilers such as TEX, and converts them into symbolic form. This program has
two chief purposes: (1) It can be used to determine whether a DVI file is valid or invalid, when diagnosing
compiler errors; and (2) it serves as an example of a program that reads DVI files correctly, for system
programmers who are developing DVI-related software.

Goal number (2) needs perhaps a bit more explanation. Programs for typesetting need to be especially
careful about how they do arithmetic; if rounding errors accumulate, margins won’t be straight, vertical
rules won’t line up, and so on. But if rounding is done everywhere, even in the midst of words, there will be
uneven spacing between the letters, and that looks bad. Human eyes notice differences of a thousandth of an
inch in the positioning of lines that are close together; on low resolution devices, where rounding produces
effects four times as great as this, the problem is especially critical. Experience has shown that unusual care
is needed even on high-resolution equipment; for example, a mistake in the sixth significant hexadecimal
place of a constant once led to a difficult-to-find bug in some software for the Alphatype CRS, which has a
resolution of 5333 pixels per inch (make that 5333.33333333 pixels per inch). The document compilers that
generate DVI files make certain assumptions about the arithmetic that will be used by DVI-reading software,
and if these assumptions are violated the results will be of inferior quality. Therefore the present program
is intended as a guide to proper procedure in the critical places where a bit of subtlety is involved.

The first DVItype program was designed by David Fuchs in 1979, and it went through several versions on
different computers as the format of DVI files was evolving to its present form. Peter Breitenlohner helped
with the latest revisions.

The banner string defined here should be changed whenever DVItype gets modified.

define banner ≡ ´This is DVItype, Version 3.6´ { printed when the program starts }

2. This program is written in standard Pascal, except where it is necessary to use extensions; for example,
DVItype must read files whose names are dynamically specified, and that would be impossible in pure
Pascal. All places where nonstandard constructions are used have been listed in the index under “system
dependencies.”

One of the extensions to standard Pascal that we shall deal with is the ability to move to a random place
in a binary file; another is to determine the length of a binary file. Such extensions are not necessary for
reading DVI files, and they are not important for efficiency reasons either—an infrequently used program
like DVItype does not have to be efficient. But they are included there because of DVItype’s rôle as a model
of a DVI reading routine, since other DVI processors ought to be highly efficient. If DVItype is being used
with Pascals for which random file positioning is not efficiently available, the following definition should
be changed from true to false ; in such cases, DVItype will not include the optional feature that reads the
postamble first.

Another extension is to use a default case as in TANGLE, WEAVE, etc.

define random reading ≡ true { should we skip around in the file? }
define othercases ≡ others : { default for cases not listed explicitly }
define endcases ≡ end { follows the default case in an extended case statement }
format othercases ≡ else
format endcases ≡ end

§3 DVI type INTRODUCTION 403

3. The binary input comes from dvi file , and the symbolic output is written on Pascal’s standard output
file. The term print is used instead of write when this program writes on output , so that all such output
could easily be redirected if desired.

define print (#) ≡ write (#)
define print ln (#) ≡ write ln (#)

program DVI type (dvi file , output);
label 〈Labels in the outer block 4 〉
const 〈Constants in the outer block 5 〉
type 〈Types in the outer block 8 〉
var 〈Globals in the outer block 10 〉
procedure initialize ; { this procedure gets things started properly }

var i: integer ; { loop index for initializations }
begin print ln (banner);
〈Set initial values 11 〉
end;

4. If the program has to stop prematurely, it goes to the ‘final end ’. Another label, done , is used when
stopping normally.

define final end = 9999 { label for the end of it all }
define done = 30 { go here when finished with a subtask }

〈Labels in the outer block 4 〉 ≡
final end , done ;

This code is used in section 3.

5. The following parameters can be changed at compile time to extend or reduce DVItype’s capacity.

〈Constants in the outer block 5 〉 ≡
max fonts = 100; {maximum number of distinct fonts per DVI file }
max widths = 10000; {maximum number of different characters among all fonts }
line length = 79; {bracketed lines of output will be at most this long }
terminal line length = 150;

{maximum number of characters input in a single line of input from the terminal }
stack size = 100; { DVI files shouldn’t push beyond this depth }
name size = 1000; { total length of all font file names }
name length = 50; { a file name shouldn’t be longer than this }

This code is used in section 3.

6. Here are some macros for common programming idioms.

define incr (#) ≡ #← # + 1 { increase a variable by unity }
define decr (#) ≡ #← #− 1 {decrease a variable by unity }
define do nothing ≡ { empty statement }

404 INTRODUCTION DVI type §7

7. If the DVI file is badly malformed, the whole process must be aborted; DVItype will give up, after issuing
an error message about the symptoms that were noticed.

Such errors might be discovered inside of subroutines inside of subroutines, so a procedure called jump out
has been introduced. This procedure, which simply transfers control to the label final end at the end of the
program, contains the only non-local goto statement in DVItype.

define abort (#) ≡
begin print (´ ´, #); jump out ;
end

define bad dvi (#) ≡ abort (´Bad DVI file: ´, #, ´!´)

procedure jump out ;
begin goto final end ;
end;

§8 DVI type THE CHARACTER SET 405

8. The character set. Like all programs written with the WEB system, DVItype can be used with any
character set. But it uses ASCII code internally, because the programming for portable input-output is
easier when a fixed internal code is used, and because DVI files use ASCII code for file names and certain
other strings.

The next few sections of DVItype have therefore been copied from the analogous ones in the WEB system
routines. They have been considerably simplified, since DVItype need not deal with the controversial ASCII
codes less than 4́0 or greater than 1́76 . If such codes appear in the DVI file, they will be printed as question
marks.

〈Types in the outer block 8 〉 ≡
ASCII code = " " . . "~"; { a subrange of the integers }

See also sections 9 and 21.

This code is used in section 3.

9. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lower case letters. Nowadays, of course, we need to deal with both upper and
lower case alphabets in a convenient way, especially in a program like DVItype. So we shall assume that the
Pascal system being used for DVItype has a character set containing at least the standard visible characters
of ASCII code ("!" through "~").

Some Pascal compilers use the original name char for the data type associated with the characters in text
files, while other Pascals consider char to be a 64-element subrange of a larger data type that has some
other name. In order to accommodate this difference, we shall use the name text char to stand for the
data type of the characters in the output file. We shall also assume that text char consists of the elements
chr (first text char) through chr (last text char), inclusive. The following definitions should be adjusted if
necessary.

define text char ≡ char { the data type of characters in text files }
define first text char = 0 { ordinal number of the smallest element of text char }
define last text char = 127 { ordinal number of the largest element of text char }

〈Types in the outer block 8 〉 +≡
text file = packed file of text char ;

10. The DVItype processor converts between ASCII code and the user’s external character set by means
of arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

〈Globals in the outer block 10 〉 ≡
xord : array [text char] of ASCII code ; { specifies conversion of input characters }
xchr : array [0 . . 255] of text char ; { specifies conversion of output characters }
See also sections 22, 24, 25, 30, 33, 39, 41, 42, 45, 48, 57, 64, 67, 72, 73, 78, 97, 101, and 108.

This code is used in section 3.

406 THE CHARACTER SET DVI type §11

11. Under our assumption that the visible characters of standard ASCII are all present, the following
assignment statements initialize the xchr array properly, without needing any system-dependent changes.

〈Set initial values 11 〉 ≡
for i← 0 to 3́7 do xchr [i]← ´?´;
xchr [4́0]← ´ ´; xchr [4́1]← ´!´; xchr [4́2]← ´"´; xchr [4́3]← ´#´; xchr [4́4]← ´$´;
xchr [4́5]← ´%´; xchr [4́6]← ´&´; xchr [4́7]← ´´´´;
xchr [5́0]← ´(´; xchr [5́1]← ´)´; xchr [5́2]← ´*´; xchr [5́3]← ´+´; xchr [5́4]← ´,´;
xchr [5́5]← ´−´; xchr [5́6]← ´.´; xchr [5́7]← ´/´;
xchr [6́0]← ´0´; xchr [6́1]← ´1´; xchr [6́2]← ´2´; xchr [6́3]← ´3´; xchr [6́4]← ´4´;
xchr [6́5]← ´5´; xchr [6́6]← ´6´; xchr [6́7]← ´7´;
xchr [7́0]← ´8´; xchr [7́1]← ´9´; xchr [7́2]← ´:´; xchr [7́3]← ´;´; xchr [7́4]← ´<´;
xchr [7́5]← ´=´; xchr [7́6]← ´>´; xchr [7́7]← ´?´;
xchr [1́00]← ´@´; xchr [1́01]← ´A´; xchr [1́02]← ´B´; xchr [1́03]← ´C´; xchr [1́04]← ´D´;
xchr [1́05]← ´E´; xchr [1́06]← ´F´; xchr [1́07]← ´G´;
xchr [1́10]← ´H´; xchr [1́11]← ´I´; xchr [1́12]← ´J´; xchr [1́13]← ´K´; xchr [1́14]← ´L´;
xchr [1́15]← ´M´; xchr [1́16]← ´N´; xchr [1́17]← ´O´;
xchr [1́20]← ´P´; xchr [1́21]← ´Q´; xchr [1́22]← ´R´; xchr [1́23]← ´S´; xchr [1́24]← ´T´;
xchr [1́25]← ´U´; xchr [1́26]← ´V´; xchr [1́27]← ´W´;
xchr [1́30]← ´X´; xchr [1́31]← ´Y´; xchr [1́32]← ´Z´; xchr [1́33]← ´[´; xchr [1́34]← ´\´;
xchr [1́35]← ´]´; xchr [1́36]← ´^´; xchr [1́37]← ´_´;
xchr [1́40]← ´`´; xchr [1́41]← ´a´; xchr [1́42]← ´b´; xchr [1́43]← ´c´; xchr [1́44]← ´d´;
xchr [1́45]← ´e´; xchr [1́46]← ´f´; xchr [1́47]← ´g´;
xchr [1́50]← ´h´; xchr [1́51]← ´i´; xchr [1́52]← ´j´; xchr [1́53]← ´k´; xchr [1́54]← ´l´;
xchr [1́55]← ´m´; xchr [1́56]← ´n´; xchr [1́57]← ´o´;
xchr [1́60]← ´p´; xchr [1́61]← ´q´; xchr [1́62]← ´r´; xchr [1́63]← ´s´; xchr [1́64]← ´t´;
xchr [1́65]← ´u´; xchr [1́66]← ´v´; xchr [1́67]← ´w´;
xchr [1́70]← ´x´; xchr [1́71]← ´y´; xchr [1́72]← ´z´; xchr [1́73]← ´{´; xchr [1́74]← ´|´;
xchr [1́75]← ´}´; xchr [1́76]← ´~´;
for i← 1́77 to 255 do xchr [i]← ´?´;

See also sections 12, 31, 43, 58, 65, 68, 74, and 98.

This code is used in section 3.

12. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr .

〈Set initial values 11 〉 +≡
for i← first text char to last text char do xord [chr (i)]← 4́0 ;
for i← " " to "~" do xord [xchr [i]]← i;

§13 DVI type DEVICE-INDEPENDENT FILE FORMAT 407

13. Device-independent file format. Before we get into the details of DVItype, we need to know
exactly what DVI files are. The form of such files was designed by David R. Fuchs in 1979. Almost any
reasonable typesetting device can be driven by a program that takes DVI files as input, and dozens of such
DVI-to-whatever programs have been written. Thus, it is possible to print the output of document compilers
like TEX on many different kinds of equipment.

A DVI file is a stream of 8-bit bytes, which may be regarded as a series of commands in a machine-like
language. The first byte of each command is the operation code, and this code is followed by zero or
more bytes that provide parameters to the command. The parameters themselves may consist of several
consecutive bytes; for example, the ‘set rule ’ command has two parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters, and shorter
parameters that denote distances, can be either positive or negative. Such parameters are given in two’s
complement notation. For example, a two-byte-long distance parameter has a value between −215 and
215 − 1.

A DVI file consists of a “preamble,” followed by a sequence of one or more “pages,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that define the dimensions
used in the file; this must come first. Each “page” consists of a bop command, followed by any number of
other commands that tell where characters are to be placed on a physical page, followed by an eop command.
The pages appear in the order that they were generated, not in any particular numerical order. If we ignore
nop commands and fnt def commands (which are allowed between any two commands in the file), each eop
command is immediately followed by a bop command, or by a post command; in the latter case, there are
no more pages in the file, and the remaining bytes form the postamble. Further details about the postamble
will be explained later.

Some parameters in DVI commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first byte is number 0, then comes number 1, and so on. For
example, one of the parameters of a bop command points to the previous bop ; this makes it feasible to read
the pages in backwards order, in case the results are being directed to a device that stacks its output face
up. Suppose the preamble of a DVI file occupies bytes 0 to 99. Now if the first page occupies bytes 100 to
999, say, and if the second page occupies bytes 1000 to 1999, then the bop that starts in byte 1000 points to
100 and the bop that starts in byte 2000 points to 1000. (The very first bop , i.e., the one that starts in byte
100, has a pointer of −1.)

14. The DVI format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information implicit instead of explicit. When a DVI-reading program
reads the commands for a page, it keeps track of several quantities: (a) The current font f is an integer;
this value is changed only by fnt and fnt num commands. (b) The current position on the page is given by
two numbers called the horizontal and vertical coordinates, h and v. Both coordinates are zero at the upper
left corner of the page; moving to the right corresponds to increasing the horizontal coordinate, and moving
down corresponds to increasing the vertical coordinate. Thus, the coordinates are essentially Cartesian,
except that vertical directions are flipped; the Cartesian version of (h, v) would be (h,−v). (c) The current
spacing amounts are given by four numbers w, x, y, and z, where w and x are used for horizontal spacing
and where y and z are used for vertical spacing. (d) There is a stack containing (h, v, w, x, y, z) values; the
DVI commands push and pop are used to change the current level of operation. Note that the current font f
is not pushed and popped; the stack contains only information about positioning.

The values of h, v, w, x, y, and z are signed integers having up to 32 bits, including the sign. Since they
represent physical distances, there is a small unit of measurement such that increasing h by 1 means moving
a certain tiny distance to the right. The actual unit of measurement is variable, as explained below.

