NS ote e

7b.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
32a.
32b.
32c.
32d.
32e.
32f.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

Section

Introduction 1
The character set i 17
Input and output 25
String handling 38
On-line and off-line printing 54
Reporting errors 72
Arithmetic with scaled dimensions 99
Random numbers 110
Packed data 128
Dynamic memory allocation 133
Data structures for boxes and their friends 151
Memory layout 180
Displaying boxes 191
Destroying boxes 217
Copying boxes 221
The command codes i 225
The semanticnest i 229
The table of equivalents 238
The hash table 274
Saving and restoring equivalents 290
Token listso 311
Introduction to the syntactic routines 319
Input stacks and states i 322
Maintaining the input stacks 343
Getting the next token 354
Expanding the next token 388
Basic scanning subroutineso oL 428
Building token lists i 490
Conditional processingooveniiiininenn.. 513
File names 537
Font metricdata 565
Device-independent file format 610
Shipping pages outc..ooeiininiiiinn... 619
PAfTEX basic . ..o 672
pdfTEX output low-level subroutines 679
PDF page description i 691
The cross-reference table 694
Font processing 703
PDF shipping outo 727
Packaging 814
Data structures for math mode 854
Subroutines for math mode 873
Typesetting math formulas 893
ALgnmentuu 942
Breaking paragraphs into lines 987
Breaking paragraphs into lines, continued 1036
Pre-hyphenation i 1066
Post-hyphenation i .. 1075
Hyphenation i 1094
Initializing the hyphenation tables 1117
Breaking vertical lists into pages 1142

The page builder 1155

Page

11
14
20
25
31
39
43
50
52
98
67
71
79
81
83
87
92
118
127
134
138
141
151
154
165
177
200
215
223
232
251
257
277
281
291
298
311
330
362
378
387
394
414
431
454
468
472
482
488
498
504

2

WEB OUTPUT
46. The chief executive i 1204
47. Building boxes and lists L 1231
48. Building math lists i 1312
49. Mode-independent processing 1384
50. Dumping and undumping the tables 1475
51. The main programc.oiiiiininienn... 1508
52. Debugging 1516
53. Extensions 1518
53a. The extended features of e-TEX 1645
54. System-dependent changes 1864
55, Index ... 1865

921
533
556
5975
598
609
615
617
671
736
737

pdfTEX

61 pdfTEx PART 1: INTRODUCTION 3

March 9, 2021 at 15:17

1. Introduction. This is e-TEX, a program derived from and extending the capabilities of TEX, a
document compiler intended to produce typesetting of high quality. The Pascal program that follows is
the definition of TEX82, a standard version of TEX that is designed to be highly portable so that identical
output will be obtainable on a great variety of computers.

The main purpose of the following program is to explain the algorithms of TEX as clearly as possible. As
a result, the program will not necessarily be very efficient when a particular Pascal compiler has translated
it into a particular machine language. However, the program has been written so that it can be tuned to run
efficiently in a wide variety of operating environments by making comparatively few changes. Such flexibility
is possible because the documentation that follows is written in the WEB language, which is at a higher level
than Pascal; the preprocessing step that converts WEB to Pascal is able to introduce most of the necessary
refinements. Semi-automatic translation to other languages is also feasible, because the program below does
not make extensive use of features that are peculiar to Pascal.

A large piece of software like TEX has inherent complexity that cannot be reduced below a certain level of
difficulty, although each individual part is fairly simple by itself. The WEB language is intended to make the
algorithms as readable as possible, by reflecting the way the individual program pieces fit together and by
providing the cross-references that connect different parts. Detailed comments about what is going on, and
about why things were done in certain ways, have been liberally sprinkled throughout the program. These
comments explain features of the implementation, but they rarely attempt to explain the TEX language
itself, since the reader is supposed to be familiar with The TgXbook.

4 PART 1: INTRODUCTION pdfTEX §2

2. The present implementation has a long ancestry, beginning in the summer of 1977, when Michael F.
Plass and Frank M. Liang designed and coded a prototype based on some specifications that the author had
made in May of that year. This original protoTEX included macro definitions and elementary manipulations
on boxes and glue, but it did not have line-breaking, page-breaking, mathematical formulas, alignment
routines, error recovery, or the present semantic nest; furthermore, it used character lists instead of token
lists, so that a control sequence like \halign was represented by a list of seven characters. A complete version
of TEX was designed and coded by the author in late 1977 and early 1978; that program, like its prototype,
was written in the SAIL language, for which an excellent debugging system was available. Preliminary plans
to convert the SAIL code into a form somewhat like the present “web” were developed by Luis Trabb Pardo
and the author at the beginning of 1979, and a complete implementation was created by Ignacio A. Zabala
in 1979 and 1980. The TEX82 program, which was written by the author during the latter part of 1981
and the early part of 1982, also incorporates ideas from the 1979 implementation of TEX in MESA that
was written by Leonidas Guibas, Robert Sedgewick, and Douglas Wyatt at the Xerox Palo Alto Research
Center. Several hundred refinements were introduced into TEX82 based on the experiences gained with the
original implementations, so that essentially every part of the system has been substantially improved. After
the appearance of “Version 0” in September 1982, this program benefited greatly from the comments of
many other people, notably David R. Fuchs and Howard W. Trickey. A final revision in September 1989
extended the input character set to eight-bit codes and introduced the ability to hyphenate words from
different languages, based on some ideas of Michael J. Ferguson.

No doubt there still is plenty of room for improvement, but the author is firmly committed to keeping
TEXS82 “frozen” from now on; stability and reliability are to be its main virtues.

On the other hand, the WEB description can be extended without changing the core of TEX82 itself, and
the program has been designed so that such extensions are not extremely difficult to make. The banner
string defined here should be changed whenever TEX undergoes any modifications, so that it will be clear
which version of TEX might be the guilty party when a problem arises.

This program contains code for various features extending TEX, therefore this program is called ‘e-TEX’
and not ‘TEX’; the official name ‘TEX’ by itself is reserved for software systems that are fully compatible
with each other. A special test suite called the “TRIP test” is available for helping to determine whether
a particular implementation deserves to be known as ‘TEX’ [cf. Stanford Computer Science report CS1027,
November 1984].

A similar test suite called the “e-TRIP test” is available for helping to determine whether a particular
implementation deserves to be known as ‘e-TEX’.

define eTeX version =2 { \eTeXversion }
define eTeX revision =".6" { \eTeXrevision }
define eTeX version_string = "-2.6° {current e-TEX version }

define eTeX_ banner = “This_is_ e-TeX, Version;,3.141592653", eTeX version_string
{ printed when e-TEX starts }

define pdftex_version = 140 { \pdftexversion }
define pdftex_revision = "22" { \pdftexrevision }
define pdftex_version_string = "=1.40.22" { current pdfTEX version }

define pdfTeX banner = “This_is_pdfTeX, Version3.141592653°, eTeX version_string,
pdftex_version_string { printed when pdfTEX starts }

define TeX banner = "This_ is_ TeX, Version3.141592653 " {printed when TEX starts }
define banner = pdfTeX_banner

define TEX = PDFTEX {change program name into PDFTEX }

define TeXXeT_code =0 {the TEX--XHT feature is optional }

define eTeX states =1 {number of e-TEX state variables in egth }

§3 pdfTpx PART 1: INTRODUCTION 5

3. Different Pascals have slightly different conventions, and the present program expresses TEX in terms
of the Pascal that was available to the author in 1982. Constructions that apply to this particular compiler,
which we shall call Pascal-H, should help the reader see how to make an appropriate interface for other
systems if necessary. (Pascal-H is Charles Hedrick’s modification of a compiler for the DECsystem-10 that
was originally developed at the University of Hamburg; cf. Software—Practice and Experience 6 (1976), 29—
42. The TEX program below is intended to be adaptable, without extensive changes, to most other versions
of Pascal, so it does not fully use the admirable features of Pascal-H. Indeed, a conscious effort has been
made here to avoid using several idiosyncratic features of standard Pascal itself, so that most of the code
can be translated mechanically into other high-level languages. For example, the ‘with’ and ‘new’ features
are not used, nor are pointer types, set types, or enumerated scalar types; there are no ‘var’ parameters,
except in the case of files — e-TEX, however, does use ‘var’ parameters for the reverse function; there are
no tag fields on variant records; there are no assignments real < integer; no procedures are declared local
to other procedures.)

The portions of this program that involve system-dependent code, where changes might be necessary
because of differences between Pascal compilers and/or differences between operating systems, can be
identified by looking at the sections whose numbers are listed under ‘system dependencies’ in the index.
Furthermore, the index entries for ‘dirty Pascal’ list all places where the restrictions of Pascal have not been
followed perfectly, for one reason or another.

Incidentally, Pascal’s standard round function can be problematical, because it disagrees with the IEEE
floating-point standard. Many implementors have therefore chosen to substitute their own home-grown
rounding procedure.

4. The program begins with a normal Pascal program heading, whose components will be filled in later,
using the conventions of WEB. For example, the portion of the program called ‘{ Global variables 13)’ below
will be replaced by a sequence of variable declarations that starts in §13 of this documentation. In this way,
we are able to define each individual global variable when we are prepared to understand what it means; we
do not have to define all of the globals at once. Cross references in §13, where it says “See also sections 20,
26, ...,” also make it possible to look at the set of all global variables, if desired. Similar remarks apply to
the other portions of the program heading.

Actually the heading shown here is not quite normal: The program line does not mention any output
file, because Pascal-H would ask the TEX user to specify a file name if output were specified here.

define mitype = tQ&y@&pO&e {this is a WEB coding trick: }
format mtype = type {‘mtype’ will be equivalent to ‘type’}
format type = true {but ‘type’ will not be treated as a reserved word }

(Compiler directives 9)
program TEX; {all file names are defined dynamically }
label (Labels in the outer block 6)
const (Constants in the outer block 11)
mtype (Types in the outer block 18)
var (Global variables 13)

procedure initialize; { this procedure gets things started properly }
var (Local variables for initialization 19)
begin (Initialize whatever TEX might access 8)
end;

(Basic printing procedures 57)

(Error handling procedures 78)

6 PART 1: INTRODUCTION pdfTEX §5

5. The overall TEX program begins with the heading just shown, after which comes a bunch of procedure
declarations and function declarations. Finally we will get to the main program, which begins with the
comment ‘start_here’. If you want to skip down to the main program now, you can look up ‘start_here’
in the index. But the author suggests that the best way to understand this program is to follow pretty
much the order of TEX’s components as they appear in the WEB description you are now reading, since the
present ordering is intended to combine the advantages of the “bottom up” and “top down” approaches to
the problem of understanding a somewhat complicated system.

6. Three labels must be declared in the main program, so we give them symbolic names.

define start_of TEX =1 {go here when TEX’s variables are initialized }
define end_of TEX = 9998 {go here to close files and terminate gracefully }
define final_end = 9999 {this label marks the ending of the program }

(Labels in the outer block 6) =
start_of TEX, end_of - TEX, final_end; {key control points }

This code is used in section 4.

7. Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes
occurs when TEX is being installed or when system wizards are fooling around with TEX without quite
knowing what they are doing. Such code will not normally be compiled; it is delimited by the codewords
‘debug . ..gubed’, with apologies to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by ‘stat ...tats’ that is intended for use when statistics
are to be kept about TEX’s memory usage. The stat ... tats code also implements diagnostic information
for \tracingparagraphs, \tracingpages, and \tracingrestores.

define debug = @{ {change this to ‘debug =’ when debugging }
define gubed = @} {change this to ‘gubed =’ when debugging }
format debug = begin

format gubed = end

define stat = @{ {change this to ‘stat
define tats =@} {change this to ‘tats
format stat = begin

format tats = end

’ when gathering usage statistics }
’ when gathering usage statistics }

8. This program has two important variations: (1) There is a long and slow version called INITEX, which
does the extra calculations needed to initialize TEX’s internal tables; and (2) there is a shorter and faster
production version, which cuts the initialization to a bare minimum. Parts of the program that are needed
in (1) but not in (2) are delimited by the codewords ‘init ... tini’.

define init { change this to ‘énit = @{’ in the production version }
define tini { change this to ‘tini = @}’ in the production version }
format init = begin

format tini = end

(Initialize whatever TEX might access 8) =
(Set initial values of key variables 21)
init (Initialize table entries (done by INITEX only) 182) tini

This code is used in section 4.

§9 pdfTEx PART 1: INTRODUCTION 7

9. If the first character of a Pascal comment is a dollar sign, Pascal-H treats the comment as a list of
“compiler directives” that will affect the translation of this program into machine language. The directives
shown below specify full checking and inclusion of the Pascal debugger when TEX is being debugged, but
they cause range checking and other redundant code to be eliminated when the production system is being
generated. Arithmetic overflow will be detected in all cases.
(Compiler directives 9) =

0{e&$C'—, A+, D—0@} {no range check, catch arithmetic overflow, no debug overhead }

debug 0{e&$C+, D+@} gubed {but turn everything on when debugging }

This code is used in section 4.

10. This TEX implementation conforms to the rules of the Pascal User Manual published by Jensen and
Wirth in 1975, except where system-dependent code is necessary to make a useful system program, and
except in another respect where such conformity would unnecessarily obscure the meaning and clutter up
the code: We assume that case statements may include a default case that applies if no matching label is
found. Thus, we shall use constructions like

case z of

1: (code for x =1);

3: (code for x = 3);

othercases (code for © # 1 and x # 3)
endcases

since most Pascal compilers have plugged this hole in the language by incorporating some sort of default
mechanism. For example, the Pascal-H compiler allows ‘others:’ as a default label, and other Pascals
allow syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise:’; etc. The definitions of othercases and endcases
should be changed to agree with local conventions. Note that no semicolon appears before endcases in this
program, so the definition of endcases should include a semicolon if the compiler wants one. (Of course,
if no default mechanism is available, the case statements of TEX will have to be laboriously extended by
listing all remaining cases. People who are stuck with such Pascals have, in fact, done this, successfully but
not happily!)

define othercases = others: { default for cases not listed explicitly }

define endcases = end {follows the default case in an extended case statement }

format othercases = else

format endcases = end

8 PART 1: INTRODUCTION pdfTEX §11

11. The following parameters can be changed at compile time to extend or reduce TEX’s capacity. They
may have different values in INITEX and in production versions of TEX.

(Constants in the outer block 11) =

mem_max = 30000;
{ greatest index in TEX’s internal mem array; must be strictly less than maz_halfword; must be
equal to mem_top in INITEX, otherwise > mem_top }

mem_min = 0; {smallest index in TEX’s internal mem array; must be min_halfword or more; must be
equal to mem_bot in INITEX, otherwise < mem_bot }

buf-size = 500; { maximum number of characters simultaneously present in current lines of open files
and in control sequences between \csname and \endcsname; must not exceed maz_halfword }

error_line = 72; { width of context lines on terminal error messages }

half_error_line = 42; { width of first lines of contexts in terminal error messages; should be between 30
and error_line — 15}

maz_print_line = 79; {width of longest text lines output; should be at least 60 }

stack_size = 200; { maximum number of simultaneous input sources }

maz_in_open = 6;
{ maximum number of input files and error insertions that can be going on simultaneously }

font_mazx = 75; {maximum internal font number; must not exceed maz_quarterword and must be at
most font_base + 256 }

font_mem_size = 20000; { number of words of font_info for all fonts }

param_size = 60; { maximum number of simultaneous macro parameters }

nest_size = 40; { maximum number of semantic levels simultaneously active }

maz_strings = 3000; {maximum number of strings; must not exceed maz_halfword }

string-vacancies = 8000; {the minimum number of characters that should be available for the user’s
control sequences and font names, after TEX’s own error messages are stored }

pool_size = 32000; {maximum number of characters in strings, including all error messages and help
texts, and the names of all fonts and control sequences; must exceed string_vacancies by the total
length of TEX’s own strings, which is currently about 23000 }

save_size = 600; {space for saving values outside of current group; must be at most maz_halfword }

trie_size = 8000; {space for hyphenation patterns; should be larger for INITEX than it is in production
versions of TEX }

trie_op_size = 500; { space for “opcodes” in the hyphenation patterns }

dvi_buf_size = 800; {size of the output buffer; must be a multiple of 8 }

file_name_size = 40; { file names shouldn’t be longer than this }

pool,name = "TeXformats:TEX.POOL__ uouuooouoonoooo |’;
{ string of length file_name_size; tells where the string pool appears }

See also sections 675, 679, 695, 721, and 1628.

This code is used in section 4.

612 pdfTExX PART 1: INTRODUCTION 9

12. Like the preceding parameters, the following quantities can be changed at compile time to extend or
reduce TEX’s capacity. But if they are changed, it is necessary to rerun the initialization program INITEX
to generate new tables for the production TEX program. One can’t simply make helter-skelter changes to
the following constants, since certain rather complex initialization numbers are computed from them. They
are defined here using WEB macros, instead of being put into Pascal’s const list, in order to emphasize this
distinction.

define mem_bot =0
{'smallest index in the mem array dumped by INITEX; must not be less than mem_min }

define mem_top = 30000 {largest index in the mem array dumped by INITEX; must be substantially
larger than mem_bot and not greater than mem_maz }

define font_base =0 {smallest internal font number; must not be less than min_quarterword }

define hash_size = 2100 {maximum number of control sequences; it should be at most about
(mem_max — mem_min)/10 }

define hash_prime = 1777 {a prime number equal to about 85% of hash_size }

define hyph_size = 307 { another prime; the number of \hyphenation exceptions }

13. In case somebody has inadvertently made bad settings of the “constants,” TEX checks them using a
global variable called bad.
This is the first of many sections of TEX where global variables are defined.

(Global variables 13) =
bad: integer; {is some “constant” wrong? }

See also sections 20, 26, 30, 32, 39, 50, 54, 73, 76, 79, 96, 104, 110, 117, 133, 134, 135, 136, 142, 183, 191, 199, 231, 264, 271,
274, 275, 293, 308, 319, 323, 326, 327, 330, 331, 332, 355, 383, 389, 408, 413, 414, 436, 464, 473, 506, 515, 519, 538, 539,
546, 553, 558, 565, 575, 576, 581, 619, 622, 632, 643, 676, 680, 687, 691, 696, 701, 704, 708, 710, 723, 774, 809, 816, 817
819, 827, 835, 858, 893, 898, 938, 944, 988, 995, 997, 999, 1002, 1007, 1013, 1021, 1046, 1067, 1075, 1080, 1082, 1096
1101, 1118, 1122, 1125, 1146, 1155, 1157, 1164, 1207, 1250, 1442, 1457, 1475, 1481, 1509, 1520, 1523, 1541, 1545, 1548
1555, 1557, 1568, 1581, 1625, 1630, 1637, 1649, 1657, 1702, 1747, 1770, 1811, 1813, 1832, 1839, 1855, and 1856

This code is used in section 4.

14. Later on we will say ‘if mem_maz > maz_halfword then bad <+ 14’ or something similar. (We can’t
do that until maz_halfword has been defined.)

(Check the “constant” values for consistency 14) =
bad < 0;
if (half-error_line < 30) V (half-error_line > error_line — 15) then bad < 1,
if max_print_line < 60 then bad < 2;
if dvi_buf_size mod 8 # 0 then bad < 3;
if mem_bot 4+ 1100 > mem_top then bad «+ 4;
if hash_prime > hash_size then bad < 5;
if maz_in_open > 128 then bad <« 6;
if mem_top < 256 + 11 then bad < 7; {we will want null_list > 255}
See also sections 129, 312, 548, and 1425.

This code is used in section 1510.

10 PART 1: INTRODUCTION pdfTEX §15

15. Labels are given symbolic names by the following definitions, so that occasional goto statements
will be meaningful. We insert the label ‘exit’ just before the ‘end’ of a procedure in which we have used
the ‘return’ statement defined below; the label ‘restart’ is occasionally used at the very beginning of a
procedure; and the label ‘reswitch’ is occasionally used just prior to a case statement in which some cases
change the conditions and we wish to branch to the newly applicable case. Loops that are set up with the
loop construction defined below are commonly exited by going to ‘done’ or to ‘found’ or to ‘not_found’, and
they are sometimes repeated by going to ‘continue’. If two or more parts of a subroutine start differently
but end up the same, the shared code may be gathered together at ‘common_ending’.

Incidentally, this program never declares a label that isn’t actually used, because some fussy Pascal
compilers will complain about redundant labels.

define exit =10 {go here to leave a procedure }

define restart =20 {go here to start a procedure again }

define reswitch =21 {go here to start a case statement again }

define continue =22 {go here to resume a loop }

define done =30 {go here to exit a loop }

define donel =31 {like done, when there is more than one loop }

define done2 =32 {for exiting the second loop in a long block }

define doned =33 {for exiting the third loop in a very long block }

define done4 =34 {for exiting the fourth loop in an extremely long block }
define done5 =35 {for exiting the fifth loop in an immense block }

define done6 =36 {for exiting the sixth loop in a block }

define found =40 {go here when you've found it }

define foundl =41 {like found, when there’s more than one per routine }
define found?2 =42 {like found, when there’s more than two per routine }
define not_found =45 {go here when you’ve found nothing }

define not_found! =46 {like not_found, when there’s more than one }
define not_found2 =47 {like not_found, when there’s more than two }
define not_found3 = 48 {like not_found, when there’s more than three }
define not_found4 =49 {like not_found, when there’s more than four }
define common_ending = 50 {go here when you want to merge with another branch }

16. Here are some macros for common programming idioms.

define incr(#) =#+ #+1 {increase a variable by unity }

define decr(#) =#+« #—1 {decrease a variable by unity }

define negate(#) = # < —# {change the sign of a variable }

define loop = while true do {repeat over and over until a goto happens }
format loop = zclause {WEB’s xclause acts like ‘while true do’ }

define do_nothing = {empty statement }

define return = goto exit {terminate a procedure call }

format return = nil

define empty =0 {symbolic name for a null constant }

617 pdfTExX PART 2: THE CHARACTER SET 11

17. The character set. In order to make TEX readily portable to a wide variety of computers, all of its
input text is converted to an internal eight-bit code that includes standard ASCII, the “American Standard
Code for Information Interchange.” This conversion is done immediately when each character is read in.
Conversely, characters are converted from ASCII to the user’s external representation just before they are
output to a text file.

Such an internal code is relevant to users of TEX primarily because it governs the positions of characters
in the fonts. For example, the character ‘A’ has ASCII code 65 = 101, and when TEX typesets this letter
it specifies character number 65 in the current font. If that font actually has ‘A’ in a different position,
TEX doesn’t know what the real position is; the program that does the actual printing from TEX’s device-
independent files is responsible for converting from ASCII to a particular font encoding.

TEXs internal code also defines the value of constants that begin with a reverse apostrophe; and it provides
an index to the \catcode, \mathcode, \uccode, \1lccode, and \delcode tables.

18. Characters of text that have been converted to TEX’s internal form are said to be of type ASCII_code,
which is a subrange of the integers.

(Types in the outer block 18) =
ASCII_code =0 ..255; {eight-bit numbers }
See also sections 25, 38, 101, 109, 131, 168, 230, 291, 322, 574, 621, 694, 707, 722, 1095, 1100, 1624, 1629, and 1675.

This code is used in section 4.

19. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and
small letters in a convenient way, especially in a program for typesetting; so the present specification of TEX
has been written under the assumption that the Pascal compiler and run-time system permit the use of text
files with more than 64 distinguishable characters. More precisely, we assume that the character set contains
at least the letters and symbols associated with ASCII codes 40 through ‘176; all of these characters are
now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text_char to stand for the data type of
the characters that are converted to and from ASCII_code when they are input and output. We shall also
assume that text_char consists of the elements chr(first_text_char) through chr(last_text_char), inclusive.
The following definitions should be adjusted if necessary.

define text_char = char {the data type of characters in text files }

define first_text_char =0 {ordinal number of the smallest element of text_char }

define last_text_char = 255 {ordinal number of the largest element of text_char }

(Local variables for initialization 19) =
i integer;
See also sections 181 and 1102.

This code is used in section 4.

20. The TEX processor converts between ASCII code and the user’s external character set by means of
arrays zord and zchr that are analogous to Pascal’s ord and chr functions.

(Global variables 13) +=
zord: array [text_char] of ASCII_code; {specifies conversion of input characters }
xchr: array [ASCIL code] of text_char; {specifies conversion of output characters }

12 PART 2: THE CHARACTER SET pdfTEX §21

21. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize the standard part of the zchr array properly, without needing any system-dependent
changes. On the other hand, it is possible to implement TEX with less complete character sets, and in such
cases it will be necessary to change something here.

(Set initial values of key variables 21) =

xchr[40] < “L7; xchr[41] <+ “V 75 xchr[42] < "7 zchr[48] «+ “#7; xchr[44] + “$7;
xchr[48] <= "% zchr[46] + &’; xchr| 47 < =~

zchr[50) <= ~ (75 xchr[51) <=) 75 xchr['52] <= “*7; xchr[53] <= “+7; xchr[54] < ~,;
xzchr[’55] <+ “=7; xchr[56] « ~.7; xchr[57) + /7

zchr[’60] < “07; zchr[61] + 1 i xchr[62] < "27; xchr[63] < "37; zchr[64] + "47;
xchr['65] < “57; xchr[’66] < "67; xchr[67] + "T7;

xchr[10] <= “87; wchr["71] <= "97; xchr[72] <= ~:7; wchr[13] « ;75 xchr[74] < <7
xchr[75) <= "="; xchr[76] < ">7; xchr[77] < "77;

xzchr[’100] < “@7; zchr[’101] + "A”; xchr[102] + "B"; xzchr['108] < "C”; zchr[’104] + D7;
xzchr[’105] < "E7; xchr[’106] < "F~; xzchr[107] + "G~;

xchr[110) <= "H™; xchr[111] < "I7; xchr[112] < "J°; xchr[’118] < "K"; xchr[’114] < "L~;
xchr[’115] <= "M7; xchr['116] < "N7; xchr[117] « "07;

xchr[’120] <= "P~; wchr[’121] - "Q7; xchr[122] <= "R7; xchr['1283] < "S7; zchr['124] + "T";
xchr|'125] «+— “U”; zchr['126] + V75 xchr[127] + W7,

xchr[’130] <= "X~ xchr['131] «+ Y75 xchr[182] + “Z7; xzchr['138] < “[7; zchr['134] + "\7;
xchr[’185] < “17; xchr['136] + ~~7; xchr[137] « ~_7;

xchr['140] <+ ~~ 75 xzchr['141]) + "a”; xchr[142] < "b"; xchr['148] + “¢7; zchr[144] + “d7;
xchr['145] <= “e7; wchr['146] < "£7; xchr['147] « "g~;

xchr[150) <= "h7; xchr[151) < "i7; xchr[152] < "j7; xchr[158) <= "k°; xchr[154] < "17;
xzchr['155] < "m”; xchr[’156] + "n”; xchr[157] + “o7;

xzchr[’160] <= "p~; xchr[’161] + "q"; xchr[162] + "r7; xchr['168] < "s~; zchr[’164] + "t7;
xchr['165] < “u”; zchr['166] + "v°; xchr[167] + "w’;

xchr['170] <= "x7; xchr['171] <= "y~; xchr[172] < “27; xchr['178] <= {"; zchr['174] + | 7;
xchr['175]) < "} 75 xchr['176] < "~ 7;

See also sections 23, 24, 74, 77, 80, 97, 118, 184, 233, 272, 276, 294, 309, 390, 409, 465, 507, 516, 547, 577, 582, 620, 623, 633,
677, 681, 688, 697, 709, 711, 724, 818, 828, 836, 859, 945, 1103, 1165, 1208, 1443, 1458, 1476, 1521, 1549, 1569, 1582,
1626, 1631, 1703, 1748, 1814, 1833, and 1857.

This code is used in section 8.

22. Some of the ASCII codes without visible characters have been given symbolic names in this program
because they are used with a special meaning.

define null_code = ‘0 { ASCII code that might disappear }
define carriage_return = ‘15 { ASCII code used at end of line }
define invalid_code = “177 { ASCII code that many systems prohibit in text files }

623 pdfTExX PART 2: THE CHARACTER SET 13

23. The ASCII code is “standard” only to a certain extent, since many computer installations have found it
advantageous to have ready access to more than 94 printing characters. Appendix C of The TEXbook gives a
complete specification of the intended correspondence between characters and TEX’s internal representation.

If TEX is being used on a garden-variety Pascal for which only standard ASCII codes will appear in the
input and output files, it doesn’t really matter what codes are specified in zchr[0 .. "37], but the safest
policy is to blank everything out by using the code shown below.

However, other settings of zchr will make TEX more friendly on computers that have an extended character
set, so that users can type things like ‘#” instead of ‘\ne’. People with extended character sets can assign
codes arbitrarily, giving an zchr equivalent to whatever characters the users of TEX are allowed to have
in their input files. It is best to make the codes correspond to the intended interpretations as shown in
Appendix C whenever possible; but this is not necessary. For example, in countries with an alphabet of
more than 26 letters, it is usually best to map the additional letters into codes less than /0. To get the
most “permissive” character set, change “\,” on the right of these assignment statements to chr (7).

(Set initial values of key variables 21) +=
for i + 0to 37 do xchr|i] + "u7;
for i < 177 to 377 do zchrli] + "u7;

24. The following system-independent code makes the zord array contain a suitable inverse to the infor-
mation in zchr. Note that if zchr[i] = xchr[j] where ¢ < j < “177, the value of zord [zchr[i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 40 in case there
is a coincidence.
(Set initial values of key variables 21) +=

for i « first_text_char to last_text_char do zord[chr(i)] + invalid_code;

for i < 200 to "377 do zord[xzchr[i]] + i;

for i + 0to 176 do zord[zchr[i]] + i;

14 PART 3: INPUT AND OUTPUT pdfTEX §25

25. Input and output. The bane of portability is the fact that different operating systems treat input
and output quite differently, perhaps because computer scientists have not given sufficient attention to this
problem. People have felt somehow that input and output are not part of “real” programming. Well, it is
true that some kinds of programming are more fun than others. With existing input/output conventions
being so diverse and so messy, the only sources of joy in such parts of the code are the rare occasions when
one can find a way to make the program a little less bad than it might have been. We have two choices,
either to attack I/O now and get it over with, or to postpone I/O until near the end. Neither prospect is
very attractive, so let’s get it over with.

The basic operations we need to do are (1) inputting and outputting of text, to or from a file or the user’s
terminal; (2) inputting and outputting of eight-bit bytes, to or from a file; (3) instructing the operating system
to initiate (“open”) or to terminate (“close”) input or output from a specified file; (4) testing whether the
end of an input file has been reached.

TEX needs to deal with two kinds of files. We shall use the term alpha_file for a file that contains textual
data, and the term byte_file for a file that contains eight-bit binary information. These two types turn out
to be the same on many computers, but sometimes there is a significant distinction, so we shall be careful
to distinguish between them. Standard protocols for transferring such files from computer to computer, via
high-speed networks, are now becoming available to more and more communities of users.

The program actually makes use also of a third kind of file, called a word_file, when dumping and reloading
base information for its own initialization. We shall define a word file later; but it will be possible for us to
specify simple operations on word files before they are defined.

(Types in the outer block 18) +=
eight_bits = 0 .. 255; { unsigned one-byte quantity }
alpha_file = packed file of text_char; {files that contain textual data }
byte_file = packed file of eight_bits; {files that contain binary data }

26. Most of what we need to do with respect to input and output can be handled by the I/O facilities
that are standard in Pascal, i.e., the routines called get, put, eof , and so on. But standard Pascal does not
allow file variables to be associated with file names that are determined at run time, so it cannot be used
to implement TEX; some sort of extension to Pascal’s ordinary reset and rewrite is crucial for our purposes.
We shall assume that name_of_file is a variable of an appropriate type such that the Pascal run-time system
being used to implement TEX can open a file whose external name is specified by name_of-file.

(Global variables 13) +=
name_of-file: packed array [1 .. file_name_size] of char;
{ on some systems this may be a record variable }
name_length: 0 .. file_name_size;
{ this many characters are actually relevant in name_of_file (the rest are blank) }

627 pdfTExX PART 3: INPUT AND OUTPUT 15

27. The Pascal-H compiler with which the present version of TEX was prepared has extended the rules of
Pascal in a very convenient way. To open file f, we can write

reset(f,name, "/07) for input;
rewrite(f, name, "/0") for output.

The ‘name’ parameter, which is of type ‘packed array [(any)] of char’, stands for the name of the external
file that is being opened for input or output. Blank spaces that might appear in name are ignored.

The ‘/0’ parameter tells the operating system not to issue its own error messages if something goes wrong.
If a file of the specified name cannot be found, or if such a file cannot be opened for some other reason (e.g.,
someone may already be trying to write the same file), we will have erstat(f) # 0 after an unsuccessful reset
or rewrite. This allows TEX to undertake appropriate corrective action.