408 DEVICE-INDEPENDENT FILE FORMAT DVI type §15

15. Here is a list of all the commands that may appear in a DVI file. Each command is specified by
its symbolic name (e.g., bop), its opcode byte (e.g., 139), and its parameters (if any). The parameters
are followed by a bracketed number telling how many bytes they occupy; for example, ‘p[4]’ means that
parameter p is four bytes long.

set char 0 0. Typeset character number 0 from font f such that the reference point of the character is
at (h, v). Then increase h by the width of that character. Note that a character may have zero or
negative width, so one cannot be sure that h will advance after this command; but h usually does
increase.

set char 1 through set char 127 (opcodes 1 to 127). Do the operations of set char 0 ; but use the character
whose number matches the opcode, instead of character 0.

set1 128 c[1]. Same as set char 0 , except that character number c is typeset. TEX82 uses this command
for characters in the range 128 ≤ c < 256.

set2 129 c[2]. Same as set1 , except that c is two bytes long, so it is in the range 0 ≤ c < 65536. TEX82
never uses this command, which is intended for processors that deal with oriental languages; but
DVItype will allow character codes greater than 255, assuming that they all have the same width as
the character whose code is c mod 256.

set3 130 c[3]. Same as set1 , except that c is three bytes long, so it can be as large as 224 − 1.

set4 131 c[4]. Same as set1 , except that c is four bytes long, possibly even negative. Imagine that.

set rule 132 a[4] b[4]. Typeset a solid black rectangle of height a and width b, with its bottom left corner
at (h, v). Then set h ← h + b. If either a ≤ 0 or b ≤ 0, nothing should be typeset. Note that if
b < 0, the value of h will decrease even though nothing else happens. Programs that typeset from
DVI files should be careful to make the rules line up carefully with digitized characters, as explained
in connection with the rule pixels subroutine below.

put1 133 c[1]. Typeset character number c from font f such that the reference point of the character is at
(h, v). (The ‘put’ commands are exactly like the ‘set’ commands, except that they simply put out a
character or a rule without moving the reference point afterwards.)

put2 134 c[2]. Same as set2 , except that h is not changed.

put3 135 c[3]. Same as set3 , except that h is not changed.

put4 136 c[4]. Same as set4 , except that h is not changed.

put rule 137 a[4] b[4]. Same as set rule , except that h is not changed.

nop 138. No operation, do nothing. Any number of nop ’s may occur between DVI commands, but a nop
cannot be inserted between a command and its parameters or between two parameters.

bop 139 c0[4] c1[4] . . . c9[4] p[4]. Beginning of a page: Set (h, v, w, x, y, z) ← (0, 0, 0, 0, 0, 0) and set the
stack empty. Set the current font f to an undefined value. The ten ci parameters can be used to
identify pages, if a user wants to print only part of a DVI file; TEX82 gives them the values of \count0
. . . \count9 at the time \shipout was invoked for this page. The parameter p points to the previous
bop command in the file, where the first bop has p = −1.

eop 140. End of page: Print what you have read since the previous bop . At this point the stack should
be empty. (The DVI-reading programs that drive most output devices will have kept a buffer of the
material that appears on the page that has just ended. This material is largely, but not entirely, in
order by v coordinate and (for fixed v) by h coordinate; so it usually needs to be sorted into some
order that is appropriate for the device in question. DVItype does not do such sorting.)

push 141. Push the current values of (h, v, w, x, y, z) onto the top of the stack; do not change any of these
values. Note that f is not pushed.

pop 142. Pop the top six values off of the stack and assign them to (h, v, w, x, y, z). The number of pops
should never exceed the number of pushes, since it would be highly embarrassing if the stack were
empty at the time of a pop command.

right1 143 b[1]. Set h ← h + b, i.e., move right b units. The parameter is a signed number in two’s
complement notation, −128 ≤ b < 128; if b < 0, the reference point actually moves left.

§15 DVI type DEVICE-INDEPENDENT FILE FORMAT 409

right2 144 b[2]. Same as right1 , except that b is a two-byte quantity in the range −32768 ≤ b < 32768.

right3 145 b[3]. Same as right1 , except that b is a three-byte quantity in the range −223 ≤ b < 223.

right4 146 b[4]. Same as right1 , except that b is a four-byte quantity in the range −231 ≤ b < 231.

w0 147. Set h ← h + w; i.e., move right w units. With luck, this parameterless command will usually
suffice, because the same kind of motion will occur several times in succession; the following commands
explain how w gets particular values.

w1 148 b[1]. Set w ← b and h← h+ b. The value of b is a signed quantity in two’s complement notation,
−128 ≤ b < 128. This command changes the current w spacing and moves right by b.

w2 149 b[2]. Same as w1 , but b is a two-byte-long parameter, −32768 ≤ b < 32768.

w3 150 b[3]. Same as w1 , but b is a three-byte-long parameter, −223 ≤ b < 223.

w4 151 b[4]. Same as w1 , but b is a four-byte-long parameter, −231 ≤ b < 231.

x0 152. Set h← h+x; i.e., move right x units. The ‘x’ commands are like the ‘w’ commands except that
they involve x instead of w.

x1 153 b[1]. Set x← b and h← h+ b. The value of b is a signed quantity in two’s complement notation,
−128 ≤ b < 128. This command changes the current x spacing and moves right by b.

x2 154 b[2]. Same as x1 , but b is a two-byte-long parameter, −32768 ≤ b < 32768.

x3 155 b[3]. Same as x1 , but b is a three-byte-long parameter, −223 ≤ b < 223.

x4 156 b[4]. Same as x1 , but b is a four-byte-long parameter, −231 ≤ b < 231.

down1 157 a[1]. Set v ← v + a, i.e., move down a units. The parameter is a signed number in two’s
complement notation, −128 ≤ a < 128; if a < 0, the reference point actually moves up.

down2 158 a[2]. Same as down1 , except that a is a two-byte quantity in the range −32768 ≤ a < 32768.

down3 159 a[3]. Same as down1 , except that a is a three-byte quantity in the range −223 ≤ a < 223.

down4 160 a[4]. Same as down1 , except that a is a four-byte quantity in the range −231 ≤ a < 231.

y0 161. Set v ← v + y; i.e., move down y units. With luck, this parameterless command will usually
suffice, because the same kind of motion will occur several times in succession; the following commands
explain how y gets particular values.

y1 162 a[1]. Set y ← a and v ← v + a. The value of a is a signed quantity in two’s complement notation,
−128 ≤ a < 128. This command changes the current y spacing and moves down by a.

y2 163 a[2]. Same as y1 , but a is a two-byte-long parameter, −32768 ≤ a < 32768.

y3 164 a[3]. Same as y1 , but a is a three-byte-long parameter, −223 ≤ a < 223.

y4 165 a[4]. Same as y1 , but a is a four-byte-long parameter, −231 ≤ a < 231.

z0 166. Set v ← v + z; i.e., move down z units. The ‘z’ commands are like the ‘y’ commands except that
they involve z instead of y.

z1 167 a[1]. Set z ← a and v ← v + a. The value of a is a signed quantity in two’s complement notation,
−128 ≤ a < 128. This command changes the current z spacing and moves down by a.

z2 168 a[2]. Same as z1 , but a is a two-byte-long parameter, −32768 ≤ a < 32768.

z3 169 a[3]. Same as z1 , but a is a three-byte-long parameter, −223 ≤ a < 223.

z4 170 a[4]. Same as z1 , but a is a four-byte-long parameter, −231 ≤ a < 231.

fnt num 0 171. Set f ← 0. Font 0 must previously have been defined by a fnt def instruction, as explained
below.

fnt num 1 through fnt num 63 (opcodes 172 to 234). Set f ← 1, . . . , f ← 63, respectively.

fnt1 235 k[1]. Set f ← k. TEX82 uses this command for font numbers in the range 64 ≤ k < 256.

fnt2 236 k[2]. Same as fnt1 , except that k is two bytes long, so it is in the range 0 ≤ k < 65536. TEX82
never generates this command, but large font numbers may prove useful for specifications of color
or texture, or they may be used for special fonts that have fixed numbers in some external coding
scheme.

410 DEVICE-INDEPENDENT FILE FORMAT DVI type §15

fnt3 237 k[3]. Same as fnt1 , except that k is three bytes long, so it can be as large as 224 − 1.

fnt4 238 k[4]. Same as fnt1 , except that k is four bytes long; this is for the really big font numbers (and
for the negative ones).

xxx1 239 k[1] x[k]. This command is undefined in general; it functions as a (k+ 2)-byte nop unless special
DVI-reading programs are being used. TEX82 generates xxx1 when a short enough \special appears,
setting k to the number of bytes being sent. It is recommended that x be a string having the form of
a keyword followed by possible parameters relevant to that keyword.

xxx2 240 k[2] x[k]. Like xxx1 , but 0 ≤ k < 65536.

xxx3 241 k[3] x[k]. Like xxx1 , but 0 ≤ k < 224.

xxx4 242 k[4] x[k]. Like xxx1 , but k can be ridiculously large. TEX82 uses xxx4 when xxx1 would be
incorrect.

fnt def1 243 k[1] c[4] s[4] d[4] a[1] l[1] n[a+ l]. Define font k, where 0 ≤ k < 256; font definitions will be
explained shortly.

fnt def2 244 k[2] c[4] s[4] d[4] a[1] l[1] n[a+ l]. Define font k, where 0 ≤ k < 65536.

fnt def3 245 k[3] c[4] s[4] d[4] a[1] l[1] n[a+ l]. Define font k, where 0 ≤ k < 224.

fnt def4 246 k[4] c[4] s[4] d[4] a[1] l[1] n[a+ l]. Define font k, where −231 ≤ k < 231.

pre 247 i[1] num [4] den [4] mag [4] k[1] x[k]. Beginning of the preamble; this must come at the very
beginning of the file. Parameters i, num , den , mag , k, and x are explained below.

post 248. Beginning of the postamble, see below.

post post 249. Ending of the postamble, see below.

Commands 250–255 are undefined at the present time.

§16 DVI type DEVICE-INDEPENDENT FILE FORMAT 411

16. define set char 0 = 0 { typeset character 0 and move right }
define set1 = 128 { typeset a character and move right }
define set rule = 132 { typeset a rule and move right }
define put1 = 133 { typeset a character }
define put rule = 137 { typeset a rule }
define nop = 138 { no operation }
define bop = 139 {beginning of page }
define eop = 140 { ending of page }
define push = 141 { save the current positions }
define pop = 142 { restore previous positions }
define right1 = 143 {move right }
define w0 = 147 {move right by w }
define w1 = 148 {move right and set w }
define x0 = 152 {move right by x }
define x1 = 153 {move right and set x }
define down1 = 157 {move down }
define y0 = 161 {move down by y }
define y1 = 162 {move down and set y }
define z0 = 166 {move down by z }
define z1 = 167 {move down and set z }
define fnt num 0 = 171 { set current font to 0 }
define fnt1 = 235 { set current font }
define xxx1 = 239 { extension to DVI primitives }
define xxx4 = 242 { potentially long extension to DVI primitives }
define fnt def1 = 243 { define the meaning of a font number }
define pre = 247 { preamble }
define post = 248 { postamble beginning }
define post post = 249 { postamble ending }
define undefined commands ≡ 250, 251, 252, 253, 254, 255

17. The preamble contains basic information about the file as a whole. As stated above, there are six
parameters:

i[1] num [4] den [4] mag [4] k[1] x[k].

The i byte identifies DVI format; currently this byte is always set to 2. (The value i = 3 is currently used
for an extended format that allows a mixture of right-to-left and left-to-right typesetting. Some day we will
set i = 4, when DVI format makes another incompatible change—perhaps in the year 2048.)

The next two parameters, num and den , are positive integers that define the units of measurement;
they are the numerator and denominator of a fraction by which all dimensions in the DVI file could be
multiplied in order to get lengths in units of 10−7 meters. (For example, there are exactly 7227 TEX points
in 254 centimeters, and TEX82 works with scaled points where there are 216 sp in a point, so TEX82 sets
num = 25400000 and den = 7227 · 216 = 473628672.)

The mag parameter is what TEX82 calls \mag, i.e., 1000 times the desired magnification. The actual
fraction by which dimensions are multiplied is therefore mn/1000d. Note that if a TEX source document
does not call for any ‘true’ dimensions, and if you change it only by specifying a different \mag setting, the
DVI file that TEX creates will be completely unchanged except for the value of mag in the preamble and
postamble. (Fancy DVI-reading programs allow users to override the mag setting when a DVI file is being
printed.)

Finally, k and x allow the DVI writer to include a comment, which is not interpreted further. The length
of comment x is k, where 0 ≤ k < 256.

define id byte = 2 { identifies the kind of DVI files described here }

412 DEVICE-INDEPENDENT FILE FORMAT DVI type §18

18. Font definitions for a given font number k contain further parameters

c[4] s[4] d[4] a[1] l[1] n[a+ l].

The four-byte value c is the check sum that TEX (or whatever program generated the DVI file) found in the
TFM file for this font; c should match the check sum of the font found by programs that read this DVI file.

Parameter s contains a fixed-point scale factor that is applied to the character widths in font k; font
dimensions in TFM files and other font files are relative to this quantity, which is always positive and less
than 227. It is given in the same units as the other dimensions of the DVI file. Parameter d is similar to s; it
is the “design size,” and (like s) it is given in DVI units. Thus, font k is to be used at mag · s/1000d times
its normal size.

The remaining part of a font definition gives the external name of the font, which is an ASCII string of
length a + l. The number a is the length of the “area” or directory, and l is the length of the font name
itself; the standard local system font area is supposed to be used when a = 0. The n field contains the area
in its first a bytes.

Font definitions must appear before the first use of a particular font number. Once font k is defined, it
must not be defined again; however, we shall see below that font definitions appear in the postamble as well
as in the pages, so in this sense each font number is defined exactly twice, if at all. Like nop commands,
font definitions can appear before the first bop , or between an eop and a bop .

19. The last page in a DVI file is followed by ‘post ’; this command introduces the postamble, which
summarizes important facts that TEX has accumulated about the file, making it possible to print subsets of
the data with reasonable efficiency. The postamble has the form

post p[4] num [4] den [4] mag [4] l[4] u[4] s[2] t[2]
〈 font definitions 〉
post post q[4] i[1] 223’s[≥4]

Here p is a pointer to the final bop in the file. The next three parameters, num , den , and mag , are duplicates
of the quantities that appeared in the preamble.

Parameters l and u give respectively the height-plus-depth of the tallest page and the width of the widest
page, in the same units as other dimensions of the file. These numbers might be used by a DVI-reading
program to position individual “pages” on large sheets of film or paper; however, the standard convention
for output on normal size paper is to position each page so that the upper left-hand corner is exactly one
inch from the left and the top. Experience has shown that it is unwise to design DVI-to-printer software
that attempts cleverly to center the output; a fixed position of the upper left corner is easiest for users to
understand and to work with. Therefore l and u are often ignored.

Parameter s is the maximum stack depth (i.e., the largest excess of push commands over pop commands)
needed to process this file. Then comes t, the total number of pages (bop commands) present.

The postamble continues with font definitions, which are any number of fnt def commands as described
above, possibly interspersed with nop commands. Each font number that is used in the DVI file must be
defined exactly twice: Once before it is first selected by a fnt command, and once in the postamble.

§20 DVI type DEVICE-INDEPENDENT FILE FORMAT 413

20. The last part of the postamble, following the post post byte that signifies the end of the font definitions,
contains q, a pointer to the post command that started the postamble. An identification byte, i, comes next;
this currently equals 2, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., 3́37 in
octal). TEX puts out four to seven of these trailing bytes, until the total length of the file is a multiple of
four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s is
allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the
very end.

This curious way to finish off a DVI file makes it feasible for DVI-reading programs to find the postamble
first, on most computers, even though TEX wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the DVI reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read q, and
move to byte q of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the DVI reader discovers all the information needed for typesetting the pages. Note that it is
also possible to skip through the DVI file at reasonably high speed to locate a particular page, if that proves
desirable. This saves a lot of time, since DVI files used in production jobs tend to be large.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities,
so DVI format has been designed to work most efficiently with modern operating systems. As noted above,
DVItype will limit itself to the restrictions of standard Pascal if random reading is defined to be false .

414 INPUT FROM BINARY FILES DVI type §21

21. Input from binary files. We have seen that a DVI file is a sequence of 8-bit bytes. The bytes
appear physically in what is called a ‘packed file of 0 . . 255’ in Pascal lingo.

Packing is system dependent, and many Pascal systems fail to implement such files in a sensible way
(at least, from the viewpoint of producing good production software). For example, some systems treat all
byte-oriented files as text, looking for end-of-line marks and such things. Therefore some system-dependent
code is often needed to deal with binary files, even though most of the program in this section of DVItype
is written in standard Pascal.

One common way to solve the problem is to consider files of integer numbers, and to convert an integer
in the range −231 ≤ x < 231 to a sequence of four bytes (a, b, c, d) using the following code, which avoids the
controversial integer division of negative numbers:

if x ≥ 0 then a← x div 1́00000000
else begin x← (x+ 1́0000000000) + 1́0000000000 ; a← x div 1́00000000 + 128;

end
x← xmod 1́00000000 ;
b← x div 2́00000 ; x← xmod 2́00000 ;
c← x div 4́00 ; d← xmod 4́00 ;

The four bytes are then kept in a buffer and output one by one. (On 36-bit computers, an additional
division by 16 is necessary at the beginning. Another way to separate an integer into four bytes is to
use/abuse Pascal’s variant records, storing an integer and retrieving bytes that are packed in the same place;
caveat implementor!) It is also desirable in some cases to read a hundred or so integers at a time, maintaining
a larger buffer.

We shall stick to simple Pascal in this program, for reasons of clarity, even if such simplicity is sometimes
unrealistic.

〈Types in the outer block 8 〉 +≡
eight bits = 0 . . 255; { unsigned one-byte quantity }
byte file = packed file of eight bits ; {files that contain binary data }

22. The program deals with two binary file variables: dvi file is the main input file that we are translating
into symbolic form, and tfm file is the current font metric file from which character-width information is
being read.

〈Globals in the outer block 10 〉 +≡
dvi file : byte file ; { the stuff we are DVItyping }
tfm file : byte file ; { a font metric file }

23. To prepare these files for input, we reset them. An extension of Pascal is needed in the case of tfm file ,
since we want to associate it with external files whose names are specified dynamically (i.e., not known at
compile time). The following code assumes that ‘reset (f, s)’ does this, when f is a file variable and s is
a string variable that specifies the file name. If eof (f) is true immediately after reset (f, s) has acted, we
assume that no file named s is accessible.

procedure open dvi file ; { prepares to read packed bytes in dvi file }
begin reset (dvi file); cur loc ← 0;
end;

procedure open tfm file ; { prepares to read packed bytes in tfm file }
begin reset (tfm file , cur name);
end;

§24 DVI type INPUT FROM BINARY FILES 415

24. If you looked carefully at the preceding code, you probably asked, “What are cur loc and cur name?”
Good question. They’re global variables: cur loc is the number of the byte about to be read next from
dvi file , and cur name is a string variable that will be set to the current font metric file name before
open tfm file is called.

〈Globals in the outer block 10 〉 +≡
cur loc : integer ; {where we are about to look, in dvi file }
cur name : packed array [1 . . name length] of char ; { external name, with no lower case letters }

25. It turns out to be convenient to read four bytes at a time, when we are inputting from TFM files. The
input goes into global variables b0 , b1 , b2 , and b3 , with b0 getting the first byte and b3 the fourth.

〈Globals in the outer block 10 〉 +≡
b0 , b1 , b2 , b3 : eight bits ; { four bytes input at once }

26. The read tfm word procedure sets b0 through b3 to the next four bytes in the current TFM file.

procedure read tfm word ;
begin read (tfm file , b0); read (tfm file , b1); read (tfm file , b2); read (tfm file , b3);
end;

416 INPUT FROM BINARY FILES DVI type §27

27. We shall use another set of simple functions to read the next byte or bytes from dvi file . There are
seven possibilities, each of which is treated as a separate function in order to minimize the overhead for
subroutine calls.

function get byte : integer ; { returns the next byte, unsigned }
var b: eight bits ;
begin if eof (dvi file) then get byte ← 0
else begin read (dvi file , b); incr (cur loc); get byte ← b;

end;
end;

function signed byte : integer ; { returns the next byte, signed }
var b: eight bits ;
begin read (dvi file , b); incr (cur loc);
if b < 128 then signed byte ← b else signed byte ← b− 256;
end;

function get two bytes : integer ; { returns the next two bytes, unsigned }
var a, b: eight bits ;
begin read (dvi file , a); read (dvi file , b); cur loc ← cur loc + 2; get two bytes ← a ∗ 256 + b;
end;

function signed pair : integer ; { returns the next two bytes, signed }
var a, b: eight bits ;
begin read (dvi file , a); read (dvi file , b); cur loc ← cur loc + 2;
if a < 128 then signed pair ← a ∗ 256 + b
else signed pair ← (a− 256) ∗ 256 + b;
end;

function get three bytes : integer ; { returns the next three bytes, unsigned }
var a, b, c: eight bits ;
begin read (dvi file , a); read (dvi file , b); read (dvi file , c); cur loc ← cur loc + 3;
get three bytes ← (a ∗ 256 + b) ∗ 256 + c;
end;

function signed trio : integer ; { returns the next three bytes, signed }
var a, b, c: eight bits ;
begin read (dvi file , a); read (dvi file , b); read (dvi file , c); cur loc ← cur loc + 3;
if a < 128 then signed trio ← (a ∗ 256 + b) ∗ 256 + c
else signed trio ← ((a− 256) ∗ 256 + b) ∗ 256 + c;
end;

function signed quad : integer ; { returns the next four bytes, signed }
var a, b, c, d: eight bits ;
begin read (dvi file , a); read (dvi file , b); read (dvi file , c); read (dvi file , d); cur loc ← cur loc + 4;
if a < 128 then signed quad ← ((a ∗ 256 + b) ∗ 256 + c) ∗ 256 + d
else signed quad ← (((a− 256) ∗ 256 + b) ∗ 256 + c) ∗ 256 + d;
end;

§28 DVI type INPUT FROM BINARY FILES 417

28. Finally we come to the routines that are used only if random reading is true . The driver program
below needs two such routines: dvi length should compute the total number of bytes in dvi file , possibly also
causing eof (dvi file) to be true; and move to byte (n) should position dvi file so that the next get byte will
read byte n, starting with n = 0 for the first byte in the file.

Such routines are, of course, highly system dependent. They are implemented here in terms of two
assumed system routines called set pos and cur pos . The call set pos (f, n) moves to item n in file f , unless
n is negative or larger than the total number of items in f ; in the latter case, set pos (f, n) moves to the end
of file f . The call cur pos (f) gives the total number of items in f , if eof (f) is true; we use cur pos only in
such a situation.

function dvi length : integer ;
begin set pos (dvi file ,−1); dvi length ← cur pos (dvi file);
end;

procedure move to byte (n : integer);
begin set pos (dvi file , n); cur loc ← n;
end;

418 READING THE FONT INFORMATION DVI type §29

29. Reading the font information. DVI file format does not include information about character
widths, since that would tend to make the files a lot longer. But a program that reads a DVI file is supposed
to know the widths of the characters that appear in set char commands. Therefore DVItype looks at the
font metric (TFM) files for the fonts that are involved.

The character-width data appears also in other files (e.g., in GF files that specify bit patterns for digitized
characters); thus, it is usually possible for DVI reading programs to get by with accessing only one file per
font. DVItype has a comparatively easy task in this regard, since it needs only a few words of information
from each font; other DVI-to-printer programs may have to go to some pains to deal with complications that
arise when a large number of large font files all need to be accessed simultaneously.

30. For purposes of this program, we need to know only two things about a given character c in a given
font f : (1) Is c a legal character in f? (2) If so, what is the width of c? We also need to know the symbolic
name of each font, so it can be printed out, and we need to know the approximate size of inter-word spaces
in each font.

The answers to these questions appear implicitly in the following data structures. The current number of
known fonts is nf . Each known font has an internal number f , where 0 ≤ f < nf ; the external number of this
font, i.e., its font identification number in the DVI file, is font num [f], and the external name of this font is
the string that occupies positions font name [f] through font name [f + 1]−1 of the array names . The latter
array consists of ASCII code characters, and font name [nf] is its first unoccupied position. A horizontal
motion in the range −4∗ font space [f] < h < font space [f] will be treated as a ‘kern’ that is not indicated in
the printouts that DVItype produces between brackets. The legal characters run from font bc [f] to font ec [f],
inclusive; more precisely, a given character c is valid in font f if and only if font bc [f] ≤ c ≤ font ec [f] and
char width (f)(c) 6= invalid width . Finally, char width (f)(c) = width [width base [f] + c], and width ptr is the
first unused position of the width array.

define char width end (#) ≡ #]
define char width (#) ≡ width [width base [#] + char width end
define invalid width ≡ 1́7777777777
define invalid font ≡ max fonts

〈Globals in the outer block 10 〉 +≡
font num : array [0 . . max fonts] of integer ; { external font numbers }
font name : array [0 . . max fonts] of 1 . . name size ; { starting positions of external font names }
names : array [1 . . name size] of ASCII code ; { characters of names }
font check sum : array [0 . . max fonts] of integer ; { check sums }
font scaled size : array [0 . . max fonts] of integer ; { scale factors }
font design size : array [0 . . max fonts] of integer ; {design sizes }
font space : array [0 . . max fonts] of integer ; { boundary between “small” and “large” spaces }
font bc : array [0 . . max fonts] of integer ; {beginning characters in fonts }
font ec : array [0 . . max fonts] of integer ; { ending characters in fonts }
width base : array [0 . . max fonts] of integer ; { index into width table }
width : array [0 . . max widths] of integer ; { character widths, in DVI units }
nf : 0 . . max fonts ; { the number of known fonts }
width ptr : 0 . . max widths ; { the number of known character widths }

31. 〈Set initial values 11 〉 +≡
nf ← 0; width ptr ← 0; font name [0]← 1;
font space [invalid font]← 0; { for out space and out vmove }
font bc [invalid font]← 1; font ec [invalid font]← 0;

§32 DVI type READING THE FONT INFORMATION 419

32. It is, of course, a simple matter to print the name of a given font.

procedure print font (f : integer); { f is an internal font number }
var k: 0 . . name size ; { index into names }
begin if f = invalid font then print (´UNDEFINED!´)
else begin for k ← font name [f] to font name [f + 1]− 1 do print (xchr [names [k]]);

end;
end;

33. An auxiliary array in width is used to hold the widths as they are input. The global variables
tfm check sum and tfm design size are set to the check sum and design size that appear in the current
TFM file.

〈Globals in the outer block 10 〉 +≡
in width : array [0 . . 255] of integer ; { TFM width data in DVI units }
tfm check sum : integer ; { check sum found in tfm file }
tfm design size : integer ; {design size found in tfm file , in DVI units }
tfm conv : real ; { DVI units per absolute TFM unit }

34. Here is a procedure that absorbs the necessary information from a TFM file, assuming that the file has
just been successfully reset so that we are ready to read its first byte. (A complete description of TFM file
format appears in the documentation of TFtoPL and will not be repeated here.) The procedure does not
check the TFM file for validity, nor does it give explicit information about what is wrong with a TFM file that
proves to be invalid; DVI-reading programs need not do this, since TFM files are almost always valid, and
since the TFtoPL utility program has been specifically designed to diagnose TFM errors. The procedure simply
returns false if it detects anything amiss in the TFM data.

There is a parameter, z, which represents the scaling factor being used to compute the font dimensions;
it must be in the range 0 < z < 227.

function in TFM (z : integer): boolean ; { input TFM data or return false }
label 9997, { go here when the format is bad }

9998, { go here when the information cannot be loaded }
9999; { go here to exit }

var k: integer ; { index for loops }
lh : integer ; { length of the header data, in four-byte words }
nw : integer ; { number of words in the width table }
wp : 0 . . max widths ; { new value of width ptr after successful input }
alpha , beta : integer ; { quantities used in the scaling computation }

begin 〈Read past the header data; goto 9997 if there is a problem 35 〉;
〈Store character-width indices at the end of the width table 36 〉;
〈Read and convert the width values, setting up the in width table 37 〉;
〈Move the widths from in width to width , and append pixel width values 40 〉;
width ptr ← wp ; in TFM ← true ; goto 9999;

9997: print ln (´−−−not loaded, TFM file is bad´);
9998: in TFM ← false ;
9999: end;

420 READING THE FONT INFORMATION DVI type §35

35. 〈Read past the header data; goto 9997 if there is a problem 35 〉 ≡
read tfm word ; lh ← b2 ∗ 256 + b3 ; read tfm word ; font bc [nf]← b0 ∗ 256 + b1 ;
font ec [nf]← b2 ∗ 256 + b3 ;
if font ec [nf] < font bc [nf] then font bc [nf]← font ec [nf] + 1;
if width ptr + font ec [nf]− font bc [nf] + 1 > max widths then

begin print ln (´−−−not loaded, DVItype needs larger width table´); goto 9998;
end;

wp ← width ptr + font ec [nf]− font bc [nf] + 1; read tfm word ; nw ← b0 ∗ 256 + b1 ;
if (nw = 0) ∨ (nw > 256) then goto 9997;
for k ← 1 to 3 + lh do

begin if eof (tfm file) then goto 9997;
read tfm word ;
if k = 4 then

if b0 < 128 then tfm check sum ← ((b0 ∗ 256 + b1) ∗ 256 + b2) ∗ 256 + b3
else tfm check sum ← (((b0 − 256) ∗ 256 + b1) ∗ 256 + b2) ∗ 256 + b3

else if k = 5 then
if b0 < 128 then tfm design size ← round (tfm conv ∗ (((b0 ∗ 256 + b1) ∗ 256 + b2) ∗ 256 + b3))
else goto 9997;

end;

This code is used in section 34.

36. 〈Store character-width indices at the end of the width table 36 〉 ≡
if wp > 0 then

for k ← width ptr to wp − 1 do
begin read tfm word ;
if b0 > nw then goto 9997;
width [k]← b0 ;
end;

This code is used in section 34.

§37 DVI type READING THE FONT INFORMATION 421

37. The most important part of in TFM is the width computation, which involves multiplying the relative
widths in the TFM file by the scaling factor in the DVI file. This fixed-point multiplication must be done
with precisely the same accuracy by all DVI-reading programs, in order to validate the assumptions made by
DVI-writing programs like TEX82.

Let us therefore summarize what needs to be done. Each width in a TFM file appears as a four-byte quantity
called a fix word . A fix word whose respective bytes are (a, b, c, d) represents the number

x =

{
b · 2−4 + c · 2−12 + d · 2−20, if a = 0;
−16 + b · 2−4 + c · 2−12 + d · 2−20, if a = 255.