TEX’s file-opening procedures return false if no file identified by name_of_file could be opened.

define reset_OK (#) = erstat(#) =0
define rewrite.OK (#) = erstat(#) =0

function a_open_in(var f : alpha_file): boolean; {open a text file for input }
begin reset(f, name_of_file, */07); a_open_in < reset_OK (f);
end;

function a_open_out(var f : alpha_file): boolean; {open a text file for output }
begin rewrite(f, name_of_file, */07); a_open_out < rewrite_OK (f);
end;

function b_open_in(var f : byte_file): boolean; {open a binary file for input }
begin reset(f, name_of file, */07); b_open_in <+ reset_OK (f);
end;

function b_open_out(var f : byte_file): boolean; {open a binary file for output }
begin rewrite(f, name_of-file, */07); b_open_-out + rewrite_OK (f);
end;

function w_open_in(var f : word_file): boolean; {open a word file for input }
begin reset(f, name_of_file, */07); w_open_in < reset_OK (f);
end;

function w_open_out(var f : word_file): boolean; {open a word file for output }
begin rewrite(f, name_of_file, */07); w_open_out < rewrite_OK (f);
end;

28. Files can be closed with the Pascal-H routine ‘close(f)’, which should be used when all input or output
with respect to f has been completed. This makes f available to be opened again, if desired; and if f was
used for output, the close operation makes the corresponding external file appear on the user’s area, ready
to be read.

These procedures should not generate error messages if a file is being closed before it has been successfully
opened.

procedure a_close(var f : alpha_file); {close a text file }
begin close(f);
end;

procedure b_close(var f : byte_file); {close a binary file }
begin close(f);
end;

procedure w_close(var f : word_file); {close a word file }
begin close(f);
end;

16 PART 3: INPUT AND OUTPUT pdfTEX §29

29. Binary input and output are done with Pascal’s ordinary get and put procedures, so we don’t have to
make any other special arrangements for binary I/0. Text output is also easy to do with standard Pascal
routines. The treatment of text input is more difficult, however, because of the necessary translation to
ASCII_code values. TEX’s conventions should be efficient, and they should blend nicely with the user’s
operating environment.

30. Input from text files is read one line at a time, using a routine called input_In. This function is defined
in terms of global variables called buffer, first, and last that will be described in detail later; for now, it
suffices for us to know that buffer is an array of ASCII_code values, and that first and last are indices into
this array representing the beginning and ending of a line of text.

(Global variables 13) +=

buffer: array [0 .. buf-size] of ASCII_code; {lines of characters being read }
first: 0 .. buf size; {the first unused position in buffer }

last: 0 .. buf-size; {end of the line just input to buffer }

maz-buf_stack: 0 .. buf_size; {largest index used in buffer }

631 pdfTExX PART 3: INPUT AND OUTPUT 17

31. The input_ln function brings the next line of input from the specified file into available positions of
the buffer array and returns the value ¢rue, unless the file has already been entirely read, in which case it
returns false and sets last < first. In general, the ASCII_code numbers that represent the next line of the
file are input into buffer[first], buffer|first +1], ..., buffer[last — 1]; and the global variable last is set equal
to first plus the length of the line. Trailing blanks are removed from the line; thus, either last = first (in
which case the line was entirely blank) or buffer[last — 1] # "".

An overflow error is given, however, if the normal actions of input_In would make last > buf_size; this is
done so that other parts of TEX can safely look at the contents of buffer[last + 1] without overstepping the
bounds of the buffer array. Upon entry to input_ln, the condition first < buf_size will always hold, so that
there is always room for an “empty” line.

The variable maz_buf_stack, which is used to keep track of how large the buf size parameter must be to
accommodate the present job, is also kept up to date by input_in.

If the bypass_eoln parameter is true, input_In will do a get before looking at the first character of the line;
this skips over an eoln that was in f1. The procedure does not do a get when it reaches the end of the line;
therefore it can be used to acquire input from the user’s terminal as well as from ordinary text files.

Standard Pascal says that a file should have eoln immediately before eof , but TEX needs only a weaker
restriction: If eof occurs in the middle of a line, the system function eoln should return a true result (even
though f1 will be undefined).

Since the inner loop of input_ln is part of TEX’s “inner loop”—each character of input comes in at this
place—it is wise to reduce system overhead by making use of special routines that read in an entire array of
characters at once, if such routines are available. The following code uses standard Pascal to illustrate what
needs to be done, but finer tuning is often possible at well-developed Pascal sites.

function input_ln(var f : alpha_file; bypass_eoln : boolean): boolean;
{inputs the next line or returns false }
var last_nonblank: 0 .. buf_size; {last with trailing blanks removed }
begin if bypass_eoln then
if —eof (f) then get(f); {input the first character of the line into f1}
last < first; {cf. Matthew 19:30 }
if eof (f) then input.In « false
else begin last_nonblank < first;
while —eoln(f) do
begin if last > maz_buf_stack then
begin maz_buf_stack « last + 1;
if maz_buf_stack = buf_size then (Report overflow of the input buffer, and abort 35);
end;
buffer(last] < zord[f1]; get(f); incr(last);
if buffer(last — 1] # "," then last_nonblank < last;
end;
last < last_nonblank; input_ln < true;
end;
end;

32. The user’s terminal acts essentially like other files of text, except that it is used both for input and
for output. When the terminal is considered an input file, the file variable is called term_in, and when it is
considered an output file the file variable is term_out.

(Global variables 13) +=
term_in: alpha_file; {the terminal as an input file }
term_out: alpha_file; {the terminal as an output file }

18 PART 3: INPUT AND OUTPUT pdfTEX 833

33. Here is how to open the terminal files in Pascal-H. The ‘/I’ switch suppresses the first get.

define ¢ open_in = reset(term_in, "TTY: ", "/0/1°) {open the terminal for text input }
define t_open_out = rewrite(term_out, "TTY: ", "/0°) {open the terminal for text output }

34. Sometimes it is necessary to synchronize the input/output mixture that happens on the user’s terminal,
and three system-dependent procedures are used for this purpose. The first of these, update_terminal, is
called when we want to make sure that everything we have output to the terminal so far has actually left the
computer’s internal buffers and been sent. The second, clear_terminal, is called when we wish to cancel any
input that the user may have typed ahead (since we are about to issue an unexpected error message). The
third, wake_up_terminal, is supposed to revive the terminal if the user has disabled it by some instruction
to the operating system. The following macros show how these operations can be specified in Pascal-H:

define update_terminal = break (term_out) {empty the terminal output buffer }
define clear_terminal = break_in(term_in, true) {clear the terminal input buffer }
define wake_up_terminal = do_nothing { cancel the user’s cancellation of output }

35. We need a special routine to read the first line of TEX input from the user’s terminal. This line is
different because it is read before we have opened the transcript file; there is sort of a “chicken and egg”
problem here. If the user types ‘\input paper’ on the first line, or if some macro invoked by that line does
such an \input, the transcript file will be named ‘paper.log’; but if no \input commands are performed
during the first line of terminal input, the transcript file will acquire its default name ‘texput.log’. (The
transcript file will not contain error messages generated by the first line before the first \input command.)

The first line is even more special if we are lucky enough to have an operating system that treats TEX
differently from a run-of-the-mill Pascal object program. It’s nice to let the user start running a TEX job by
typing a command line like ‘tex paper’; in such a case, TEX will operate as if the first line of input were
‘paper’, i.e., the first line will consist of the remainder of the command line, after the part that invoked TEX.

The first line is special also because it may be read before TEX has input a format file. In such cases,
normal error messages cannot yet be given. The following code uses concepts that will be explained later.
(If the Pascal compiler does not support non-local goto, the statement ‘goto final_end’ should be replaced
by something that quietly terminates the program.)

(Report overflow of the input buffer, and abort 35) =
if format_ident = 0 then
begin write_ln(term_out, “Buffer size exceeded!”); goto final_end;
end
else begin cur_input.loc_field < first; cur_input.limit_field < last — 1;
overflow ("buffer,size", buf_size);
end

This code is used in sections 31 and 1753.

§36 pdfTEx PART 3: INPUT AND OUTPUT 19

36. Different systems have different ways to get started. But regardless of what conventions are adopted,
the routine that initializes the terminal should satisfy the following specifications:

1) It should open file term_in for input from the terminal. (The file term_out will already be open for
output to the terminal.)

2) If the user has given a command line, this line should be considered the first line of terminal input.
Otherwise the user should be prompted with ‘**’) and the first line of input should be whatever is
typed in response.

3) The first line of input, which might or might not be a command line, should appear in locations first
to last — 1 of the buffer array.

4) The global variable loc should be set so that the character to be read next by TEX is in buffer[loc].
This character should not be blank, and we should have loc < last.

(It may be necessary to prompt the user several times before a non-blank line comes in. The prompt is ‘**’
instead of the later ‘*’ because the meaning is slightly different: ‘\input’ need not be typed immediately
after ‘**’.)

define loc = cur_input.loc_field {location of first unread character in buffer }

37. The following program does the required initialization without retrieving a possible command line. It
should be clear how to modify this routine to deal with command lines, if the system permits them.

function init_terminal: boolean; { gets the terminal input started }
label exit;
begin t_open_in;
loop begin wake_up_terminal; write(term_out, “**); update_terminal;
if —input_In(term_in, true) then {this shouldn’t happen }
begin write_In(term_out); write(term_out, ~! End, 0f file on the terminal..._why?");
init_terminal < false; return;
end;
loc + first;
while (loc < last) A (buffer[loc] = ",") do incr(loc);
if loc < last then
begin init_terminal < true; return; {return unless the line was all blank }
end;
write_In(term_out, "Please type the_ name of jyour input file.");
end;
erit: end;

20 PART 4: STRING HANDLING pdfTEX §38

38. String handling. Control sequence names and diagnostic messages are variable-length strings of
eight-bit characters. Since Pascal does not have a well-developed string mechanism, TEX does all of its string
processing by homegrown methods.

Elaborate facilities for dynamic strings are not needed, so all of the necessary operations can be handled
with a simple data structure. The array str_pool contains all of the (eight-bit) ASCII codes in all of the strings,
and the array str_start contains indices of the starting points of each string. Strings are referred to by integer
numbers, so that string number s comprises the characters str_pool[j] for str_start[s] < j < str_start[s + 1].
Additional integer variables pool_ptr and str_ptr indicate the number of entries used so far in str_pool and
str_start, respectively; locations str_pool[pool_ptr] and str_start[str_ptr] are ready for the next string to be
allocated.

String numbers 0 to 255 are reserved for strings that correspond to single ASCII characters. This is in
accordance with the conventions of WEB, which converts single-character strings into the ASCII code number
of the single character involved, while it converts other strings into integers and builds a string pool file.
Thus, when the string constant "." appears in the program below, WEB converts it into the integer 46,
which is the ASCII code for a period, while WEB will convert a string like "hello" into some integer greater
than 255. String number 46 will presumably be the single character ‘.’; but some ASCII codes have no
standard visible representation, and TEX sometimes needs to be able to print an arbitrary ASCII character,
so the first 256 strings are used to specify exactly what should be printed for each of the 256 possibilities.

Elements of the str_pool array must be ASCII codes that can actually be printed; i.e., they must have an
xchr equivalent in the local character set. (This restriction applies only to preloaded strings, not to those
generated dynamically by the user.)

Some Pascal compilers won’t pack integers into a single byte unless the integers lie in the range —128 .. 127.
To accommodate such systems we access the string pool only via macros that can easily be redefined.

define si(#) =# {convert from ASCII_code to packed_ASCII_code }
define so(#) =# {convert from packed_ASCII_code to ASCIIL code }

(Types in the outer block 18) +=
pool_pointer = 0 .. pool_size; {for variables that point into str_pool }
stronumber = 0 .. maz_strings; {for variables that point into str_start }
packed_ASCII_code =0 .. 255; {elements of str_pool array }

39. (Global variables 13) +=

str_pool: packed array [pool_pointer| of packed_ASCII_code; {the characters}
str_start: array [str_number] of pool_pointer; {the starting pointers }
pool_ptr: pool_pointer; {first unused position in str_pool }

str_ptr: str_number; {number of the current string being created }

init_pool_ptr: pool_pointer; {the starting value of pool_ptr }

init_str_ptr: str_number; {the starting value of str_ptr }

40. Several of the elementary string operations are performed using WEB macros instead of Pascal pro-
cedures, because many of the operations are done quite frequently and we want to avoid the overhead of
procedure calls. For example, here is a simple macro that computes the length of a string.

define length(#) = (str_start[# + 1] — str_start[#]) {the number of characters in string number # }

41. The length of the current string is called cur_length:
define cur_length = (pool_ptr — str_start[str_ptr])

642 pdfTExX PART 4: STRING HANDLING 21

42. Strings are created by appending character codes to str_pool. The append_char macro, defined here,
does not check to see if the value of pool_ptr has gotten too high; this test is supposed to be made before
append_char is used. There is also a flush_char macro, which erases the last character appended.

To test if there is room to append | more characters to str_pool, we shall write str_room (I), which aborts
TEX and gives an apologetic error message if there isn’t enough room.

define append_char(#) = {put ASCII_code # at the end of str_pool }
begin str_pool[pool_ptr]| « si(#); incr(pool_ptr);
end
define flush_char = decr(pool_ptr) {forget the last character in the pool }
define str-room(#) = {make sure that the pool hasn’t overflowed }
begin if pool_ptr + # > pool_size then overflow("pool size", pool_size — init_pool_ptr);
end

43. Once a sequence of characters has been appended to str_pool, it officially becomes a string when the
function make_string is called. This function returns the identification number of the new string as its value.

function make_string: str_number; {current string enters the pool }
begin if str_ptr = maz_strings then overflow("number of strings", maz_strings — init_str_ptr);
incr(str_ptr); str_start[str_ptr] < pool_ptr; make_string < str_ptr — 1;
end;

)

44, To destroy the most recently made string, we say flush_string.

define flush_string =
begin decr (str_ptr); pool_ptr «+ str_start|[str_ptr];
end

45. The following subroutine compares string s with another string of the same length that appears in
buffer starting at position k; the result is true if and only if the strings are equal. Empirical tests indicate
that str_eq_buf is used in such a way that it tends to return ¢true about 80 percent of the time.

function str_eq_buf (s : str_number; k : integer): boolean; {test equality of strings }
label not_found; {loop exit }
var j: pool_pointer; {running index }
result: boolean; {result of comparison }
begin j + str_start[s];
while j < str_start[s + 1] do
begin if so(str_pool[j]) # buffer[k] then
begin result < false; goto not_found;
end;
incr(j); incr(k);
end;
result < true;
not_found: str_eq_buf < result;
end;

22 PART 4: STRING HANDLING pdfTEX §46

46. Here is a similar routine, but it compares two strings in the string pool, and it does not assume that
they have the same length.

function str_eq_str(s,t : str-number): boolean; {test equality of strings }
label not_found; {loop exit}
var j,k: pool_pointer; {running indices }
result: boolean; {result of comparison }
begin result « false;
if length(s) # length(t) then goto not_found;
J « str_start[s]; k + str_start[t];
while j < str_start[s + 1] do
begin if str_pool[j] # str_pool[k] then goto not_found;
incr(j); incr(k);
end;
result < true;
not_found: str_eq_str < result;
end;

47. The initial values of str_pool, str_start, pool_ptr, and str_ptr are computed by the INITEX program,
based in part on the information that WEB has output while processing TEX.

init function get_strings_started: boolean;
{ initializes the string pool, but returns false if something goes wrong }

label done, exit;
var k,l: 0..255; {small indices or counters }

m,n: text_char; {characters input from pool_file }

g: strnumber; {garbage }

a: integer; {accumulator for check sum }

¢: boolean; { check sum has been checked }
begin pool_ptr + 0; str_ptr < 0; str_start[0] + 0; { Make the first 256 strings 48);
(Read the other strings from the TEX.POOL file and return ¢rue, or give an error message and return

false 51);
erit: end;

tini

48. define app_lc_hex(#) =1+ #;
if [< 10 then append_char(l+ "0") else append_char(l — 10 + "a")

(Make the first 256 strings 48) =
for k < 0to 255 do

begin if ((Character k cannot be printed 49)) then
begin append_char("~"); append_char("~");
if k< 100 then append_char(k+ 100)
else if k < 200 then append_char(k — "100)

else begin app_lc_hex(k div 16); app_lc_hex (k mod 16);
end;

end

else append_char(k);

g < make_string;

end

This code is used in section 47.

649 pdfTExX PART 4: STRING HANDLING 23

49. The first 128 strings will contain 95 standard ASCII characters, and the other 33 characters will be
printed in three-symbol form like ‘“~A’ unless a system-dependent change is made here. Installations that
have an extended character set, where for example xzchr[32] = “#°, would like string “32 to be the single
character ‘32 instead of the three characters 136, 136, '132 (~~Z). On the other hand, even people with
an extended character set will want to represent string ‘15 by ~~M, since ‘15 is carriage_return; the idea is
to produce visible strings instead of tabs or line-feeds or carriage-returns or bell-rings or characters that are
treated anomalously in text files.

Unprintable characters of codes 128-255 are, similarly, rendered ~~80—""ff.

The boolean expression defined here should be true unless TEX internal code number & corresponds to a
non-troublesome visible symbol in the local character set. An appropriate formula for the extended character
set recommended in The TEXbook would, for example, be ‘k € [0, ‘10 .. 12,714, 715,733,177 .. 877].
If character k cannot be printed, and k& < "200, then character k + 100 or k — 100 must be printable;
moreover, ASCII codes [/ .. 46,760 .. 71,7136, 141 .. "146,°160 .. "171] must be printable. Thus, at
least 80 printable characters are needed.

(Character k cannot be printed 49) =
(k < ||un) \Vi (k > n~n)

This code is used in section 48.

50. When the WEB system program called TANGLE processes the TEX.WEB description that you are now
reading, it outputs the Pascal program TEX.PAS and also a string pool file called TEX.POOL. The INITEX
program reads the latter file, where each string appears as a two-digit decimal length followed by the string
itself, and the information is recorded in TEX’s string memory.

(Global variables 13) +=
init pool_file: alpha_file; {the string-pool file output by TANGLE }
tini

51. define bad_pool(#) =
begin wake_up_terminal; write_ln(term_out,#); a_close(pool_file); get_strings_started < false;
return;
end

(Read the other strings from the TEX.POOL file and return true, or give an error message and return
false 51) =

name_of-file <— pool_name; {we needn’t set name_length }

if a_open_in(pool_file) then
begin ¢ + false;
repeat (Read one string, but return false if the string memory space is getting too tight for

comfort 52);

until c;
a_close(pool_file); get_strings_started < true;
end

else bad_pool ("' I can” "t read TEX.POOL.)

This code is used in section 47.

24 PART 4: STRING HANDLING pdfTEX §52

52. (Read one string, but return false if the string memory space is getting too tight for comfort 52) =
begin if eof (pool_file) then bad_pool (! TEX.POOL_has no check, sum.);
read (pool_file, m,n); {read two digits of string length }
if m = “*~ then (Check the pool check sum 53)
else begin if (zord[m] < "0") V (zord[m] > "9") V (zord[n] < "0") V (zord[n] > "9") then
bad_pool (~ ' ,TEX.POOL_line doesn” "t begin with two_digits.");
I + zord[m] * 10 + zord[n] — "0" x 11; { compute the length }
if pool_ptr + 1 + string_vacancies > pool_size then bad_pool(~! You have to increase POOLSIZE.);
for K+ 1to !l do
begin if eoln(pool_file) then m < “|,~ else read(pool_file, m);
append_char (zord[m]);
end;
read_In (pool_file); g < make_string;
end;
end

This code is used in section 51.

53. The WEB operation @$ denotes the value that should be at the end of this TEX.POOL file; any other
value means that the wrong pool file has been loaded.

(Check the pool check sum 53) =
begin a + 0; k < 1;
loop begin if (zord[n] < "0")V (zord[n] > "9") then
bad_pool (~ ' ,TEX.POOL_check, sum doesn” "t _have nine digits.");
a < 10 xa + zord[n] — "0O";
if k=9 then goto done;
incr(k); read (pool_file,n);
end;
done: if a # @$ then bad_pool(~ ! TEX.POOL_ doesn” "t match; TANGLE me again.");
c < true;
end

This code is used in section 52.

§54 pdfTEX PART 5: ON-LINE AND OFF-LINE PRINTING 25

54. On-line and off-line printing. Messages that are sent to a user’s terminal and to the transcript-
log file are produced by several ‘print’ procedures. These procedures will direct their output to a variety of
places, based on the setting of the global variable selector, which has the following possible values:

term_and_log, the normal setting, prints on the terminal and on the transcript file.

log_only, prints only on the transcript file.

term_only, prints only on the terminal.

no_print, doesn’t print at all. This is used only in rare cases before the transcript file is open.

pseudo, puts output into a cyclic buffer that is used by the show_context routine; when we get to that routine
we shall discuss the reasoning behind this curious mode.

new_string, appends the output to the current string in the string pool.

0 to 15, prints on one of the sixteen files for \write output.

The symbolic names ‘term_and_log’, etc., have been assigned numeric codes that satisfy the convenient
relations no_print + 1 = term_only, no_print + 2 = log_only, term_only 4+ 2 = log_only + 1 = term_and_log.

Three additional global variables, tally and term_offset and file_offset, record the number of characters
that have been printed since they were most recently cleared to zero. We use tally to record the length of
(possibly very long) stretches of printing; term_offset and file_offset, on the other hand, keep track of how
many characters have appeared so far on the current line that has been output to the terminal or to the
transcript file, respectively.

define no_print = 16 { selector setting that makes data disappear }
define term_only =17 {printing is destined for the terminal only }
define log_only = 18 {printing is destined for the transcript file only }
define term_and_log =19 {normal selector setting }

define pseudo =20 {special selector setting for show_context }
define new_string = 21 { printing is deflected to the string pool }
define maz_selector =21 { highest selector setting }

(Global variables 13) +=

log_file: alpha_file; {transcript of TEX session }

selector: 0 .. max_selector; {where to print a message }

dig: array [0..22] of 0..15; {digitsin a number being output }

tally: integer; {the number of characters recently printed }

term_offset: 0 .. max_print_line; {the number of characters on the current terminal line }
file_offset: 0 .. maz_print_line; {the number of characters on the current file line }
trick_buf : array [0 .. error_line] of ASCII_code; { circular buffer for pseudoprinting }
trick_count: integer; {threshold for pseudoprinting, explained later }

first_count: integer; {another variable for pseudoprinting }

55. (Initialize the output routines 55) =
selector < term_only; tally < 0; term_offset < 0; file_offset + O;
See also sections 61, 554, and 559.

This code is used in section 1510.

56. Macro abbreviations for output to the terminal and to the log file are defined here for convenience.
Some systems need special conventions for terminal output, and it is possible to adhere to those conventions
by changing wterm, wterm_ln, and wterm_cr in this section.

define wterm (#) = write(term_out, #)
define wterm_In(#) = write_ln(term_out , #)
define wterm_cr = write_In (term_out)
define wlog(#) = write(log-file, #)

define wlog_In(#) = write_ln(log_file, #)
define wlog_cr = write_ln(log_file)

26 PART 5: ON-LINE AND OFF-LINE PRINTING pdfTEX 857

57. To end a line of text output, we call print_in.

(Basic printing procedures 57) =
procedure print_In; {prints an end-of-line }
begin case selector of
term_and_log: begin wterm_cr; wlog_cr; term_offset < 0; file_offset < 0;

end;

log_only: begin wlog_cr; file_offset < 0;
end;

term_only: begin wterm_cr; term_offset < 0;
end;

no_print, pseudo, new_string: do_nothing;
othercases write_ln (write_file[selector])
endcases;
end; {tally is not affected }
See also sections 58, 59, 60, 62, 63, 64, 65, 284, 285, 544, 873, 1599, and 1819.

This code is used in section 4.

58. The print_char procedure sends one character to the desired destination, using the zchr array to map
it into an external character compatible with input_ln. All printing comes through print_In or print_char.

(Basic printing procedures 57) +=
procedure print_char(s : ASCII_code); {prints a single character }
label exit;
begin if (Character s is the current new-line character 262) then
if selector < pseudo then
begin print_in; return;
end;
case selector of
term_and_log: begin wterm (xzchr(s]); wlog(xchr(s]); incr(term_offset); incr(file_offset);
if term_offset = maz_print_line then
begin wterm_cr; term_offset < 0;
end;
if file_offset = maz_print_line then
begin wlog_cr; file_offset < 0;
end;
end;
log_only: begin wlog(zchr[s]); incr(file_offset);
if file_offset = maz_print_line then print_in;
end;
term_only: begin wterm (zchr(s]); incr(term_offset);
if term_offset = maz_print_line then print_in;
end;
no_print: do_nothing;
pseudo: if tally < trick_count then trick_buf[tally mod error_line] + s;
new_string: begin if pool_ptr < pool_size then append_char(s);
end; {we drop characters if the string space is full }
othercases write (write_file[selector], zchr[s])
endcases;
incr(tally);
erit: end;

§59 pdfTEX PART 5: ON-LINE AND OFF-LINE PRINTING 27

59. An entire string is output by calling print. Note that if we are outputting the single standard ASCII
character c, we could call print("c"), since "c" = 99 is the number of a single-character string, as explained
above. But print_char("c") is quicker, so TEX goes directly to the print_char routine when it knows that
this is safe. (The present implementation assumes that it is always safe to print a visible ASCII character.)

(Basic printing procedures 57) +=
procedure print(s : integer); {prints string s }
label exit;
var j: pool_pointer; {current character code position }
nl: integer; {new-line character to restore }
begin if s > str_ptr then s« "?7?" {this can’t happen }
else if s < 256 then
if s <0then s« "??7?" {can’t happen }
else begin if selector > pseudo then
begin print_char(s); return; {internal strings are not expanded }
end;
if ((Character s is the current new-line character 262)) then
if selector < pseudo then
begin print_ln; return;
end;
nl + new_line_char; new_line_char < —1; {temporarily disable new-line character }
J « str_start[s];
while j < str_start[s + 1] do
begin print_char(so(str_pool[j])); incr(j);
end;
new_line_char < nl; return;
end;
J « str_start[s];
while j < str_start[s + 1] do
begin print_char(so(str_pool[j])); incr(j);
end;
exit: end;

60. Control sequence names, file names, and strings constructed with \string might contain ASCII_code
values that can’t be printed using print_char. Therefore we use slow_print for them:

(Basic printing procedures 57) +=
procedure slow_print(s : integer); { prints string s }
var j: pool_pointer; {current character code position }
begin if (s > str_ptr) V (s < 256) then print(s)
else begin j « str_start[s];
while j < str_start[s + 1] do
begin print(so(str_pool[j])); incr(j);
end;
end;
end;

28 PART 5: ON-LINE AND OFF-LINE PRINTING pdfTEX 861

61. Here is the very first thing that TEX prints: a headline that identifies the version number and format
package. The term_offset variable is temporarily incorrect, but the discrepancy is not serious since we assume
that this part of the program is system dependent.

(Initialize the output routines 55) +=
wterm (banner);
if format_ident = 0 then wterm_In("(no format preloaded) °)
else begin slow_print(format_ident); print_in;
end;
update_terminal;

62. The procedure print_nl is like print, but it makes sure that the string appears at the beginning of a
new line.

(Basic printing procedures 57) +=

procedure print_nl(s : str_number); {prints string s at beginning of line }
begin if ((term_offset > 0) A (odd (selector))) V ((file_offset > 0) A (selector > log_only)) then print_in;
print(s);
end;

63. The procedure print_esc prints a string that is preceded by the user’s escape character (which is usually
a backslash).

(Basic printing procedures 57) +=
procedure print_esc(s : str_number); {prints escape character, then s}
var c: integer; {the escape character code }
begin (Set variable ¢ to the current escape character 261);
if ¢ > 0 then
if ¢ < 256 then print(c);
slow_print(s);
end;

64. An array of digits in the range 0 .. 15 is printed by print_the_digs.

(Basic printing procedures 57) +=
procedure print_the_digs (k : eight_bits); { prints dig[k —1]...dig[0] }
begin while £ > 0 do
begin decr (k);
if dig[k] < 10 then print_char("0" + dig[k])
else print_char("A" — 10 + dig[k]);
end;
end;

865 pdfTEX PART 5: ON-LINE AND OFF-LINE PRINTING 29

65. The following procedure, which prints out the decimal representation of a given integer n, has been
written carefully so that it works properly if n = 0 or if (—n) would cause overflow. It does not apply mod or
div to negative arguments, since such operations are not implemented consistently by all Pascal compilers.

(Basic printing procedures 57) +=
procedure print_int(n : longinteger); { prints an integer in decimal form }
var k: 0..23; {index to current digit; we assume that |n| < 1023}
m: longinteger; {used to negate n in possibly dangerous cases }
begin k <+ 0;
if n <0 then
begin print_char("-");
if n > —100000000 then negate(n)
else begin m < —1 —n; n+ mdiv 10; m + (mmod 10) + 1; k + 1;
if m < 10 then dig[0] < m
else begin dig[0] < 0; incr(n);
end;
end;
end;
repeat dig[k] + nmod 10; n + ndiv 10; incr(k);
until n = 0;
print_the_digs (k);
end;

66. Here is a trivial procedure to print two digits; it is usually called with a parameter in the range
0<n<99.
procedure print_two(n : integer); {prints two least significant digits }

begin n < abs(n) mod 100; print_char("0" + (n div 10)); print_char("0" + (n mod 10));

end;

67. Hexadecimal printing of nonnegative integers is accomplished by print_hex.
procedure print_hez (n : integer); { prints a positive integer in hexadecimal form }

var k: 0..22; {index to current digit; we assume that 0 <n < 1622}

begin k < 0; print_char("""");

repeat dig[k] < nmod 16; n « ndiv 16; incr(k);

until n = 0;

print_the_digs (k);

end;

68. Old versions of TEX needed a procedure called print_ASCII whose function is now subsumed by print.
We retain the old name here as a possible aid to future software archaeologists.

define print_ASCII = print

30 PART 5: ON-LINE AND OFF-LINE PRINTING pdfTEX §69

69. Roman numerals are produced by the print_roman_int routine. Readers who like puzzles might enjoy
trying to figure out how this tricky code works; therefore no explanation will be given. Notice that 1990
yields memxc, not mxm.

procedure print_roman_int(n : integer);
label exit;
var j,k: pool_pointer; { mysterious indices into str_pool }
u, v: nonnegative_integer; { mysterious numbers }
begin j < str_start["m2d5c215x2v5i"]; v < 1000;
loop begin while n > v do
begin print_char (so(str_pool[j])); n + n — v;
end;
if n <0 then return; {nonpositive input produces no output }
k< j+2; u< vdiv (so(str_pool[k — 1]) — "0");
if str_pool[k — 1] = si("2") then
begin k + k+2; u + udiv (so(str_pool[k — 1]) — "0");
end;
if n+u > v then
begin print_char (so(str_pool[k])); n < n + u;
end
else begin j + j+2; v+ v div (so(str_pool[j — 1]) — "0");
end;
end;
erit: end;

70. The print subroutine will not print a string that is still being created. The following procedure will.

procedure print_current_string; { prints a yet-unmade string }
var j: pool_pointer; { points to current character code }
begin j + str_start|str_ptr];
while j < pool_ptr do
begin print_char(so(str_pool[j])); incr(j);
end;
end;

71. Here is a procedure that asks the user to type a line of input, assuming that the selector setting is
either term_only or term_and_log. The input is placed into locations first through last — 1 of the buffer
array, and echoed on the transcript file if appropriate.
This procedure is never called when interaction < scroll_mode.
define prompt_input (#) =
begin wake_up_terminal; print(#); term_input;
end {prints a string and gets a line of input }
procedure term_input; {gets a line from the terminal }
var k: 0 .. buf_size; {index into buffer }
begin update_terminal; {now the user sees the prompt for sure }
if —input_In(term_in, true) then fatal_error("End of file on the terminall");
term_offset <— 0; {the user’s line ended with (return) }
decr (selector); { prepare to echo the input }
if last # first then
for k « first to last — 1 do print(buffer[k]);
print_ln; incr(selector); {restore previous status }
end;

§72 pdfTExX PART 6: REPORTING ERRORS 31
72. Reporting errors. When something anomalous is detected, TEX typically does something like this:

pm‘nt,err("Something_,anomalous_,hasubeenudetected");
help8 ("This_ is the first line of_ my offer to help.")
("This is the second line. I m trying to")

("explain the best_ way for you to_proceed.");

error;

A two-line help message would be given using help2, etc.; these informal helps should use simple vocabulary
that complements the words used in the official error message that was printed. (Outside the U.S.A., the
help messages should preferably be translated into the local vernacular. Each line of help is at most 60
characters long, in the present implementation, so that maz_print_line will not be exceeded.)