(No other choices of a are allowed, since the magnitude of a TFM dimension must be less than 16.) We want
to multiply this quantity by the integer z, which is known to be less than 227. If z < 223, the individual
multiplications b · z, c · z, d · z cannot overflow; otherwise we will divide z by 2, 4, 8, or 16, to obtain a
multiplier less than 223, and we can compensate for this later. If z has thereby been replaced by z′ = z/2e,
let β = 24−e; we shall compute

b(b+ c · 2−8 + d · 2−16) z′/βc

if a = 0, or the same quantity minus α = 24+ez′ if a = 255. This calculation must be done exactly, for
the reasons stated above; the following program does the job in a system-independent way, assuming that
arithmetic is exact on numbers less than 231 in magnitude.

〈Read and convert the width values, setting up the in width table 37 〉 ≡
〈Replace z by z′ and compute α, β 38 〉;
for k ← 0 to nw − 1 do

begin read tfm word ; in width [k]← (((((b3 ∗ z) div 4́00) + (b2 ∗ z)) div 4́00) + (b1 ∗ z)) div beta ;
if b0 > 0 then

if b0 < 255 then goto 9997
else in width [k]← in width [k]− alpha ;

end

This code is used in section 34.

38. 〈Replace z by z′ and compute α, β 38 〉 ≡
begin alpha ← 16;
while z ≥ 4́0000000 do

begin z ← z div 2; alpha ← alpha + alpha ;
end;

beta ← 256 div alpha ; alpha ← alpha ∗ z;
end

This code is used in section 37.

422 READING THE FONT INFORMATION DVI type §39

39. A DVI-reading program usually works with font files instead of TFM files, so DVItype is atypical in
that respect. Font files should, however, contain exactly the same character width data that is found in the
corresponding TFMs; check sums are used to help ensure this. In addition, font files usually also contain the
widths of characters in pixels, since the device-independent character widths of TFM files are generally not
perfect multiples of pixels.

The pixel width array contains this information; when width [k] is the device-independent width of some
character in DVI units, pixel width [k] is the corresponding width of that character in an actual font. The
macro char pixel width is set up to be analogous to char width .

define char pixel width (#) ≡ pixel width [width base [#] + char width end

〈Globals in the outer block 10 〉 +≡
pixel width : array [0 . . max widths] of integer ; { actual character widths, in pixels }
conv : real ; { converts DVI units to pixels }
true conv : real ; { converts unmagnified DVI units to pixels }
numerator , denominator : integer ; { stated conversion ratio }
mag : integer ; {magnification factor times 1000 }

40. The following code computes pixel widths by simply rounding the TFM widths to the nearest integer
number of pixels, based on the conversion factor conv that converts DVI units to pixels. However, such a
simple formula will not be valid for all fonts, and it will often give results that are off by ±1 when a low-
resolution font has been carefully hand-fitted. For example, a font designer often wants to make the letter
‘m’ a pixel wider or narrower in order to make the font appear more consistent. DVI-to-printer programs
should therefore input the correct pixel width information from font files whenever there is a chance that it
may differ. A warning message may also be desirable in the case that at least one character is found whose
pixel width differs from conv ∗ width by more than a full pixel.

define pixel round (#) ≡ round (conv ∗ (#))

〈Move the widths from in width to width , and append pixel width values 40 〉 ≡
if in width [0] 6= 0 then goto 9997; { the first width should be zero }
width base [nf]← width ptr − font bc [nf];
if wp > 0 then

for k ← width ptr to wp − 1 do
if width [k] = 0 then

begin width [k]← invalid width ; pixel width [k]← 0;
end

else begin width [k]← in width [width [k]]; pixel width [k]← pixel round (width [k]);
end

This code is used in section 34.

§41 DVI type OPTIONAL MODES OF OUTPUT 423

41. Optional modes of output. DVItype will print different quantities of information based on some
options that the user must specify: The out mode level is set to one of five values (errors only , terse ,
mnemonics only , verbose , the works), giving different degrees of output; and the listing can be confined
to a restricted subset of the pages by specifying the desired starting page and the maximum number of
pages. Furthermore there is an option to specify the resolution of an assumed discrete output device, so that
pixel-oriented calculations will be shown; and there is an option to override the magnification factor that is
stated in the DVI file.

The starting page is specified by giving a sequence of 1 to 10 numbers or asterisks separated by dots. For
example, the specification ‘1.*.−5’ can be used to refer to a page output by TEX when \count0 = 1 and
\count2 = −5. (Recall that bop commands in a DVI file are followed by ten ‘count’ values.) An asterisk
matches any number, so the ‘*’ in ‘1.*.−5’ means that \count1 is ignored when specifying the first page. If
several pages match the given specification, DVItype will begin with the earliest such page in the file. The
default specification ‘*’ (which matches all pages) therefore denotes the page at the beginning of the file.

When DVItype begins, it engages the user in a brief dialog so that the options will be specified. This part of
DVItype requires nonstandard Pascal constructions to handle the online interaction; so it may be preferable
in some cases to omit the dialog and simply to stick to the default options (out mode = the works , starting
page ‘*’, max pages = 1000000, resolution = 300.0, new mag = 0). On other hand, the system-dependent
routines that are needed are not complicated, so it will not be terribly difficult to introduce them.

define errors only = 0 { value of out mode when minimal printing occurs }
define terse = 1 { value of out mode for abbreviated output }
define mnemonics only = 2 { value of out mode for medium-quantity output }
define verbose = 3 { value of out mode for detailed tracing }
define the works = 4 { verbose , plus check of postamble if random reading }

〈Globals in the outer block 10 〉 +≡
out mode : errors only . . the works ; { controls the amount of output }
max pages : integer ; { at most this many bop . . eop pages will be printed }
resolution : real ; { pixels per inch }
new mag : integer ; { if positive, overrides the postamble’s magnification }

42. The starting page specification is recorded in two global arrays called start count and start there .
For example, ‘1.*.−5’ is represented by start there [0] = true , start count [0] = 1, start there [1] = false ,
start there [2] = true , start count [2] = −5. We also set start vals = 2, to indicate that count 2 was the last
one mentioned. The other values of start count and start there are not important, in this example.

〈Globals in the outer block 10 〉 +≡
start count : array [0 . . 9] of integer ; { count values to select starting page }
start there : array [0 . . 9] of boolean ; { is the start count value relevant? }
start vals : 0 . . 9; { the last count considered significant }
count : array [0 . . 9] of integer ; { the count values on the current page }

43. 〈Set initial values 11 〉 +≡
out mode ← the works ; max pages ← 1000000; start vals ← 0; start there [0]← false ;

44. Here is a simple subroutine that tests if the current page might be the starting page.

function start match : boolean ; {does count match the starting spec? }
var k: 0 . . 9; { loop index }

match : boolean ; { does everything match so far? }
begin match ← true ;
for k ← 0 to start vals do

if start there [k] ∧ (start count [k] 6= count [k]) then match ← false ;
start match ← match ;
end;

424 OPTIONAL MODES OF OUTPUT DVI type §45

45. The input ln routine waits for the user to type a line at his or her terminal; then it puts ASCII-code
equivalents for the characters on that line into the buffer array. The term in file is used for terminal input,
and term out for terminal output.

〈Globals in the outer block 10 〉 +≡
buffer : array [0 . . terminal line length] of ASCII code ;
term in : text file ; { the terminal, considered as an input file }
term out : text file ; { the terminal, considered as an output file }

46. Since the terminal is being used for both input and output, some systems need a special routine to make
sure that the user can see a prompt message before waiting for input based on that message. (Otherwise
the message may just be sitting in a hidden buffer somewhere, and the user will have no idea what the
program is waiting for.) We shall invoke a system-dependent subroutine update terminal in order to avoid
this problem.

define update terminal ≡ break (term out) { empty the terminal output buffer }

47. During the dialog, DVItype will treat the first blank space in a line as the end of that line. Therefore
input ln makes sure that there is always at least one blank space in buffer .

procedure input ln ; { inputs a line from the terminal }
var k: 0 . . terminal line length ;
begin update terminal ; reset (term in);
if eoln (term in) then read ln (term in);
k ← 0;
while (k < terminal line length) ∧ ¬eoln (term in) do

begin buffer [k]← xord [term in↑]; incr (k); get (term in);
end;

buffer [k]← " ";
end;

48. The global variable buf ptr is used while scanning each line of input; it points to the first unread
character in buffer .

〈Globals in the outer block 10 〉 +≡
buf ptr : 0 . . terminal line length ; { the number of characters read }

49. Here is a routine that scans a (possibly signed) integer and computes the decimal value. If no decimal
integer starts at buf ptr , the value 0 is returned. The integer should be less than 231 in absolute value.

function get integer : integer ;
var x: integer ; { accumulates the value }

negative : boolean ; { should the value be negated? }
begin if buffer [buf ptr] = "−" then

begin negative ← true ; incr (buf ptr);
end

else negative ← false ;
x← 0;
while (buffer [buf ptr] ≥ "0") ∧ (buffer [buf ptr] ≤ "9") do

begin x← 10 ∗ x+ buffer [buf ptr]− "0"; incr (buf ptr);
end;

if negative then get integer ← −x else get integer ← x;
end;

§50 DVI type OPTIONAL MODES OF OUTPUT 425

50. The selected options are put into global variables by the dialog procedure, which is called just as
DVItype begins.

procedure dialog ;
label 1, 2, 3, 4, 5;
var k: integer ; { loop variable }
begin rewrite (term out); { prepare the terminal for output }
write ln (term out , banner); 〈Determine the desired out mode 51 〉;
〈Determine the desired start count values 52 〉;
〈Determine the desired max pages 53 〉;
〈Determine the desired resolution 54 〉;
〈Determine the desired new mag 55 〉;
〈Print all the selected options 56 〉;
end;

51. 〈Determine the desired out mode 51 〉 ≡
1: write (term out , ´Output level (default=4, ? for help): ´); out mode ← the works ; input ln ;

if buffer [0] 6= " " then
if (buffer [0] ≥ "0") ∧ (buffer [0] ≤ "4") then out mode ← buffer [0]− "0"

else begin write (term out , ´Type 4 for complete listing,´);
write (term out , ´ 0 for errors and fonts only,´);
write ln (term out , ´ 1 or 2 or 3 for something in between.´); goto 1;
end

This code is used in section 50.

52. 〈Determine the desired start count values 52 〉 ≡
2: write (term out , ´Starting page (default=*): ´); start vals ← 0; start there [0]← false ; input ln ;

buf ptr ← 0; k ← 0;
if buffer [0] 6= " " then

repeat if buffer [buf ptr] = "*" then
begin start there [k]← false ; incr (buf ptr);
end

else begin start there [k]← true ; start count [k]← get integer ;
end;

if (k < 9) ∧ (buffer [buf ptr] = ".") then
begin incr (k); incr (buf ptr);
end

else if buffer [buf ptr] = " " then start vals ← k
else begin write (term out , ´Type, e.g., 1.*.−5 to specify the ´);

write ln (term out , ´first page with \count0=1, \count2=−5.´); goto 2;
end;

until start vals = k

This code is used in section 50.

426 OPTIONAL MODES OF OUTPUT DVI type §53

53. 〈Determine the desired max pages 53 〉 ≡
3: write (term out , ´Maximum number of pages (default=1000000): ´); max pages ← 1000000;

input ln ; buf ptr ← 0;
if buffer [0] 6= " " then

begin max pages ← get integer ;
if max pages ≤ 0 then

begin write ln (term out , ´Please type a positive number.´); goto 3;
end;

end

This code is used in section 50.

54. 〈Determine the desired resolution 54 〉 ≡
4: write (term out , ´Assumed device resolution´);

write (term out , ´ in pixels per inch (default=300/1): ´); resolution ← 300.0; input ln ;
buf ptr ← 0;
if buffer [0] 6= " " then

begin k ← get integer ;
if (k > 0) ∧ (buffer [buf ptr] = "/") ∧ (buffer [buf ptr + 1] > "0") ∧ (buffer [buf ptr + 1] ≤ "9") then

begin incr (buf ptr); resolution ← k/get integer ;
end

else begin write (term out , ´Type a ratio of positive integers;´);
write ln (term out , ´ (1 pixel per mm would be 254/10).´); goto 4;
end;

end

This code is used in section 50.

55. 〈Determine the desired new mag 55 〉 ≡
5: write (term out , ´New magnification (default=0 to keep the old one): ´); new mag ← 0;

input ln ; buf ptr ← 0;
if buffer [0] 6= " " then

if (buffer [0] ≥ "0") ∧ (buffer [0] ≤ "9") then new mag ← get integer
else begin write (term out , ´Type a positive integer to override ´);

write ln (term out , ´the magnification in the DVI file.´); goto 5;
end

This code is used in section 50.

§56 DVI type OPTIONAL MODES OF OUTPUT 427

56. After the dialog is over, we print the options so that the user can see what DVItype thought was
specified.

〈Print all the selected options 56 〉 ≡
print ln (´Options selected:´); print (´ Starting page = ´);
for k ← 0 to start vals do

begin if start there [k] then print (start count [k] : 1)
else print (´*´);
if k < start vals then print (´.´)
else print ln (´ ´);
end;

print ln (´ Maximum number of pages = ´,max pages : 1);
print (´ Output level = ´, out mode : 1);
case out mode of
errors only : print ln (´ (showing bops, fonts, and error messages only)´);
terse : print ln (´ (terse)´);
mnemonics only : print ln (´ (mnemonics)´);
verbose : print ln (´ (verbose)´);
the works : if random reading then print ln (´ (the works)´)

else begin out mode ← verbose ; print ln (´ (the works: same as level 3 in this DVItype)´);
end;

end;
print ln (´ Resolution = ´, resolution : 12 : 8, ´ pixels per inch´);
if new mag > 0 then print ln (´ New magnification factor = ´,new mag/1000 : 8 : 3)

This code is used in section 50.

428 DEFINING FONTS DVI type §57

57. Defining fonts. When out mode = the works , DVItype reads the postamble first and loads all of
the fonts defined there; then it processes the pages. In this case, a fnt def command should match a previous
definition if and only if the fnt def being processed is not in the postamble. But if out mode < the works ,
DVItype reads the pages first and the postamble last, so the conventions are reversed: a fnt def should
match a previous fnt def if and only if the current one is a part of the postamble.

A global variable in postamble is provided to tell whether we are processing the postamble or not.