The print_err procedure supplies a ‘!’ before the official message, and makes sure that the terminal is
awake if a stop is going to occur. The error procedure supplies a ‘.’ after the official message, then it shows
the location of the error; and if interaction = error_stop_mode, it also enters into a dialog with the user,

during which time the help message may be printed.

73. The global variable interaction has four settings, representing increasing amounts of user interaction:

define batch-mode =0 {omits all stops and omits terminal output }
define nonstop_mode =1 {omits all stops }
define scrollmode =2 {omits error stops }
define error_stop-mode =3 {stops at every opportunity to interact }
define print_err(#) =
begin if interaction = error_stop_mode then wake_up_terminal;
print_nl ("',"); print(#);
end
(Global variables 13) +=
interaction: batch_mode .. error_stop_mode; {current level of interaction }

74. (Set initial values of key variables 21) 4+=
interaction <+ error_stop_mode;

75. TgX is careful not to call error when the print selector setting might be unusual. The only possible
values of selector at the time of error messages are

no_print (when interaction = batch-mode and log_file not yet open);
term_only (when interaction > batch_mode and log_file not yet open);
log-only (when interaction = batch-mode and log_file is open);
term_and_log (when interaction > batch-mode and log_file is open).

(Initialize the print selector based on interaction 75) =
if interaction = batch_-mode then selector < no_print else selector < term_only

This code is used in sections 1441 and 1515.

32 PART 6: REPORTING ERRORS pdfTEX §76

76. A global variable deletions_allowed is set false if the get_next routine is active when error is called; this
ensures that get_next and related routines like get_token will never be called recursively. A similar interlock
is provided by set_box_allowed.

The global variable history records the worst level of error that has been detected. It has four possible
values: spotless, warning_issued, error_message_issued, and fatal_error_stop.

Another global variable, error_count, is increased by one when an error occurs without an interactive
dialog, and it is reset to zero at the end of every paragraph. If error_count reaches 100, TEX decides that
there is no point in continuing further.

define spotless =0 { history value when nothing has been amiss yet }

define warning_issued =1 { history value when begin_diagnostic has been called }
define error_message_issued =2 { history value when error has been called }
define fatal_error_stop =3 { history value when termination was premature }

(Global variables 13) +=

deletions_allowed: boolean; {is it safe for error to call get_token? }

set_box_allowed: boolean; {is it safe to do a \setbox assignment? }

history: spotless .. fatal_error_stop; {has the source input been clean so far? }
error_count: —1 ..100; {the number of scrolled errors since the last paragraph ended }

77. The value of history is initially fatal_error_stop, but it will be changed to spotless if TEX survives the
initialization process.

(Set initial values of key variables 21) +=
deletions_allowed <+ true; set_box_allowed < true; error_count < 0; { history is initialized elsewhere }

78. Since errors can be detected almost anywhere in TEX, we want to declare the error procedures near
the beginning of the program. But the error procedures in turn use some other procedures, which need to
be declared forward before we get to error itself.

It is possible for error to be called recursively if some error arises when get_token is being used to delete
a token, and/or if some fatal error occurs while TEX is trying to fix a non-fatal one. But such recursion is
never more than two levels deep.

(Error handling procedures 78) =

procedure normalize_selector; forward;
procedure get_token; forward;

procedure term_input; forward;

procedure show_context; forward;
procedure begin_file_reading; forward;
procedure open_log_file; forward;

procedure close_files_and_terminate; forward;
procedure clear_for_error_prompt; forward;
procedure give_err_help; forward;

debug procedure debug_help; forward; gubed
See also sections 81, 82, 93, 94, and 95.

This code is used in section 4.

879 pdfTEX

PART 6: REPORTING ERRORS

33

79. Individual lines of help are recorded in the array help_line, which contains entries in positions 0 ..
(help_ptr — 1). They should be printed in reverse order, i.e., with help_line[0] appearing last.

hip1 (#) = help_line[0] + # end

define
define
define
define
define
define
define
define
define
define
define
define
define

hip2 (#) = help_line[1] +
hip3 (#) = help_line[2] +
hip4 (#) = help_line[3] +
hip5 (#) = help_line[4] +
[5

hip6 (#) = help_line[5] +

#; hipl
#; hip2
#; hip3
#; hip4
#; hipd

help0 = help_ptr < 0 {Sometimes there might be no help }

helpl = begin help_ptr
help2 = begin help_ptr
help3 = begin help_ptr
help4 = begin help_ptr
help5 = begin help_ptr
help6 = begin help_ptr

(Global variables 13) +=

help_line: array [0 ..
help_ptr: 0 ..
use_err_help: boolean;

5] of str_number;
6; {the number of help lines present }
{should the err_help list be shown? }

<~ 1; hip1
<~ 2; hip2
<+ 3; hip3
«— 4; hlp4
<« 5; hilpd
< 6; hlp6

{ use this with one help line }

{ use this with two help lines }
{ use this with three help lines }
{ use this with four help lines }
{ use this with five help lines }
{ use this with six help lines }

{ helps for the next error }

80. (Set initial values of key variables 21) +=
help_ptr < 0; use_err_help < false;

81. The jump_out procedure just cuts across all active procedure levels and goes to end_of TEX. This
is the only nontrivial goto statement in the whole program. It is used when there is no recovery from a
particular error.

Some Pascal compilers do not implement non-local goto statements. In such cases the body of jump_out
should simply be ‘close_files_and_terminate;’ followed by a call on some system procedure that quietly
terminates the program.

(Error handling procedures 78) +=
procedure jump_out;
begin goto end_of TEX;

end;

82. Here now is the general error

routine.

(Error handling procedures 78) +=

procedure error;

label continue, exit;

var c: ASCII_code;

{ what the user types }

{ completes the job of error reporting }

s1,82,53,s4: integer; {used to save global variables when deleting tokens }
begin if history < error_message_issued then history < error_message_issued;
print_char("."); show_context;
if interaction = error_stop-mode then (Get user’s advice and return 83);
incr (error_count);
if error_count = 100 then

begin print_nl("(That_makes 100 errors; please try,again.)"); history < fatal_error_stop;

jump_out;

end;

(Put help message on the transcript file 90);
erit: end;

34 PART 6: REPORTING ERRORS pdfTEX §83

83. (Get user’s advice and return 83) =
loop begin continue: if interaction # error_stop_mode then return;
clear_for_error_prompt; prompt_input("?,");
if last = first then return;
¢ < buffer[first];

if ¢ > "a" then ¢+ c+"A" —"a"; {convert to uppercase }
(Interpret code ¢ and return if done 84);
end

This code is used in section 82.

84. It is desirable to provide an ‘E’ option here that gives the user an easy way to return from TEX to
the system editor, with the offending line ready to be edited. But such an extension requires some system
wizardry, so the present implementation simply types out the name of the file that should be edited and the
relevant line number.

There is a secret ‘D’ option available when the debugging routines haven’t been commented out.

(Interpret code ¢ and return if done 84) =
case c of
non mn wou wgn mgn wgn wgn wyw wgn wgn. if deletions_allowed then
(Delete ¢ — "0" tokens and goto continue 88);
debug "D": begin debug_help; goto continue; end; gubed
"E": if base_ptr > 0 then
if input_stack[base_ptr].name_field > 256 then
begin print_nl("You want to edit file,"); slow_print(input_stack|[base_ptr]|.name_field);
print("Latyline"); print_int(line); interaction < scroll_mode; jump_out;
end;
"H": (Print the help information and goto continue 89);
"I": (Introduce new material from the terminal and return 87);
"Q","R","S": ({ Change the interaction level and return 86);
"X": begin interaction < scroll_mode; jump_out;
end;
othercases do_nothing
endcases;
(Print the menu of available options 85)

This code is used in section 83.

85. (Print the menu of available options 85) =
begin print("Type,<return> to proceed, S to,scroll future error messages,");
print_nl ("Rytoyrun without stopping, Quto run,quietly, ");
print_nl ("I to insert something, ,");
if base_ptr > 0 then
if input_stack [base_ptr].name_field > 256 then print("E to edit your file,");
if deletions_allowed then
print_nl("1g0ry. . .uor 9 to ignore the next,1,to 9 tokens of input,");
print_nl("H_for_help, X to_quit.");
end

This code is used in section 84.

§86 pdfTEx PART 6: REPORTING ERRORS 35

86. Here the author of TEX apologizes for making use of the numerical relation between "Q", "R", "S",
and the desired interaction settings batch_mode, nonstop_mode, scroll_mode.

(Change the interaction level and return 86) =
begin error_count < 0; interaction < batch-mode + ¢ — "Q"; print("0K,_entering ");
case c of
"Q": begin print_esc("batchmode"); decr(selector);
end;
"R": print_esc("nonstopmode");
"S": print_esc("scrollmode");
end; {there are no other cases }
print("..."); print_ln; update_terminal; return;
end

This code is used in section 84.

87. When the following code is executed, buffer|[(first +1) .. (last — 1)] may contain the material inserted
by the user; otherwise another prompt will be given. In order to understand this part of the program fully,
you need to be familiar with TEX’s input stacks.

(Introduce new material from the terminal and return 87) =
begin begin_file_reading; {enter a new syntactic level for terminal input }
{now state = mid_line, so an initial blank space will count as a blank }
if last > first +1 then
begin loc + first + 1; buffer[first] < "u";
end
else begin prompt_input("insert>"); loc + first;
end;
first < last; cur_input.limit_field < last — 1; {no end_line_char ends this line }
return;
end

This code is used in section 84.

88. We allow deletion of up to 99 tokens at a time.

(Delete ¢ — "0" tokens and goto continue 88) =

begin s1 < cur_tok; s2 < cur_cmd; s3 < cur_chr; s4 < align_state; align_state < 1000000;
OK _to_interrupt < false;
if (last > first + 1) A (buffer[first + 1] > "0") A (buffer[first + 1] < "9") then

¢ < c* 10 + buffer(first + 1] — "0" x 11
else c+ c—"0";
while ¢ > 0 do

begin get_token; {one-level recursive call of error is possible }

decr(c);

end;
cur_tok < s1; cur_cmd < s2; cur_chr < s8; align_state < s ; OK_to_interrupt < true;
help2("I_have just deleted some text,_ as you asked.")
("You._,can._,nowudelete._,more,uoruinsert ,uor_ whatever. "); show_context; goto continue;
end

This code is used in section 84.

36 PART 6: REPORTING ERRORS pdfTEX §89

89. (Print the help information and goto continue 89) =
begin if use_err_help then
begin give_err_help; use_err_help < false;
end
else begin if help_ptr = 0 then help2("Sorry, I don t know _how to help in this situation.")
("Maybe_you,should, try asking a human?");
repeat decr (help_ptr); print(help_line[help_ptr]); print_in;
until help_ptr = 0;
end;
help4 ("Sorry, I already gave_ what help I could...")
("Maybe_you,should, try asking a human?")
("Anuerrorumightuhave_,occurredubeforeuI._lnoticed._lanyuproblems . ")
(" "If all else fails, read the instructions.”"");
goto continue;
end

This code is used in section 84.

90. (Put help message on the transcript file 90) =
if interaction > batch_mode then decr(selector); {avoid terminal output }
if use_err_help then
begin print_in; give_err_help;
end
else while help_ptr > 0 do
begin decr (help_ptr); print_nl(help_line[help_ptr]);
end;
print_in;
if interaction > batch-mode then incr(selector); {re-enable terminal output }
print_In

This code is used in section 82.

91. A dozen or so error messages end with a parenthesized integer, so we save a teeny bit of program space
by declaring the following procedure:

procedure int_error(n : integer);
begin print(",("); print_int(n); print_char(")"); error;
end;

92. In anomalous cases, the print selector might be in an unknown state; the following subroutine is called
to fix things just enough to keep running a bit longer.

procedure normalize_selector;
begin if log_opened then selector < term_and_log
else selector < term_only;
if job_name = 0 then open_log._file;
if interaction = batch_mode then decr (selector);
end;

§93 pdfTEx PART 6: REPORTING ERRORS 37

93. The following procedure prints TEX’s last words before dying.
define succumb =
begin if interaction = error_stop_mode then interaction < scroll_mode;
{ no more interaction }
if log_opened then error;
debug if interaction > batch-mode then debug_help;
gubed
history < fatal_error_stop; jump_out; {irrecoverable error }
end
{ Error handling procedures 78) +=
procedure fatal_error(s : strnumber); {prints s, and that’s it }
begin normalize_selector;
print_err ("Emergency,stop"); help! (s); succumb;
end;

)

94. Here is the most dreaded error message.

(Error handling procedures 78) +=
procedure overflow (s : str_number; n : integer); {stop due to finiteness }
begin normalize_selector; print_err("TeX capacity exceeded, sorry,["); print(s); print_char("=");
print_int(n); print_char("1"); help2("If_ you really absolutely need more capacity,")
("you._lcan._,askua._,wizardutouenlarge._,me. "); succumb;
end;
95. The program might sometime run completely amok, at which point there is no choice but to stop. If
no previous error has been detected, that’s bad news; a message is printed that is really intended for the
TEX maintenance person instead of the user (unless the user has been particularly diabolical). The index
entries for ‘this can’t happen’ may help to pinpoint the problem.
(Error handling procedures 78) +=
procedure confusion (s : str-number); { consistency check violated; s tells where }
begin normalize_selector;
if history < error_message_issued then
begin print_err("This,can "t happen,,("); print(s); print_char(")");
help1 (" I m_broken. Please show_this to,someone who can fix can,f ix");
end
else begin print_err("I can "t go on meeting you like this");
help2 ("Dneuof._,your._,faux._,pas_,seemsuto_,have_,woundedume._,deeply. .. ")
(" in,fact, I ‘m barely,conscious. Please fix it and try,again. ");
end;
succumb;
end;

96. Users occasionally want to interrupt TEX while it’s running. If the Pascal runtime system allows this,
one can implement a routine that sets the global variable interrupt to some nonzero value when such an
interrupt is signalled. Otherwise there is probably at least a way to make interrupt nonzero using the Pascal
debugger.
define check_interrupt =
begin if interrupt # 0 then pause_for_instructions;
end
(Global variables 13) +=
interrupt: integer; {should TEX pause for instructions? }
OK_to_interrupt: boolean; {should interrupts be observed? }

38 PART 6: REPORTING ERRORS pdfTEX §97

97. (Set initial values of key variables 21) +=
interrupt < 0; OK_to_interrupt < true;

98. When an interrupt has been detected, the program goes into its highest interaction level and lets the
user have nearly the full flexibility of the error routine. TEX checks for interrupts only at times when it is
safe to do this.

procedure pause_for_instructions;

begin if OK_to_interrupt then
begin interaction < error_stop_mode;
if (selector = log-only) V (selector = no_print) then incr(selector);
print_err("Interruption"); help3("You rang?")
("Tryutouinsert an instruction for me,(e.g., " I\showlists~),")
("unless_you,just want to,quit by typing, X ."); deletions_allowed < false; error;
deletions_allowed <« true; interrupt < 0;
end;

end;

§99 pdfTEX PART 7: ARITHMETIC WITH SCALED DIMENSIONS 39

99. Arithmetic with scaled dimensions. The principal computations performed by TEX are done
entirely in terms of integers less than 23! in magnitude; and divisions are done only when both dividend
and divisor are nonnegative. Thus, the arithmetic specified in this program can be carried out in exactly
the same way on a wide variety of computers, including some small ones. Why? Because the arithmetic
calculations need to be spelled out precisely in order to guarantee that TEX will produce identical output
on different machines. If some quantities were rounded differently in different implementations, we would
find that line breaks and even page breaks might occur in different places. Hence the arithmetic of TgX has
been designed with care, and systems that claim to be implementations of TEX82 should follow precisely the
calculations as they appear in the present program.

(Actually there are three places where TEX uses div with a possibly negative numerator. These are
harmless; see div in the index. Also if the user sets the \time or the \year to a negative value, some
diagnostic information will involve negative-numerator division. The same remarks apply for mod as well
as for div.)

100. Here is a routine that calculates half of an integer, using an unambiguous convention with respect to
signed odd numbers.
function half (z : integer): integer;

begin if odd(xz) then half + (z+ 1) div 2

else half + x div 2;

end;

101. Fixed-point arithmetic is done on scaled integers that are multiples of 2716, In other words, a binary
point is assumed to be sixteen bit positions from the right end of a binary computer word.

define wunity = 200000 {2, represents 1.00000 }
define two = 400000 {2'7, represents 2.00000 }

(Types in the outer block 18) +=
scaled = integer; {this type is used for scaled integers }
nonnegative_integer =0 .. ‘17777777777; {0 <z < 23!}
small_number =0 ..63; {this type is self-explanatory }

102. The following function is used to create a scaled integer from a given decimal fraction (.dod; . .. dg—1),
where 0 < k < 17. The digit d; is given in dig|[i], and the calculation produces a correctly rounded result.

function round_decimals(k : small_number): scaled; {converts a decimal fraction }
var a: integer; {the accumulator }
begin a + 0;
while k£ > 0 do
begin decr(k); a < (a + dig[k] * two) div 10;
end;
round_decimals + (a + 1) div 2;
end;

40 PART 7: ARITHMETIC WITH SCALED DIMENSIONS pdfTEX 8103

103. Conversely, here is a procedure analogous to print_int. If the output of this procedure is subsequently
read by TEX and converted by the round_decimals routine above, it turns out that the original value will
be reproduced exactly; the “simplest” such decimal number is output, but there is always at least one digit
following the decimal point.

The invariant relation in the repeat loop is that a sequence of decimal digits yet to be printed will yield
the original number if and only if they form a fraction f in the range s — 6§ < 10-2!6f < 5. We can stop if
and only if f = 0 satisfies this condition; the loop will terminate before s can possibly become zero.

procedure print_scaled (s : scaled); { prints scaled real, rounded to five digits }
var delta: scaled; {amount of allowable inaccuracy }
begin if s < 0 then
begin print_char("-"); negate(s); {print the sign, if negative }
end;
print_int (s div unity); {print the integer part }
print_char("."); s < 10 * (s mod unity) + 5; delta + 10;
repeat if delta > unity then s« s+ 100000 — 50000; {round the last digit }
print_char("0" + (s div unity)); s < 10 x (s mod unity); delta < delta * 10;
until s < delta;
end;

104. Physical sizes that a TEX user specifies for portions of documents are represented internally as scaled
points. Thus, if we define an ‘sp’ (scaled point) as a unit equal to 2716 printer’s points, every dimension
inside of TEX is an integer number of sp. There are exactly 4,736,286.72 sp per inch. Users are not allowed
to specify dimensions larger than 23° — 1 sp, which is a distance of about 18.892 feet (5.7583 meters); two
such quantities can be added without overflow on a 32-bit computer.

The present implementation of TEX does not check for overflow when dimensions are added or subtracted.
This could be done by inserting a few dozen tests of the form ‘if x > 10000000000 then report_overflow’,
but the chance of overflow is so remote that such tests do not seem worthwhile.

TEX needs to do only a few arithmetic operations on scaled quantities, other than addition and subtraction,
and the following subroutines do most of the work. A single computation might use several subroutine calls,
and it is desirable to avoid producing multiple error messages in case of arithmetic overflow; so the routines
set the global variable arith_error to true instead of reporting errors directly to the user. Another global
variable, remainder, holds the remainder after a division.

(Global variables 13) +=
arith_error: boolean; {has arithmetic overflow occurred recently? }
remainder: scaled; {amount subtracted to get an exact division }

105. The first arithmetical subroutine we need computes nz + y, where x and y are scaled and n is an
integer. We will also use it to multiply integers.

define nz_plus_y(#) = mult_and_add (#, “7777777777)
define mult_integers(#) = mult_and_add (#,0, "17777777777)

function mult_and_add(n : integer; x,y, maz_answer : scaled): scaled;
begin if n < 0 then
begin negate(z); negate(n);
end;
if n =0 then mult_and_add <y
else if ((z < (maz_answer —y)div n) A (—z < (maz_answer +y) div n)) then mult_and_add + nxz+y
else begin arith_error < true; mult_and_add < 0;
end;
end;

§106 pdfTEX PART 7: ARITHMETIC WITH SCALED DIMENSIONS 41

106. We also need to divide scaled dimensions by integers.

function z_over_n(x : scaled; n : integer): scaled;
var negative: boolean; {should remainder be negated? }
begin negative < false;
if n =0 then
begin arith_error < true; z_over_n < 0; remainder < x;
end
else begin if n < 0 then
begin negate(x); negate(n); negative < true;
end;
if £ > 0 then
begin z_over_n < z div n; remainder < r mod n;

end
else begin z_over_-n < —((—z) div n); remainder < —((—z) mod n);
end;
end;
if negative then negate(remainder);
end;

107. Then comes the multiplication of a scaled number by a fraction n/d, where n and d are nonnegative
integers < 216 and d is positive. It would be too dangerous to multiply by n and then divide by d, in separate
operations, since overflow might well occur; and it would be too inaccurate to divide by d and then multiply
by n. Hence this subroutine simulates 1.5-precision arithmetic.

function zn_over_d(x : scaled; n,d : integer): scaled;
var positive: boolean; {was x > 07}
t,u,v: nonnegative_integer; {intermediate quantities }
begin if z > 0 then positive < true
else begin negate(x); positive < false;
end;
t + (zmod “100000) x n; u <+ (x div "100000) x n + (t div "100000);
v« (umod d) x 100000 + (t mod “100000);
if udiv d > 100000 then arith_error < true
else u < 100000 * (udiv d) + (v div d);
if positive then
begin zn_over_d < u; remainder < v mod d;
end
else begin zn_over-d < —u; remainder + —(v mod d);
end;
end;

42 PART 7: ARITHMETIC WITH SCALED DIMENSIONS pdfTEX §108

108. The next subroutine is used to compute the “badness” of glue, when a total ¢ is supposed to be made
from amounts that sum to s. According to The TEXbook, the badness of this situation is 100(t/s)?; however,
badness is simply a heuristic, so we need not squeeze out the last drop of accuracy when computing it. All
we really want is an approximation that has similar properties.

The actual method used to compute the badness is easier to read from the program than to describe
in words. It produces an integer value that is a reasonably close approximation to 100(t/s)?, and all
implementations of TEX should use precisely this method. Any badness of 2! or more is treated as infinitely
bad, and represented by 10000.

It is not difficult to prove that

badness(t + 1,s) > badness(t,s) > badness(t,s + 1).

The badness function defined here is capable of computing at most 1095 distinct values, but that is plenty.
define inf-bad = 10000 {infinitely bad value }

function badness(t, s : scaled): halfword; {compute badness, given ¢ > 0}

var r: integer; {approximation to at/s, where a® ~ 100 - 28}

begin if ¢t = 0 then badness < 0

else if s < 0 then badness + inf-bad

else begin if ¢ < 7230584 then r + (t*297)divs {297% =99.94 x 2'8}
else if s > 1663497 then r < t div (s div 297)
else r + t;
if r > 1290 then badness < inf-bad {12903 < 23! < 12913}
else badness < (r*r*xr+ 400000) div "1000000;
end; {that was r3/2!8 rounded to the nearest integer }

end;
109. When TEX “packages” a list into a box, it needs to calculate the proportionality ratio by which the
glue inside the box should stretch or shrink. This calculation does not affect TEX’s decision making, so the
precise details of rounding, etc., in the glue calculation are not of critical importance for the consistency of
results on different computers.

We shall use the type glue_ratio for such proportionality ratios. A glue ratio should take the same amount
of memory as an integer (usually 32 bits) if it is to blend smoothly with TEX’s other data structures. Thus
glue_ratio should be equivalent to short_real in some implementations of Pascal. Alternatively, it is possible
to deal with glue ratios using nothing but fixed-point arithmetic; see TUGboat 3,1 (March 1982), 10-27.
(But the routines cited there must be modified to allow negative glue ratios.)

define set_glue_ratio_zero(#) = # < 0.0 {store the representation of zero ratio }
define set_glue_ratio_one(#) = # < 1.0 {store the representation of unit ratio }
define float(#) =# {convert from glue_ratio to type real }

define unfloat(#) =# {convert from real to type glue_ratio }

define float_constant (#) = #.0 { convert integer constant to real }

(Types in the outer block 18) +=
glue_ratio = real; {one-word representation of a glue expansion factor }

6110 pdfTExX PART 7B: RANDOM NUMBERS 43

110. Random numbers. This section is (almost) straight from METAPOST. I had to change the
types (use integer instead of fraction), but that should not have any influence on the actual calculations
(the original comments refer to quantities like fraction_four (23°), and that is the same as the numeric
representation of mazdimen).

I've copied the low-level variables and routines that are needed, but only those (e.g. m_log), not the
accompanying ones like m_exp. Most of the following low-level numeric routines are only needed within the
calculation of norm_rand. I’ve been forced to rename make_fraction to make_frac because TeX already has
a routine by that name with a wholly different function (it creates a fraction_noad for math typesetting) —
Taco.

And now let’s complete our collection of numeric utility routines by considering random number generation.
METAPOST generates pseudo-random numbers with the additive scheme recommended in Section 3.6 of The
Art of Computer Programming; however, the results are random fractions between 0 and fraction_one — 1,
inclusive.

There’s an auxiliary array randoms that contains 55 pseudo-random fractions. Using the recurrence
Ty = (Tn_s55 — Tn_31) mod 228, we generate batches of 55 new z,,’s at a time by calling new_randoms. The
global variable j_random tells which element has most recently been consumed.

(Global variables 13) +=

randoms: array [0 .. 54] of integer; {the last 55 random values generated }
j-random: 0 .. 54; {the number of unused randoms }

random_seed: scaled; {the default random seed }

111. A small bit of METAFONT is needed.

define fraction_half = ‘1000000000 {2°7, represents 0.50000000 }

define fraction_one = 2000000000 {223, represents 1.00000000 }

define fraction_four = ‘10000000000 {23°, represents 4.00000000 }

define el_gordo = ‘17777777777 {23! — 1, the largest value that METAPOST likes }
define halfp (#) = (#) div 2

define double(#) =# « #+# {multiply a variable by two }

44 PART 7B: RANDOM NUMBERS pdfTEX §112

112. The make_frac routine produces the fraction equivalent of p/q, given integers p and ¢; it computes
the integer f = [22p/q + 3|, when p and ¢ are positive. If p and ¢ are both of the same scaled type ¢, the
“type relation” make_frac(t,t) = fraction is valid; and it’s also possible to use the subroutine “backwards,”
using the relation make_frac(t, fraction) = t between scaled types.

If the result would have magnitude 23! or more, make_frac sets arith_error < true. Most of METAPOST's
internal computations have been designed to avoid this sort of error.

If this subroutine were programmed in assembly language on a typical machine, we could simply compute
(228 % p) div ¢, since a double-precision product can often be input to a fixed-point division instruction. But
when we are restricted to Pascal arithmetic it is necessary either to resort to multiple-precision maneuvering
or to use a simple but slow iteration. The multiple-precision technique would be about three times faster
than the code adopted here, but it would be comparatively long and tricky, involving about sixteen additional
multiplications and divisions.

This operation is part of METAPOST’s “inner loop”; indeed, it will consume nearly 10% of the running
time (exclusive of input and output) if the code below is left unchanged. A machine-dependent recoding will
therefore make METAPOST run faster. The present implementation is highly portable, but slow; it avoids
multiplication and division except in the initial stage. System wizards should be careful to replace it with a
routine that is guaranteed to produce identical results in all cases.

As noted below, a few more routines should also be replaced by machine-dependent code, for efficiency. But
when a procedure is not part of the “inner loop,” such changes aren’t advisable; simplicity and robustness
are preferable to trickery, unless the cost is too high.

function make_frac(p, q : integer): integer;
var f: integer; {the fraction bits, with a leading 1 bit }
n: integer; {the integer part of |p/q| }
negative: boolean; {should the result be negated? }
be_careful: integer; {disables certain compiler optimizations }
begin if p > 0 then negative < false
else begin negate(p); negative < true;
end;
if ¢ <0 then
begin debug if ¢ =0 then confusion("/"); gubed
negate(q); negative < —negative;
end;
n < pdiv ¢; p + pmod g¢;
if n > 8 then
begin arith_error « true;
if negative then make_frac < —el_gordo else make_frac < el_gordo;
end
else begin n « (n — 1) * fraction_one; (Compute f = [228(1+p/q) + 1] 113);
if negative then make_frac < —(f 4+ n) else make_frac « f + n;
end;
end;

6113 pdfTExX PART 7B: RANDOM NUMBERS 45

113. The repeat loop here preserves the following invariant relations between f, p, and ¢: (i) 0 < p < g;
(ii) fq+p = 2%(q + po), where k is an integer and py is the original value of p.

Notice that the computation specifies (p—q)+p instead of (p+p) —¢q, because the latter could overflow. Let
us hope that optimizing compilers do not miss this point; a special variable be_careful is used to emphasize
the necessary order of computation. Optimizing compilers should keep be_careful in a register, not store it
in memory.

(Compute f = |228(1+p/q) + 3] 113) =

[<1

repeat be_careful < p — q; p + be_careful + p;

if p>0then f<«+ f+f+1
else begin double(f); p < p+g;
end;

until f > fraction_one;

be_careful < p — q;

if be_careful +p > 0 then incr(f)

This code is used in section 112.

114.

function take_frac(q : integer; f : integer): integer;
var p: integer; {the fraction so far}
negative: boolean; {should the result be negated? }
n: integer; {additional multiple of ¢}
be_careful: integer; {disables certain compiler optimizations }
begin (Reduce to the case that f > 0 and ¢ > 0 115);
if f < fraction_one then n < 0
else begin n < f div fraction_one; f <« fmod fraction_one;
if ¢ < el_gordo div n then n < n xq
else begin arith_error < true; n « el_gordo;
end;
end;
[« f+ fraction_one; (Compute p = [qf/2% + %J —q 116);
be_careful < n — el_gordo;
if be_careful +p > 0 then
begin arith_error < true; n < el_gordo — p;
end;
if negative then take_frac < —(n + p)
else take_frac < n + p;
end;

115. (Reduce to the case that f > 0 and ¢ > 0 115) =
if f > 0 then negative < false
else begin negate(f); negative < true;
end;
if ¢ <0 then
begin negate(q); negative + —negative;
end;

This code is used in section 114.

46 PART 7B: RANDOM NUMBERS pdfTEX §116

116. The invariant relations in this case are (i) [(¢f +p)/2*] = |qf0/2%® + L], where k is an integer and
fo is the original value of f; (ii) 2% < f < 2k+1,
(Compute p = |qf/226 + 1] — ¢ 116) =
p < fraction_half; {that’s 227; the invariants hold now with k = 28 }
if ¢ < fraction_four then
repeat if odd(f) then p < halfp(p + q) else p < halfp(p);
f < halfp(f);
until f=1
else repeat if odd(f) then p < p+ halfp(q — p) else p « halfp(p);
[halfp(f);
until f=1

This code is used in section 114.

117. The subroutines for logarithm and exponential involve two tables. The first is simple: two_to_the[k]
equals 2¢. The second involves a bit more calculation, which the author claims to have done correctly:
spec_log[k] is 227 times In(1/(1 —27%)) =277 4 1272k 4 1273k 4 ... rounded to the nearest integer.

(Global variables 13) +=

two_to_the: array [0 ..30] of integer; {powers of two}

spec_log: array [1..28] of integer; {special logarithms }

118. (Set initial values of key variables 21) +=
two_to_the[0] < 1;
for k < 1to 30 do two_to_the[k] + 2 * two_to_the[k — 1];
spec_log[1] « 93032640; spec_log[2] < 38612034; spec_log[3] +— 17922280; spec_log[4] + 8662214;
spec_log[5] « 4261238; spec_log[6] < 2113709; spec_log[7] < 1052693; spec_log[8] « 525315;
spec_log[9] « 262400; spec_log[10] + 131136; spec_log[11] < 65552; spec_log[12] +— 32772;
spec_log[13] < 16385;
for k < 14 to 27 do spec_log[k] < two_to_the[27 — kJ;
spec_log[28] + 1;

119.

function m_log (z : integer): integer;
var y, z: integer; {auxiliary registers }
k: integer; {iteration counter }
begin if = <0 then (Handle non-positive logarithm 121)
else begin y «+ 1302456956 + 4 — 100; {14 x 2271n 2 ~ 1302456956.421063 }
z + 27595 + 6553600; { and 216 % 421063 ~ 27595 }
while z < fraction_four do
begin double(x); y + y — 93032639; z < z — 48782;
end; {2%7In2 ~ 93032639.74436163 and 2'6 x .74436163 ~ 48782}
y <y + (zdiv unity); k + 2;
while z > fraction_four + 4 do
{Increase k until x can be multiplied by a factor of 27%, and adjust y accordingly 120);
m_log < y div §;
end;
end;

6120 pdfTExX PART 7B: RANDOM NUMBERS 47

120. (Increase k until z can be multiplied by a factor of 27*, and adjust y accordingly 120) =
begin z « ((x — 1) div two_to_the[k]) +1; {z = [z/2¥]}
while z < fraction_four + z do
begin z + halfp(z +1); k + k+1;
end;
Yy y+ spec_log|k]; x + x — z;
end

This code is used in section 119.

121. (Handle non-positive logarithm 121) =
begin print_err("Logarithm of,"); print_scaled (z); print(" has been replaced by, 0");
help2("Since I don "t take logs of non-positive numbers,")
("I’muzercinguthisuone.uProceed,uwithufingersucrossed. "); error; m_log < 0;
end

This code is used in section 119.

122. The following somewhat different subroutine tests rigorously if ab is greater than, equal to, or less
than cd, given integers (a,b,c,d). In most cases a quick decision is reached. The result is +1, 0, or —1 in
the three respective cases.

define return_sign (#) =
begin ab_vs_cd < #; return;
end
function ab_vs_cd(a, b, c,d : integer): integer;
label exit;
var ¢,r: integer; {temporary registers }
begin (Reduce to the case that a,c >0, b,d > 0 123);
loop begin ¢ < adiv d; r + cdiv b;
if ¢ # r then
if ¢ > r then return_sign(1) else return_sign(—1);
q <+ amod d; r < cmod b;
if r =0 then
if ¢ =0 then return_sign(0) else return_sign(1);
if ¢ =0 then return_sign(—1);
a<b; b q; c+d; d<+r;
end; {nowa>d>0andc>b>0}
erit: end;

48 PART 7B: RANDOM NUMBERS

123. (Reduce to the case that a,c >0, b,d > 0 123) =
if a <0 then
begin negate(a); negate(b);
end;
if ¢ <0 then
begin negate(c); negate(d);
end;
if d <0 then
begin if b > 0 then
if ((a=0)V(b=0)A((c=0)V(d=0))then return_sign(0)
else return_sign(1);
if d =0 then
if a =0 then return_sign(0) else return_sign(—1);
g a; asc c+q;, g —b; b+ —d; d+ q;
end
else if b <0 then
begin if b < 0 then
if a > 0 then return_sign(—1);
if ¢ =0 then return_sign(0)
else return_sign(—1);
end

This code is used in section 122.

pdfTEX

§123

124. To consume a random integer, the program below will say ‘next_random’ and then it will fetch

randoms [j_random)].

define next_random =
if jrandom = 0 then new_randoms
else decr(j_random)

procedure new_randoms;
var k: 0..54; {index into randoms }
x: integer; {accumulator }
begin for k£ <+ 0 to 23 do
begin x < randoms|[k] — randoms[k + 31];
if z <0 then z < z + fraction_one;
randoms k] < x;
end;
for k <+ 24 to 54 do
begin x < randoms|k] — randoms[k — 24];
if z <0 then z < x + fraction_one;
randoms[k] + x;
end;
j-random <— b4;
end;

6125 pdfTExX PART 7B: RANDOM NUMBERS 49

125. To initialize the randoms table, we call the following routine.

procedure init_randoms(seed : integer);
var j,jj,k: integer; {more or less random integers }
i: 0..54; {index into randoms }
begin j < abs(seed);
while j > fraction_one do j « halfp(j);
k<« 1;
for i < 0 to 54 do
begin jj < k; k<« j—k; j < jj;
if £ <0 then k + k + fraction_one;
randoms|(i x 21) mod 55] < j;
end;
new_randoms; new_randoms; new_randoms; { “warm up” the array }
end;

126. To produce a uniform random number in the range 0 < u <z or 0 > u > x or 0 = v = x, given a
scaled value x, we proceed as shown here.

Note that the call of take_frac will produce the values 0 and = with about half the probability that it will
produce any other particular values between 0 and z, because it rounds its answers.
function unifrand(x : integer): integer;

var y: integer; {trial value}

begin next_random; y + take_frac(abs(x), randoms[j-random]));

if y = abs(z) then unif-rand < 0

else if x > 0 then unif-rand <y

else unif-rand + —v;
end;

127. Finally, a normal deviate with mean zero and unit standard deviation can readily be obtained with
the ratio method (Algorithm 3.4.1R in The Art of Computer Programming).

function norm_rand: integer;
var z,u,l: integer; {what the book would call 216X, 228U and —22*1nU }
begin repeat repeat next_random; x < take_frac(112429, randoms[j-random) — fraction_half);
{216,/8/e ~ 112428.82793 }
next_random; u < randoms[j-random];
until abs(z) < u;
x + make_frac(z,u); | < 139548960 — m_log(u); {22*-121In2 ~ 139548959.6165 }
until ab_vs_cd(1024,1,x,2) > 0;
norm_rand < x;
end;

50 PART 8: PACKED DATA pdfTEX §128

128. Packed data. In order to make efficient use of storage space, TEX bases its major data structures
on a memory_word, which contains either a (signed) integer, possibly scaled, or a (signed) glue_ratio, or a
small number of fields that are one half or one quarter of the size used for storing integers.

If x is a variable of type memory_word, it contains up to four fields that can be referred to as follows:

x.int (an integer)
x.s¢ (a scaled integer)
x.gr (a glue_ratio)
x.hh.lh, x.hh.rh (two halfword fields)
x.hh.b0, x.hh.b1, x.hh.Th (two quarterword fields, one halfword field)
r.9qqq.b0, x.9qqq.b1, x.9qqq.b2, x.9qqq.b3 (four quarterword fields)

This is somewhat cumbersome to write, and not very readable either, but macros will be used to make the
notation shorter and more transparent. The Pascal code below gives a formal definition of memory_word and
its subsidiary types, using packed variant records. TEX makes no assumptions about the relative positions
of the fields within a word.

Since we are assuming 32-bit integers, a halfword must contain at least 16 bits, and a quarterword must
contain at least 8 bits. But it doesn’t hurt to have more bits; for example, with enough 36-bit words you
might be able to have mem_maz as large as 262142, which is eight times as much memory as anybody had
during the first four years of TEX’s existence.

N.B.: Valuable memory space will be dreadfully wasted unless TEX is compiled by a Pascal that packs
all of the memory_word variants into the space of a single integer. This means, for example, that glue_ratio
words should be short_real instead of real on some computers. Some Pascal compilers will pack an integer
whose subrange is ‘0 .. 255’ into an eight-bit field, but others insist on allocating space for an additional sign
bit; on such systems you can get 256 values into a quarterword only if the subrange is ‘—128 .. 127".

The present implementation tries to accommodate as many variations as possible, so it makes few as-
sumptions. If integers having the subrange ‘min_quarterword .. mazx_quarterword’ can be packed into a
quarterword, and if integers having the subrange ‘min_halfword .. max_halfword’ can be packed into a
halfword, everything should work satisfactorily.

It is usually most efficient to have min_quarterword = min_halfword = 0, so one should try to achieve this
unless it causes a severe problem. The values defined here are recommended for most 32-bit computers.

define min_quarterword =0 {smallest allowable value in a quarterword }
define maz_quarterword = 255 {largest allowable value in a quarterword }
define min_halfword =0 {smallest allowable value in a halfword }

define maz_halfword = 65535 {largest allowable value in a halfword }

129. Here are the inequalities that the quarterword and halfword values must satisfy (or rather, the
inequalities that they mustn’t satisfy):

(Check the “constant” values for consistency 14) +=
init if (mem_min # mem_bot) V (mem_max # mem_top) then bad <+ 10;
tini
if (mem_min > mem_bot) V (mem_max < mem_top) then bad < 10;

if (min_quarterword > 0) V (maz_quarterword < 127) then bad + 11;
(min_halfword > 0) V (max_halfword < 32767) then bad « 12;
(
(

if
if
if

min_quarterword < min_halfword) V (maz_quarterword > maz_halfword) then bad + 13;
mem_min < min_halfword) V (mem_max > max_halfword) vV
(mem_bot — mem_min > maz_halfword + 1) then bad <+ 14;
if (font_base < min_quarterword) V (font_max > maz_quarterword) then bad <+ 15;
if font-mazx > font_base + 256 then bad < 16;
if (save_size > maz_halfword) V (maz_strings > maz_halfword) then bad + 17;
if buf_size > maz_halfword then bad <+ 18;
if maz_quarterword — min_quarterword < 255 then bad < 19;

§130 pdfTEX PART 8: PACKED DATA 51

130. The operation of adding or subtracting min_quarterword occurs quite frequently in TEX, so it is
convenient to abbreviate this operation by using the macros ¢i and go for input and output to and from
quarterword format.

The inner loop of TEX will run faster with respect to compilers that don’t optimize expressions like ‘x + 0’
and ‘x — 0, if these macros are simplified in the obvious way when min_quarterword = 0.

define ¢i(#) = # 4+ min_quarterword {to put an eight_bits item into a quarterword }

define qo(#) = # — min_quarterword {to take an eight_bits item out of a quarterword }
define hi(#) = # + min_halfword {to put a sixteen-bit item into a halfword }
define ho(#) = # — min_halfword {to take a sixteen-bit item from a halfword }

131. The reader should study the following definitions closely:
define sc =int { scaled data is equivalent to integer }

(Types in the outer block 18) +=
quarterword = min_quarterword .. maz_quarterword; {1/4 of a word }
halfword = min_halfword .. max_halfword; {1/2 of a word }
two_choices =1 ..2; {used when there are two variants in a record }
four_choices =1 ..4; {used when there are four variants in a record }
two_halves = packed record rh: halfword;
case two_choices of
1: (Ih : halfword);
2: (b0 : quarterword; b1 : quarterword);
end;
four_quarters = packed record b0: quarterword;
b1: quarterword;
b2: quarterword;
b3: quarterword;
end;
memory_word = record
case four_choices of
1: (int : integer);
2: (gr : glue_ratio);
3: (hh : two_halves);
4: (qqqq : four_quarters);
end;
word_file = file of memory_word;

132. When debugging, we may want to print a memory_word without knowing what type it is; so we print
it in all modes.

debug procedure print.word(w : memory_word); {prints w in all ways }

begin print_int(w.int); print_char(",");

print_scaled (w.sc); print_char(",");

print_scaled (round (unity float (w.gr))); print_in;

print_int (w.hh.lh); print_char("="); print_int(w.hh.b0); print_char(":"); print_int(w.hh.b1);
print_char(";"); print_int(w.hh.rh); print_char(",");

print_int (w.qqqq.b0); print_char(":"); print_int(w.qqqq.b1); print_char(":"); print_int(w.qqqq.b2);
print_char(":"); print_int (w.qqqq.b3);

end;

gubed

52 PART 9: DYNAMIC MEMORY ALLOCATION pdfTEX 8133

133. Dynamic memory allocation. The TEX system does nearly all of its own memory allocation, so
that it can readily be transported into environments that do not have automatic facilities for strings, garbage
collection, etc., and so that it can be in control of what error messages the user receives. The dynamic storage
requirements of TEX are handled by providing a large array mem in which consecutive blocks of words are
used as nodes by the TEX routines.

Pointer variables are indices into this array, or into another array called eqtb that will be explained later.
A pointer variable might also be a special flag that lies outside the bounds of mem, so we allow pointers to
assume any halfword value. The minimum halfword value represents a null pointer. TEX does not assume
that mem[null] exists.

define pointer = halfword {a flag or a location in mem or eqtb }
define null = min_halfword {the null pointer }

(Global variables 13) +=
temp_ptr: pointer; {a pointer variable for occasional emergency use }

134. The mem array is divided into two regions that are allocated separately, but the dividing line between
these two regions is not fixed; they grow together until finding their “natural” size in a particular job.
Locations less than or equal to lo_mem_max are used for storing variable-length records consisting of two
or more words each. This region is maintained using an algorithm similar to the one described in exercise
2.5-19 of The Art of Computer Programming. However, no size field appears in the allocated nodes; the
program is responsible for knowing the relevant size when a node is freed. Locations greater than or equal
to hi-mem_min are used for storing one-word records; a conventional AVAIL stack is used for allocation in
this region.

Locations of mem between mem_bot and mem_top may be dumped as part of preloaded format files, by
the INITEX preprocessor. Production versions of TEX may extend the memory at both ends in order to
provide more space; locations between mem_min and mem_bot are always used for variable-size nodes, and
locations between mem_top and mem_maz are always used for single-word nodes.

The key pointers that govern mem allocation have a prescribed order:

null < mem_min < mem_bot < lo.mem_maz < hi_mem_min < mem_top < mem_end < mem_mazx.

Empirical tests show that the present implementation of TEX tends to spend about 9% of its running time
allocating nodes, and about 6% deallocating them after their use.

(Global variables 13) +=

mem: array [mem-min .. mem_maz] of memory-word; {the big dynamic storage area }
lomem_maz: pointer; {the largest location of variable-size memory in use }
hi_mem_min: pointer; {the smallest location of one-word memory in use }

135. In order to study the memory requirements of particular applications, it is possible to prepare a
version of TEX that keeps track of current and maximum memory usage. When code between the delimiters
stat ... tats is not “commented out,” TEX will run a bit slower but it will report these statistics when
tracing_stats is sufficiently large.

(Global variables 13) +=
var_used, dyn_used: integer; {how much memory is in use }

§136 pdfTEX PART 9: DYNAMIC MEMORY ALLOCATION 53

136. Let’s consider the one-word memory region first, since it’s the simplest. The pointer variable mem_end
holds the highest-numbered location of mem that has ever been used. The free locations of mem that occur
between hi_mem_min and mem_end, inclusive, are of type two_halves, and we write info(p) and link (p) for
the [h and rh fields of mem[p] when it is of this type. The single-word free locations form a linked list

avail, link(avail), link (link (avail)), ...

terminated by null.

define link(#) = mem/[#].hh.rh {the link field of a memory word }
define info(#) = mem[#].hh.lh {the info field of a memory word }

(Global variables 13) +=
avail: pointer; {head of the list of available one-word nodes }
mem_end: pointer; {the last one-word node used in mem }

137. If memory is exhausted, it might mean that the user has forgotten a right brace. We will define some
procedures later that try to help pinpoint the trouble.

(Declare the procedure called show_token_list 314)
(Declare the procedure called runaway 328)

138. The function get_avail returns a pointer to a new one-word node whose link field is null. However,
TEX will halt if there is no more room left.

If the available-space list is empty, i.e., if avail = null, we try first to increase mem_end. If that cannot
be done, i.e., if mem_end = mem_maz, we try to decrease hi_mem_min. If that cannot be done, i.e., if
hi-mem_min = lo_mem_max + 1, we have to quit.

function get_avail: pointer; {single-word node allocation }
var p: pointer; {the new node being got }
begin p + avail; {get top location in the avail stack }
if p # null then avail + link(avail) {and pop it off }
else if mem_end < mem_maz then {or go into virgin territory }
begin incr(mem_end); p < mem_end;
end
else begin decr(hi-mem_min); p < hi_mem_min;
if hi_mem_min < lo-mem_maz then
begin runaway; {if memory is exhausted, display possible runaway text }
overflow ("main memory size", mem_max + 1 — mem_min); {quit; all one-word nodes are busy }
end;
end;
link (p) < null; {provide an oft-desired initialization of the new node }
stat incr(dyn_used); tats { maintain statistics }
get_avail < p;
end;
139. Conversely, a one-word node is recycled by calling free_avail. This routine is part of TEX’s “inner
loop,” so we want it to be fast.

define free_avail(#) = {single-word node liberation }
begin link (#) < avail; avail < #;
stat decr(dyn_used); tats
end

54 PART 9: DYNAMIC MEMORY ALLOCATION pdfTEX §140

140. There’s also a fast_get_avail routine, which saves the procedure-call overhead at the expense of extra
programming. This routine is used in the places that would otherwise account for the most calls of get_avail.

define fast_get_avail (#) =
begin # < avail; {avoid get_avail if possible, to save time }
if # = null then # < get_avail
else begin avail + link(#); link(#) < null;
stat incr(dyn_used); tats
end;
end

141. The procedure flush_list(p) frees an entire linked list of one-word nodes that starts at position p.

procedure flush_list(p : pointer); {makes list of single-word nodes available }
var ¢,r: pointer; {list traversers }
begin if p # null then
begin r + p;
repeat q < r; v« link(r);
stat decr(dyn_used); tats
until r = null; {now g is the last node on the list }
link(q) + avail; avail < p;
end;
end;

142. The available-space list that keeps track of the variable-size portion of mem is a nonempty, doubly-
linked circular list of empty nodes, pointed to by the roving pointer rover.

FEach empty node has size 2 or more; the first word contains the special value maxz_halfword in its link
field and the size in its info field; the second word contains the two pointers for double linking.

Each nonempty node also has size 2 or more. Its first word is of type two_halves, and its link field is never
equal to max_halfword. Otherwise there is complete flexibility with respect to the contents of its other fields
and its other words.

(We require mem_maz < maz_halfword because terrible things can happen when maz_halfword appears
in the link field of a nonempty node.)

define empty_flag = maz_halfword {the link of an empty variable-size node }
define is_empty(#) = (link (#) = empty_flag) {tests for empty node }

define node_size = info { the size field in empty variable-size nodes }

define [link(#) = info(#+ 1) {left link in doubly-linked list of empty nodes }
define rlink (#) = link(# + 1) {right link in doubly-linked list of empty nodes }

(Global variables 13) +=
rover: pointer; {points to some node in the list of empties }

§143 pdfTEX PART 9: DYNAMIC MEMORY ALLOCATION 95

143. A call to get_node with argument s returns a pointer to a new node of size s, which must be 2 or
more. The link field of the first word of this new node is set to null. An overflow stop occurs if no suitable
space exists.
If get_node is called with s = 239, it simply merges adjacent free areas and returns the value maz_halfword.
function get_node(s : integer): pointer; { variable-size node allocation }
label found, exit, restart;
var p: pointer; {the node currently under inspection }
q: pointer; {the node physically after node p }
r: integer; {the newly allocated node, or a candidate for this honor }
t: integer; {temporary register }
begin restart: p < rover; {start at some free node in the ring }
repeat (Try to allocate within node p and its physical successors, and goto found if allocation was
possible 145);
p < rlink(p); {move to the next node in the ring }
until p = rover; {repeat until the whole list has been traversed }
if s = 10000000000 then
begin get_node < max_halfword; return;
end;
if lo.mem_max + 2 < hi_-mem_min then
if loomem_maz + 2 < mem_bot + mazx_halfword then
(Grow more variable-size memory and goto restart 144);
overflow ("main memory size", mem_mazx + 1 — mem_min); {sorry, nothing satisfactory is left }
found: link(r) < null; {this node is now nonempty }
stat var_used < var_used +s; {maintain usage statistics }
tats
get_node < r;
erit: end;

144. The lower part of mem grows by 1000 words at a time, unless we are very close to going under. When
it grows, we simply link a new node into the available-space list. This method of controlled growth helps to
keep the mem usage consecutive when TEX is implemented on “virtual memory” systems.
(Grow more variable-size memory and goto restart 144) =

begin if hi_mem_min — loomem_maz > 1998 then t < lo_mem_max + 1000

else t < loomem_max + 1+ (hi-mem_min — lo_mem_maz) div 2; {lo-mem_maz +2 <t < hi_mem_min }

p < llink (rover); q < loomem_maz; rlink(p) < q; llink(rover) < g;

if t > mem_bot + maz_halfword then t < mem_bot + max_halfword;

rlink (q) < rover; llink(q) < p; link(q) < empty_flag; node_size(q) < t — lo-mem_maz;

lo-mem_maz <+ t; link(loomem_maz) < null; info(lo-mem_maz) < null; rover + q; goto restart;

end

This code is used in section 143.

56 PART 9: DYNAMIC MEMORY ALLOCATION pdfTEX §145

145. FEmpirical tests show that the routine in this section performs a node-merging operation about 0.75
times per allocation, on the average, after which it finds that » > p + 1 about 95% of the time.

(Try to allocate within node p and its physical successors, and goto found if allocation was possible 145) =

q + p+ node_size(p); {find the physical successor }
while is_empty(q) do {merge node p with node ¢}

begin ¢ < rlink(q);

if ¢ = rover then rover + t;

link (t) < llink(q); rlink (llink(q)) « t;

q < q + node_size(q);

end;
T q—S;
if r > p+ 1 then (Allocate from the top of node p and goto found 146);
if r = p then

if rlink(p) # p then (Allocate entire node p and goto found 147);
node_size(p) +— ¢ —p {reset the size in case it grew }

This code is used in section 143.

146. (Allocate from the top of node p and goto found 146) =
begin node_size(p) < r — p; {store the remaining size }
rover < p; {start searching here next time }
goto found;
end

This code is used in section 145.

147. Here we delete node p from the ring, and let rover rove around.

(Allocate entire node p and goto found 147) =
begin rover « rlink(p); t < llink(p); llink(rover) < t; rlink(t) < rover; goto found;
end

This code is used in section 145.

148. Conversely, when some variable-size node p of size s is no longer needed, the operation free_node (p, s)
will make its words available, by inserting p as a new empty node just before where rover now points.

procedure free_node(p : pointer; s : halfword); { variable-size node liberation }
var ¢: pointer; {llink(rover) }
begin node_size(p) < s; link(p) < empty_flag; q < llink(rover); llink(p) < q; rlink(p) < rover;
{'set both links }
llink (rover) < p; rlink(q) < p; {insert p into the ring }
stat var_used < var_used — s; tats { maintain statistics }
end;

6149 pdfTExX PART 9: DYNAMIC MEMORY ALLOCATION 57

149. Just before INITEX writes out the memory, it sorts the doubly linked available space list. The list is
probably very short at such times, so a simple insertion sort is used. The smallest available location will be
pointed to by rover, the next-smallest by rlink (rover), etc.
init procedure sort_avail; {sorts the available variable-size nodes by location }
var p,q,r: pointer; {indices into mem }
old_rover: pointer; {initial rover setting }
begin p < get_node(’10000000000); {merge adjacent free areas }
p < rlink (rover); rlink(rover) < maz_halfword; old_rover < rover;
while p # old_rover do (Sort p into the list starting at rover and advance p to rlink(p) 150);
D Tover;
while rlink (p) # max_halfword do
begin llink (rlink(p)) < p; p < rlink(p);
end;
rlink (p) < rover; llink (rover) < p;
end;
tini

150. The following while loop is guaranteed to terminate, since the list that starts at rover ends with
maz_halfword during the sorting procedure.

(Sort p into the list starting at rover and advance p to rlink(p) 150) =
if p < rover then
begin ¢ < p; p < rlink(q); rlink(q) < rover; rover «+ g;
end
else begin ¢ < rover;
while rlink(q) < p do q < rlink(q);
r < rlink(p); rlink(p) < rlink(q); rlink(q) < p; p < ;
end

This code is used in section 149.

58 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS pdfTEX 8151

151. Data structures for boxes and their friends. From the computer’s standpoint, TEX’s chief
mission is to create horizontal and vertical lists. We shall now investigate how the elements of these lists are
represented internally as nodes in the dynamic memory.

A horizontal or vertical list is linked together by link fields in the first word of each node. Individual
nodes represent boxes, glue, penalties, or special things like discretionary hyphens; because of this variety,
some nodes are longer than others, and we must distinguish different kinds of nodes. We do this by putting
a ‘type’ field in the first word, together with the link and an optional ‘subtype’.

define type(#) = mem[#].hh.b0 {identifies what kind of node this is }
define subtype(#) = mem/[#].hh.b1 {secondary identification in some cases }

152. A char_node, which represents a single character, is the most important kind of node because it
accounts for the vast majority of all boxes. Special precautions are therefore taken to ensure that a char_node
does not take up much memory space. Every such node is one word long, and in fact it is identifiable by this
property, since other kinds of nodes have at least two words, and they appear in mem locations less than
hi_mem_min. This makes it possible to omit the type field in a char_node, leaving us room for two bytes
that identify a font and a character within that font.

Note that the format of a char_node allows for up to 256 different fonts and up to 256 characters per font;
but most implementations will probably limit the total number of fonts to fewer than 75 per job, and most
fonts will stick to characters whose codes are less than 128 (since higher codes are more difficult to access
on most keyboards).

Extensions of TEX intended for oriental languages will need even more than 256 x 256 possible characters,
when we consider different sizes and styles of type. It is suggested that Chinese and Japanese fonts be handled
by representing such characters in two consecutive char_node entries: The first of these has font = font_base,
and its link points to the second; the second identifies the font and the character dimensions. The saving
feature about oriental characters is that most of them have the same box dimensions. The character field of
the first char_node is a “charext” that distinguishes between graphic symbols whose dimensions are identical
for typesetting purposes. (See the METAFONT manual.) Such an extension of TEX would not be difficult;
further details are left to the reader.

In order to make sure that the character code fits in a quarterword, TEX adds the quantity min_quarterword
to the actual code.

Character nodes appear only in horizontal lists, never in vertical lists.

define is_char_node(#) = (# > hi_mem_min) {does the argument point to a char_node? }

define font = type {the font code in a char_node }
define character = subtype {the character code in a char_node }

§153 pdfTEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 59

153. An hlist_node stands for a box that was made from a horizontal list. Each hlist_node is seven words
long, and contains the following fields (in addition to the mandatory type and link, which we shall not
mention explicitly when discussing the other node types): The height and width and depth are scaled
integers denoting the dimensions of the box. There is also a shift_amount field, a scaled integer indicating
how much this box should be lowered (if it appears in a horizontal list), or how much it should be moved to
the right (if it appears in a vertical list). There is a list_ptr field, which points to the beginning of the list
from which this box was fabricated; if list_ptr is null, the box is empty. Finally, there are three fields that
represent the setting of the glue: glue_set(p) is a word of type glue_ratio that represents the proportionality
constant for glue setting; glue_sign(p) is stretching or shrinking or normal depending on whether or not the
glue should stretch or shrink or remain rigid; and glue_order (p) specifies the order of infinity to which glue
setting applies (normal, fil, fill, or filll). The subtype field is not used in TEX. In e-TEX the subtype field
records the box direction mode boz_lr.

define hlist.node =0 { type of hlist nodes }

define boz_node_size =7 {number of words to allocate for a box node }
define width_offset =1 {position of width field in a box node }

define depth_offset =2 {position of depth field in a box node }

define height_offset =3 { position of height field in a box node }

define width(#) = mem[# + width_offset].sc { width of the box, in sp }

define depth(#) = mem|[# + depth_offset].sc {depth of the box, in sp }

define height (#) = mem|[# + height_offset].sc { height of the box, in sp }
define shift_.amount (#) = mem[# + 4].sc { repositioning distance, in sp }
define list_offset =5 {position of list_ptr field in a box node }

define list_pir (#) = link (# + list_offset) {beginning of the list inside the box }
define glue_order (#) = subtype (# + list_offset) {applicable order of infinity }
define glue_sign (#) = type (# + list_offset) {stretching or shrinking }

define normal =0 {the most common case when several cases are named }
define stretching =1 {glue setting applies to the stretch components }
define shrinking =2 { glue setting applies to the shrink components }

define glue_offset =6 {position of glue_set in a box node }

define glue_set(#) = mem[# + glue_offset].gr {a word of type glue_ratio for glue setting }

154. The new_null_box function returns a pointer to an hlist_node in which all subfields have the values
corresponding to ‘\hbox{}’. (The subtype field is set to min_quarterword, for historic reasons that are no
longer relevant.)

function new_null_box: pointer; {creates a new box node }
var p: pointer; {the new node }
begin p « get_node (box_node_size); type(p) < hlist_node; subtype(p) < min_quarterword;
width (p) <= 0; depth(p) < 0; height(p) < 0; shift_amount(p) < 0; list_ptr(p) < null;
glue_sign (p) < normal; glue_order (p) < normal; set_glue_ratio_zero(glue_set(p)); new_null_box + p;
end;

155. A wlist_node is like an hlist_node in all respects except that it contains a vertical list.

define vlist_node =1 {type of vlist nodes }

60 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS pdfTEX 8156

156. A rule_node stands for a solid black rectangle; it has width, depth, and height fields just as in an
hlist_node. However, if any of these dimensions is —23°, the actual value will be determined by running the
rule up to the boundary of the innermost enclosing box. This is called a “running dimension.” The width is
never running in an hlist; the height and depth are never running in a vlist.

define rule_node =2 {type of rule nodes }

define rule_node_size =4 {number of words to allocate for a rule node }
define null_flag = — 10000000000 { —23°, signifies a missing item }
define is_running (#) = (# = null_flag) {tests for a running dimension }

157. A new rule node is delivered by the new_rule function. It makes all the dimensions “running,” so you
have to change the ones that are not allowed to run.

function new_rule: pointer;
var p: pointer; {the new node }
begin p « get_node(rule_node_size); type(p) < rule_node; subtype(p) <— 0; {the subtype is not used }
width (p) < null_flag; depth(p) + null_flag; height(p) < null_flag; new_rule < p;
end;

158. Insertions are represented by ins_node records, where the subtype indicates the corresponding box
number. For example, ‘\insert 250’ leads to an ins_.node whose subtype is 250 + min_quarterword. The
height field of an ins_node is slightly misnamed; it actually holds the natural height plus depth of the vertical
list being inserted. The depth field holds the split_max_depth to be used in case this insertion is split, and
the split_top_ptr points to the corresponding split_top_skip. The float_cost field holds the floating_penalty
that will be used if this insertion floats to a subsequent page after a split insertion of the same class. There
is one more field, the ins_ptr, which points to the beginning of the vlist for the insertion.

define ins_node =3 {type of insertion nodes }

define ins_node_size =5 {number of words to allocate for an insertion }
define float_cost(#) = mem[# + 1].int {the floating_penalty to be used }
define ins_ptr(#) = info(# +4) {the vertical list to be inserted }
define split_top_ptr(#) = link (# 4+ 4) {the split_top_skip to be used }

159. A mark_node has a mark_ptr field that points to the reference count of a token list that contains the
user’s \mark text. In addition there is a mark_class field that contains the mark class.

define mark-node =4 {type of a mark node }

define small_node_size =2 {number of words to allocate for most node types }
define mark_ptr(#) = link(# 4+ 1) {head of the token list for a mark }

define mark_class(#) = info(# + 1) {the mark class }

160. An adjust_node, which occurs only in horizontal lists, specifies material that will be moved out into
the surrounding vertical list; i.e., it is used to implement TEX’s ‘\vadjust’ operation. The adjust_ptr field
points to the vlist containing this material.

define adjust_node =5 {type of an adjust node }
define adjust_pre = subtype {ji0 =/ pre-adjustment }
{ append_list is used to append a list to tail }

define append_list (#) =

begin link (tail) < link (#); append_list_end
define append_list_end (#) = tail < #;

end
define adjust_ptr(#) = mem[# + 1].int { vertical list to be moved out of horizontal list }

8161 pdfTEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 61

161. A ligature_node, which occurs only in horizontal lists, specifies a character that was fabricated from
the interaction of two or more actual characters. The second word of the node, which is called the lig_char
word, contains font and character fields just as in a char_node. The characters that generated the ligature
have not been forgotten, since they are needed for diagnostic messages and for hyphenation; the lig_ptr field
points to a linked list of character nodes for all original characters that have been deleted. (This list might
be empty if the characters that generated the ligature were retained in other nodes.)

The subtype field is 0, plus 2 and/or 1 if the original source of the ligature included implicit left and/or
right boundaries.

define ligature_node =6 { type of a ligature node }
define lig_.char(#) =#+1 {the word where the ligature is to be found }
define lig_ptr(#) = link (lig_char (#)) {the list of characters }

162. The new_ligature function creates a ligature node having given contents of the font, character, and
lig_ptr fields. We also have a new_lig_item function, which returns a two-word node having a given character
field. Such nodes are used for temporary processing as ligatures are being created.

function new_ligature(f,c: quarterword; q : pointer): pointer;
var p: pointer; {the new node }
begin p « get_node(small_-node_size); type(p) < ligature_node; font(lig-char(p)) < f;
character (lig_char (p)) + ¢; lig_ptr(p) < q; subtype(p) < 0; new_ligature < p;
end;

function new_lig_item (c : quarterword): pointer;
var p: pointer; {the new node }
begin p « get_node(small_node_size); character(p) < c¢; lig_ptr(p) < null; new_lig_item < p;
end;

163. A disc_node, which occurs only in horizontal lists, specifies a “discretionary” line break. If such a
break occurs at node p, the text that starts at pre_break (p) will precede the break, the text that starts at
post_break (p) will follow the break, and text that appears in the next replace_count(p) nodes will be ignored.
For example, an ordinary discretionary hyphen, indicated by ‘\-’, yields a disc_node with pre_break pointing
to a char_node containing a hyphen, post_break = null, and replace_count = 0. All three of the discretionary
texts must be lists that consist entirely of character, kern, box, rule, and ligature nodes.