〈Globals in the outer block 10 〉 +≡
in postamble : boolean ; { are we reading the postamble? }

58. 〈Set initial values 11 〉 +≡
in postamble ← false ;

59. The following subroutine does the necessary things when a fnt def command is being processed.

procedure define font (e : integer); { e is an external font number }
var f : 0 . . max fonts ; p: integer ; { length of the area/directory spec }
n: integer ; { length of the font name proper }
c, q, d,m: integer ; { check sum, scaled size, design size, magnification }
r: 0 . . name length ; { index into cur name }
j, k: 0 . . name size ; { indices into names }
mismatch : boolean ; { do names disagree? }

begin if nf = max fonts then
abort (´DVItype capacity exceeded (max fonts=´,max fonts : 1, ´)!´);

font num [nf]← e; f ← 0;
while font num [f] 6= e do incr (f);
〈Read the font parameters into position for font nf , and print the font name 61 〉;
if ((out mode = the works) ∧ in postamble) ∨ ((out mode < the works) ∧ ¬in postamble) then

begin if f < nf then print ln (´−−−this font was already defined!´);
end

else begin if f = nf then print ln (´−−−this font wasn´´t loaded before!´);
end;

if f = nf then 〈Load the new font, unless there are problems 62 〉
else 〈Check that the current font definition matches the old one 60 〉;
end;

60. 〈Check that the current font definition matches the old one 60 〉 ≡
begin if font check sum [f] 6= c then

print ln (´−−−check sum doesn´´t match previous definition!´);
if font scaled size [f] 6= q then print ln (´−−−scaled size doesn´´t match previous definition!´);
if font design size [f] 6= d then print ln (´−−−design size doesn´´t match previous definition!´);
j ← font name [f]; k ← font name [nf];
if font name [f + 1]− j 6= font name [nf + 1]− k then mismatch ← true
else begin mismatch ← false ;

while j < font name [f + 1] do
begin if names [j] 6= names [k] then mismatch ← true ;
incr (j); incr (k);
end;

end;
if mismatch then print ln (´−−−font name doesn´´t match previous definition!´);
end

This code is used in section 59.

§61 DVI type DEFINING FONTS 429

61. 〈Read the font parameters into position for font nf , and print the font name 61 〉 ≡
c← signed quad ; font check sum [nf]← c;
q ← signed quad ; font scaled size [nf]← q;
d← signed quad ; font design size [nf]← d;
if (q ≤ 0) ∨ (d ≤ 0) then m← 1000
else m← round ((1000.0 ∗ conv ∗ q)/(true conv ∗ d));
p← get byte ; n← get byte ;
if font name [nf] + n+ p > name size then

abort (´DVItype capacity exceeded (name size=´,name size : 1, ´)!´);
font name [nf + 1]← font name [nf] + n+ p;
if showing then print (´: ´) {when showing is true, the font number has already been printed }
else print (´Font ´, e : 1, ´: ´);
if n+ p = 0 then print (´null font name!´)
else for k ← font name [nf] to font name [nf + 1]− 1 do names [k]← get byte ;
print font (nf);
if ¬showing then

if m 6= 1000 then print (´ scaled ´,m : 1)

This code is used in section 59.

62. 〈Load the new font, unless there are problems 62 〉 ≡
begin 〈Move font name into the cur name string 66 〉;
open tfm file ;
if eof (tfm file) then print (´−−−not loaded, TFM file can´´t be opened!´)
else begin if (q ≤ 0) ∨ (q ≥ 1́000000000) then print (´−−−not loaded, bad scale (´, q : 1, ´)!´)

else if (d ≤ 0) ∨ (d ≥ 1́000000000) then print (´−−−not loaded, bad design size (´, d : 1, ´)!´)
else if in TFM (q) then 〈Finish loading the new font info 63 〉;

end;
if out mode = errors only then print ln (´ ´);
end

This code is used in section 59.

63. 〈Finish loading the new font info 63 〉 ≡
begin font space [nf]← q div 6; { this is a 3-unit “thin space” }
if (c 6= 0) ∧ (tfm check sum 6= 0) ∧ (c 6= tfm check sum) then

begin print ln (´−−−beware: check sums do not agree!´);
print ln (´ (´, c : 1, ´ vs. ´, tfm check sum : 1, ´)´); print (´ ´);
end;

if abs (tfm design size − d) > 2 then
begin print ln (´−−−beware: design sizes do not agree!´);
print ln (´ (´, d : 1, ´ vs. ´, tfm design size : 1, ´)´); print (´ ´);
end;

print (´−−−loaded at size ´, q : 1, ´ DVI units´); d← round ((100.0 ∗ conv ∗ q)/(true conv ∗ d));
if d 6= 100 then

begin print ln (´ ´); print (´ (this font is magnified ´, d : 1, ´%)´);
end;

incr (nf); {now the new font is officially present }
end

This code is used in section 62.

430 DEFINING FONTS DVI type §64

64. If p = 0, i.e., if no font directory has been specified, DVItype is supposed to use the default font
directory, which is a system-dependent place where the standard fonts are kept. The string variable
default directory contains the name of this area.

define default directory name ≡ ´TeXfonts:´ { change this to the correct name }
define default directory name length = 9 { change this to the correct length }

〈Globals in the outer block 10 〉 +≡
default directory : packed array [1 . . default directory name length] of char ;

65. 〈Set initial values 11 〉 +≡
default directory ← default directory name ;

66. The string cur name is supposed to be set to the external name of the TFM file for the current font.
This usually means that we need to prepend the name of the default directory, and to append the suffix
‘.TFM’. Furthermore, we change lower case letters to upper case, since cur name is a Pascal string.

〈Move font name into the cur name string 66 〉 ≡
for k ← 1 to name length do cur name [k]← ´ ´;
if p = 0 then

begin for k ← 1 to default directory name length do cur name [k]← default directory [k];
r ← default directory name length ;
end

else r ← 0;
for k ← font name [nf] to font name [nf + 1]− 1 do

begin incr (r);
if r + 4 > name length then

abort (´DVItype capacity exceeded (max font name length=´,name length : 1, ´)!´);
if (names [k] ≥ "a") ∧ (names [k] ≤ "z") then cur name [r]← xchr [names [k]− 4́0]
else cur name [r]← xchr [names [k]];
end;

cur name [r + 1]← ´.´; cur name [r + 2]← ´T´; cur name [r + 3]← ´F´; cur name [r + 4]← ´M´

This code is used in section 62.

§67 DVI type LOW LEVEL OUTPUT ROUTINES 431

67. Low level output routines. Simple text in the DVI file is saved in a buffer until line length − 2
characters have accumulated, or until some non-simple DVI operation occurs. Then the accumulated text
is printed on a line, surrounded by brackets. The global variable text ptr keeps track of the number of
characters currently in the buffer.

〈Globals in the outer block 10 〉 +≡
text ptr : 0 . . line length ; { the number of characters in text buf }
text buf : array [1 . . line length] of ASCII code ; { saved characters }

68. 〈Set initial values 11 〉 +≡
text ptr ← 0;

69. The flush text procedure will empty the buffer if there is something in it.

procedure flush text ;
var k: 0 . . line length ; { index into text buf }
begin if text ptr > 0 then

begin if out mode > errors only then
begin print (´[´);
for k ← 1 to text ptr do print (xchr [text buf [k]]);
print ln (´]´);
end;

text ptr ← 0;
end;

end;

70. And the out text procedure puts something in it.

procedure out text (c : ASCII code);
begin if text ptr = line length − 2 then flush text ;
incr (text ptr); text buf [text ptr]← c;
end;

432 TRANSLATION TO SYMBOLIC FORM DVI type §71

71. Translation to symbolic form. The main work of DVItype is accomplished by the do page
procedure, which produces the output for an entire page, assuming that the bop command for that page has
already been processed. This procedure is essentially an interpretive routine that reads and acts on the DVI

commands.

72. The definition of DVI files refers to six registers, (h, v, w, x, y, z), which hold integer values in DVI units.
In practice, we also need registers hh and vv , the pixel analogs of h and v, since it is not always true that
hh = pixel round (h) or vv = pixel round (v).

The stack of (h, v, w, x, y, z) values is represented by eight arrays called hstack , . . . , zstack , hhstack , and
vvstack .

〈Globals in the outer block 10 〉 +≡
h, v, w, x, y, z, hh , vv : integer ; { current state values }
hstack , vstack ,wstack , xstack , ystack , zstack : array [0 . . stack size] of integer ;

{ pushed down values in DVI units }
hhstack , vvstack : array [0 . . stack size] of integer ; { pushed down values in pixels }

73. Three characteristics of the pages (their max v , max h , and max s) are specified in the postamble,
and a warning message is printed if these limits are exceeded. Actually max v is set to the maximum height
plus depth of a page, and max h to the maximum width, for purposes of page layout. Since characters can
legally be set outside of the page boundaries, it is not an error when max v or max h is exceeded. But max s
should not be exceeded.

The postamble also specifies the total number of pages; DVItype checks to see if this total is accurate.

〈Globals in the outer block 10 〉 +≡
max v : integer ; { the value of abs (v) should probably not exceed this }
max h : integer ; { the value of abs (h) should probably not exceed this }
max s : integer ; { the stack depth should not exceed this }
max v so far ,max h so far ,max s so far : integer ; { the record high levels }
total pages : integer ; { the stated total number of pages }
page count : integer ; { the total number of pages seen so far }

74. 〈Set initial values 11 〉 +≡
max v ← 1́7777777777 − 99; max h ← 1́7777777777 − 99; max s ← stack size + 1;
max v so far ← 0; max h so far ← 0; max s so far ← 0; page count ← 0;

§75 DVI type TRANSLATION TO SYMBOLIC FORM 433

75. Before we get into the details of do page , it is convenient to consider a simpler routine that computes
the first parameter of each opcode.

define four cases (#) ≡ #, # + 1, # + 2, # + 3
define eight cases (#) ≡ four cases (#), four cases (# + 4)
define sixteen cases (#) ≡ eight cases (#), eight cases (# + 8)
define thirty two cases (#) ≡ sixteen cases (#), sixteen cases (# + 16)
define sixty four cases (#) ≡ thirty two cases (#), thirty two cases (# + 32)

function first par (o : eight bits): integer ;
begin case o of
sixty four cases (set char 0), sixty four cases (set char 0 + 64): first par ← o− set char 0 ;
set1 , put1 , fnt1 , xxx1 , fnt def1 : first par ← get byte ;
set1 + 1, put1 + 1, fnt1 + 1, xxx1 + 1, fnt def1 + 1: first par ← get two bytes ;
set1 + 2, put1 + 2, fnt1 + 2, xxx1 + 2, fnt def1 + 2: first par ← get three bytes ;
right1 ,w1 , x1 , down1 , y1 , z1 : first par ← signed byte ;
right1 + 1,w1 + 1, x1 + 1, down1 + 1, y1 + 1, z1 + 1: first par ← signed pair ;
right1 + 2,w1 + 2, x1 + 2, down1 + 2, y1 + 2, z1 + 2: first par ← signed trio ;
set1 + 3, set rule , put1 + 3, put rule , right1 + 3,w1 + 3, x1 + 3, down1 + 3, y1 + 3, z1 + 3, fnt1 + 3,

xxx1 + 3, fnt def1 + 3: first par ← signed quad ;
nop , bop , eop , push , pop , pre , post , post post , undefined commands : first par ← 0;
w0 : first par ← w;
x0 : first par ← x;
y0 : first par ← y;
z0 : first par ← z;
sixty four cases (fnt num 0): first par ← o− fnt num 0 ;
end;
end;

76. Here is another subroutine that we need: It computes the number of pixels in the height or width of a
rule. Characters and rules will line up properly if the sizes are computed precisely as specified here. (Since
conv is computed with some floating-point roundoff error, in a machine-dependent way, format designers
who are tailoring something for a particular resolution should not plan their measurements to come out to
an exact integer number of pixels; they should compute things so that the rule dimensions are a little less
than an integer number of pixels, e.g., 4.99 instead of 5.00.)

function rule pixels (x : integer): integer ; { computes dconv · xe }
var n: integer ;
begin n← trunc(conv ∗ x);
if n < conv ∗ x then rule pixels ← n+ 1 else rule pixels ← n;
end;

77. Strictly speaking, the do page procedure is really a function with side effects, not a ‘procedure’ ; it
returns the value false if DVItype should be aborted because of some unusual happening. The subroutine is
organized as a typical interpreter, with a multiway branch on the command code followed by goto statements
leading to routines that finish up the activities common to different commands. We will use the following
labels:

define fin set = 41 { label for commands that set or put a character }
define fin rule = 42 { label for commands that set or put a rule }
define move right = 43 { label for commands that change h }
define move down = 44 { label for commands that change v }
define show state = 45 { label for commands that change s }
define change font = 46 { label for commands that change cur font }

434 TRANSLATION TO SYMBOLIC FORM DVI type §78

78. Some Pascal compilers severely restrict the length of procedure bodies, so we shall split do page into
two parts, one of which is called special cases . The different parts communicate with each other via the
global variables mentioned above, together with the following ones:

〈Globals in the outer block 10 〉 +≡
s: integer ; { current stack size }
ss : integer ; { stack size to print }
cur font : integer ; { current internal font number }
showing : boolean ; { is the current command being translated in full? }

79. Here is the overall setup.

〈Declare the function called special cases 82 〉
function do page : boolean ;

label fin set ,fin rule ,move right , show state , done , 9998, 9999;
var o: eight bits ; { operation code of the current command }
p, q: integer ; { parameters of the current command }
a: integer ; { byte number of the current command }
hhh : integer ; {h, rounded to the nearest pixel }

begin cur font ← invalid font ; { set current font undefined }
s← 0; h← 0; v ← 0; w ← 0; x← 0; y ← 0; z ← 0; hh ← 0; vv ← 0; { initialize the state variables }
while true do 〈Translate the next command in the DVI file; goto 9999 with do page = true if it was

eop ; goto 9998 if premature termination is needed 80 〉;
9998: print ln (´!´); do page ← false ;
9999: end;

§80 DVI type TRANSLATION TO SYMBOLIC FORM 435

80. Commands are broken down into “major” and “minor” categories: A major command is always shown
in full, while a minor one is put into the buffer in abbreviated form. Minor commands, which account for
the bulk of most DVI files, involve horizontal spacing and the typesetting of characters in a line; these are
shown in full only if out mode ≥ verbose .

define show (#) ≡
begin flush text ; showing ← true ; print (a : 1, ´: ´, #);
end

define major (#) ≡
if out mode > errors only then show (#)

define minor (#) ≡
if out mode > terse then

begin showing ← true ; print (a : 1, ´: ´, #);
end

define error (#) ≡
if ¬showing then show (#)
else print (´ ´, #)

〈Translate the next command in the DVI file; goto 9999 with do page = true if it was eop ; goto 9998 if
premature termination is needed 80 〉 ≡

begin a← cur loc ; showing ← false ; o← get byte ; p← first par (o);
if eof (dvi file) then bad dvi (´the file ended prematurely´);
〈Start translation of command o and goto the appropriate label to finish the job 81 〉;

fin set : 〈Finish a command that either sets or puts a character, then goto move right or done 89 〉;
fin rule : 〈Finish a command that either sets or puts a rule, then goto move right or done 90 〉;
move right : 〈Finish a command that sets h← h+ q, then goto done 91 〉;
show state : 〈Show the values of ss , h, v, w, x, y, z, hh , and vv ; then goto done 93 〉;
done : if showing then print ln (´ ´);

end

This code is used in section 79.

81. The multiway switch in first par , above, was organized by the length of each command; the one in
do page is organized by the semantics.