If pre_break (p) = null, the ex_hyphen_penalty will be charged for this break. Otherwise the hyphen_penalty
will be charged. The texts will actually be substituted into the list by the line-breaking algorithm if it decides
to make the break, and the discretionary node will disappear at that time; thus, the output routine sees only
discretionaries that were not chosen.

define disc_node =7 {type of a discretionary node }

define replace_count = subtype {how many subsequent nodes to replace }
define pre_break = llink {text that precedes a discretionary break }
define post_break = rlink {text that follows a discretionary break }

function new_disc: pointer; {creates an empty disc_node }
var p: pointer; {the new node }
begin p « get_node(small-node_size); type(p) < disc_node; replace_count(p) < 0; pre_break (p) + null;
post_break (p) < null; new_disc + p;
end;

62 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS pdfTEX 8164

164. A whatsit_node is a wild card reserved for extensions to TEX. The subtype field in its first word says
what ‘whatsit’ it is, and implicitly determines the node size (which must be 2 or more) and the format of the
remaining words. When a whatsit_node is encountered in a list, special actions are invoked; knowledgeable
people who are careful not to mess up the rest of TEX are able to make TEX do new things by adding code
at the end of the program. For example, there might be a ‘TEXnicolor’ extension to specify different colors
of ink, and the whatsit node might contain the desired parameters.

The present implementation of TEX treats the features associated with ‘\write’ and ‘\special’ as if they
were extensions, in order to illustrate how such routines might be coded. We shall defer further discussion
of extensions until the end of this program.

define whatsit_-node =8 { type of special extension nodes }

165. A math_node, which occurs only in horizontal lists, appears before and after mathematical formulas.
The subtype field is before before the formula and after after it. There is a width field, which represents the
amount of surrounding space inserted by \mathsurround.

In addition a math_node with subtype > after and width = 0 will be (ab)used to record a regular math_node
reinserted after being discarded at a line break or one of the text direction primitives (\beginL, \endL,
\beginR, and \endR).

define math_-node =9 {type of a math node }
define before =0 { subtype for math node that introduces a formula }
define after =1 { subtype for math node that winds up a formula }

define M_code = 2

define begin_M_code = M_code + before { subtype for \beginM node }
define end_M_code = M_code + after { subtype for \endM node }

define L_code =4

define begin_L_code = L_code + begin_M_code { subtype for \beginL node }
define end_L_code = L_code + end_M_code { subtype for \endL node }
define R_code = L_code + L_code

define begin_R_code = R_code + begin_M_code { subtype for \beginR node }
define end_R_code = R_code + end_M_code { subtype for \endR node }

define end_LR(#) = odd (subtype (#))
define end_LR_type(#) = (L_code * (subtype (#) div L_code) + end_M_code)
define begin_ LR_type(#) = (# — after + before)
function new_math(w : scaled; s : small_number): pointer;
var p: pointer; {the new node }
begin p « get_node(small-node_size); type(p) + math_node; subtype(p) < s; width(p) + w;
new_math < p;
end;

166. TgEX makes use of the fact that hlist_node, vlist_node, rule_node, ins_node, mark_-node, adjust_node,
ligature_node, disc_node, whatsit_node, and math_node are at the low end of the type codes, by permitting
a break at glue in a list if and only if the type of the previous node is less than math_node. Furthermore, a
node is discarded after a break if its type is math_node or more.

define precedes_break (#) = (type (#) < math_node)
define non_discardable (#) = (type (#) < math_node)

8167 pdfTEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 63

167. A glue_node represents glue in a list. However, it is really only a pointer to a separate glue
specification, since TEX makes use of the fact that many essentially identical nodes of glue are usually
present. If p points to a glue_node, glue_ptr(p) points to another packet of words that specify the stretch
and shrink components, etc.

Glue nodes also serve to represent leaders; the subtype is used to distinguish between ordinary glue (which
is called normal) and the three kinds of leaders (which are called a_leaders, c_leaders, and z_leaders). The
leader_ptr field points to a rule node or to a box node containing the leaders; it is set to null in ordinary
glue nodes.

Many kinds of glue are computed from TEX’s “skip” parameters, and it is helpful to know which parameter
has led to a particular glue node. Therefore the subtype is set to indicate the source of glue, whenever it
originated as a parameter. We will be defining symbolic names for the parameter numbers later (e.g.,
line_skip_code = 0, baseline_skip_code = 1, etc.); it suffices for now to say that the subtype of parametric glue
will be the same as the parameter number, plus one.

In math formulas there are two more possibilities for the subtype in a glue node: mu_glue denotes an
\mskip (where the units are scaled mu instead of scaled pt); and cond_math_glue denotes the ‘\nonscript’
feature that cancels the glue node immediately following if it appears in a subscript.

define glue_node =10 {type of node that points to a glue specification }

define cond_math_glue = 98 { special subtype to suppress glue in the next node }
define mu_glue =99 { subtype for math glue }

define a_leaders = 100 { subtype for aligned leaders }

define c_leaders =101 { subtype for centered leaders }

define z_leaders =102 { subtype for expanded leaders }

define glue_ptr = llink { pointer to a glue specification }

define leader_ptr = rlink { pointer to box or rule node for leaders }

168. A glue specification has a halfword reference count in its first word, representing null plus the number
of glue nodes that point to it (less one). Note that the reference count appears in the same position as the
link field in list nodes; this is the field that is initialized to null when a node is allocated, and it is also the
field that is flagged by empty_flag in empty nodes.

Glue specifications also contain three scaled fields, for the width, stretch, and shrink dimensions. Finally,
there are two one-byte fields called stretch_order and shrink_order; these contain the orders of infinity
(normal, fil, fill, or filll) corresponding to the stretch and shrink values.

define glue_spec_size =4 {number of words to allocate for a glue specification }
define glue_ref-count(#) = link (#) {reference count of a glue specification }
define stretch(#) = mem[# + 2].sc { the stretchability of this glob of glue }
define shrink(#) = mem[# + 3].sc { the shrinkability of this glob of glue }
define stretch_order = type { order of infinity for stretching }

define shrink_order = subtype { order of infinity for shrinking }

define fil =1 {first-order infinity }

define fill =2 {second-order infinity }

define filll =3 {third-order infinity }

(Types in the outer block 18) +=
glue_ord = normal .. filll; {infinity to the 0, 1, 2, or 3 power }

64 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS pdfTEX 8169

169. Here is a function that returns a pointer to a copy of a glue spec. The reference count in the copy is
null, because there is assumed to be exactly one reference to the new specification.

function new_spec(p : pointer): pointer; { duplicates a glue specification }
var ¢: pointer; {the new spec}
begin ¢ + get_node (glue_spec_size);
mem|q| < mem|[pl; glue_ref-count(q) + null;
width (q) < width(p); stretch(q) < stretch(p); shrink(q) < shrink(p); new_spec < g;
end;

170. And here’s a function that creates a glue node for a given parameter identified by its code number;
for example, new_param_glue (line_skip_code) returns a pointer to a glue node for the current \lineskip.

function new_param_glue(n : small_number): pointer;
var p: pointer; {the new node }
q: pointer; {the glue specification }
begin p + get_node(small_node_size); type(p) + glue_node; subtype(p) < n + 1; leader_ptr(p) < null;
q < (Current mem equivalent of glue parameter number n 242); glue_ptr(p) < g;
incr (glue_ref_count(q)); new_param_glue + p;
end;

171. Glue nodes that are more or less anonymous are created by new_glue, whose argument points to a
glue specification.

function new_glue(q : pointer): pointer;
var p: pointer; {the new node }
begin p « get-node(small_node_size); type(p) < glue_node; subtype(p) < normal;
leader_ptr(p) < null; glue_ptr(p) < q; incr(glue_ref-count(q)); new_glue + p;
end;

172. Still another subroutine is needed: This one is sort of a combination of new_param_glue and new_glue.
It creates a glue node for one of the current glue parameters, but it makes a fresh copy of the glue specification,
since that specification will probably be subject to change, while the parameter will stay put. The global
variable temp_ptr is set to the address of the new spec.

function new_skip_param(n : small_number): pointer;
var p: pointer; {the new node }
begin temp_ptr + new_spec({ Current mem equivalent of glue parameter number n 242));
p < new_glue (temp_ptr); glue_ref_count (temp_ptr) < null; subtype(p) <+ n + 1; new_skip_param < p;
end;

8173 pdfTEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 65

173. A kern_node has a width field to specify a (normally negative) amount of spacing. This spacing
correction appears in horizontal lists between letters like A and V when the font designer said that it looks
better to move them closer together or further apart. A kern node can also appear in a vertical list, when
its ‘width’ denotes additional spacing in the vertical direction. The subtype is either normal (for kerns
inserted from font information or math mode calculations) or exzplicit (for kerns inserted from \kern and
\/ commands) or acc_kern (for kerns inserted from non-math accents) or mu_glue (for kerns inserted from
\mkern specifications in math formulas).

define kern_node = 11 { type of a kern node }

define explicit =1 { subtype of kern nodes from \kern and \/ }

define acc_kern =2 { subtype of kern nodes from accents }

define auto_kern =3 { subtype of kern nodes created by get_auto_kern }

{ memory structure for marginal kerns }
define margin_kern_node = 40
define margin_kern_node_size = 3
define margin_char (#) = info(# + 2)
{ subtype of marginal kerns }
define left_side =0
define right_side =1

{ base for Ip/rp/ef codes starts from 2: 0 for hyphen_char, 1 for skew_char }
define [p_code_base =2
define 7rp_code_base =3
define ef code_base = 4
define tag_code =5
define kn_bs_code_base =7
define st_bs_code_base = 8
define sh_bs_code_base =9
define kn_bc_code_base = 10
define kn_ac_code_base = 11
define no_lig_code =6
define maz_hlist_stack =512 {maximum fill level for hlist_stack }
{maybe good if larger than 2 x max_quarterword, so that box nesting level would overflow first }

174. The new_kern function creates a kern node having a given width.

function new_kern(w : scaled): pointer;
var p: pointer; {the new node }
begin p « get_node(small_-node_size); type(p) < kern_node; subtype(p) + normal; width(p) + w;
new_kern < p;
end;

175. A penalty_node specifies the penalty associated with line or page breaking, in its penalty field. This
field is a fullword integer, but the full range of integer values is not used: Any penalty > 10000 is treated
as infinity, and no break will be allowed for such high values. Similarly, any penalty < —10000 is treated as
negative infinity, and a break will be forced.

define penalty_-node =12 {type of a penalty node }

define inf_penalty = inf-bad { “infinite” penalty value }

define eject_penalty = —inf_penalty { “negatively infinite” penalty value }
define penalty (#) = mem[# + 1].int {the added cost of breaking a list here }

66 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS pdfTEX 8176

176. Anyone who has been reading the last few sections of the program will be able to guess what comes
next.

function new_penalty (m : integer): pointer;
var p: pointer; {the new node }
begin p « get_node(small_node_size); type(p) < penalty_node; subtype(p) + 0;
{ the subtype is not used }
penalty (p) < m; new_penalty <+ p;
end;

177. You might think that we have introduced enough node types by now. Well, almost, but there is
one more: An unset_node has nearly the same format as an hlist_node or vlist_node; it is used for entries
in \halign or \valign that are not yet in their final form, since the box dimensions are their “natural”
sizes before any glue adjustment has been made. The glue_set word is not present; instead, we have a
glue_stretch field, which contains the total stretch of order glue_order that is present in the hlist or vlist
being boxed. Similarly, the shift_amount field is replaced by a glue_shrink field, containing the total shrink
of order glue_sign that is present. The subtype field is called span_count; an unset box typically contains
the data for go(span_count) + 1 columns. Unset nodes will be changed to box nodes when alignment is
completed.

define unset_node =13 { type for an unset node }

define glue_stretch(#) = mem/[# + glue_offset].sc { total stretch in an unset node }
define glue_shrink = shift_.amount {total shrink in an unset node }

define span_count = subtype {indicates the number of spanned columns }

178. In fact, there are still more types coming. When we get to math formula processing we will see that
a style_node has type = 14; and a number of larger type codes will also be defined, for use in math mode
only.

179. Warning: If any changes are made to these data structure layouts, such as changing any of the node
sizes or even reordering the words of nodes, the copy_node_list procedure and the memory initialization code
below may have to be changed. Such potentially dangerous parts of the program are listed in the index
under ‘data structure assumptions’. However, other references to the nodes are made symbolically in terms
of the WEB macro definitions above, so that format changes will leave TEX’s other algorithms intact.

§180 pdfTEx PART 11: MEMORY LAYOUT 67

180. Memory layout. Some areas of mem are dedicated to fixed usage, since static allocation is
more efficient than dynamic allocation when we can get away with it. For example, locations mem_bot
to mem_bot + 3 are always used to store the specification for glue that is ‘Opt plus Opt minus Opt’. The
following macro definitions accomplish the static allocation by giving symbolic names to the fixed positions.
Static variable-size nodes appear in locations mem_bot through lo_mem_stat_maz, and static single-word
nodes appear in locations hi_mem_stat_min through mem_top, inclusive. It is harmless to let lig_trick and
garbage share the same location of mem.

define zero_glue = mem_bot {specification for Opt plus Opt minus Opt }
define fil_glue = zero_glue + glue_spec_size {Opt plus 1fil minus Opt }
define fill_glue = fil_glue + glue_spec_size {Opt plus 1fill minus Opt }
define ss_glue = fill_glue + glue_spec_size {Opt plus 1fil minus 1fil}
define fil neg_glue = ss_glue + glue_spec_size {Opt plus -1fil minus Opt }
define lo_mem_stat_max = fil_neg_glue + glue_spec_size — 1

{largest statically allocated word in the variable-size mem }

define page_ins_head = mem_top {list of insertion data for current page }

define contrib_head = mem_top —1 { vlist of items not yet on current page }

define page_head = mem_top —2 {vlist for current page }

define temp_head = mem_top —3 {head of a temporary list of some kind }

define hold_head = mem_top —4 {head of a temporary list of another kind }

define adjust_head = mem_top —5 {head of adjustment list returned by hpack }

define active = mem_top —7 {head of active list in line_break, needs two words }

define align_head = mem_top —8 {head of preamble list for alignments }

define end_span = mem_top —9 { tail of spanned-width lists }

define omit_template = mem_top — 10 {a constant token list }

define null_list = mem_top — 11 { permanently empty list }

define lig_trick = mem_top — 12 {a ligature masquerading as a char_node }

define garbage = mem_top — 12 {used for scrap information }

define backup_head = mem_top — 13 {head of token list built by scan_keyword }

define pre_adjust_head = mem_top — 14 {head of pre-adjustment list returned by hpack }
define hi_mem_stat_min = mem_top — 14 { smallest statically allocated word in the one-word mem }
define hi_mem._stat_usage =15 {the number of one-word nodes always present }

181. The following code gets mem off to a good start, when TEX is initializing itself the slow way.

(Local variables for initialization 19) +=
k: integer; {index into mem, eqth, etc. }

68 PART 11: MEMORY LAYOUT pdfTEX §182

182. (Initialize table entries (done by INITEX only) 182) =

for k < mem_bot + 1 to lo_mem_stat_maz do memlk].sc < 0; {all glue dimensions are zeroed }
k < mem_bot; while k < lo_mem_stat_maz do {set first words of glue specifications }

begin glue_ref_count (k) < null + 1; stretch_order (k) < normal; shrink_order (k) < normal;

k < k + glue_spec_size;

end;
stretch (fil_glue) < unity; stretch_order (fil_glue) < fil;
stretch (fill_glue) < unity; stretch_order (fill_glue) < fill;
stretch (ss_glue) < unity; stretch_order (ss_glue) «+ fil;
shrink (ss_glue) < unity; shrink_order (ss_glue) + fil;
stretch(fil_neg_glue) < —unity; stretch_order (fil-neg_glue) < fil;
rover < lo_mem_stat_maz + 1; link (rover) < empty_flag; {now initialize the dynamic memory }
node_size (rover) < 1000; { which is a 1000-word available node }
link (rover) < rover; rlink(rover) < rover;
lo_mem_mazx « rover + 1000; link (lo_mem_maz) < null; info(lo.mem_maz) + null;
for k + hi_mem_stat_min to mem_top do memlk] < mem[lo-mem_maz]; { clear list heads }
(Initialize the special list heads and constant nodes 964);
avail < null; mem_end < mem_top; hi_mem_min < hi_mem_stat_min;

{ initialize the one-word memory }
var_used < lo_mem_stat_maz + 1 — mem_bot; dyn_used < hi_mem_stat_usage; { initialize statistics }
See also sections 240, 246, 250, 258, 268, 277, 578, 672, 1062, 1121, 1126, 1392, 1477, 1613, 1650, 1815, and 1851.

This code is used in section 8.

183. If TEX is extended improperly, the mem array might get screwed up. For example, some pointers
might be wrong, or some “dead” nodes might not have been freed when the last reference to them disappeared.
Procedures check_mem and search_mem are available to help diagnose such problems. These procedures
make use of two arrays called free and was_free that are present only if TEX’s debugging routines have been
included. (You may want to decrease the size of mem while you are debugging.)

(Global variables 13) +=
debug free: packed array [mem_min .. mem_maz] of boolean; {free cells}
was_free: packed array [mem_min .. mem_maz] of boolean; {previously free cells}
was-mem_end , was_lo_mazx, was_hi_min: pointer; {previous mem_end, loomem_maz, and hi_mem_min }
panicking: boolean; {do we want to check memory constantly? }
gubed

184. (Set initial values of key variables 21) +=
debug was-mem_end + mem_min; {indicate that everything was previously free }
was_lo_mazx < mem_min; was_hi_min < mem_maz; panicking < false;
gubed

§185 pdfTEx PART 11: MEMORY LAYOUT 69

185. Procedure check-mem makes sure that the available space lists of mem are well formed, and it

optionally prints out all locations that are reserved now but were free the last time this procedure was
called.

debug procedure check_mem (print_locs : boolean);
label donel,done2; {loop exits}
var p,q: pointer; {current locations of interest in mem }
clobbered: boolean; {is something amiss? }
begin for p + mem_min to loomem_maz do free[p] < false; {you can probably do this faster }
for p + hi_mem_min to mem_end do free[p] < false; {ditto}
(Check single-word avail list 186);
(Check variable-size avail list 187);
(Check flags of unavailable nodes 188);
if print_locs then (Print newly busy locations 189);
for p + mem_min to loomem_maz do was_free[p] < free[p|;
for p «+ hi_mem_min to mem_end do was_free[p] « free[p]; { was_free < free might be faster }
was_mem_end < mem_end; was_lo.max < lo_mem_max; was_hi_min < hi_mem_min;
end;
gubed

186. (Check single-word avail list 186) =
p <+ avail; q < null; clobbered < false;
while p # null do
begin if (p > mem_end) V (p < hiimem_min) then clobbered < true
else if free[p] then clobbered + true;
if clobbered then
begin print_nl("AVAIL_ list_ clobbered at,"); print-int(q); goto donel;
end;
free[p] < true; q < p; p « link(q);
end;
donel :

This code is used in section 185.

187. (Check variable-size avail list 187) =
p < rover; q < null; clobbered <+ false;
repeat if (p > loomem_maz)V (p < mem_min) then clobbered < true
else if (rlink(p) > loomem_maz) V (rlink (p) < mem_min) then clobbered < true
else if —(is_empty(p)) V (node_size(p) < 2) V (p + node_size(p) > lo-mem_maz) V
(llink (rlink (p)) # p) then clobbered + true;
if clobbered then
begin print_nl("Double-AVAIL list clobbered at,"); print_int(q); goto done2;
end;
for ¢ «+ pto p+ node_size(p) — 1 do {mark all locations free }
begin if free[q] then
begin print_nl("Doubly free_ location at,"); print_int(q); goto done2;
end;
freelq] « true;
end;
q < p; p < rlink(p);
until p = rover;
done?:

This code is used in section 185.

70 PART 11: MEMORY LAYOUT pdfTEX §188

188. (Check flags of unavailable nodes 188) =
P mem_min;
while p < lo_mem_maz do {node p should not be empty }
begin if is_empty(p) then
begin print_nl("Bad flag at,"); print_int(p);
end;
while (p < lo_mem_maz) A —free[p] do incr(p);
while (p < lo_mem_maz) A free[p] do incr(p);
end

This code is used in section 185.

189. (Print newly busy locations 189) =
begin print_nl("New_busy_ locs:");
for p + mem_min to lo_mem_maxz do
if —free[p] A ((p > was_lo_max) V was_free[p]) then
begin print_char(","); print_int(p);
end;
for p <+ hi_mem_min to mem_end do
if —free[p] A ((p < was_hi_min) V (p > was-mem_end) V was_free[p]) then
begin print_char(","); print_int(p);
end;
end

This code is used in section 185.

190. The search-mem procedure attempts to answer the question “Who points to node p?” In doing so, it
fetches link and info fields of mem that might not be of type two_halves. Strictly speaking, this is undefined
in Pascal, and it can lead to “false drops” (words that seem to point to p purely by coincidence). But for
debugging purposes, we want to rule out the places that do not point to p, so a few false drops are tolerable.

debug procedure search-mem(p : pointer); {look for pointers to p }
var q: integer; {current position being searched }
begin for ¢ < mem_min to lo-mem_max do
begin if link(q) = p then
begin print_nl("LINK("); print_int(q); print_char(")");
end;
if info(q) = p then
begin print_nl("INFO("); print_int(q); print_char(")");
end;
end;
for g < hi_mem_min to mem_end do
begin if link(q) = p then
begin print_nl("LINK("); print_int(q); print_char(")");
end;
if info(q) = p then
begin print_nl("INFO("); print_int(q); print_char(")");
end;
end;
(Search eqth for equivalents equal to p 273);
(Search save_stack for equivalents that point to p 307);
(Search hyph_list for pointers to p 1108);
end;
gubed (Declare procedures that need to be declared forward for pdfTEX 686)

6191 pdfTExX PART 12: DISPLAYING BOXES 71

191. Displaying boxes. We can reinforce our knowledge of the data structures just introduced by
considering two procedures that display a list in symbolic form. The first of these, called short_display, is
used in “overfull box” messages to give the top-level description of a list. The other one, called show_node_list,
prints a detailed description of exactly what is in the data structure.

The philosophy of short_display is to ignore the fine points about exactly what is inside boxes, except that
ligatures and discretionary breaks are expanded. As a result, short_display is a recursive procedure, but the
recursion is never more than one level deep.

A global variable font_in_short_display keeps track of the font code that is assumed to be present when
short_display begins; deviations from this font will be printed.

(Global variables 13) +=
font_in_short_display: integer; {an internal font number }

192. Boxes, rules, inserts, whatsits, marks, and things in general that are sort of “complicated” are
indicated only by printing ‘[1’.
procedure print_font_identifier (f : internal_font_number);
begin if pdf_font_blink[f] = null_font then print_esc(font_id_text(f))
else print_esc(font_id_text (pdf_font_blink[f]));
if pdf-tracing_fonts > 0 then
begin print(",("); print(font_name[f]);
if font_size[f] # font_dsize|f] then
begin print("@"); print_scaled (font_size[f]); print("pt");
end;
print(")");
end
else if pdf font_expand_ratio[f] # 0 then
begin print(",(");
if pdf_font_expand_ratio[f] > 0 then print("+");
print_int (pdf-font_expand_ratio[f]); print(")");
end;
end;
procedure short_display(p : integer); {prints highlights of list p }
var n: integer; {for replacement counts }
begin while p > mem_min do
begin if is_char_node(p) then
begin if p < mem_end then
begin if font(p) # font_in_short_display then
begin if (font(p) < font_base) V (font(p) > font-maz) then print_char("*")
else print_font_identifier (font(p));
print_char("u"); font_in_short_display < font(p);
end;
print_ASCII (qo(character (p)));
end;
end
else (Print a short indication of the contents of node p 193);
p < link(p);
end;
end;

)

72 PART 12: DISPLAYING BOXES pdfTEX §193

193. (Print a short indication of the contents of node p 193) =
case type(p) of
hlist_node , vlist_node, ins_node, whatsit_node, mark_node, adjust_node, unset_node: print("[1");
rule_node: print_char("|");
glue_node: if glue_ptr(p) # zero_glue then print_char(",");
math-node: if subtype(p) > L_code then print("[1")
else print_char("$");
ligature_node: short_display (lig_ptr(p));
disc_node: begin short_display (pre_break (p)); short_display (post_break (p));
n < replace_count (p);
while n > 0 do
begin if link(p) # null then p < link(p);
decr(n);
end;
end;
othercases do_nothing
endcases

This code is used in sections 192 and 674.

194. The show_node_list routine requires some auxiliary subroutines: one to print a font-and-character
combination, one to print a token list without its reference count, and one to print a rule dimension.

procedure print_font_and_char(p : integer); {prints char_node data }
begin if p > mem_end then print_esc("CLOBBERED. ")
else begin if (font(p) < font_base) V (font(p) > font_maz) then print_char("*")
else print_font_identifier (font(p));
print_char(","); print_ASCII (go(character(p)));
end;
end;

procedure print_mark (p : integer); {prints token list data in braces }
begin print_char("{");
if (p < himem_min) V (p > mem_end) then print_esc("CLOBBERED. ")
else show_token_list (link (p), null, maz_print_line — 10);
print_char("}");
end;

procedure print_rule_dimen(d : scaled); { prints dimension in rule node }
begin if is_running(d) then print_char("*")
else print_scaled (d);
end;

§195 pdfTEx PART 12: DISPLAYING BOXES 73

195. Then there is a subroutine that prints glue stretch and shrink, possibly followed by the name of finite
units:

procedure print_glue(d : scaled; order : integer; s : str_number); {prints a glue component }
begin print_scaled (d);
if (order < normal) V (order > filll) then print("foul")
else if order > normal then
begin print("£il");
while order > fil do
begin print_char("1"); decr(order);
end;
end
else if s # 0 then print(s);
end;

196. The next subroutine prints a whole glue specification.

procedure print_spec(p : integer; s : str-number); { prints a glue specification }
begin if (p < mem_min)V (p > lo_mem_maz) then print_char("*")
else begin print_scaled (width(p));
if s # 0 then print(s);
if stretch(p) # 0 then
begin print("_plus,"); print_glue(stretch(p), stretch_order(p), s);
end;
if shrink(p) # 0 then
begin print("uminus"); print_glue (shrink(p), shrink_order(p), s);
end;
end;
end;

197. We also need to declare some procedures that appear later in this documentation.

(Declare procedures needed for displaying the elements of mlists 865)
(Declare the procedure called print_skip_param 243)

198. Since boxes can be inside of boxes, show_node_list is inherently recursive, up to a given maximum
number of levels. The history of nesting is indicated by the current string, which will be printed at the
beginning of each line; the length of this string, namely cur_length, is the depth of nesting.

Recursive calls on show_node_list therefore use the following pattern:

define node_list_display (#) =
begin append_char("."); show_node_list(#); flush_char;
end { str_room need not be checked; see show_box below }

199. A global variable called depth_threshold is used to record the maximum depth of nesting for which
show_node_list will show information. If we have depth_threshold = 0, for example, only the top level
information will be given and no sublists will be traversed. Another global variable, called breadth-maz, tells
the maximum number of items to show at each level; breadth_-max had better be positive, or you won’t see
anything.

(Global variables 13) +=

depth_threshold: integer; {maximum nesting depth in box displays }

breadth-max: integer; {maximum number of items shown at the same list level }

74 PART 12: DISPLAYING BOXES pdfTEX §200

200. Now we are ready for show_node_list itself. This procedure has been written to be “extra robust” in
the sense that it should not crash or get into a loop even if the data structures have been messed up by bugs
in the rest of the program. You can safely call its parent routine show_boz (p) for arbitrary values of p when
you are debugging TEX. However, in the presence of bad data, the procedure may fetch a memory_word
whose variant is different from the way it was stored; for example, it might try to read mem/[p].hh when
mem[p] contains a scaled integer, if p is a pointer that has been clobbered or chosen at random.

procedure show_node_list(p : integer); {prints a node list symbolically }
label exit;
var n: integer; {the number of items already printed at this level }
g: real; {a glue ratio, as a floating point number }
begin if cur_length > depth_threshold then
begin if p > null then print(",[1"); {indicate that there’s been some truncation }
return;
end;
n <+ 0;
while p > mem_min do
begin print_ln; print_current_string; { display the nesting history }
if p > mem_end then {pointer out of range }
begin print("Bad link, display aborted."); return;
end;
incr(n);
if n > breadth-maz then {time to stop }
begin print("etc."); return;
end;
(Display node p 201);
p « link(p);
end;
exit: end;

201. (Display node p 201) =
if is_char_node(p) then print_font_and_char(p)
else case type(p) of

hlist_node, vlist_node, unset_node: (Display box p 202);

rule_node: {Display rule p 205);

ins_node: {Display insertion p 206);

whatsit_node: (Display the whatsit node p 1600);

glue_node: (Display glue p 207);

margin_kern_node: begin print_esc("kern"); print_scaled (width(p));
if subtype(p) = left_side then print(",(left margin)")
else print (", (right margin)");
end;

kern_node: (Display kern p 209);

math_node: (Display math node p 210);

ligature_node: (Display ligature p 211);

penalty_node: (Display penalty p 212);

disc_node: (Display discretionary p 213);

mark_node: (Display mark p 214);

adjust_node: {Display adjustment p 215);

(Cases of show_node_list that arise in mlists only 864)

othercases print("Unknown, node type!")

endcases

This code is used in section 200.

6202 pdfTExX PART 12: DISPLAYING BOXES

202. (Display box p 202) =

begin if type(p) = hlist_node then print_esc("h")
else if type(p) = vlist_node then print_esc("v")

else print_esc("unset");
print ("box ("); print_scaled (height (p)); print_char("+"); print_scaled (depth(p)); print(")x");
print_scaled (width (p));
if type(p) = unset_node then (Display special fields of the unset node p 203)
else begin (Display the value of glue_set(p) 204);

if shift_amount(p) # 0 then

begin print(", shifted"); print_scaled (shift_amount(p));

end;
if eTeX_ex then (Display if this box is never to be reversed 1701);
end;
node_list_display (list_ptr(p)); {recursive call }

end

This code is used in section 201.

203. (Display special fields of the unset node p 203) =

begin if span_count(p) # min_quarterword then
begin print(",("); print_int(qo(span_count(p)) + 1); print(",columns)");
end;

if glue_stretch(p) # 0 then
begin print(", stretch,"); print_glue(glue_stretch(p), glue_order(p),0);
end;

if glue_shrink (p) # 0 then
begin print(", shrink,"); print_glue (glue_shrink (p), glue_sign(p),0);
end;

end

This code is used in section 202.

(6]

204. The code will have to change in this place if glue_ratio is a structured type instead of an ordinary real.
Note that this routine should avoid arithmetic errors even if the glue_set field holds an arbitrary random

value. The following code assumes that a properly formed nonzero real number has absolute value

220 or

more when it is regarded as an integer; this precaution was adequate to prevent floating point underflow on

the author’s computer.

(Display the value of glue_set(p) 204) =
g < float(glue_set(p));
if (g # float_constant(0)) A (glue_sign(p) # normal) then
begin print(", glue set,");
if glue_sign(p) = shrinking then print("-_,");
if abs(mem[p + glue_offset].int) < 4000000 then print("?.7")
else if abs(g) > float_constant (20000) then
begin if g > float_constant(0) then print_char(">")
else print("<,-");
print_glue (20000 x unity, glue_order (p), 0);
end
else print_glue (round (unity g), glue_order(p), 0);
end

This code is used in section 202.

76 PART 12: DISPLAYING BOXES pdfTEX §205

205. (Display rule p 205) =
begin print_esc("rule("); print_rule_dimen(height(p)); print_char("+"); print_rule_dimen(depth(p));
print(")x"); print_rule_dimen (width(p));
end

This code is used in section 201.

206. (Display insertion p 206) =
begin print_esc("insert"); print_int(qo(subtype(p))); print(", natural size ");
print_scaled (height (p)); print(";usplit ("); print_spec(split_top_ptr(p),0); print_char(",");
print_scaled (depth(p)); print(") ;ufloatycost,"); print_int(float_cost(p)); node_list_display (ins_ptr(p));
{ recursive call }
end

This code is used in section 201.

207. (Display glue p 207) =
if subtype(p) > a-leaders then (Display leaders p 208)
else begin print_esc("glue");
if subtype(p) # normal then
begin print_char (" (");
if subtype(p) < cond_math_glue then print_skip_param (subtype(p) — 1)
else if subtype(p) = cond_math_glue then print_esc("nonscript")
else print_esc("mskip");
print_char(")");
end;
if subtype(p) # cond_math_glue then
begin print_char(",");
if subtype(p) < cond-math_glue then print_spec(glue_ptr(p),0)
else print_spec(glue_ptr(p), "mu");
end;
end

This code is used in section 201.

208. (Display leaders p 208) =
begin print_esc("");
if subtype(p) = c_leaders then print_char("c")
else if subtype(p) = z_leaders then print_char("x");
print("leaders,"); print_spec(glue_ptr(p),0); node_list_display (leader_ptr(p)); {recursive call }
end

This code is used in section 207.

209. An “explicit” kern value is indicated implicitly by an explicit space.
(Display kern p 209) =
if subtype(p) # mu_glue then
begin print_esc("kern");
if subtype(p) # normal then print_char(",");
print_scaled (width (p));
if subtype(p) = acc_kern then print(",(for accent)");
if subtype(p) = auto_kern then print(",(for \pdfprependkern/\pdfappendkern)");
end
else begin print_esc("mkern"); print_scaled (width(p)); print("mu");
end

This code is used in section 201.

6210 pdfTExX PART 12: DISPLAYING BOXES 77

210. (Display math node p 210) =
if subtype(p) > after then
begin if end_LR(p) then print_esc("end")
else print_esc("begin");
if subtype(p) > R_code then print_char("R")
else if subtype(p) > L_code then print_char("L")
else print_char("M");
end
else begin print_esc("math");
if subtype(p) = before then print("on")
else print("off");
if width(p) # 0 then
begin print(", surrounded,"); print_scaled (width(p));
end;
end

This code is used in section 201.

211. (Display ligature p 211) =
begin print_font_and_char (lig_char(p)); print(",(ligature,");
if subtype(p) > 1 then print_char("|");
font_in_short_display <+ font(lig_char(p)); short_display (lig_ptr(p));
if odd (subtype(p)) then print_char("|");
print_char (")");
end

This code is used in section 201.

212. (Display penalty p 212) =
begin print_esc("penalty,"); print_int(penalty(p));
end

This code is used in section 201.

213. The post_break list of a discretionary node is indicated by a prefixed ‘|’ instead of the ‘.’ before the
pre_break list.
(Display discretionary p 213) =
begin print_esc("discretionary");
if replace_count(p) > 0 then
begin print("_ replacing,"); print_int(replace_count(p));
end;
node_list_display (pre_break (p)); {recursive call }
append_char (" 1"); show_node_list(post_break (p)); flush_char; {recursive call }
end

This code is used in section 201.

214. (Display mark p 214) =
begin print_esc("mark");
if mark_class(p) # 0 then
begin print_char("s"); print_int(mark_class(p));
end;
print_mark (mark_ptr (p));
end

This code is used in section 201.

78 PART 12: DISPLAYING BOXES pdfTEX §215

215. (Display adjustment p 215) =
begin print_esc("vadjust");
if adjust_pre(p) # 0 then print("Lpre,");
node_list_display (adjust_ptr(p)); {recursive call }
end

This code is used in section 201.

216. The recursive machinery is started by calling show_bozx.

procedure show_boz (p : pointer);
begin (Assign the values depth_threshold < show_boz_depth and breadth-max + show_boz_breadth 254);
if breadth-mazr < 0 then breadth-maz <+ 5;
if pool_ptr 4+ depth_threshold > pool_size then depth_threshold < pool_size — pool_ptr — 1;
{ now there’s enough room for prefix string }
show_node_list(p); { the show starts at p }
print_in;
end;

6217 pdfTExX PART 13: DESTROYING BOXES 79

217. Destroying boxes. When we are done with a node list, we are obliged to return it to free storage,
including all of its sublists. The recursive procedure flush_node_list does this for us.

218. First, however, we shall consider two non-recursive procedures that do simpler tasks. The first of
these, delete_token_ref, is called when a pointer to a token list’s reference count is being removed. This
means that the token list should disappear if the reference count was null, otherwise the count should be
decreased by one.

define token_ref_count(#) = info(#) {reference count preceding a token list }

procedure delete_token_ref (p : pointer);
{ p points to the reference count of a token list that is losing one reference }
begin if token_ref-count(p) = null then flush_list(p)
else decr(token_ref_count(p));
end;

219. Similarly, delete_glue_ref is called when a pointer to a glue specification is being withdrawn.
define fast_delete_glue_ref (#) =
begin if glue_ref count(#) = null then free_node (#, glue_spec_size)
else decr(glue_ref-count (#));
end

procedure delete_glue_ref (p : pointer); {p points to a glue specification }
fast_delete_glue_ref (p);

80

220.

PART 13: DESTROYING BOXES

pdfTEX

§220

Now we are ready to delete any node list, recursively. In practice, the nodes deleted are usually
charnodes (about 2/3 of the time), and they are glue nodes in about half of the remaining cases.

procedure flush_node_list(p : pointer); { erase list of nodes starting at p }
label done; {go here when node p has been freed }
var ¢: pointer; {successor to node p }
begin while p # null do

begin ¢ < link(p);

if is_char_node(p) then free_avail (p)
else begin case type(p) of
hlist_node , vlist_node, unset_node: begin flush_node_list (list_ptr(p)); free_node(p, boz_node_size);

goto done;
end;
rule_node: begin free_node(p, rule_node_size); goto done;
end;
ins_node: begin flush_node_list (ins_ptr(p)); delete_glue_ref (split_top_ptr(p));
free_node(p, ins_node_size); goto done;
end;
whatsit_node: (Wipe out the whatsit node p and goto done 1602);
glue_node: begin fast_delete_glue_ref (glue_ptr(p));
if leader_ptr(p) # null then flush_node_list (leader_ptr(p));
end;
kern_node, math_node, penalty_node: do_nothing;
margin_kern_node: begin free_avail (margin_char(p)); free_node(p, margin_kern_node_size);
goto done;
end;
ligature_node: flush_node_list (lig_ptr (p));
mark_node: delete_token_ref (mark_ptr(p));
disc_node: begin flush_node_list (pre_break (p)); flush_node_list(post_break (p));
end;
adjust_node: flush_node_list (adjust_ptr(p));
(Cases of flush_node_list that arise in mlists only 872)
othercases confusion("flushing")
endcases;
free_node (p, small_node_size);

done: end;

PG
end;

end;

6221 pdfTExX PART 14: COPYING BOXES 81

221. Copying boxes. Another recursive operation that acts on boxes is sometimes needed: The proce-
dure copy_node_list returns a pointer to another node list that has the same structure and meaning as the
original. Note that since glue specifications and token lists have reference counts, we need not make copies
of them. Reference counts can never get too large to fit in a halfword, since each pointer to a node is in a
different memory address, and the total number of memory addresses fits in a halfword.

(Well, there actually are also references from outside mem; if the save_stack is made arbitrarily large, it
would theoretically be possible to break TEX by overflowing a reference count. But who would want to do
that?)

define add_token_ref (#) = incr (token_ref_count(#)) {new reference to a token list }
define add_glue_ref (#) = incr(glue_ref-count(#)) { new reference to a glue spec }

222. The copying procedure copies words en masse without bothering to look at their individual fields. If
the node format changes—for example, if the size is altered, or if some link field is moved to another relative
position—then this code may need to be changed too.

function copy_node_list(p : pointer): pointer;
{ makes a duplicate of the node list that starts at p and returns a pointer to the new list }

var h: pointer; {temporary head of copied list }

q: pointer; { previous position in new list }

r: pointer; {current node being fabricated for new list }

words: 0..5; {number of words remaining to be copied }
begin h < get_avail; q < h;
while p # null do

begin (Make a copy of node p in node r 223);

link(q) < 1; q < r; p <« link(p);

end;
link (q) < null; q < link(h); free_avail(h); copy_node_list < g;
end;

223. (Make a copy of node p in node r 223) =
words < 1; { this setting occurs in more branches than any other }
if is_char_node(p) then r « get_avail
else (Case statement to copy different types and set words to the number of initial words not yet
copied 224);
while words > 0 do
begin decr(words); mem[r + words] <— mem[p + words];
end

This code is used in section 222.

82 PART 14: COPYING BOXES pdfTEX §224

224. (Case statement to copy different types and set words to the number of initial words not yet
copied 224) =
case type(p) of
hlist_node, vlist_node, unset_node: begin r < get_node(box_node_size); mem[r + 6] - mem[p + 6];
mem|[r + 5] <— mem[p + 5]; {copy the last two words }
list_ptr(r) < copy-node_list (list_ptr (p)); { this affects mem[r + 5] }

words + b5;
end;

rule_node: begin r < get_node (rule_node_size); words <+ rule_node_size;
end;

ins-node: begin r < get_node (ins-node_size); mem[r + 4] < mem/|[p + 4]; add_glue_ref (split_top_ptr(p));
ins_ptr(r) < copy_node_list (ins_ptr(p)); { this affects mem[r 4+ 4] }
words < ins_node_size — 1;
end;
whatsit_node: (Make a partial copy of the whatsit node p and make r point to it; set words to the
number of initial words not yet copied 1601);
glue_node: begin r < get_node(small-node_size); add_glue_ref (glue_ptr(p)); glue_ptr(r) + glue_ptr(p);
leader_ptr(r) < copy-node_list (leader_ptr(p));
end;
kern_node, math_node, penalty_node: begin r < get_node(small_node_size); words < small_node_size;
end;
margin_kern_node: begin r < get_node(margin_kern_node_size); fast_get_avail (margin_char(r));
font(margin_char (r)) < font(margin_char(p));
character (margin_char (r)) < character (margin_char(p)); words < small_node_size;
end;
ligature_node: begin r < get_node(small_node_size); mem|lig_char (r)] +— mem/[lig_char(p)];
{ copy font and character }
lig-ptr(r) < copy-node_list (lig_ptr(p));
end;
disc_node: begin r < get_node(small_node_size); pre_break (r) < copy_node_list(pre_break (p));
post_break (r) < copy_node_list (post_break (p));
end;
mark_node: begin r < get_node(small_-node_size); add_token_ref (mark_ptr(p));
words < small_node_size;
end;
adjust_node: begin r « get_node(small_node_size); adjust_ptr(r) < copy_node_list (adjust_ptr(p));
end; {words =1 = small_node_size — 1}
othercases confusion("copying")
endcases

This code is used in section 223.

6225 pdfTEX PART 15: THE COMMAND CODES 83

225. The command codes. Before we can go any further, we need to define symbolic names for the
internal code numbers that represent the various commands obeyed by TEX. These codes are somewhat
arbitrary, but not completely so. For example, the command codes for character types are fixed by the
language, since a user says, e.g., ‘\catcode “\$ = 3’ to make $ a math delimiter, and the command code
math_shift is equal to 3. Some other codes have been made adjacent so that case statements in the program
need not consider cases that are widely spaced, or so that case statements can be replaced by if statements.

At any rate, here is the list, for future reference. First come the “catcode” commands, several of which
share their numeric codes with ordinary commands when the catcode cannot emerge from TEX’s scanning
routine.

define escape =0 {escape delimiter (called \ in The TgXbook) }
define relaz =0 {do nothing (\relax)}

define left_brace =1 {beginning of a group ({)}

define right_brace =2 {ending of a group (})}

define math_shift =3 { mathematics shift character ($)}

define tab-mark =4 {alignment delimiter (&, \span) }

define car_ret =5 {end of line (carriage_return, \cr, \crcr) }
define out_param =5 {output a macro parameter }

define mac_param =6 {macro parameter symbol (#)}

define sup-mark =7 {superscript (~)}

define sub_mark =8 {subscript (_)}

define ignore =9 {characters to ignore (~~@)}

define endv =9 {end of (v;) list in alignment template }

define spacer =10 {characters equivalent to blank space ()}
define letter = 11 { characters regarded as letters (A..Z, a..z)}
define other_char =12 {none of the special character types }
define active_char =13 {characters that invoke macros (~)}
define par_end =13 {end of paragraph (\par)}

define match =13 {match a macro parameter }

define comment =14 {characters that introduce comments (%) }
define end-match =14 {end of parameters to macro }

define stop =14 {end of job (\end, \dump) }

define invalid_char =15 {characters that shouldn’t appear (~~7)}
define delim_num =15 {specify delimiter numerically (\delimiter)}
define maz_char_code =15 {largest catcode for individual characters }

84 PART 15: THE COMMAND CODES pdfTEX §226

226. Next are the ordinary run-of-the-mill command codes. Codes that are min_internal or more represent
internal quantities that might be expanded by ‘\the’.

define
define
define
define
define
define
define
define
define

define
define
define
define
define
define
define
define
define

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

define
define
define
define
define
define
define
define
define
define
define
define
define

char-num =16 { character specified numerically (\char) }
math_char_num = 17 { explicit math code (\mathchar)}
mark =18 {mark definition (\mark) }

zray =19 {peek inside of TEX (\show, \showbox, etc.) }
make_bor =20 {make a box (\box, \copy, \hbox, etc.) }
hmove = 21 { horizontal motion (\moveleft, \moveright)}
vmove = 22 { vertical motion (\raise, \lower)}
un_hbor =23 {unglue a box (\unhbox, \unhcopy)
un-vbox =24 {unglue a box (\unvbox, \unvcopy)
{(or \pagediscards, \splitdiscards)}
remove_item = 25 {nullify last item (\unpenalty, \unkern, \unskip) }
hskip = 26 { horizontal glue (\hskip, \hfil, etc.)}

vskip = 27 { vertical glue (\vskip, \vfil, etc.)}

mskip = 28 {math glue (\mskip)}

kern =29 {fixed space (\kern) }

mkern = 30 {math kern (\mkern) }

leader_ship = 31 {use a box (\shipout, \leaders, etc.) }

halign = 32 { horizontal table alignment (\halign)}

valign = 33 { vertical table alignment (\valign)}

{'or text direction directives (\beginL, etc.) }

no_align = 34 { temporary escape from alignment (\noalign)}

vrule = 35 {vertical rule (\vrule)}

hrule = 36 { horizontal rule (\hrule)}

insert = 37 {vlist inserted in box (\insert)}

vadjust = 38 { vlist inserted in enclosing paragraph (\vadjust)}
ignore_spaces = 39 { gobble spacer tokens (\ignorespaces)}
after_assignment = 40 { save till assignment is done (\afterassignment)}
after_group = 41 {save till group is done (\aftergroup) }

break_penalty = 42 { additional badness (\penalty)}

start_par =43 {begin paragraph (\indent, \noindent) }

ital_corr = 44 {italic correction (\/)}

accent = 45 { attach accent in text (\accent)}

math_accent = 46 { attach accent in math (\mathaccent) }

discretionary = 47 { discretionary texts (\-, \discretionary)}

eq-no = 48 {equation number (\egno, \legno)}

left_right =49 {variable delimiter (\left, \right)}

{(or \middle)}

math_comp = 50 { component of formula (\mathbin, etc.) }

limit_switch = 51 {diddle limit conventions (\displaylimits, etc.)}
above =52 { generalized fraction (\above, \atop, etc.) }

math_style = 53 { style specification (\displaystyle, etc.)}
math_choice = 54 { choice specification (\mathchoice)}

non_script = 55 { conditional math glue (\nonscript)}

veenter = 56 { vertically center a vbox (\vcenter) }

case_shift = 57 {force specific case (\lowercase, \uppercase) }

message = 58 {send to user (\message, \errmessage) }

extension = 59 { extensions to TEX (\write, \special, etc.)}

in_stream = 60 {files for reading (\openin, \closein)}

begin_group = 61 { begin local grouping (\begingroup) }

end_group = 62 {end local grouping (\endgroup) }

}
}

6226 pdfTEX PART 15: THE COMMAND CODES 85

define
define
define
define
define
define
define
define
define
define

omit = 63 {omit alignment template (\omit)}

ex_space = 64 { explicit space (\u) }

no-boundary = 65 { suppress boundary ligatures (\noboundary) }

radical = 66 {square root and similar signs (\radical)}

end_cs_name = 67 {end control sequence (\endcsname) }

min_internal = 68 {the smallest code that can follow \the }

char_given = 68 { character code defined by \chardef }

math_given = 69 { math code defined by \mathchardef }

last_item = 70 { most recent item (\lastpenalty, \lastkern, \lastskip)}
maz_non_prefized_command = 70 {largest command code that can’t be \global }

227. The next codes are special; they all relate to mode-independent assignment of values to TEX’s internal
registers or tables. Codes that are max_internal or less represent internal quantities that might be expanded

by ‘\the’.

define
define
define
define
define
define
define
define
define
define
define
define

define
define

define
define
define
define
define
define
define
define
define
define

define
define
define

define
define
define
define
define
define
define

toks_register =71 { token list register (\toks) }

assign_toks = 72 { special token list (\output, \everypar, etc.) }
assign_int = 73 { user-defined integer (\tolerance, \day, etc.)}
assign_dimen = 74 {user-defined length (\hsize, etc.)}

assign-glue = 75 { user-defined glue (\baselineskip, etc.) }
assign-mu_glue = 76 { user-defined muglue (\thinmuskip, etc.)}
assign_font_dimen = 77 { user-defined font dimension (\fontdimen) }
assign_font_int = 78 { user-defined font integer (\hyphenchar, \skewchar) }
set_aur =79 {specify state info (\spacefactor, \prevdepth) }
set_prev_graf =80 {specify state info (\prevgraf)}

set_page_dimen = 81 {specify state info (\pagegoal, etc.) }
set_page_int = 82 { specify state info (\deadcycles, \insertpenalties)}
{(or \interactionmode) }

set_box_dimen = 83 { change dimension of box (\wd, \ht, \dp) }

set_shape = 84 {specify fancy paragraph shape (\parshape)
{(or \interlinepenalties, etc.) }

def-code = 85 { define a character code (\catcode, etc.) }
def-family = 86 { declare math fonts (\textfont, etc.) }
set_font = 87 {set current font (font identifiers) }

def_font = 88 {define a font file (\font) }

register = 89 {internal register (\count, \dimen, etc.) }
maz_internal = 89 {the largest code that can follow \the }
advance =90 {advance a register or parameter (\advance) }
multiply =91 { multiply a register or parameter (\multiply)}
divide = 92 { divide a register or parameter (\divide)}

prefic =93 { qualify a definition (\global, \long, \outer)}

{(or \protected) }

let =94 {assign a command code (\let, \futurelet)}
shorthand_def =95 {code definition (\chardef, \countdef, etc.) }
read_to_cs = 96 {read into a control sequence (\read) }

{(or \readline)}

def =97 {macro definition (\def, \gdef, \xdef, \edef)}

set_-box =98 {set a box (\setbox)}

hyph_data =99 { hyphenation data (\hyphenation, \patterns)}
set_interaction = 100 { define level of interaction (\batchmode, etc.) }
letterspace_font = 101 {letterspace a font (\letterspacefont)}
pdf-copy_font = 102 { create a new font instance (\pdfcopyfont) }
maz-command = 102 { the largest command code seen at big_switch }

)
}

86 PART 15: THE COMMAND CODES pdfTEX §228

228. The remaining command codes are extra special, since they cannot get through TEX’s scanner to the
main control routine. They have been given values higher than maz_command so that their special nature
is easily discernible. The “expandable” commands come first.

define
define
define
define

define
define
define
define
define

define
define
define
define
define
define
define
define
define
define
define

undefined_cs = maz_command + 1 {initial state of most eq_type fields }
expand_after = maz_command + 2 { special expansion (\expandafter)}
no_expand = maz_command + 3 { special nonexpansion (\noexpand) }

input = maxz_command + 4 {input a source file (\input, \endinput) }

{(or \scantokens) }

if-test = maz_command +5 {conditional text (\if, \ifcase, etc.)}

fi_or_else = max_command + 6 { delimiters for conditionals (\else, etc.)}
cs-name = maz-command + 7 {make a control sequence from tokens (\csname) }
convert = maz_command + 8 { convert to text (\number, \string, etc.)}

the = maz_command +9 {expand an internal quantity (\the)}

{(or \unexpanded, \detokenize) }

top_bot_mark = maz_command + 10 {inserted mark (\topmark, etc.) }

call = maxz_command + 11 {non-long, non-outer control sequence }

long_call = maz_command + 12 {long, non-outer control sequence }

outer_call = mazx_command + 13 {non-long, outer control sequence }
long-outer_call = maz_command + 14 {long, outer control sequence }

end_template = maz_command + 15 {end of an alignment template }

dont_expand = maz_command + 16 { the following token was marked by \noexpand }
glue_ref = max_command + 17 { the equivalent points to a glue specification }
shape_ref = maz_command + 18 { the equivalent points to a parshape specification }
boz_ref = maz_command + 19 {the equivalent points to a box node, or is null }
data = maz_command + 20 {the equivalent is simply a halfword number }

6229 pdfTExX PART 16: THE SEMANTIC NEST 87

229. The semantic nest. TEX is typically in the midst of building many lists at once. For example,
when a math formula is being processed, TEX is in math mode and working on an mlist; this formula has
temporarily interrupted TEX from being in horizontal mode and building the hlist of a paragraph; and this
paragraph has temporarily interrupted TEX from being in vertical mode and building the vlist for the next
page of a document. Similarly, when a \vbox occurs inside of an \hbox, TEX is temporarily interrupted from
working in restricted horizontal mode, and it enters internal vertical mode. The “semantic nest” is a stack
that keeps track of what lists and modes are currently suspended.
At each level of processing we are in one of six modes:

vmode stands for vertical mode (the page builder);

hmode stands for horizontal mode (the paragraph builder);
mmode stands for displayed formula mode;

—wvmode stands for internal vertical mode (e.g., in a \vbox);
—hmode stands for restricted horizontal mode (e.g., in an \hbox);
—mmode stands for math formula mode (not displayed).

The mode is temporarily set to zero while processing \write texts.

Numeric values are assigned to vmode, hmode, and mmode so that TEX’s “big semantic switch” can select
the appropriate thing to do by computing the value abs(mode) + cur_cmd, where mode is the current mode
and cur_cmd is the current command code.

define vmode =1 {vertical mode }
define hmode = vmode + max_command +1 { horizontal mode }
define mmode = hmode + maz_command +1 {math mode }

procedure print_mode(m : integer); {prints the mode represented by m }
begin if m > 0 then
case m div (maz_command + 1) of
0: print("vertical");
1: print("horizontal");
2: print("display_math");
end
else if m =0 then print("no")
else case (—m) div (maz_command + 1) of
0: print("internal vertical");
1: print("restricted horizontal");
2: print("math");
end;
print("umode");
end;

88 PART 16: THE SEMANTIC NEST pdfTEX §230

230. The state of affairs at any semantic level can be represented by five values:
mode is the number representing the semantic mode, as just explained.

head is a pointer to a list head for the list being built; link (head) therefore points to the first element of the
list, or to null if the list is empty.

tail is a pointer to the final node of the list being built; thus, tail = head if and only if the list is empty.

prev_graf is the number of lines of the current paragraph that have already been put into the present vertical
list.

auz is an auxiliary memory_word that gives further information that is needed to characterize the situation.

In vertical mode, aux is also known as prev_depth; it is the scaled value representing the depth of the previous
box, for use in baseline calculations, or it is < —1000pt if the next box on the vertical list is to be exempt from
baseline calculations. In horizontal mode, auz is also known as space_factor and clang; it holds the current
space factor used in spacing calculations, and the current language used for hyphenation. (The value of clang
is undefined in restricted horizontal mode.) In math mode, auz is also known as incompleat_noad; if not
null, it points to a record that represents the numerator of a generalized fraction for which the denominator
is currently being formed in the current list.

There is also a sixth quantity, mode_line, which correlates the semantic nest with the user’s input;
mode_line contains the source line number at which the current level of nesting was entered. The negative
of this line number is the mode_line at the level of the user’s output routine.

A seventh quantity, eTeX_auz, is used by the extended features e-TEX. In vertical modes it is known as
LR_save and holds the LR stack when a paragraph is interrupted by a displayed formula. In display math
mode it is known as LR_box and holds a pointer to a prototype box for the display. In math mode it is
known as delim_ptr and points to the most recent left_noad or middle_noad of a math_left_group.

In horizontal mode, the prev_graf field is used for initial language data.

The semantic nest is an array called nest that holds the mode, head, tail, prev_graf , aux, and mode_line
values for all semantic levels below the currently active one. Information about the currently active level is
kept in the global quantities mode, head, tail, prev_graf, aux, and mode_line, which live in a Pascal record
that is ready to be pushed onto nest if necessary.

define ignore_depth = —65536000 { magic dimension value to mean ‘ignore me’ }

(Types in the outer block 18) +=
list_state_record = record mode_field: —mmode .. mmode; head_field, tail_field: pointer;
eTeX auz_field: pointer;
pg_field, mi_field: integer; auz_field: memory_word;
end;

6231 pdfTEx PART 16: THE SEMANTIC NEST 89

231. define mode = cur_list.mode_field { current mode }
define head = cur_list.head_field {header node of current list }
define tail = cur_list.tail_field {final node on current list }
define eTeX aux = cur_list.eTeX auz_field {auxiliary data for e-TEX }
define LR_save = eTeX_ auxr {LR stack when a paragraph is interrupted }
define LR_box = eTeX_ auz {prototype box for display }
define delim_ptr = eTeX_aux {most recent left or right noad of a math left group }
define prev_graf = cur_list.pg_field {number of paragraph lines accumulated }
define auz = cur_list.auz_field {auxiliary data about the current list }
define prev_depth = auzx.sc {the name of auz in vertical mode }
define space_factor = auz.hh.lh {part of auz in horizontal mode }
define clang = auxz.hh.rh {the other part of auz in horizontal mode }
define incompleat_noad = auz.int {the name of quz in math mode }
define mode_line = cur_list.ml_field {source file line number at beginning of list }

(Global variables 13) +=

nest: array [0 .. nest_size] of list_state_record;

nest_ptr: 0 .. nest_size; {first unused location of nest }

max_nest_stack: 0 .. nest_size; {maximum of nest_ptr when pushing }

cur_list: list_state_record; {the “top” semantic state }

shown_mode: —mmode .. mmode; {most recent mode shown by \tracingcommands }
save_tail: pointer; {save tail so we can examine whether we have an auto kern before a glue }

232. Here is a common way to make the current list grow:

define tail_append (#) =
begin link (tail) < #; tail « link (tail);
end

233. We will see later that the vertical list at the bottom semantic level is split into two parts; the “current
page” runs from page_head to page_tail, and the “contribution list” runs from contrib_head to tail of semantic
level zero. The idea is that contributions are first formed in vertical mode, then “contributed” to the current
page (during which time the page-breaking decisions are made). For now, we don’t need to know any more
details about the page-building process.

(Set initial values of key variables 21) +=
nest_ptr <— 0; maz_nest_stack < 0; mode <— vmode; head < contrib_head; tail <— contrib_head;
eTeX_aux <+ null; save_tail < null; prev_depth < ignore_depth; mode_line < 0; prev_graf < 0;
shown_mode < 0; (Start a new current page 1166);

234. When TEX’s work on one level is interrupted, the state is saved by calling push_nest. This routine
changes head and tail so that a new (empty) list is begun; it does not change mode or aux.

procedure push_nest; {enter a new semantic level, save the old }
begin if nest_ptr > maz_nest_stack then
begin maz_nest_stack < nest_ptr;
if nest_ptr = nest_size then ove?“ﬂow("semantic_,nest._,size"7 nest,size);
end;
nest[nest_ptr] <— cur_list; {stack the record }
incr(nest_ptr); head < get_avail; tail < head; prev_graf < 0; mode_line < line; eTeX aux < null;
end;

90 PART 16: THE SEMANTIC NEST pdfTEX §235

235. Conversely, when TEX is finished on the current level, the former state is restored by calling pop_nest.
This routine will never be called at the lowest semantic level, nor will it be called unless head is a node that
should be returned to free memory.

procedure pop_nest; {leave a semantic level, re-enter the old }
begin free_avail(head); decr(nest_ptr); cur_list + nest[nest_ptr];
end;

236. Here is a procedure that displays what TEX is working on, at all levels.

procedure print_totals; forward;
procedure show_activities;
var p: 0 .. nest_size; {index into nest }
m: —mmode .. mmode; {mode}
a: memory-word; {auxiliary }
q,r: pointer; {for showing the current page }
t: integer; {ditto}
begin nest[nest_ptr] < cur_list; {put the top level into the array }
print_nl(""); print_ln;
for p + nest_ptr downto 0 do
begin m < nest[p].mode_field; a < nest[p|.auz_field; print_nl("###,"); print_mode(m);
print("Lentered at line."); print_int(abs(nest[p].ml_field));
if m = hmode then
if nest[p|.pg_field # 40600000 then
begin print(",(language"); print_int(nest[p].pg-field mod "200000); print(":hyphenmin");
print_int (nest [p].pg_field div "20000000); print_char(",");
print_int ((nest [p].pg_field div "200000) mod ‘100); print_char(")");
end;
if nest[p].mi_field < 0 then print(",(\output routine)");
if p =0 then
begin (Show the status of the current page 1161);
if link (contrib_head) # null then print_nl("### recent, contributions:");
end;
show_boz (link (nest[p].head_field)); (Show the auxiliary field, a 237);
end;
end;

§237 pdfTEX PART 16: THE SEMANTIC NEST 91

237. (Show the auxiliary field, a 237) =
case abs(m) div (maz_command + 1) of
0: begin print_nl("prevdepth,");
if a.sc < pdf-ignored_dimen then print("ignored")
else print_scaled (a.sc);
if nest[p|.pg-field # 0 then
begin print(", prevgraf "); print_int(nest[p|.pg-field); print(" line");
if nest[p|.pg_field # 1 then print_char("s");
end;
end;
1: begin print_nl("spacefactor,"); print_int(a.hh.lh);
if m > 0 then if a.hh.rh > 0 then
begin print(", current_ language."); print_int(a.hh.rh); end;
end;
2: if a.int # null then
begin print("this will begin denominator of:"); show_box(a.int); end;
end {there are no other cases }

This code is used in section 236.

92 PART 17: THE TABLE OF EQUIVALENTS pdfTEX 6238

238. The table of equivalents. Now that we have studied the data structures for TEX’s semantic
routines, we ought to consider the data structures used by its syntactic routines. In other words, our next
concern will be the tables that TEX looks at when it is scanning what the user has written.

The biggest and most important such table is called eqthb. It holds the current “equivalents” of things;
i.e., it explains what things mean or what their current values are, for all quantities that are subject to the
nesting structure provided by TEX’s grouping mechanism. There are six parts to eqtb:

1) egtblactive_base .. (hash_base — 1)] holds the current equivalents of single-character control sequences.
2) eqtb[hash_-base .. (glue_base — 1)] holds the current equivalents of multiletter control sequences.

3) eqtb[glue_base .. (local_-base — 1)] holds the current equivalents of glue parameters like the current
baselineskip.

4) eqtb[local_base .. (int_base — 1)] holds the current equivalents of local halfword quantities like the current
box registers, the current “catcodes,” the current font, and a pointer to the current paragraph shape.

5) eqtb[int-base .. (dimen_base — 1)] holds the current equivalents of fullword integer parameters like the
current hyphenation penalty.

6) eqth[dimen_base .. eqtb_size] holds the current equivalents of fullword dimension parameters like the
current hsize or amount of hanging indentation.

Note that, for example, the current amount of baselineskip glue is determined by the setting of a particular
location in region 3 of eqtb, while the current meaning of the control sequence ‘\baselineskip’ (which might
have been changed by \def or \let) appears in region 2.

239. Each entry in eqtb is a memory_word. Most of these words are of type two_halves, and subdivided
into three fields:

1) The eg_level (a quarterword) is the level of grouping at which this equivalent was defined. If the level
is level_zero, the equivalent has never been defined; level_one refers to the outer level (outside of all
groups), and this level is also used for global definitions that never go away. Higher levels are for
equivalents that will disappear at the end of their group.

2) The eq_type (another quarterword) specifies what kind of entry this is. There are many types, since each
TEX primitive like \hbox, \def, etc., has its own special code. The list of command codes above
includes all possible settings of the eq_type field.

3) The equiv (a halfword) is the current equivalent value. This may be a font number, a pointer into mem,
or a variety of other things.

define eq_level_field (#) = #.hh.b1

define eq_type_field (#) = #.hh.b0

define equiv_field (#) = #.hh.rh

define eq_level (#) = eq_level_field (eqtb[#]) {level of definition }

define eq_type(#) = eq_type_field (eqtb[#]) {command code for equivalent }
define equiv (#) = equiv_field (eqtb[#]) {equivalent value }

define level_zero = min_quarterword {level for undefined quantities }
define level_one = level_zero +1 {outermost level for defined quantities }

§240 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 93

240. Many locations in eqtb have symbolic names. The purpose of the next paragraphs is to define these
names, and to set up the initial values of the equivalents.

In the first region we have 256 equivalents for “active characters” that act as control sequences, followed
by 256 equivalents for single-character control sequences.