〈Start translation of command o and goto the appropriate label to finish the job 81 〉 ≡
if o < set char 0 + 128 then 〈Translate a set char command 88 〉
else case o of

four cases (set1): begin major (´set´, o− set1 + 1 : 1, ´ ´, p : 1); goto fin set ;
end;

four cases (put1): begin major (´put´, o− put1 + 1 : 1, ´ ´, p : 1); goto fin set ;
end;

set rule : begin major (´setrule´); goto fin rule ;
end;

put rule : begin major (´putrule´); goto fin rule ;
end;
〈Cases for commands nop , bop , . . . , pop 83 〉
〈Cases for horizontal motion 84 〉
othercases if special cases (o, p, a) then goto done else goto 9998
endcases

This code is used in section 80.

436 TRANSLATION TO SYMBOLIC FORM DVI type §82

82. 〈Declare the function called special cases 82 〉 ≡
function special cases (o : eight bits ; p, a : integer): boolean ;

label change font ,move down , done , 9998;
var q: integer ; { parameter of the current command }
k: integer ; { loop index }
bad char : boolean ; {has a non-ASCII character code appeared in this xxx ? }
pure : boolean ; { is the command error-free? }
vvv : integer ; { v, rounded to the nearest pixel }

begin pure ← true ;
case o of
〈Cases for vertical motion 85 〉
〈Cases for fonts 86 〉
four cases (xxx1): 〈Translate an xxx command and goto done 87 〉;
pre : begin error (´preamble command within a page!´); goto 9998;

end;
post , post post : begin error (´postamble command within a page!´); goto 9998;

end;
othercases begin error (´undefined command ´, o : 1, ´!´); goto done ;

end
endcases;

move down : 〈Finish a command that sets v ← v + p, then goto done 92 〉;
change font : 〈Finish a command that changes the current font, then goto done 94 〉;
9998: pure ← false ;
done : special cases ← pure ;

end;

This code is used in section 79.

§83 DVI type TRANSLATION TO SYMBOLIC FORM 437

83. 〈Cases for commands nop , bop , . . . , pop 83 〉 ≡
nop : begin minor (´nop´); goto done ;

end;
bop : begin error (´bop occurred before eop!´); goto 9998;

end;
eop : begin major (´eop´);

if s 6= 0 then error (´stack not empty at end of page (level ´, s : 1, ´)!´);
do page ← true ; print ln (´ ´); goto 9999;
end;

push : begin major (´push´);
if s = max s so far then

begin max s so far ← s+ 1;
if s = max s then error (´deeper than claimed in postamble!´);
if s = stack size then

begin error (´DVItype capacity exceeded (stack size=´, stack size : 1, ´)´); goto 9998;
end;

end;
hstack [s]← h; vstack [s]← v; wstack [s]← w; xstack [s]← x; ystack [s]← y; zstack [s]← z;
hhstack [s]← hh ; vvstack [s]← vv ; incr (s); ss ← s− 1; goto show state ;
end;

pop : begin major (´pop´);
if s = 0 then error (´(illegal at level zero)!´)
else begin decr (s); hh ← hhstack [s]; vv ← vvstack [s]; h← hstack [s]; v ← vstack [s]; w ← wstack [s];
x← xstack [s]; y ← ystack [s]; z ← zstack [s];
end;

ss ← s; goto show state ;
end;

This code is used in section 81.

84. Rounding to the nearest pixel is best done in the manner shown here, so as to be inoffensive to the eye:
When the horizontal motion is small, like a kern, hh changes by rounding the kern; but when the motion is
large, hh changes by rounding the true position h so that accumulated rounding errors disappear. We allow
a larger space in the negative direction than in the positive one, because TEX makes comparatively large
backspaces when it positions accents.

define out space (#) ≡
if (p ≥ font space [cur font]) ∨ (p ≤ −4 ∗ font space [cur font]) then

begin out text (" "); hh ← pixel round (h+ p);
end

else hh ← hh + pixel round (p);
minor (#, ´ ´, p : 1); q ← p; goto move right

〈Cases for horizontal motion 84 〉 ≡
four cases (right1): begin out space (´right´, o− right1 + 1 : 1);

end;
w0 , four cases (w1): begin w ← p; out space (´w´, o− w0 : 1);

end;
x0 , four cases (x1): begin x← p; out space (´x´, o− x0 : 1);

end;

This code is used in section 81.

438 TRANSLATION TO SYMBOLIC FORM DVI type §85

85. Vertical motion is done similarly, but with the threshold between “small” and “large” increased by a
factor of five. The idea is to make fractions like “ 1

2” round consistently, but to absorb accumulated rounding
errors in the baseline-skip moves.

define out vmove (#) ≡
if abs (p) ≥ 5 ∗ font space [cur font] then vv ← pixel round (v + p)
else vv ← vv + pixel round (p);

major (#, ´ ´, p : 1); goto move down

〈Cases for vertical motion 85 〉 ≡
four cases (down1): begin out vmove (´down´, o− down1 + 1 : 1);

end;
y0 , four cases (y1): begin y ← p; out vmove (´y´, o− y0 : 1);

end;
z0 , four cases (z1): begin z ← p; out vmove (´z´, o− z0 : 1);

end;

This code is used in section 82.

86. 〈Cases for fonts 86 〉 ≡
sixty four cases (fnt num 0): begin major (´fntnum´, p : 1); goto change font ;

end;
four cases (fnt1): begin major (´fnt´, o− fnt1 + 1 : 1, ´ ´, p : 1); goto change font ;

end;
four cases (fnt def1): begin major (´fntdef´, o− fnt def1 + 1 : 1, ´ ´, p : 1); define font (p); goto done ;

end;

This code is used in section 82.

87. 〈Translate an xxx command and goto done 87 〉 ≡
begin major (´xxx ´´´); bad char ← false ;
if p < 0 then error (´string of negative length!´);
for k ← 1 to p do

begin q ← get byte ;
if (q < " ") ∨ (q > "~") then bad char ← true ;
if showing then print (xchr [q]);
end;

if showing then print (´´´´);
if bad char then error (´non−ASCII character in xxx command!´);
goto done ;
end

This code is used in section 82.

88. 〈Translate a set char command 88 〉 ≡
begin if (o > " ") ∧ (o ≤ "~") then

begin out text (p); minor (´setchar´, p : 1);
end

else major (´setchar´, p : 1);
goto fin set ;
end

This code is used in section 81.

§89 DVI type TRANSLATION TO SYMBOLIC FORM 439

89. 〈Finish a command that either sets or puts a character, then goto move right or done 89 〉 ≡
if p < 0 then p← 255− ((−1− p) mod 256)
else if p ≥ 256 then p← pmod 256; {width computation for oriental fonts }
if (p < font bc [cur font]) ∨ (p > font ec [cur font]) then q ← invalid width
else q ← char width (cur font)(p);
if q = invalid width then

begin error (´character ´, p : 1, ´ invalid in font ´); print font (cur font);
if cur font 6= invalid font then print (´!´); { the invalid font has ‘!’ in its name }
end;

if o ≥ put1 then goto done ;
if q = invalid width then q ← 0
else hh ← hh + char pixel width (cur font)(p);
goto move right

This code is used in section 80.

90. 〈Finish a command that either sets or puts a rule, then goto move right or done 90 〉 ≡
q ← signed quad ;
if showing then

begin print (´ height ´, p : 1, ´, width ´, q : 1);
if out mode > mnemonics only then

if (p ≤ 0) ∨ (q ≤ 0) then print (´ (invisible)´)
else print (´ (´, rule pixels (p) : 1, ´x´, rule pixels (q) : 1, ´ pixels)´);

end;
if o = put rule then goto done ;
if showing then

if out mode > mnemonics only then print ln (´ ´);
hh ← hh + rule pixels (q); goto move right

This code is used in section 80.

440 TRANSLATION TO SYMBOLIC FORM DVI type §91

91. A sequence of consecutive rules, or consecutive characters in a fixed-width font whose width is not an
integer number of pixels, can cause hh to drift far away from a correctly rounded value. DVItype ensures
that the amount of drift will never exceed max drift pixels.

Since DVItype is intended to diagnose strange errors, it checks carefully to make sure that h and v do not
get out of range. Normal DVI-reading programs need not do this.

define infinity ≡ 1́7777777777 {∞ (approximately) }
define max drift = 2 {we insist that abs(hh − pixel round (h)) ≤ max drift }

〈Finish a command that sets h← h+ q, then goto done 91 〉 ≡
if (h > 0) ∧ (q > 0) then

if h > infinity − q then
begin error (´arithmetic overflow! parameter changed from ´, q : 1, ´ to ´, infinity − h : 1);
q ← infinity − h;
end;

if (h < 0) ∧ (q < 0) then
if −h > q + infinity then

begin error (´arithmetic overflow! parameter changed from ´, q : 1, ´ to ´, (−h)−infinity : 1);
q ← (−h)− infinity ;
end;

hhh ← pixel round (h+ q);
if abs (hhh − hh) > max drift then

if hhh > hh then hh ← hhh −max drift
else hh ← hhh + max drift ;

if showing then
if out mode > mnemonics only then

begin print (´ h:=´, h : 1);
if q ≥ 0 then print (´+´);
print (q : 1, ´=´, h+ q : 1, ´, hh:=´, hh : 1);
end;

h← h+ q;
if abs (h) > max h so far then

begin if abs (h) > max h + 99 then
begin error (´warning: |h|>´,max h : 1, ´!´); max h ← abs (h);
end;

max h so far ← abs (h);
end;

goto done

This code is used in section 80.

§92 DVI type TRANSLATION TO SYMBOLIC FORM 441

92. 〈Finish a command that sets v ← v + p, then goto done 92 〉 ≡
if (v > 0) ∧ (p > 0) then

if v > infinity − p then
begin error (´arithmetic overflow! parameter changed from ´, p : 1, ´ to ´, infinity − v : 1);
p← infinity − v;
end;

if (v < 0) ∧ (p < 0) then
if −v > p+ infinity then

begin error (´arithmetic overflow! parameter changed from ´, p : 1, ´ to ´, (−v)− infinity : 1);
p← (−v)− infinity ;
end;

vvv ← pixel round (v + p);
if abs (vvv − vv) > max drift then

if vvv > vv then vv ← vvv −max drift
else vv ← vvv + max drift ;

if showing then
if out mode > mnemonics only then

begin print (´ v:=´, v : 1);
if p ≥ 0 then print (´+´);
print (p : 1, ´=´, v + p : 1, ´, vv:=´, vv : 1);
end;

v ← v + p;
if abs (v) > max v so far then

begin if abs (v) > max v + 99 then
begin error (´warning: |v|>´,max v : 1, ´!´); max v ← abs (v);
end;

max v so far ← abs (v);
end;

goto done
This code is used in section 82.

93. 〈Show the values of ss , h, v, w, x, y, z, hh , and vv ; then goto done 93 〉 ≡
if showing then

if out mode > mnemonics only then
begin print ln (´ ´); print (´level ´, ss : 1, ´:(h=´, h : 1, ´,v=´, v : 1, ´,w=´, w : 1, ´,x=´, x : 1,

´,y=´, y : 1, ´,z=´, z : 1, ´,hh=´, hh : 1, ´,vv=´, vv : 1, ´)´);
end;

goto done
This code is used in section 80.

94. 〈Finish a command that changes the current font, then goto done 94 〉 ≡
font num [nf]← p; cur font ← 0;
while font num [cur font] 6= p do incr (cur font);
if cur font = nf then

begin cur font ← invalid font ;
error (´invalid font selection: font ´, p : 1, ´ was never defined!´);
end;

if showing then
if out mode > mnemonics only then

begin print (´ current font is ´); print font (cur font);
end;

goto done
This code is used in section 82.

442 SKIPPING PAGES DVI type §95

95. Skipping pages. A routine that’s much simpler than do page is used to pass over pages that are
not being translated. The skip pages subroutine is assumed to begin just after the preamble has been read,
or just after a bop has been processed. It continues until either finding a bop that matches the desired
starting page specifications, or until running into the postamble.

〈Declare the procedure called scan bop 99 〉
procedure skip pages (bop seen : boolean);

label 9999; { end of this subroutine }
var p: integer ; { a parameter }
k: 0 . . 255; { command code }
down the drain : integer ; { garbage }

begin showing ← false ;
while true do

begin if ¬bop seen then
begin scan bop ;
if in postamble then goto 9999;
if ¬started then

if start match then
begin started ← true ; goto 9999;
end;

end;
〈Skip until finding eop 96 〉;
bop seen ← false ;
end;

9999: end;

96. 〈Skip until finding eop 96 〉 ≡
repeat if eof (dvi file) then bad dvi (´the file ended prematurely´);
k ← get byte ; p← first par (k);
case k of
set rule , put rule : down the drain ← signed quad ;
four cases (fnt def1): begin define font (p); print ln (´ ´);

end;
four cases (xxx1): while p > 0 do

begin down the drain ← get byte ; decr (p);
end;

bop , pre , post , post post , undefined commands : bad dvi (´illegal command at byte ´, cur loc − 1 : 1);
othercases do nothing
endcases;

until k = eop ;

This code is used in section 95.

97. Global variables called old backpointer and new backpointer are used to check whether the back
pointers are properly set up. Another one tells whether we have already found the starting page.

〈Globals in the outer block 10 〉 +≡
old backpointer : integer ; { the previous bop command location }
new backpointer : integer ; { the current bop command location }
started : boolean ; {has the starting page been found? }

98. 〈Set initial values 11 〉 +≡
old backpointer ← −1; started ← false ;

§99 DVI type SKIPPING PAGES 443

99. The scan bop procedure reads DVI commands following the preamble or following eop , until finding
either bop or the postamble.

〈Declare the procedure called scan bop 99 〉 ≡
procedure scan bop ;

var k: 0 . . 255; { command code }
begin repeat if eof (dvi file) then bad dvi (´the file ended prematurely´);
k ← get byte ;
if (k ≥ fnt def1) ∧ (k < fnt def1 + 4) then

begin define font (first par (k)); k ← nop ;
end;

until k 6= nop ;
if k = post then in postamble ← true
else begin if k 6= bop then bad dvi (´byte ´, cur loc − 1 : 1, ´ is not bop´);

new backpointer ← cur loc − 1; incr (page count);
for k ← 0 to 9 do count [k]← signed quad ;
if signed quad 6= old backpointer then

print ln (´backpointer in byte ´, cur loc − 4 : 1, ´ should be ´, old backpointer : 1, ´!´);
old backpointer ← new backpointer ;
end;

end;

This code is used in section 95.

444 USING THE BACKPOINTERS DVI type §100

100. Using the backpointers. The routines in this section of the program are brought into play only
if random reading is true (and only if out mode = the works). First comes a routine that illustrates how to
find the postamble quickly.