Then comes region 2, which corresponds to the hash table that we will define later. The maximum address
in this region is used for a dummy control sequence that is perpetually undefined. There also are several
locations for control sequences that are perpetually defined (since they are used in error recovery).

define active_base =1 {beginning of region 1, for active character equivalents }

define single_base = active_base + 256 { equivalents of one-character control sequences }
define null_cs = single_base + 256 { equivalent of \csname\endcsname }

define hash_base = null_.cs +1 {beginning of region 2, for the hash table }

define frozen_control_sequence = hash_base + hash_size { for error recovery }

define frozen_protection = frozen_control_sequence {inaccessible but definable }

define frozen_cr = frozen_control_sequence +1 {permanent ‘\cr’}

define frozen_end_group = frozen_control_sequence +2 { permanent ‘\endgroup’ }
define frozen_right = frozen_control_sequence +3 {permanent ‘\right’}

define frozen_fi = frozen_control_sequence +4 { permanent ‘\fi’}

define frozen_end_template = frozen_control_sequence +5 {permanent ‘\endtemplate’}
define frozen_endv = frozen_control_sequence + 6 { second permanent ‘\endtemplate’ }
define frozen_relax = frozen_control_sequence +7 { permanent ‘\relax’}

define end_write = frozen_control_sequence +8 { permanent ‘\endwrite’}

define frozen_dont_expand = frozen_control_sequence +9 { permanent ‘\notexpanded:’}
define prim_size = 2100 { maximum number of primitives }

define frozen_null_font = frozen_control_sequence + 10 { permanent ‘\nullfont’}
define frozen_primitive = frozen_control_sequence + 11 { permanent ‘\pdfprimitive’}
define prim_eqtb_base = frozen_primitive + 1

define font_id_base = frozen_null_font — font_base { begins table of 257 permanent font identifiers }
define wundefined_control_sequence = frozen_null_font 4+ 257 { dummy location }

define glue_base = undefined_control_sequence +1 { beginning of region 3 }

(Initialize table entries (done by INITEX only) 182) +=
eq_type (undefined_control_sequence) < undefined_cs; equiv(undefined_control_sequence) < null;
eq-level (undefined_control_sequence) < level_zero;
for k < active_base to undefined_control_sequence — 1 do eqtb[k] + eqtb[undefined_control_sequence];

241. Here is a routine that displays the current meaning of an eqth entry in region 1 or 2. (Similar routines
for the other regions will appear below.)

{ Show equivalent n, in region 1 or 2 241) =
begin sprint_cs(n); print_char("="); print_cmd_chr(eq_type(n), equiv(n));
if eq_type(n) > call then
begin print_char(":"); show_token_list (link (equiv(n)), null, 32);
end;
end

This code is used in section 270.

94 PART 17: THE TABLE OF EQUIVALENTS

pdfTEX

§242

242. Region 3 of eqthb contains the 256 \skip registers, as well as the glue parameters defined here. It is
important that the “muskip” parameters have larger numbers than the others.

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

(Current

line_skip_code = 0 {interline glue if baseline_skip is infeasible }
baseline_skip_code =1 { desired glue between baselines }
par_skip_code = 2 { extra glue just above a paragraph }
above_display_skip_code =3 { extra glue just above displayed math }
below_display_skip_code = 4 { extra glue just below displayed math }
above_display_short_skip_code =5 { glue above displayed math following short lines }
below_display_short_skip_code = 6 { glue below displayed math following short lines }
left_skip_code =T {glue at left of justified lines }

right_skip_code = 8 { glue at right of justified lines }

top_skip_code =9 { glue at top of main pages }

split_top_skip_code = 10 { glue at top of split pages }

tab_skip_code = 11 { glue between aligned entries }

space_skip_code = 12 { glue between words (if not zero_glue) }
xspace_skip_code = 13 { glue after sentences (if not zero_glue) }
par_fill_skip_code = 14 { glue on last line of paragraph }
thin_mu_skip_code = 15 { thin space in math formula }
med_mu_skip_code = 16 { medium space in math formula }
thick_mu_skip_code = 17 { thick space in math formula }

glue_pars = 18 { total number of glue parameters }

skip_base = glue_base + glue_pars { table of 256 “skip” registers }
mu_skip_base = skip_base + 256 { table of 256 “muskip” registers }
local_base = mu_skip_base + 256 { beginning of region 4 }

skip (#) = equiv (skip_base + #) { mem location of glue specification }
mu_skip (#) = equiv (mu_skip_base + #) { mem location of math glue spec }
glue_par (#) = equiv(glue_base +#) { mem location of glue specification }
line_skip = glue_par (line_skip_code)

baseline_skip = glue_par (baseline_skip_code)

par_skip = glue_par (par_skip_code)

above_display_skip = glue_par (above_display_skip_code)
below_display_skip = glue_par (below_display_skip_code)
above_display_short_skip = glue_par (above_display-short_skip_code)
below_display_short_skip = glue_par (below_display_short_skip_code)
left_skip = glue_par (left_skip_code)

right_skip = glue_par (right_skip_code)

top_skip = glue_par (top-skip_code)

split_top_skip = glue_par (split_top_skip_code)

tab_skip = glue_par (tab_skip_code)

space_skip = glue_par (space_skip_code)

xspace_skip = glue_par (xspace_skip_code)

par_fill_skip = glue_par (par_fill_skip_code)

thin-mu_skip = glue_par (thin-mu_skip_code)

med-mu_skip = glue_par (med_mu_skip_code)

thick_mu_skip = glue_par (thick-mu_skip_code)

mem equivalent of glue parameter number n 242) =

glue_par(n)
This code is used in sections 170 and 172.

§243 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 95

243. Sometimes we need to convert TEX’s internal code numbers into symbolic form. The print_skip_param
routine gives the symbolic name of a glue parameter.

(Declare the procedure called print_skip_param 243) =
procedure print_skip_param(n : integer);
begin case n of
line_skip_code: print_esc("lineskip");
baseline_skip_code: print_esc("baselineskip");
par_skip_code: print_esc("parskip");
above_display_skip_code: print_esc("abovedisplayskip");
below_display_skip_code: print_esc("belowdisplayskip");
above_display_short_skip_code: print_esc("abovedisplayshortskip");
below_display_short_skip_code: print_esc("belowdisplayshortskip");
left_skip_code: print_esc("leftskip");
right_skip_code: print_esc("rightskip");
top_skip_code: print_esc("topskip");
split_top_skip_code: print_esc("splittopskip");
tab_skip_code: print_esc("tabskip");
space_skip_code: print_esc("spaceskip");
xspace_skip_code: print_esc("xspaceskip");
par_fill_skip_code: print_esc("parfillskip");
thin_mu_skip_code: print_esc("thinmuskip");
med_mu_skip_code: print_esc("medmuskip");
thick_mu_skip_code: print_esc("thickmuskip");
othercases print (" [unknown ,glue parameter!]")
endcases;
end;

This code is used in section 197.

96 PART 17: THE TABLE OF EQUIVALENTS pdfTEX 8244

244. The symbolic names for glue parameters are put into TEX’s hash table by using the routine called
primitive, defined below. Let us enter them now, so that we don’t have to list all those parameter names
anywhere else.

(Put each of TEX’s primitives into the hash table 244) =
primitive ("lineskip", assign_glue, glue_base + line_skip_code);
primitive ("baselineskip", assign_glue, glue_base + baseline_skip_code);
primitive ("parskip", assign_glue, glue_base + par_skip_code);
primitive ("abovedisplayskip", assign_glue, glue_base + above_display_skip_code);
primitive ("belowdisplayskip", assign_glue, glue_base + below_display_skip_code);
primitive ("abovedisplayshortskip", assign_glue, glue_base + above_display_short_skip_code);
primitive ("belowdisplayshortskip", assign_glue, glue_base + below_display_short_skip_code);
primitive ("leftskip", assign_glue, glue_base + left_skip_code);
primitive ("rightskip", assign_glue, glue_base + right_skip_code);
primitive ("topskip", assign_glue, glue_base + top_skip_code);
primitive ("splittopskip", assign_glue, glue_base + split_top_skip_code);
primitive ("tabskip", assign_glue, glue_base + tab_skip_code);
primitive ("spaceskip", assign_glue, glue_base + space_skip_code);
primitive ("xspaceskip", assign_glue, glue_base + xspace_skip_code);
primitive ("parfillskip", assign_glue, glue_base + par_fill_skip_code);
primitive ("thinmuskip", assign-mu-glue, glue_base + thin_-mu_skip_code);
primitive ("medmuskip", assign-mu_glue, glue_base + med_mu_skip_code);
primitive ("thickmuskip", assign_mu_glue, glue_base + thick_mu_skip_code);
See also sections 248, 256, 266, 287, 356, 402, 410, 437, 442, 494, 513, 517, 579, 954, 1158, 1228, 1234, 1247, 1264, 1283, 1290,
1317, 1332, 1345, 1354, 1364, 1384, 1395, 1398, 1406, 1426, 1430, 1438, 1448, 1453, 1462, 1467, and 1522.

This code is used in section 1514.

245. (Cases of print_cmd_chr for symbolic printing of primitives 245) =
assign_glue , assign_mu_glue: if chr_code < skip_base then print_skip_param (chr_code — glue_base)
else if chr_code < mu_skip_base then
begin print_esc("skip"); print_int(chr_code — skip_base);
end
else begin print_esc("muskip"); print_int(chr_code — mu_skip_base);
end;
See also sections 249, 257, 267, 288, 357, 403, 411, 438, 443, 495, 514, 518, 955, 1159, 1229, 1235, 1248, 1265, 1284, 1291, 1319,
1333, 1346, 1355, 1365, 1385, 1396, 1399, 1407, 1427, 1431, 1437, 1439, 1449, 1454, 1463, 1468, 1471, and 1524.

This code is used in section 320.

246. All glue parameters and registers are initially ‘Opt plusOpt minusOpt’.

(Initialize table entries (done by INITEX only) 182) +=
equiv (glue_base) + zero_glue; eq_level (glue_base) <+ level_one; eq_type(glue_base) < glue_ref;
for k + glue_base + 1 to local_base — 1 do eqtb[k] + eqtb[glue_base];
glue_ref_count (zero_glue) + glue_ref_count (zero_glue) + local_base — glue_base;

§247 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 97

247. (Show equivalent n, in region 3 247) =
if n < skip_base then
begin print_skip_param(n — glue_base); print_char("=");
if n < glue_base + thin_mu_skip_code then print_spec(equiv(n), "pt")
else print_spec(equiv(n), "mu");
end
else if n < mu_skip_base then
begin print_esc("skip"); printint(n — skip_base); print_char("="); print_spec(equiv(n),"pt");
end
else begin print_esc("muskip"); print_int(n — mu_skip_base); print_char("=");
print_spec(equiv(n), "mu");
end

This code is used in section 270.

98 PART 17: THE TABLE OF EQUIVALENTS pdfTEX

248. Region 4 of eqtb contains the local quantities defined here. The bulk of this region is taken up by
five tables that are indexed by eight-bit characters; these tables are important to both the syntactic and
semantic portions of TEX. There are also a bunch of special things like font and token parameters, as well

as the tables of \toks and \box registers.

define
define
define
define
define
define
define
define
define
define
define

define
define
define
define
define
define

define
define
define

define

define
define
define
define
define
define

define
define
define
define
define
define
define
define
define

define
define
define
define
define
define
define
define
define
define
define

par_shape_loc = local_base { specifies paragraph shape }
output_routine_loc = local_base + 1 { points to token list for \output }
every_par_loc = local_base + 2 { points to token list for \everypar }
every_math_loc = local_base + 3 { points to token list for \everymath }
every_display_loc = local_base +4 { points to token list for \everydisplay }
every_hbox_loc = local_base +5 { points to token list for \everyhbox }
every_vboz_loc = local_base + 6 { points to token list for \everyvbox }
every_job_loc = local_base + 7 { points to token list for \everyjob }
every_cr_loc = local_base +8 { points to token list for \everycr }
err_help_loc = local_base +9 { points to token list for \errhelp }
tex_toks = local_base + 10 {end of TEX’s token list parameters }

pdftex_first_loc = tex_toks {base for pdfTEX’s token list parameters }

pdf_pages_attr_loc = pdftex_first_loc + 0 {points to token list for \pdfpagesattr }
pdf-page_attr_loc = pdftez_first_-loc +1 {points to token list for \pdfpageattr }
pdf-page_resources_loc = pdftex_first_loc +2 { points to token list for \pdfpageresources }
pdf-pk_mode_loc = pdftex_first_loc +3 { points to token list for \pdfpkmode }

pdf-toks = pdftex_first_loc +4 {end of pdfTEX’s token list parameters }

etex_toks_base = pdf-toks {base for e-TEX’s token list parameters }
every_eof_loc = etex_toks_base { points to token list for \everyeof }
etex_toks = etex_toks_base +1 {end of e-TEX’s token list parameters }

toks_base = etex_toks {table of 256 token list registers }

etex_pen_base = toks_base + 256 { start of table of e-TEX’s penalties }
inter_line_penalties_loc = etex_pen_base { additional penalties between lines }
club_penalties_loc = etex_pen_base + 1 { penalties for creating club lines }
widow_penalties_loc = etex_pen_base +2 { penalties for creating widow lines }
display-widow_penalties_loc = etex_pen_base + 3 { ditto, just before a display }
etex_pens = etex_pen_base +4 {end of table of e-TEX’s penalties }

boz_base = etex_pens {table of 256 box registers }

cur_font_loc = box_base + 256 {internal font number outside math mode }
math_font_base = cur_font_loc +1 {table of 48 math font numbers }

cat_code_base = math_font_base + 48 {table of 256 command codes (the “catcodes”) }
le_code_base = cat_code_base + 256 { table of 256 lowercase mappings }

uc_code_base = lc_code_base + 256 { table of 256 uppercase mappings }

sf-code_base = uc_code_base + 256 { table of 256 spacefactor mappings }
math_code_base = sf-code_base + 256 { table of 256 math mode mappings }

int_base = math_code_base + 256 { beginning of region 5 }

par_shape_ptr = equiv (par_shape_loc)
output_routine = equiv (output_routine_loc)
every_par = equiv (every_par-loc)
every-math = equiv (every-math_loc)
every_display = equiv (every_display_loc)
every_hbox = equiv (every_hbox_loc)
every_vbox = equiv (every_vbox_loc)
every_job = equiv (every_job_loc)

every_cr = equiv (every_cr_loc)

err_help = equiv (err_help_loc)
pdf_pages_attr = equiv (pdf_pages_attr_loc)

§248 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 99

define pdf_page_attr = equiv(pdf-page_attr_loc)

define pdf_page_resources = equiv (pdf-page_resources_loc)

define pdf_pk_mode = equiv(pdf_pk-mode_loc)

define toks(#) = equiv (toks_base + #)

define boz (#) = equiv(boz_base + #)

define cur_font = equiv(cur_font_loc)

define fam_fnt(#) = equiv(math_font_base + #)

define cat_code(#) = equiv(cat_code_base + #)

define Ic_code(#) = equiv(lc_code_base + #)

define wuc_code(#) = equiv(uc_code_base + #)

define sf_code(#) = equiv(sf-code_base + #)

define math_code (#) = equiv(math_code_base + #)
{Note: math_code(c) is the true math code plus min_halfword }

(Put each of TEX’s primitives into the hash table 244) +=
primitive ("output", assign_toks, output_routine_loc); primitive("everypar", assign_toks, every_par_loc);
primitive ("everymath", assign_toks, every_math_loc);
primitive ("everydisplay", assign_toks, every_display_loc);
primitive ("everyhbox", assign_toks, every_hbox_loc); primitive ("everyvbox", assign_toks, every_vbox_loc);
primitive ("everyjob", assign_toks, every_job_loc); primitive("everycr", assign_-toks, every_cr_loc);
primitive ("errhelp", assign_toks, err_help_loc);
primitive ("pdfpagesattr", assign_toks, pdf_pages_atir_loc);
primitive ("pdfpageattr", assign_toks, pdf_page_attr_loc);
(|
(

primitive ("pdfpageresources", assign_toks, pdf_page_resources_loc);
primitive ("pdfpkmode", assign-toks, pdf-pk-mode_loc);

249. (Cases of print_cmd_chr for symbolic printing of primitives 245) +=
assign_toks: if chr_code > toks_base then
begin print_esc("toks"); print_int(chr_code — toks_base);
end
else case chr_code of
output_routine_loc: print_esc("output");
every_par_loc: print_esc("everypar");
every_math_loc: print_esc("everymath");
every_display_loc: print_esc("everydisplay");
every-hbozx_loc: print_esc("everyhbox");
every-vboz_loc: print_esc("everyvbox");
every_job_loc: print_esc("everyjob");
every_cr_loc: print_esc("everycr");

(Cases of assign_toks for print_cmd_chr 1655)
pdf-pages_attr_loc: print_esc("pdfpagesattr");
pdf-page_attr_loc: print_esc("pdfpageattr");
pdf-page_resources_loc: print_esc("pdfpageresources");
pdf-pk_mode_loc: print_esc("pdfpkmode");
othercases print_esc("errhelp")
endcases;

100 PART 17: THE TABLE OF EQUIVALENTS pdfTEX §250

250. We initialize most things to null or undefined values. An undefined font is represented by the internal
code font_base.

However, the character code tables are given initial values based on the conventional interpretation of
ASCII code. These initial values should not be changed when TEX is adapted for use with non-English
languages; all changes to the initialization conventions should be made in format packages, not in TEX itself,
so that global interchange of formats is possible.

define null_font = font_base
define wvar_code = “70000 {math code meaning “use the current family” }

(Initialize table entries (done by INITEX only) 182) +=
par_shape_ptr < null; eq_type(par_shape_loc) < shape_ref ; eq_level (par_shape_loc) <+ level_one;
for k < etex_pen_base to etex_pens — 1 do eqtb[k] « eqtb[par_shape_loc];
for k < output_routine_loc to toks_base + 255 do eqth[k] + eqth[undefined_control_sequence];
boz (0) < null; eq-type(box_base) + box_ref; eq_level (box_base) + level_one;
for k < box_base + 1 to box_base + 255 do eqth[k] < eqth[bozr_base];
cur_font < null_font; eq_type(cur_font_loc) < data; eq_level (cur_font_loc) < level_one;
for k < math_font_base to math_font_base + 47 do eqtb[k] < eqth|cur_font_loc];
equiv (cat_code_base) < 0; eq_type (cat_code_base) < data; eq_level (cat_code_base) < level_one;
for k < cat_code_base + 1 to int_base — 1 do eqtb[k] + eqtb|[cat_code_base];
for k <+ 0to 255 do
begin cat_code (k) < other_char; math_code (k) < hi(k); sf-code(k) < 1000;
end;
cat_code (carriage_return) < car_ret; cat_code(",") < spacer; cat_code("\") < escape;
cat_code("%") < comment; cat_code (invalid_code) + invalid_char; cat_code(null_code) + ignore;
for k < "0" to "9" do math_code (k) < hi(k + var_code);
for k< "A" to "Z" do
begin cat_code (k) < letter; cat_code(k + "a" — "A") <+ letter;
math_code (k) < hi(k + var_code + "100);
math_code (k + "a" — "A") < hi(k + "a" — "A" + var_code + “100);
le_code (k) + k4 "a" — "A"; lc_code(k + "a" — "A") + k4 "a" — "A";
uc_code (k) < k; uc_code(k + "a" — "A") < k;
sf-code (k) < 999;
end;

§251 pdfTEX PART 17: THE TABLE OF EQUIVALENTS

251. (Show equivalent n, in region 4 251) =
if (n = par_shape_loc) V ((n > etez_pen_base) A (n < etex_pens)) then
begin print_cmd_chr (set_shape,n); print_char("=");
if equiv(n) = null then print_char("0")
else if n > par_shape_loc then
begin print_int (penalty (equiv(n))); print_char(","); print_int(penalty (equiv(n) + 1));
if penalty (equiv(n)) > 1 then print_esc("ETC.");
end
else print_int (info(par_shape_ptr));
end
else if n < toks_base then
begin print_cmd_chr (assign_toks,n); print_char("=");
if equiv(n) # null then show_token_list(link (equiv(n)), null, 32);
end
else if n < boz_base then
begin print_esc("toks"); print_int(n — toks_base); print_char("=");
if equiv(n) # null then show_token_list(link (equiv(n)), null, 32);
end
else if n < cur_font_loc then
begin print_esc("box"); print_int(n — box_base); print_char("=");
if equiv(n) = null then print("void")
else begin depth_threshold < 0; breadth-maz < 1; show_-node_list(equiv(n));
end;
end
else if n < cat_code_base then (Show the font identifier in egth[n] 252)
else (Show the halfword code in egth[n] 253)

This code is used in section 270.

252. (Show the font identifier in eqth[n] 252) =
begin if n = cur_font_loc then print("current_font")
else if n < math_font_base + 16 then
begin print_esc("textfont"); print_int(n — math_font_base);
end
else if n < math_font_base + 32 then
begin print_esc("scriptfont"); print_int(n — math_font_base — 16);
end
else begin print_esc("scriptscriptfont"); print_int(n — math_font_base — 32);
end;
print_char("=");
print_esc(hash[font_id_base + equiv(n)].rh); {that’s font_id_text(equiv(n)) }
end

This code is used in section 251.

101

102 PART 17: THE TABLE OF EQUIVALENTS pdfTEX §253

253. (Show the halfword code in eqtb[n] 253) =
if n < math_code_base then
begin if n < lc_code_base then
begin print_esc("catcode"); print_int(n — cat_code_base);
end
else if n < uc_code_base then
begin print_esc("lccode"); print_int(n — lc_code_base);
end
else if n < sf_code_base then
begin print_esc("uccode"); print_int(n — uc_code_base);

end
else begin print_esc("sfcode"); print_int(n — sf-code_base);
end;
print_char ("="); print_int(equiv(n));

end

else begin print_esc("mathcode"); print_int(n — math_code_base); print_char("=");
print_int (ho (equiv(n)));
end

This code is used in section 251.

6254 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 103

254. Region 5 of eqth contains the integer parameters and registers defined here, as well as the del_code
table. The latter table differs from the cat_code .. math_code tables that precede it, since delimiter codes
are fullword integers while the other kinds of codes occupy at most a halfword. This is what makes region 5
different from region 4. We will store the eq_level information in an auxiliary array of quarterwords that will
be defined later.

define pretolerance_code =0 { badness tolerance before hyphenation }

define tolerance_code =1 {badness tolerance after hyphenation }

define line_penalty_code =2 {added to the badness of every line }

define hyphen_penalty_-code =3 { penalty for break after discretionary hyphen }
define ex_hyphen_penalty_code =4 { penalty for break after explicit hyphen }
define club_penalty_code =5 {penalty for creating a club line }

define widow_penalty_code =6 { penalty for creating a widow line }

define display_widow_penalty_code =7 {ditto, just before a display }

define broken_penalty_code =8 { penalty for breaking a page at a broken line }
define bin_op_penalty_code =9 { penalty for breaking after a binary operation }
define rel_penalty_code = 10 { penalty for breaking after a relation }

define pre_display_penalty_code = 11 { penalty for breaking just before a displayed formula }
define post_display_penalty_code = 12 { penalty for breaking just after a displayed formula }
define inter_line_penalty_code =13 {additional penalty between lines }

define double_hyphen_demerits_code = 14 { demerits for double hyphen break }
define final_hyphen_demerits_code = 15 { demerits for final hyphen break }

define adj_demerits_.code = 16 { demerits for adjacent incompatible lines }

define mag_code =17 { magnification ratio }

define delimiter_factor_code = 18 {ratio for variable-size delimiters }

define looseness_code =19 {change in number of lines for a paragraph }

define time_code =20 {current time of day }

define day-code =21 {current day of the month }

define month_code = 22 {current month of the year }

define year_code =23 {current year of our Lord }

define show_box_breadth_code = 24 {nodes per level in show_boz }

define show_boz_depth_code = 25 {maximum level in show_box }

define hbadness_code = 26 {hboxes exceeding this badness will be shown by hpack }
define wvbadness_code = 27 {vboxes exceeding this badness will be shown by wvpack }
define pausing_code = 28 {pause after each line is read from a file }

define tracing_online_code =29 {show diagnostic output on terminal }

define tracing-macros_code = 30 {show macros as they are being expanded }
define tracing_stats_code = 31 {show memory usage if TEX knows it }

define tracing-paragraphs_code = 32 { show line-break calculations }

define tracing_pages_code = 33 {show page-break calculations }

define tracing_output_code = 34 {show boxes when they are shipped out }

define tracing_lost_chars_code =35 {show characters that aren’t in the font }
define tracing_commands_code = 36 {show command codes at big_switch }

define tracing-restores_code = 37 {show equivalents when they are restored }
define wuc_hyph_code =38 {hyphenate words beginning with a capital letter }
define output_penalty_code =39 { penalty found at current page break }

define maz_dead_cycles_code = 40 {bound on consecutive dead cycles of output }
define hang_after_code = 41 {hanging indentation changes after this many lines }
define floating_penalty_code = 42 { penalty for insertions held over after a split }
define global_defs_code = 43 {override \global specifications }

define cur_fam_code =44 {current family }

define escape_char_code = 45 {escape character for token output }

define default_hyphen_char_code = 46 {value of \hyphenchar when a font is loaded }

104 PART 17: THE TABLE OF EQUIVALENTS pdfTEX

define default_skew_char_code = 47 { value of \skewchar when a font is loaded }
define end_line_char_code = 48 { character placed at the right end of the buffer }
define new_line_char_code = 49 { character that prints as print_In }

define language_code = 50 { current hyphenation table }

define left_hyphen_min_code = 51 {minimum left hyphenation fragment size }
define right_hyphen_min_code = 52 { minimum right hyphenation fragment size }
define holding_inserts_.code = 53 {do not remove insertion nodes from \box255 }
define error_context_lines.code = 54 { maximum intermediate line pairs shown }
define tex_int_pars =55 {total number of TEX’s integer parameters }

define pdftex_first_integer_code = tex_int_pars { base for pdfTEX’s integer parameters }
define pdf-output_code = pdftex_first_integer_code + 0 {switch on PDF output if positive }
define pdf-compress_level_code = pdftex_first_integer_code + 1 { compress level of streams }
define pdf decimal_digits_code = pdftex_first_integer_code + 2

{ digits after the decimal point of numbers }

§254

define pdf-move_chars_code = pdftex_first_integer_code +3 { move chars 0..31 to higher area if possible }

define pdf image_resolution_code = pdftex_first_integer_code +4 { default image resolution }
define pdf_pk_resolution_code = pdftex_first_integer_code +5 { default resolution of PK font }

define pdf_-unique_resname_code = pdftex_first_integer_code + 6 { generate unique names for resouces }

define pdf option_always_use_pdfpagebor_code = pdftex_first_integer_code + 7
{if the PDF inclusion should always use a specific PDF page box }
define pdf option_pdf inclusion_errorlevel_code = pdftex_first_integer_code + 8
{if the PDF inclusion should treat pdfs newer than pdf-minor_version as an error }
define pdf-major_version_code = pdftex_first_integer_code + 9
{integer part of the PDF version produced }
define pdf minor_version_code = pdftex_first_integer_code + 10
{ fractional part of the PDF version produced }
define pdf force_pagebox_code = pdftex_first_integer_code + 11
{if the PDF inclusion should always use a specific PDF page box }

define pdf_pageboz_code = pdftex_first_integer_code + 12 { default pagebox to use for PDF inclusion }

define pdf inclusion_errorlevel_code = pdftex_first_integer_code + 13

{if the PDF inclusion should treat pdfs newer than pdf minor_version as an error }
define pdf.gamma_code = pdftex_first_integer_code + 14
define pdf-image_gamma_code = pdftex_first_integer_code + 15
define pdf.image_hicolor_code = pdftex_first_integer_code + 16
define pdf.image_apply_gamma_code = pdftex_first_integer_code + 17
define pdf_adjust_spacing_code = pdftex_first_integer_code + 18 {level of spacing adjusting }
define pdf protrude_chars_code = pdftex_first_integer_code + 19

{ protrude chars at left/right edge of paragraphs }
define pdf_tracing_fonts_code = pdftex_first_integer_code + 20 {level of font detail in log }
define pdf-objcompresslevel_code = pdftex_first_integer_code + 21 { activate object streams }

define pdf_adjust_interword_glue_code = pdftex_first_integer_code + 22 { adjust interword glue? }

define pdf prepend_kern_code = pdftex_first_integer_code + 23
{ prepend kern before certain characters? }

define pdf-append_kern_code = pdftex_first_integer_code + 24 { append kern before certain characters? }

define pdf_gen_tounicode_code = pdftex_first_integer_code + 25 { generate ToUnicode for fonts? }

define pdf_draftmode_code = pdftex_first_integer_code + 26 { switch on draftmode if positive }

define pdf_inclusion_copy_font_code = pdftex_first_integer_code + 27 { generate ToUnicode for fonts? }

define pdf suppress_warning_dup_dest_code = pdftex_first_integer_code + 28
{ suppress warning about duplicated destinations }
define pdf suppress_warning_dup_map_code = pdftex_first_integer_code + 29
{ suppress warning about duplicated map lines }
define pdf suppress_warning_page_group_code = pdftex_first_integer_code + 30

6254 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 105

define

define

define

define

define
define
define
define
define
define
define
define
define
define
define
define

define
define
define
define

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

{ suppress warning about multiple pdfs with page group }
pdf_info_omit_date_code = pdftex_first_integer_code + 31
{ omit generating CreationDate and ModDate }
pdf_suppress_ptez_info_code = pdftex_first_integer_code + 32
{ suppress /PTEX.* entries in PDF dictionaries }
pdf-omit_charset_code = pdftex_first_integer_code + 33
{suppress /PTEX.* entries in PDF dictionaries }
pdf-int_pars = pdftex_first_integer_code + 34 { total number of pdfTEX’s integer parameters }

etex_int_base = pdf-int_pars {base for e-TEX’s integer parameters }
tracing_assigns_code = etex_int_base {show assignments }

tracing_groups_code = etex_int_base + 1 {show save/restore groups }

tracing_ifs_code = etex_int_base +2 { show conditionals }

tracing_scan_tokens_code = etex_int_base +3 {show pseudo file open and close }
tracing-nesting_code = etex_int_base +4 {show incomplete groups and ifs within files }
pre_display_direction_code = etex_int_base +5 {text direction preceding a display }
last_line_fit_code = etex_int_base + 6 { adjustment for last line of paragraph }
saving-vdiscards_code = etex_int_base + 7 {save items discarded from vlists }
saving-hyph_codes_code = etex_int_base + 8 { save hyphenation codes for languages }
eTeX_state_code = etex_int_base +9 {e-TEX state variables }

etex_int_pars = eTeX_state_code + eTeX _states {total number of e-TEX’s integer parameters }

int_pars = etex_int_pars {total number of integer parameters }
count_base = int_base + int_pars {256 user \count registers }
del_code_base = count_base + 256 {256 delimiter code mappings }
dimen_base = del_code_base + 256 { beginning of region 6 }

del_code (#) = eqtb[del_code_base + #].int

count (#) = eqth[count_base + #].int

int_par (#) = eqtb[int_base + #].int { an integer parameter }
pretolerance = int_par (pretolerance_code)

tolerance = int_par (tolerance_code)

line_penalty = int_par (line_penalty_code)

hyphen_penalty = int_par (hyphen_penalty_code)
ex_hyphen_penalty = int_par (ez_hyphen_penalty_code)
club_penalty = int_par (club_penalty_code)

widow_penalty = int_par (widow_penalty_code)
display_widow_penalty = int_par (display-widow_penalty_code)
broken_penalty = int_par (broken_penalty_code)
bin_op_penalty = int_par (bin_op_penalty_code)

rel_penalty = int_par(rel_penalty_code)

pre_display_penalty = int_par (pre_display_penalty_code)
post_display_penalty = int_par (post_display_penalty_code)
inter_line_penalty = int_par (inter_line_penalty_code)
double_hyphen_demerits = int_par (double_hyphen_demerits_code)
final_hyphen_demerits = int_par (final_hyphen_demerits_code)
adj_demerits = int_par (adj-demerits_code)

mag = int_par(mag-code)

delimiter_factor = int_par (delimiter_factor_code)

looseness = int_par (looseness_code)

time = int_par (time_code)

day = int_par(day-code)

month = int_par (month_code)

year = int_par(year_code)

show_box_breadth = int_par (show_box_breadth_code)

106 PART 17: THE TABLE OF EQUIVALENTS pdfTEX

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

show_box_depth = int_par (show_boz_depth_code)
hbadness = int_par (hbadness_code)

vbadness = int_par (vbadness_code)

pausing = int_par (pausing_code)

tracing_online = int_par (tracing_online_code)
tracing-macros = int_par (tracing-macros_code)
tracing_stats = int_par (tracing_stats_code)
tracing_paragraphs = int_par (tracing_paragraphs_code)
tracing_pages = int_par (tracing_pages_code)
tracing_output = int_par (tracing_output_code)
tracing_-lost_chars = int_par (tracing-lost_chars_code)
tracing-commands = int_par (tracing-commands_code)
tracing_restores = int_par (tracing_restores_code)
uc_hyph = int_par (uc_hyph_code)

output_penalty = int_par (output_penalty_code)
mazx-dead_cycles = int_par (maz-dead_cycles_code)
hang-after = int_par (hang-after_code)
floating_penalty = int_par (floating_penalty_code)
global_defs = int_par(global_defs_code)

cur_fam = int_par (cur_fam_code)

escape_char = int_par (escape_char_code)
default_hyphen_char = int_par (default_hyphen_char_code)
default_skew_char = int_par (default_skew_char_code)
end_line_char = int_par (end_line_char_code)
new_line_char = int_par (new_line_char_code)

language = int_par (language_code)

left_hyphen_min = int_par (left_hyphen_min_code)
right_hyphen_min = int_par (right_hyphen_min_code)
holding_inserts = int_par (holding_inserts_code)
error_context_lines = int_par (error_context_lines_code)

pdf-adjust_spacing = int_par (pdf-adjust_spacing_code)
pdf_protrude_chars = int_par (pdf_protrude_chars_code)
pdf-tracing_fonts = int_par (pdf-tracing_fonts_code)
pdf-adjust_interword_glue = int_par (pdf-adjust_interword_glue_code)
pdf_prepend_kern = int_par (pdf-prepend_kern_code)
pdf-append_kern = int_par (pdf_append_kern_code)
pdf_gen_tounicode = int_par (pdf_gen_tounicode_code)

pdf-output = int_par (pdf-output_code)

pdf-compress_level = int_par (pdf-compress_level_code)
pdf-objcompresslevel = int_par (pdf-objcompresslevel_code)
pdf_decimal_digits = int_par (pdf-decimal_digits_code)
pdf-move_chars = int_par (pdf-move_chars_code)
pdf-image_resolution = int_par (pdf-image_resolution_code)
pdf-pk_resolution = int_par (pdf-pk_resolution_code)
pdf-unique_resname = int_par (pdf-unique_resname_code)
pdf-option_always_use_pdfpageboxr = int_par (pdf-option_always_use_pdfpagebox_code)
pdf-option_pdf-inclusion_errorlevel = int_par (pdf_option_pdf_inclusion_errorlevel_code)
pdf-major_version = int_par (pdf-major_version_code)
pdf-minor_version = int_par (pdf-minor_version_code)
pdf-_force_pagebox = int_par (pdf-force_pageboz_code)

pdf-pagebox = int_par (pdf-pageboz_code)

pdf_inclusion_errorlevel = int_par (pdf-inclusion_errorlevel_code)

§254

6254 pdfTEX PART 17: THE TABLE OF EQUIVALENTS

define
define
define
define
define
define
define
define
define
define
define
define

define
define
define
define
define
define
define
define
define

pdf-gamma = int_par (pdf-gamma-code)

pdf-image_gamma = int_par (pdf-image_gamma_code)

pdf_image_hicolor = int_par (pdf-image_hicolor_code)

pdf_image_apply_gamma = int_par (pdf-image_apply_gamma_code)
pdf_draftmode = int_par (pdf_draftmode_code)

pdf-inclusion_copy_font = int_par (pdf-inclusion_copy-font_code)
pdf_suppress_warning-dup_dest = int_par (pdf-suppress_warning-dup_dest_code)
pdf-suppress_warning_dup_-map = int_par (pdf_suppress_warning_dup_map_code)
pdf_suppress_warning_page_group = int_par (pdf_suppress_warning_page_group_code)
pdf_info_omit_date = int_par (pdf-info_omit_date_code)

pdf-suppress_ptex_info = int_par (pdf-suppress_ptex_info_code)

pdf-omit_charset = int_par (pdf-omit_charset_code)

tracing_assigns = int_par (tracing_assigns_code)
tracing-groups = int_par (tracing-groups_code)

tracing_ifs = int_par (tracing_ifs_code)

tracing_scan_tokens = int_par (tracing_scan_tokens_code)
tracing_nesting = int_par (tracing_nesting_code)
pre_display_direction = int_par (pre_display_direction_code)
last_line_fit = int_par (last_line_fit_code)

saving-vdiscards = int_par (saving-vdiscards_code)
saving-hyph_codes = int_par (saving_hyph_codes_code)

(Assign the values depth_threshold < show_box_depth and breadth-max < show_box_breadth 254) =
depth_threshold < show_box_depth; breadth-max < show_boxr_breadth

This code is used in section 216.