〈Find the postamble, working back from the end 100 〉 ≡
n← dvi length ;
if n < 53 then bad dvi (´only ´, n : 1, ´ bytes long´);
m← n− 4;
repeat if m = 0 then bad dvi (´all 223s´);

move to byte (m); k ← get byte ; decr (m);
until k 6= 223;
if k 6= id byte then bad dvi (´ID byte is ´, k : 1);
move to byte (m− 3); q ← signed quad ;
if (q < 0) ∨ (q > m− 33) then bad dvi (´post pointer ´, q : 1, ´ at byte ´,m− 3 : 1);
move to byte (q); k ← get byte ;
if k 6= post then bad dvi (´byte ´, q : 1, ´ is not post´);
post loc ← q; first backpointer ← signed quad

This code is used in section 107.

101. Note that the last steps of the above code save the locations of the post byte and the final bop . We
had better declare these global variables, together with two more that we will need shortly.

〈Globals in the outer block 10 〉 +≡
post loc : integer ; { byte location where the postamble begins }
first backpointer : integer ; { the pointer following post }
start loc : integer ; {byte location of the first page to process }
after pre : integer ; {byte location immediately following the preamble }

102. The next little routine shows how the backpointers can be followed to move through a DVI file in
reverse order. Ordinarily a DVI-reading program would do this only if it wants to print the pages backwards
or if it wants to find a specified starting page that is not necessarily the first page in the file; otherwise it
would of course be simpler and faster just to read the whole file from the beginning.

〈Count the pages and move to the starting page 102 〉 ≡
q ← post loc ; p← first backpointer ; start loc ← −1;
if p < 0 then in postamble ← true
else begin repeat { now q points to a post or bop command; p ≥ 0 is prev pointer }

if p > q − 46 then bad dvi (´page link ´, p : 1, ´ after byte ´, q : 1);
q ← p; move to byte (q); k ← get byte ;
if k = bop then incr (page count)
else bad dvi (´byte ´, q : 1, ´ is not bop´);
for k ← 0 to 9 do count [k]← signed quad ;
p← signed quad ;
if start match then

begin start loc ← q; old backpointer ← p;
end;

until p < 0;
if start loc < 0 then abort (´starting page number could not be found!´);
if old backpointer < 0 then start loc ← after pre ; {we want to check everything }
move to byte (start loc);
end;

if page count 6= total pages then
print ln (´there are really ´, page count : 1, ´ pages, not ´, total pages : 1, ´!´)

This code is used in section 107.

§103 DVI type READING THE POSTAMBLE 445

103. Reading the postamble. Now imagine that we are reading the DVI file and positioned just four
bytes after the post command. That, in fact, is the situation, when the following part of DVItype is called
upon to read, translate, and check the rest of the postamble.

procedure read postamble ;
var k: integer ; { loop index }
p, q,m: integer ; { general purpose registers }

begin showing ← false ; post loc ← cur loc − 5;
print ln (´Postamble starts at byte ´, post loc : 1, ´.´);
if signed quad 6= numerator then print ln (´numerator doesn´´t match the preamble!´);
if signed quad 6= denominator then print ln (´denominator doesn´´t match the preamble!´);
if signed quad 6= mag then

if new mag = 0 then print ln (´magnification doesn´´t match the preamble!´);
max v ← signed quad ; max h ← signed quad ;
print (´maxv=´,max v : 1, ´, maxh=´,max h : 1);
max s ← get two bytes ; total pages ← get two bytes ;
print ln (´, maxstackdepth=´,max s : 1, ´, totalpages=´, total pages : 1);
if out mode < the works then 〈Compare the lust parameters with the accumulated facts 104 〉;
〈Process the font definitions of the postamble 106 〉;
〈Make sure that the end of the file is well-formed 105 〉;
end;

104. No warning is given when max h so far exceeds max h by less than 100, since 100 units is invisibly
small; it’s approximately the wavelength of visible light, in the case of TEX output. Rounding errors can
be expected to make h and v slightly more than max h and max v , every once in a while; hence small
discrepancies are not cause for alarm.

〈Compare the lust parameters with the accumulated facts 104 〉 ≡
begin if max v + 99 < max v so far then

print ln (´warning: observed maxv was ´,max v so far : 1);
if max h + 99 < max h so far then print ln (´warning: observed maxh was ´,max h so far : 1);
if max s < max s so far then print ln (´warning: observed maxstackdepth was ´,max s so far : 1);
if page count 6= total pages then

print ln (´there are really ´, page count : 1, ´ pages, not ´, total pages : 1, ´!´);
end

This code is used in section 103.

105. When we get to the present code, the post post command has just been read.

〈Make sure that the end of the file is well-formed 105 〉 ≡
q ← signed quad ;
if q 6= post loc then print ln (´bad postamble pointer in byte ´, cur loc − 4 : 1, ´!´);
m← get byte ;
if m 6= id byte then

print ln (´identification in byte ´, cur loc − 1 : 1, ´ should be ´, id byte : 1, ´!´);
k ← cur loc ; m← 223;
while (m = 223) ∧ ¬eof (dvi file) do m← get byte ;
if ¬eof (dvi file) then bad dvi (´signature in byte ´, cur loc − 1 : 1, ´ should be 223´)
else if cur loc < k + 4 then

print ln (´not enough signature bytes at end of file (´, cur loc − k : 1, ´)´);

This code is used in section 103.

446 READING THE POSTAMBLE DVI type §106

106. 〈Process the font definitions of the postamble 106 〉 ≡
repeat k ← get byte ;

if (k ≥ fnt def1) ∧ (k < fnt def1 + 4) then
begin p← first par (k); define font (p); print ln (´ ´); k ← nop ;
end;

until k 6= nop ;
if k 6= post post then print ln (´byte ´, cur loc − 1 : 1, ´ is not postpost!´)

This code is used in section 103.

§107 DVI type THE MAIN PROGRAM 447

107. The main program. Now we are ready to put it all together. This is where DVItype starts, and
where it ends.

begin initialize ; { get all variables initialized }
dialog ; { set up all the options }
〈Process the preamble 109 〉;
if out mode = the works then { random reading = true }

begin 〈Find the postamble, working back from the end 100 〉;
in postamble ← true ; read postamble ; in postamble ← false ;
〈Count the pages and move to the starting page 102 〉;
end;

skip pages (false);
if ¬in postamble then 〈Translate up to max pages pages 111 〉;
if out mode < the works then

begin if ¬in postamble then skip pages (true);
if signed quad 6= old backpointer then

print ln (´backpointer in byte ´, cur loc − 4 : 1, ´ should be ´, old backpointer : 1, ´!´);
read postamble ;
end;

final end : end.

108. The main program needs a few global variables in order to do its work.

〈Globals in the outer block 10 〉 +≡
k,m, n, p, q: integer ; { general purpose registers }

109. A DVI-reading program that reads the postamble first need not look at the preamble; but DVItype

looks at the preamble in order to do error checking, and to display the introductory comment.

〈Process the preamble 109 〉 ≡
open dvi file ; p← get byte ; { fetch the first byte }
if p 6= pre then bad dvi (´First byte isn´´t start of preamble!´);
p← get byte ; { fetch the identification byte }
if p 6= id byte then print ln (´identification in byte 1 should be ´, id byte : 1, ´!´);
〈Compute the conversion factors 110 〉;
p← get byte ; { fetch the length of the introductory comment }
print (´´´´);
while p > 0 do

begin decr (p); print (xchr [get byte]);
end;

print ln (´´´´); after pre ← cur loc

This code is used in section 107.

448 THE MAIN PROGRAM DVI type §110

110. The conversion factor conv is figured as follows: There are exactly n/d decimicrons per DVI unit,
and 254000 decimicrons per inch, and resolution pixels per inch. Then we have to adjust this by the stated
amount of magnification.

〈Compute the conversion factors 110 〉 ≡
numerator ← signed quad ; denominator ← signed quad ;
if numerator ≤ 0 then bad dvi (´numerator is ´,numerator : 1);
if denominator ≤ 0 then bad dvi (´denominator is ´, denominator : 1);
print ln (´numerator/denominator=´,numerator : 1, ´/´, denominator : 1);
tfm conv ← (25400000.0/numerator) ∗ (denominator /473628672)/16.0;
conv ← (numerator /254000.0) ∗ (resolution/denominator); mag ← signed quad ;
if new mag > 0 then mag ← new mag
else if mag ≤ 0 then bad dvi (´magnification is ´,mag : 1);
true conv ← conv ; conv ← true conv ∗ (mag/1000.0);
print ln (´magnification=´,mag : 1, ´; ´, conv : 16 : 8, ´ pixels per DVI unit´)

This code is used in section 109.

111. The code shown here uses a convention that has proved to be useful: If the starting page was specified
as, e.g., ‘1.*.−5’, then all page numbers in the file are displayed by showing the values of counts 0, 1, and 2,
separated by dots. Such numbers can, for example, be displayed on the console of a printer when it is
working on that page.

〈Translate up to max pages pages 111 〉 ≡
begin while max pages > 0 do

begin decr (max pages); print ln (´ ´); print (cur loc − 45 : 1, ´: beginning of page ´);
for k ← 0 to start vals do

begin print (count [k] : 1);
if k < start vals then print (´.´)
else print ln (´ ´);
end;

if ¬do page then bad dvi (´page ended unexpectedly´);
scan bop ;
if in postamble then goto done ;
end;

done : end

This code is used in section 107.

§112 DVI type SYSTEM-DEPENDENT CHANGES 449

112. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make DVItype work at a particular installation. It is usually best to design
your change file so that all changes to previous sections preserve the section numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new sections,
can be inserted here; then only the index itself will get a new section number.

450 INDEX DVI type §113

113. Index. Pointers to error messages appear here together with the section numbers where each
identifier is used.

a: 27, 79, 82.
abort : 7, 59, 61, 66, 102.
abs : 63, 73, 85, 91, 92.
after pre : 101, 102, 109.
all 223s : 100.
alpha : 34, 37, 38.
arithmetic overflow... : 91, 92.
ASCII code : 8, 10, 30, 45, 67, 70.
b: 27.
backpointer...should be p : 99, 107.
bad design size : 62.
Bad DVI file : 7.
bad postamble pointer : 105.
bad scale : 62.
bad char : 82, 87.
bad dvi : 7, 80, 96, 99, 100, 102, 105, 109, 110, 111.
banner : 1, 3, 50.
beta : 34, 37, 38.
beware: check sums do not agree : 63.
beware: design sizes do not agree : 63.
boolean : 34, 42, 44, 49, 57, 59, 78, 79, 82, 95, 97.
bop : 13, 15, 16, 18, 19, 41, 71, 75, 83, 95, 96,

97, 99, 101, 102.
bop occurred before eop : 83.
bop seen : 95.
break : 46.
Breitenlohner, Peter: 1.
buf ptr : 48, 49, 52, 53, 54, 55.
buffer : 45, 47, 48, 49, 51, 52, 53, 54, 55.
byte n is not bop : 99, 102.
byte n is not post : 100.
byte n is not postpost : 106.
byte file : 21, 22.
b0 : 25, 26, 35, 36, 37.
b1 : 25, 26, 35, 37.
b2 : 25, 26, 35, 37.
b3 : 25, 26, 35, 37.
c: 27, 59.
change font : 77, 82, 86.
char : 9, 24, 64.
char pixel width : 39, 89.
char width : 30, 39, 89.
char width end : 30, 39.
character c invalid... : 89.
check sum: 18.
check sum doesn’t match : 60.
check sums do not agree : 63.
Chinese characters: 15, 89.
chr : 9, 10, 12.
conv : 39, 40, 61, 63, 76, 110.

count : 42, 44, 99, 102, 111.
cur font : 77, 78, 79, 84, 85, 89, 94.
cur loc : 23, 24, 27, 28, 80, 96, 99, 103, 105,

106, 107, 109, 111.
cur name : 23, 24, 59, 66.
cur pos : 28.
d: 27, 59.
decr : 6, 83, 96, 100, 109, 111.
deeper than claimed... : 83.
default directory : 64, 65, 66.
default directory name : 64, 65.
default directory name length : 64, 66.
define font : 59, 86, 96, 99, 106.
den : 15, 17, 19.
denominator : 39, 103, 110.
denominator doesn’t match : 103.
denominator is wrong : 110.
design size doesn’t match : 60.
design sizes do not agree : 63.
dialog : 50, 107.
do nothing : 6, 96.
do page : 71, 75, 77, 78, 79, 81, 83, 95, 111.
done : 4, 79, 80, 81, 82, 83, 86, 87, 89, 90, 91,

92, 93, 94, 111.
down the drain : 95, 96.
down1 : 15, 16, 75, 85.
down2 : 15.
down3 : 15.
down4 : 15.
DVI files : 13.
dvi file : 3, 22, 23, 24, 27, 28, 80, 96, 99, 105.
dvi length : 28, 100.
DVI type : 3.
DVItype capacity exceeded... : 59, 61, 66.
DVItype needs larger... : 35.
e: 59.
eight bits : 21, 25, 27, 75, 79, 82.
eight cases : 75.
else: 2.
end: 2.
endcases: 2.
eof : 23, 27, 28, 35, 62, 80, 96, 99, 105.
eoln : 47.
eop : 13, 15, 16, 18, 41, 75, 83, 96, 99.
error : 80, 82, 83, 87, 89, 91, 92, 94.
errors only : 41, 56, 62, 69, 80.
f : 32, 59.
false : 2, 20, 34, 42, 43, 44, 49, 52, 58, 60, 77, 79,

80, 82, 87, 95, 98, 103, 107.
fin rule : 77, 79, 80, 81.

§113 DVI type INDEX 451

fin set : 77, 79, 80, 81, 88.
final end : 4, 7, 107.
First byte isn’t... : 109.
first backpointer : 100, 101, 102.
first par : 75, 80, 81, 96, 99, 106.
first text char : 9, 12.
fix word : 37.
flush text : 69, 70, 80.
fnt def1 : 15, 16, 75, 86, 96, 99, 106.
fnt def2 : 15.
fnt def3 : 15.
fnt def4 : 15.
fnt num 0 : 15, 16, 75, 86.
fnt num 1 : 15.
fnt num 63 : 15.
fnt1 : 15, 16, 75, 86.
fnt2 : 15.
fnt3 : 15.
fnt4 : 15.
font name doesn’t match : 60.
font bc : 30, 31, 35, 40, 89.
font check sum : 30, 60, 61.
font design size : 30, 60, 61.
font ec : 30, 31, 35, 89.
font name : 30, 31, 32, 60, 61, 66.
font num : 30, 59, 94.
font scaled size : 30, 60, 61.
font space : 30, 31, 63, 84, 85.
four cases : 75, 81, 82, 84, 85, 86, 96.
Fuchs, David Raymond: 1, 13, 20.
get : 47.
get byte : 27, 28, 61, 75, 80, 87, 96, 99, 100,

102, 105, 106, 109.
get integer : 49, 52, 53, 54, 55.
get three bytes : 27, 75.
get two bytes : 27, 75, 103.
h: 72.
hh : 72, 79, 83, 84, 89, 90, 91, 93.
hhh : 79, 91.
hhstack : 72, 83.
hstack : 72, 83.
i: 3, 17.
ID byte is wrong : 100.
id byte : 17, 100, 105, 109.
identification...should be n : 105, 109.
illegal command at byte n : 96.
in postamble : 57, 58, 59, 95, 99, 102, 107, 111.
in TFM : 34, 37, 62.
in width : 33, 37, 40.
incr : 6, 27, 47, 49, 52, 54, 59, 60, 63, 66, 70,

83, 94, 99, 102.
infinity : 91, 92.

initialize : 3, 107.
input ln : 45, 47, 51, 52, 53, 54, 55.
integer : 3, 21, 24, 27, 28, 30, 32, 33, 34, 39,

41, 42, 49, 50, 59, 72, 73, 75, 76, 78, 79, 82,
95, 97, 101, 103, 108.

invalid font : 30, 31, 32, 79, 89, 94.
invalid width : 30, 40, 89.
j: 59.
Japanese characters: 15, 89.
jump out : 7.
k: 17, 32, 34, 44, 47, 50, 59, 69, 82, 95, 99, 103, 108.
last text char : 9, 12.
lh : 34, 35.
line length : 5, 67, 69, 70.
m: 59, 103, 108.
mag : 15, 17, 18, 19, 39, 103, 110.
magnification doesn’t match : 103.
magnification is wrong : 110.
major : 80, 81, 83, 85, 86, 87, 88.
match : 44.
max drift : 91, 92.
max fonts : 5, 30, 59.
max h : 73, 74, 91, 103, 104.
max h so far : 73, 74, 91, 104.
max pages : 41, 43, 53, 56, 111.
max s : 73, 74, 83, 103, 104.
max s so far : 73, 74, 83, 104.
max v : 73, 74, 92, 103, 104.
max v so far : 73, 74, 92, 104.
max widths : 5, 30, 34, 35, 39.
minor : 80, 83, 84, 88.
mismatch : 59, 60.
mnemonics only : 41, 56, 90, 91, 92, 93, 94.
move down : 77, 82, 85.
move right : 77, 79, 80, 84, 89, 90.
move to byte : 28, 100, 102.
n: 59, 76, 108.
name length : 5, 24, 59, 66.
name size : 5, 30, 32, 59, 61.
names : 30, 32, 59, 60, 61, 66.
negative : 49.
new backpointer : 97, 99.
new mag : 41, 55, 56, 103, 110.
nf : 30, 31, 35, 40, 59, 60, 61, 63, 66, 94.
non−ASCII character... : 87.
nop : 13, 15, 16, 18, 19, 75, 83, 99, 106.
not enough signature bytes... : 105.
null font name : 61.
num : 15, 17, 19.
numerator : 39, 103, 110.
numerator doesn’t match : 103.
numerator is wrong : 110.

452 INDEX DVI type §113

nw : 34, 35, 36, 37.
o: 79, 82.
observed maxh was x : 104.
observed maxstackdepth was x : 104.
observed maxv was x : 104.
old backpointer : 97, 98, 99, 102, 107.
only n bytes long : 100.
open dvi file : 23, 109.
open tfm file : 23, 24, 62.
Options selected : 56.
ord : 10.
oriental characters: 15, 89.
othercases: 2.
others : 2.
out mode : 41, 43, 51, 56, 57, 59, 62, 69, 80, 90,

91, 92, 93, 94, 100, 103, 107.
out space : 31, 84.
out text : 70, 84, 88.
out vmove : 31, 85.
output : 3.
p: 59, 79, 82, 95, 103, 108.
page ended unexpectedly : 111.
page link wrong... : 102.
page count : 73, 74, 99, 102, 104.
pixel round : 40, 72, 84, 85, 91, 92.
pixel width : 39, 40.
pop : 14, 15, 16, 19, 75, 83.
post : 13, 15, 16, 19, 20, 75, 82, 96, 99, 100,

101, 102, 103.
post pointer is wrong : 100.
post loc : 100, 101, 102, 103, 105.
post post : 15, 16, 19, 20, 75, 82, 96, 105, 106.
postamble command within a page : 82.
Postamble starts at byte n : 103.
pre : 13, 15, 16, 75, 82, 96, 109.
preamble command within a page : 82.
print : 3, 7, 32, 56, 61, 62, 63, 69, 80, 87, 89, 90,

91, 92, 93, 94, 103, 109, 111.
print font : 32, 61, 89, 94.
print ln : 3, 34, 35, 56, 59, 60, 62, 63, 69, 79,

80, 83, 90, 93, 96, 99, 102, 103, 104, 105,
106, 107, 109, 110, 111.

pure : 82.
push : 5, 14, 15, 16, 19, 75, 83.
push deeper than claimed... : 83.
put rule : 15, 16, 75, 81, 90, 96.
put1 : 15, 16, 75, 81, 89.
put2 : 15.
put3 : 15.
put4 : 15.
q: 59, 79, 82, 103, 108.
r: 59.

random reading : 2, 20, 28, 41, 56, 100, 107.
read : 26, 27.
read ln : 47.
read postamble : 103, 107.
read tfm word : 26, 35, 36, 37.
real : 33, 39, 41.
reset : 23, 47.
resolution : 41, 54, 56, 110.
rewrite : 50.
right1 : 15, 16, 75, 84.
right2 : 15.
right3 : 15.
right4 : 15.
round : 35, 40, 61, 63.
rule pixels : 15, 76, 90.
s: 78.
scaled : 61.
scaled size doesn’t match : 60.
scan bop : 95, 99, 111.
set char 0 : 15, 16, 75, 81.
set char 1 : 15.
set char 127 : 15.
set pos : 28.
set rule : 13, 15, 16, 75, 81, 96.
set1 : 15, 16, 75, 81.
set2 : 15.
set3 : 15.
set4 : 15.
show : 80.
show state : 77, 79, 80, 83.
showing : 61, 78, 80, 87, 90, 91, 92, 93, 94, 95, 103.
signature...should be... : 105.
signed byte : 27, 75.
signed pair : 27, 75.
signed quad : 27, 61, 75, 90, 96, 99, 100, 102,

103, 105, 107, 110.
signed trio : 27, 75.
sixteen cases : 75.
sixty four cases : 75, 86.
skip pages : 95, 107.
sp: 17.
special cases : 78, 81, 82.
ss : 78, 83, 93.
stack not empty... : 83.
stack size : 5, 72, 74, 83.
start count : 42, 44, 52, 56.
start loc : 101, 102.
start match : 44, 95, 102.
start there : 42, 43, 44, 52, 56.
start vals : 42, 43, 44, 52, 56, 111.
started : 95, 97, 98.
starting page number... : 102.

§113 DVI type INDEX 453

string of negative length : 87.
system dependencies: 2, 7, 9, 20, 21, 23, 26, 27,

28, 40, 41, 45, 46, 47, 50, 64, 66, 112.
term in : 45, 47.
term out : 45, 46, 50, 51, 52, 53, 54, 55.
terminal line length : 5, 45, 47, 48.
terse : 41, 56, 80.
text buf : 67, 69, 70.
text char : 9, 10.
text file : 9, 45.
text ptr : 67, 68, 69, 70.
TFM files : 29.
TFM file can´t be opened : 62.
TFM file is bad : 34.
tfm check sum : 33, 35, 63.
tfm conv : 33, 35, 110.
tfm design size : 33, 35, 63.
tfm file : 22, 23, 26, 33, 35, 62.
the file ended prematurely : 80, 96, 99.
the works : 41, 43, 51, 56, 57, 59, 100, 103, 107.
there are really n pages : 102, 104.
thirty two cases : 75.
this font is magnified : 63.
this font was already defined : 59.
this font wasn’t loaded before : 59.
total pages : 73, 102, 103, 104.
true : 2, 28, 34, 42, 44, 49, 52, 60, 79, 80, 82, 83,

87, 95, 99, 100, 102, 107.
true conv : 39, 61, 63, 110.
trunc : 76.
UNDEFINED : 32.
undefined command : 82.
undefined commands : 16, 75, 96.
update terminal : 46, 47.
v: 72.
verbose : 41, 56, 80.
vstack : 72, 83.
vv : 72, 79, 83, 85, 92, 93.
vvstack : 72, 83.
vvv : 82, 92.
w: 72.
warning: |h|... : 91.
warning: |v|... : 92.
warning: observed maxh... : 104.
warning: observed maxstack... : 104.
warning: observed maxv... : 104.
width : 30, 36, 39, 40.
width base : 30, 39, 40.
width ptr : 30, 31, 34, 35, 36, 40.
wp : 34, 35, 36, 40.
write : 3, 51, 52, 53, 54, 55.
write ln : 3, 50, 51, 52, 53, 54, 55.

wstack : 72, 83.
w0 : 15, 16, 75, 84.
w1 : 15, 16, 75, 84.
w2 : 15.
w3 : 15.
w4 : 15.
x: 17, 49, 72.
xchr : 10, 11, 12, 32, 66, 69, 87, 109.
xord : 10, 12, 47.
xstack : 72, 83.
xxx1 : 15, 16, 75, 82, 96.
xxx2 : 15.
xxx3 : 15.
xxx4 : 15, 16.
x0 : 15, 16, 75, 84.
x1 : 15, 16, 75, 84.
x2 : 15.
x3 : 15.
x4 : 15.
y: 72.
ystack : 72, 83.
y0 : 15, 16, 75, 85.
y1 : 15, 16, 75, 85.
y2 : 15.
y3 : 15.
y4 : 15.
z: 34, 72.
zstack : 72, 83.
z0 : 15, 16, 75, 85.
z1 : 15, 16, 75, 85.
z2 : 15.
z3 : 15.
z4 : 15.

454 NAMES OF THE SECTIONS DVI type

〈Cases for commands nop , bop , . . . , pop 83 〉 Used in section 81.

〈Cases for fonts 86 〉 Used in section 82.

〈Cases for horizontal motion 84 〉 Used in section 81.

〈Cases for vertical motion 85 〉 Used in section 82.

〈Check that the current font definition matches the old one 60 〉 Used in section 59.

〈Compare the lust parameters with the accumulated facts 104 〉 Used in section 103.

〈Compute the conversion factors 110 〉 Used in section 109.

〈Constants in the outer block 5 〉 Used in section 3.

〈Count the pages and move to the starting page 102 〉 Used in section 107.

〈Declare the function called special cases 82 〉 Used in section 79.

〈Declare the procedure called scan bop 99 〉 Used in section 95.

〈Determine the desired max pages 53 〉 Used in section 50.

〈Determine the desired new mag 55 〉 Used in section 50.

〈Determine the desired out mode 51 〉 Used in section 50.

〈Determine the desired resolution 54 〉 Used in section 50.

〈Determine the desired start count values 52 〉 Used in section 50.

〈Find the postamble, working back from the end 100 〉 Used in section 107.

〈Finish a command that changes the current font, then goto done 94 〉 Used in section 82.

〈Finish a command that either sets or puts a character, then goto move right or done 89 〉 Used in section 80.

〈Finish a command that either sets or puts a rule, then goto move right or done 90 〉 Used in section 80.

〈Finish a command that sets h← h+ q, then goto done 91 〉 Used in section 80.

〈Finish a command that sets v ← v + p, then goto done 92 〉 Used in section 82.

〈Finish loading the new font info 63 〉 Used in section 62.

〈Globals in the outer block 10, 22, 24, 25, 30, 33, 39, 41, 42, 45, 48, 57, 64, 67, 72, 73, 78, 97, 101, 108 〉 Used in

section 3.

〈Labels in the outer block 4 〉 Used in section 3.

〈Load the new font, unless there are problems 62 〉 Used in section 59.

〈Make sure that the end of the file is well-formed 105 〉 Used in section 103.

〈Move font name into the cur name string 66 〉 Used in section 62.

〈Move the widths from in width to width , and append pixel width values 40 〉 Used in section 34.

〈Print all the selected options 56 〉 Used in section 50.

〈Process the font definitions of the postamble 106 〉 Used in section 103.

〈Process the preamble 109 〉 Used in section 107.

〈Read and convert the width values, setting up the in width table 37 〉 Used in section 34.

〈Read past the header data; goto 9997 if there is a problem 35 〉 Used in section 34.

〈Read the font parameters into position for font nf , and print the font name 61 〉 Used in section 59.

〈Replace z by z′ and compute α, β 38 〉 Used in section 37.

〈Set initial values 11, 12, 31, 43, 58, 65, 68, 74, 98 〉 Used in section 3.

〈Show the values of ss , h, v, w, x, y, z, hh , and vv ; then goto done 93 〉 Used in section 80.

〈Skip until finding eop 96 〉 Used in section 95.

〈Start translation of command o and goto the appropriate label to finish the job 81 〉 Used in section 80.

〈Store character-width indices at the end of the width table 36 〉 Used in section 34.

〈Translate a set char command 88 〉 Used in section 81.

〈Translate an xxx command and goto done 87 〉 Used in section 82.

〈Translate the next command in the DVI file; goto 9999 with do page = true if it was eop ; goto 9998 if
premature termination is needed 80 〉 Used in section 79.

〈Translate up to max pages pages 111 〉 Used in section 107.

〈Types in the outer block 8, 9, 21 〉 Used in section 3.

	 Introduction
	 The character set
	 Device-independent file format
	 Input from binary files
	 Reading the font information
	 Optional modes of output
	 Defining fonts
	 Low level output routines
	 Translation to symbolic form
	 Skipping pages
	 Using the backpointers
	 Reading the postamble
	 The main program
	 System-dependent changes
	 Index
	Names of the sections
	Cases for commands nop, bop, , pop
	Cases for fonts
	Cases for horizontal motion
	Cases for vertical motion
	Check that the current font definition matches the old one
	Compare the lust parameters with the accumulated facts
	Compute the conversion factors
	Constants in the outer block
	Count the pages and move to the starting page
	Declare the function called specialcases
	Declare the procedure called scanbop
	Determine the desired maxpages
	Determine the desired newmag
	Determine the desired outmode
	Determine the desired resolution
	Determine the desired startcount values
	Find the postamble, working back from the end
	Finish a command that changes the current font, then goto done
	Finish a command that either sets or puts a character, then goto moveright or done
	Finish a command that either sets or puts a rule, then goto moveright or done
	Finish a command that sets hh+q, then goto done
	Finish a command that sets vv+p, then goto done
	Finish loading the new font info
	Globals in the outer block
	Labels in the outer block
	Load the new font, unless there are problems
	Make sure that the end of the file is well-formed
	Move font name into the curname string
	Move the widths from inwidth to width, and append pixelwidth values
	Print all the selected options
	Process the font definitions of the postamble
	Process the preamble
	Read and convert the width values, setting up the inwidth table
	Read past the header data; goto 9997 if there is a problem
	Read the font parameters into position for font nf, and print the font name
	Replace z by z^ and compute ,
	Set initial values
	Show the values of ss, h, v, w, x, y, z, hh, and vv; then goto done
	Skip until finding eop
	Start translation of command o and goto the appropriate label to finish the job
	Store character-width indices at the end of the width table
	Translate a setchar command
	Translate an xxx command and goto done
	Translate the next command in the DVI file; goto 9999 with dopage=true if it was eop; goto 9998 if premature termination is needed
	Translate up to maxpages pages
	Types in the outer block