107

108 PART 17: THE TABLE OF EQUIVALENTS pdfTEX 8255

255. We can print the symbolic name of an integer parameter as follows.

procedure print_param(n : integer);
begin case n of
pretolerance_code: print_esc("pretolerance");
tolerance_code: print_esc("tolerance");
line_penalty_code: print_esc("linepenalty");
hyphen_penalty_code: print_esc("hyphenpenalty");
ex_hyphen_penalty_code: print_esc("exhyphenpenalty");
club_penalty_code: print_esc("clubpenalty");
widow_penalty_code: print_esc("widowpenalty");
display-widow_penalty_code: print_esc("displaywidowpenalty");
broken_penalty_code: print_esc("brokenpenalty");
bin_op_penalty_code: print_esc("binoppenalty");
rel_penalty_code: print_esc("relpenalty");
pre_display_penalty_code: print_esc("predisplaypenalty");
post_display_penalty_code: print_esc("postdisplaypenalty");
inter_line_penalty_code: print_esc("interlinepenalty");
double_hyphen_demerits_code: print_esc("doublehyphendemerits");
final_hyphen_demerits_code: print_esc("finalhyphendemerits");
adj_demerits_code: print_esc("adjdemerits");
mag_code: print_esc("mag");
delimiter_factor_code: print_esc("delimiterfactor");
looseness_code: print_esc("looseness");
time_code: print_esc("time");
day_code: print_esc("day");
month_code: print_esc("month");
year_code: print_esc("year");
show_box_breadth_code: print_esc("showboxbreadth");
show_box_depth_code: print_esc("showboxdepth");
hbadness_code: print_esc("hbadness");
vbadness_code: print_esc("vbadness");
pausing_code: print_esc("pausing");
tracing_online_code: print_esc("tracingonline");
tracing-macros_code: print_esc("tracingmacros");
tracing_stats_code: print_esc("tracingstats");
tracing_paragraphs_code: print_esc("tracingparagraphs");
tracing_pages_code: print_esc("tracingpages");
tracing-output_code: print_esc("tracingoutput");
tracing_lost_chars_code: print_esc("tracinglostchars");
tracing_commands_code: print_esc("tracingcommands");
tracing_restores_code: print_esc("tracingrestores");
uc_hyph_code: print_esc("uchyph");
output_penalty_code: print_esc("outputpenalty");
maz_dead_cycles_code: print_esc("maxdeadcycles");
hang_after_code: print_esc("hangafter");
floating_penalty_code: print_esc("floatingpenalty");
global_defs_code: print_esc("globaldefs");
cur_fam_code: print_esc("fam");
escape_char_code: print_esc("escapechar");
default_hyphen_char_code: print_esc("defaulthyphenchar");
default_skew_char_code: print_esc("defaultskewchar");
end_line_char_code: print_esc("endlinechar");

§255 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 109

new_line_char_code: print_esc("newlinechar");
language_code: print_esc("language");
left_hyphen_min_code: print_esc("lefthyphenmin");
right_hyphen_min_code: print_esc("righthyphenmin");
holding_inserts_code: print_esc("holdinginserts");
error_context_lines_code: print_esc("errorcontextlines");

pdf-output_code: print_esc("pdfoutput");
pdf-compress_level_code: print_esc("pdfcompresslevel");
pdf-objcompresslevel_code: print_esc("pdfobjcompresslevel");
pdf-decimal_digits_code: print_esc("pdfdecimaldigits");
pdf-move_chars_code: print_esc("pdfmovechars");
pdf-image_resolution_code: print_esc("pdfimageresolution");
pdf_pk_resolution_code: print_esc("pdfpkresolution");
pdf-unique_resname_code: print_esc("pdfuniqueresname");
pdf-option_always_use_pdfpagebox_code: print_esc("pdfoptionalwaysusepdfpagebox");
pdf-option_pdf-inclusion_errorlevel_code: print_esc("pdfoptionpdfinclusionerrorlevel");
pdf-major_version_code: print_esc("pdfmajorversion");
pdf-minor_version_code: print_esc("pdfminorversion");
pdf-force_pageboz_code: print_esc("pdfforcepagebox");
pdf-pageboz_code: print_esc("pdfpagebox");
pdf-inclusion_errorlevel_code: print_esc("pdfinclusionerrorlevel");
pdf-gamma_code: print_esc("pdfgamma");
pdf-image_gamma_code: print_esc("pdfimagegamma");
pdf-image_hicolor_code: print_esc("pdfimagehicolor");
pdf-image_apply_-gamma_code: print_esc("pdf imageapplygamma");
pdf-adjust_spacing_code: print_esc("pdfadjustspacing");
pdf_protrude_chars_code: print_esc("pdfprotrudechars");
pdf_tracing_fonts_code: print_esc("pdftracingfonts");
pdf_adjust_interword_glue_code: print_esc("pdfadjustinterwordglue");
pdf-prepend_kern_code: print_esc("pdfprependkern");
pdf-append_kern_code: print_esc("pdfappendkern");
pdf-gen_tounicode_code: print_esc("pdfgentounicode");
pdf-draftmode_code: print_esc("pdfdraftmode");
pdf-inclusion_copy_font_code: print_esc("pdfinclusioncopyfonts");
pdf-suppress_warning-dup_dest_code: print_esc("pdfsuppresswarningdupdest");
pdf_suppress_warning-dup-map_code: print_esc("pdfsuppresswarningdupmap");
pdf_suppress_warning_page_group_code: print_esc("pdfsuppresswarningpagegroup");
pdf-info_omit_date_code: print_esc("pdfinfoomitdate");
pdf_suppress_ptex_info_code: print_esc("pdfsuppressptexinfo");
pdf-omit_charset_code: print_esc("pdfomitcharset");

(Cases for print_param 1656)
othercases print(" [unknown integer parameter!]")
endcases;
end;

)

110 PART 17: THE TABLE OF EQUIVALENTS pdfTEX 8256

256. The integer parameter names must be entered into the hash table.

(Put each of TEX’s primitives into the hash table 244) +=
primitive ("pretolerance", assign_int, int_base + pretolerance_code);
primitive ("tolerance", assign_int, int_base + tolerance_code);
primitive ("linepenalty", assign_int, int_base + line_penalty_code);
primitive("hyphenpenalty" assign_int , int_base + hyphen_penalty_code);
primitive ("exhyphenpenalty", assign_int, int_base + ex_hyphen_penalty_code);
primitive (" clubpenalty", assign_int, int_ base + club_penalty_code);
primitive ("widowpenalty", assign_int, int_base + widow_penalty_code);
primitive ("displaywidowpenalty", assign_int, int_base + display_ widow_penalty_code);
primitive ("brokenpenalty", assign_int, int_ base + broken_penalty_code);
primitive ("binoppenalty", assign-int, int_base + bin_op_penalty_code);
primitive ("relpenalty", assign_int, int_base + rel_penalty_code);
primitive ("predisplaypenalty", assign_int, int_base + pre_display_penalty_code);
primitive ("postdisplaypenalty", assign_int, int_base + post_display_penalty_code);
primitive ("interlinepenalty", assign_int, int_base + inter_line_penalty_code);
primitive ("doublehyphendemerits", assign_int, int_base + double_hyphen_demerits_code);
primitive ("finalhyphendemerits", assign_int, int_base + final_hyphen_demerits_code);
primitive (" adeemerlts" assign_int, int_base + adj_demerits_code);
primitive ("mag", assign_int, int_base + mag_code);
primitive dellmlterfactor , assign_int, int_base + delimiter_factor_code);
primitive ("looseness", assign_int, int_ base + looseness_code);
primitive ("time", assign_int, int_ base + time_code);
primitive ("day", assign_int, int_base + day_code);
primitive ("month" | assign_int, int_base + month_code);
primitive ("year", assign_int, int_base + year_code);
primitive ("showboxbreadth", assign_int, int_base + show_boz_breadth_code);
primitive ("showboxdepth", assign_int, int_base + show_boz_depth_code);
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
("f
(
(
(
(
("

primitive ("hbadness", assign_int, int_ base + hbadness_code);
primitive ("vbadness", assign_int , int_base + vbadness_code);
primitive ("pausing", assign_int, int_base + pausing_code);

primitive ("tracingonline", assign_int, int_base + tracing_online_code);
primitive ("tracingmacros", assign_int, int_base + tracing-macros_code);
primitive ("tracingstats", assign-int, int_base + tracing_stats_code);

primitive ("tracingparagraphs", assign_int, int_base + tracing_paragraphs_code);
primitive ("tracingpages", assign_int, int_ base + tracing_pages_code);

primitive ("tracingoutput", assign_int, int_base + tracing_output_code);
primitive ("tracinglostchars", assign_int, int_base + tracing-lost_chars_code);
primitive ("tracingcommands", assign_int, int_base + tracing-commands_code);
primitive ("tracingrestores", assign_int, int_base + tracing_restores_code);
primitive ("uchyph", assign_int, int_base + uc_hyph_code);

primitive ("outputpenalty", assign_int, int_base + output_penalty_code);
primitive ("maxdeadcycles", assign_int, int_base + maz_dead_cycles_code);
primitive ("hangafter", assign_int, int_ base + hang-after_code);

primitive ("floatingpenalty", assign_int, int_base + floating_penalty_code);

primitive ("globaldefs", assign_int, int_ base + global_defs_code);

primitive ("fam", assign_int, int_ base + cur_fam_code);

primitive ("escapechar", assign_int, int_base + escape_char_code);

primitive ("defaulthyphenchar", assign_int, int_base + default_hyphen_char_code);
primitive ("defaultskewchar", assign_int, mt base + default_skew_char_code);

primitive ("endlinechar", assign_int, int_ base + end_line_char_code);

primitive ("newlinechar", assign_int, int_base + new_line_char_code);

§256 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 111

primitive ("language", assign_int, int_base + language_code);
primitive (" lefthyphenmin", asszgn,mt, int_base + left_hyphen_min_code);
primitive ("righthyphenmin", assign_int, int_base + right_hyphen_min_code);

(

(

(
primitive ("holdinginserts", assign_int, int_base + holding_inserts_code);
pm’mitive("errorcontextllnes“, assign_int , int_base + error_context_lines_code);
primitive ("pdfoutput", assign_int, int_base + pdf-output_code);
primitive ("pdf compresslevel", assign_int, int_base + pdf-compress_level_code);
primitive ("pdfobjcompresslevel", assign_int, int_base + pdf-objcompresslevel_code);
primitive ("pdfdecimaldigits", assign_int, int_base + pdf_decimal_digits_code);
primitive ("pdfmovechars", assign_int, int_base + pdf-move_chars_code);
primitive ("pdf imageresolution", assign_int, int_base + pdf-image_resolution_code);
primitive ("pdfpkresolution", assign_int, int_base + pdf_pk_resolution_code);
primitive ("pdfuniqueresname", assign_int, int_base + pdf-unique_resname_code);

(

primitive ("pdfoptionpdfminorversion", assign_int, int_base + pdf-minor_version_code);
primitive ("pdfoptionalwaysusepdfpagebox", assign_int,
int_base + pdf-option_always_-use_pdfpagebox_code);
primitive ("pdfoptionpdfinclusionerrorlevel”, assign_int,
int_base + pdf-option_pdf-inclusion_errorlevel_code);
primitive ("pdfmajorversion", assign_int, int_base + pdf-major_version_code);
primitive ("pdfminorversion", assign_int, int_base + pdf-minor_version_code);
primitive ("pdfforcepagebox", assign_int, int_base + pdf force_pageboz_code);
primitive ("pdfpagebox", assign_int, int- base + pdf_pageboz_code);
primitive ("pdfinclusionerrorlevel", assign_int, int_base + pdf-inclusion_errorlevel_code);
primitive ("pdfgamma" | assign_int, int_base + pdf_gamma_code);
primitive ("pdf imagegamma", assign_int , int_base + pdf_image_gamma_code);
primitive ("pdfimagehicolor", assign_int, int_base + pdf_image_hicolor_code);
primitive ("pdf imageapplygamma", assign-int, int_base + pdf-image_apply_-gamma_code);
primitive ("pdfadjustspacing", assign-int, int_base + pdf-adjust_spacing_code);
primitive ("pdfprotrudechars", assign_int, int_base + pdf_protrude_chars_code);

(!
(
(
(
(
(
(
(
(
(
(
primitive ("
(
(
(
(
(
(
(
(
(
(
(

primitive ("pdftracingfonts", assign_int, int_base + pdf_tracing_fonts_code);
pdfadjustinterwordglue", assign_int, int_base + pdf-adjust_interword_glue_code);

primitive ("pdfprependkern", assign_int, int_base + pdf_prepend_kern_code);

primitive ("pdfappendkern", assign_int, int_base + pdf-append_kern_code);

primitive ("pdfgentounicode", assign_int, int_base + pdf-gen_tounicode_code);

primitive ("pdfdraftmode", assign_int, int_base + pdf_draftmode_code);

primitive ("pdfinclusioncopyfonts", assign_int, int_base + pdf-inclusion_copy_font_code);

primitive ("pdfsuppresswarningdupdest", assign_int, int_base + pdf_suppress_warning_dup_dest_code);

primitive ("pdf suppresswarningdupmap", assign-int, int_base + pdf-suppress_warning-dup_-map_code);

primitive ("pdf suppresswarningpagegroup", assign-int, int_base + pdf_suppress_warning_page_group_code);

primitive ("pdfinfoomitdate", assign_int, int_base + pdf info_omit_date_code);

primitive ("pdfsuppressptexinfo", assign_int, int_base + pdf_suppress_ptex_info_code);

primitive ("pdfomitcharset", assign_int, int_ base + pdf_-omit_charset_code);

257. (Cases of print_cmd_chr for symbolic printing of primitives 245) +=

assign_int: if chr_code < count_base then print_param(chr_code — int_base)
else begin print_esc("count"); print_int(chr_code — count_base);

end;

)

112 PART 17: THE TABLE OF EQUIVALENTS pdfTEX 8258

258. The integer parameters should really be initialized by a macro package; the following initialization
does the minimum to keep TEX from complete failure.

(Initialize table entries (done by INITEX only) 182) +=
for k < int_base to del_code_base — 1 do eqtb[k].int + 0;
mag < 1000; tolerance < 10000; hang_after < 1; maz_dead_cycles < 25; escape_char < "\";
end_line_char < carriage_return;
for k < 0to 255 do del_code (k) < —1;
del_code(".") <— 0; {this null delimiter is used in error recovery }

259. The following procedure, which is called just before TEX initializes its input and output, establishes
the initial values of the date and time. Since standard Pascal cannot provide such information, something
special is needed. The program here simply assumes that suitable values appear in the global variables
sys_time, sys_day, sys-month, and sys_year (which are initialized to noon on 4 July 1776, in case the
implementor is careless).

procedure fiz_date_and_time;
begin sys_time < 12 x 60; sys_-day < 4; sys-month < 7; sys_year < 1776; {self-evident truths }
time < sys_time; {minutes since midnight }
day + sys_day; {day of the month }
month < sys.month; {month of the year }
year < sys_year; { Anno Domini }
end;

260. (Show equivalent n, in region 5 260) =
begin if n < count_base then print_param(n — int_base)
else if n < del_code_base then
begin print_esc("count"); print_int(n — count_base);

end
else begin print_esc("delcode"); print-int(n — del_code_base);
end;
print_char("="); print_int (eqtb[n].int);
end

This code is used in section 270.

261. (Set variable ¢ to the current escape character 261)
c < escape_char

This code is used in section 63.

262. (Character s is the current new-line character 262) =
s = new_line_char

This code is used in sections 58 and 59.

6263 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 113

263. 'TEX is occasionally supposed to print diagnostic information that goes only into the transcript file,
unless tracing_online is positive. Here are two routines that adjust the destination of print commands:

procedure begin_diagnostic; { prepare to do some tracing }
begin old_setting < selector;
if (tracing_online < 0) A (selector = term_and_log) then
begin decr(selector);
if history = spotless then history < warning_issued;
end;
end;

procedure end_diagnostic(blank_line : boolean); {restore proper conditions after tracing }

begin print_nl("");

if blank_line then print_in;

selector < old_setting;

end;
264. Of course we had better declare a few more global variables, if the previous routines are going to
work.

{ Global variables 13) +=
old_setting: 0 .. maz_selector;
sys_time, sys_day, sys-month, sys_year: integer; { date and time supplied by external system }

114 PART 17: THE TABLE OF EQUIVALENTS pdfTEX 8265

265. The final region of eqtb contains the dimension parameters defined here, and the 256 \dimen registers.

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

define
define
define
define
define
define
define
define
define
define
define
define

par_indent_code = 0 {indentation of paragraphs }

math_surround_code =1 {space around math in text }

line_skip_limit_code = 2 { threshold for line_skip instead of baseline_skip }

hsize_code =3 {line width in horizontal mode }

vsize_code = 4 { page height in vertical mode }

maz-depth_code =5 { maximum depth of boxes on main pages }

split-maz_depth_code = 6 { maximum depth of boxes on split pages }
bor_maz_depth_code =7 { maximum depth of explicit vboxes }

hfuzz_code =8 { tolerance for overfull hbox messages }

vfuzz_code =9 {tolerance for overfull vbox messages }

delimiter_shortfall_code = 10 { maximum amount uncovered by variable delimiters }
null_delimiter_space_code = 11 { blank space in null delimiters }

script_space_code = 12 {extra space after subscript or superscript}
pre_display_size_code = 13 {length of text preceding a display }

display-width_code = 14 {length of line for displayed equation }

display_indent_code = 15 { indentation of line for displayed equation }
overfull_rule_code = 16 { width of rule that identifies overfull hboxes }
hang_indent_code = 17 { amount of hanging indentation }

h-offset_code = 18 {amount of horizontal offset when shipping pages out }
v_offset_code =19 {amount of vertical offset when shipping pages out }
emergency_stretch_code = 20 { reduces badnesses on final pass of line-breaking }
pdftex_first_dimen_code = 21 {first number defined in this section }

pdf-h_origin_code = pdftex_first_dimen_code + 0 { horigin of the PDF output }
pdf-v_origin_code = pdftex_first_dimen_code + 1 { vorigin of the PDF output }
pdf_page_width_code = pdftex_first_dimen_code + 2 { page width of the PDF output }
pdf-page_height_code = pdftez_first_dimen_code + 3 { page height of the PDF output }
pdf-link_margin_code = pdftez_first_dimen_code +4 {link margin in the PDF output }
pdf-dest_margin_code = pdftex_first_dimen_code + 5 { dest margin in the PDF output }
pdf-thread_margin_code = pdftex_first_dimen_code + 6 {thread margin in the PDF output }
pdf_first_line_height_code = pdftex_first_dimen_code + 7

pdf_last_line_depth_code = pdftex_first_dimen_code + 8

pdf-each_line_height_code = pdftez_first_dimen_code + 9

pdf_each_line_depth_code = pdftex_first_dimen_code + 10

pdf_ignored_dimen_code = pdftex_first_dimen_code + 11

pdf_px_dimen_code = pdftex_first_dimen_code + 12

pdftex_last_dimen_code = pdftex_first_dimen_code + 12 {last number defined in this section }
dimen_pars = pdftex_last_dimen_code +1 {total number of dimension parameters }
scaled_base = dimen_base + dimen_pars {table of 256 user-defined \dimen registers }
eqtb_size = scaled_base + 255 {largest subscript of eqtb }

dimen (#) = eqtb[scaled_base + #].sc

dimen_par (#) = eqtb[dimen_base + #].sc {a scaled quantity }
par_indent = dimen_par (par_indent_code)
math_surround = dimen_par (math_surround_code)
line_skip_limit = dimen_par (line_skip_limit_code)
hsize = dimen_par (hsize_code)

vsize = dimen_par (vsize_code)

max_depth = dimen_par (maz_depth_code)
split_maz_depth = dimen_par (split_-maz_depth_code)
bor_max_depth = dimen_par (boz_max_depth_code)
hfuzz = dimen_par (hfuzz_code)

vfuzz = dimen_par (vfuzz_code)

§265 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 115

define delimiter_shortfall = dimen_par(delimiter_shortfall_code)
define null_delimiter_space = dimen_par (null_delimiter_space_code)
define script_space = dimen_par (script_space_code)

define pre_display_size = dimen_par (pre_display_size_code)
define display_width = dimen_par (display_width_code)

define display_indent = dimen_par (display-indent_code)

define overfull_rule = dimen_par (overfull_rule_code)

define hang_indent = dimen_par (hang_indent_code)

define h_offset = dimen_par(h_offset_code)

define wv_offset = dimen_par (v_offset_code)

define emergency_stretch = dimen_par (emergency-stretch_code)
define pdf_-h_origin = dimen_par (pdf-h_origin_code)

define pdf_v_origin = dimen_par (pdf-v_origin_code)

define pdf_page_width = dimen_par (pdf_page_width_code)

define pdf_page_height = dimen_par (pdf-page_height_code)

define pdf_link_margin = dimen_par (pdf-link-margin_code)
define pdf_dest_margin = dimen_par (pdf-dest_margin_code)
define pdf_thread_margin = dimen_par (pdf-thread_margin_code)
define pdf_first_line_height = dimen_par (pdf_first_line_height_code)
define pdf.last_line_depth = dimen_par (pdf_last_line_depth_code)
define pdf_each_line_height = dimen_par (pdf_each_line_height_code)
define pdf_each_line_depth = dimen_par (pdf-each_line_depth_code)
define pdf_ignored_dimen = dimen_par (pdf-ignored_dimen_code)
define pdf_pz_dimen = dimen_par (pdf-px_dimen_code)

procedure print_length_param (n : integer);
begin case n of
par_indent_code: print_esc("parindent");
math_surround_code: print_esc("mathsurround");
line_skip_limit_code: print_esc("lineskiplimit");
hsize_code: print_esc("hsize");
vsize_code: print_esc("vsize");
maz_depth_code: print_esc("maxdepth");
split_maz_depth_code: print_esc("splitmaxdepth");
boz_max_depth_code: print_esc("boxmaxdepth");
hfuzz_code: print_esc("hfuzz");
vfuzz_code: print_esc("viuzz");
delimiter_shortfall_code: print_esc("delimitershortfall");
null_delimiter_space_code: print_esc("nulldelimiterspace");
script_space_code: print_esc("scriptspace");
pre_display_size_code: print_esc("predisplaysize");
display_width_code: print_esc("displaywidth");
display_indent_code: print_esc("displayindent");
overfull_rule_code: print_esc("overfullrule");
hang_indent_code: print_esc("hangindent");
h-offset_code: print_esc("hoffset");
v_offset_code: print_esc("voffset");
emergency_stretch_code: print_esc("emergencystretch");
pdf-h_origin_code: print_esc("pdfhorigin");
pdf-v_origin_code: print_esc("pdfvorigin");
pdf-page_width_code: print_esc("pdfpagewidth");
pdf-page_height_code: print_esc("pdfpageheight");
pdf_link_margin_code: print_esc("pdflinkmargin");

116 PART 17: THE TABLE OF EQUIVALENTS pdfTEX 8265

pdf-dest_margin_code: print_esc("pdfdestmargin");
pdf-thread_margin_code: print_esc("pdfthreadmargin");
pdf_first_line_height_code: print_esc("pdffirstlineheight");
pdf-last_line_depth_code: print_esc("pdflastlinedepth");
pdf_each_line_height_code: print_esc("pdfeachlineheight");
pdf-each_line_depth_code: print_esc("pdfeachlinedepth");
pdf-ignored_dimen_code: print_esc("pdfignoreddimen");
pdf-px_dimen_code: print_esc("pdfpxdimen");

othercases print(" [unknown, dimen, parameter!]")
endcases;

end;

266. (Put each of TEX’s primitives into the hash table 244) 4+=
primitive ("parindent", assign_dimen, dimen_base + par_indent_code);
primitive ("mathsurround", assign_dimen, dimen_base + math_surround_code);
primitive ("lineskiplimit", assign_dimen, dimen_base + line_skip_limit_code);
primitive ("hsize", assign_dimen, dimen_base + hsize_code);
primitive ("vsize", assign_dimen, dimen_base + vsize_code);
primitive ("maxdepth", assign_dimen, dimen_base + max_depth_code);
primitive ("splitmaxdepth", assign_dimen, dimen_base + split_max_depth_code);
primitive ("boxmaxdepth", assign_dimen, dimen_base + box_maz_depth_code);
primitive ("hfuzz", assign_dimen, dimen_base + hfuzz_code);
primitive ("viuzz", assign_dimen, dimen_base + vfuzz_code);
primitive ("delimitershortfall", assign_dimen, dimen_base + delimiter_shortfall_code);
primitive ("nulldelimiterspace", assign_dimen, dimen_base + null_delimiter_space_code);
primitive ("scriptspace", assign_dimen, dimen_base + script_space_code);
primitive ("predisplaysize", assign_dimen, dimen_base + pre_display_size_code);
primitive ("displaywidth", assign_dimen, dimen_base + display_width_code);
primitive ("displayindent", assign_dimen, dimen_base + display_indent_code);
primitive ("overfullrule", assign_dimen, dimen_base + overfull_rule_code);
primitive ("hangindent", assign_dimen, dimen_base + hang_indent_code);
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

primitive ("hoffset", assign_dimen, dimen_base + h_offset_code);

primitive ("voffset", assign_dimen, dimen_base + v_offset_code);

primitive ("emergencystretch", assign_dimen, dimen_base + emergency_stretch_code);
primitive ("pdfhorigin", assign_dimen, dimen_base + pdf-h_origin_code);

primitive ("pdfvorigin", assign_dimen, dimen_base + pdf_v_origin_code);

p
p
primitive ("pdfpagewidth", assign_dimen, dimen_base + pdf_page_width_code);
primitive ("pdfpageheight", assign_dimen, dimen_base + pdf-page_height_code);
primitive ("pdflinkmargin", assign-dimen, dimen_base + pdf_link_margin_code);
primitive ("pdfdestmargin, assign_dimen, dimen_base + pdf_dest_margin_code);
primitive ("pdfthreadmargin", assign_dimen, dimen_base + pdf_thread_margin_code);
primitive ("pdffirstlineheight", assign_dimen, dimen_base + pdf_first_line_height_code);
primitive ("pdflastlinedepth", assign_dimen, dimen_base + pdf-last_line_depth_code);
primitive ("pdfeachlineheight", assign_dimen, dimen_base + pdf-each_line_height_code);
primitive ("pdfeachlinedepth", assign_dimen, dimen_base + pdf-each_line_depth_code);
primitive ("pdfignoreddimen", assign_dimen, dimen_base + pdf_ignored_dimen_code);

p

primitive ("pdfpxdimen", assign_dimen, dimen_base + pdf_px_dimen_code);
267. (Cases of print_cmd_chr for symbolic printing of primitives 245) +=
assign_dimen: if chr_code < scaled_base then print_length_param (chr_code — dimen_base)
else begin print_esc("dimen"); print_int(chr_code — scaled_base);
end;

)

6268 pdfTEX PART 17: THE TABLE OF EQUIVALENTS

268. (Initialize table entries (done by INITEX only) 182) +=
for k < dimen_base to eqtb_size do eqth[k].sc + 0;

269. (Show equivalent n, in region 6 269) =
begin if n < scaled_base then print_length_param(n — dimen_base)
else begin print_esc("dimen"); print_int (n — scaled_base);
end;
print_char ("="); print_scaled (eqtb[n].sc); print("pt");
end

This code is used in section 270.

270. Here is a procedure that displays the contents of egth[n] symbolically.

(Declare the procedure called print_cmd_chr 320)
stat procedure show_eqth(n : pointer);
begin if n < active_base then print_char("?") {this can’t happen }
else if n < glue_base then (Show equivalent n, in region 1 or 2 241)
else if n < local_base then (Show equivalent n, in region 3 247)
else if n < int_base then (Show equivalent n, in region 4 251)
else if n < dimen_base then (Show equivalent n, in region 5 260)
else if n < egtb_size then (Show equivalent n, in region 6 269)
else print_char("?"); {this can’t happen either }
end;
tats

117

271. The last two regions of eqtb have fullword values instead of the three fields eq_level, eq_type, and
equiv. An eq_type is unnecessary, but TEX needs to store the eg_level information in another array called

zeq_level.

(Global variables 13) +=

eqth: array [active_base .. eqtb_size] of memory_word;
zeq_level: array [int-base .. eqtb_size] of quarterword;

272. (Set initial values of key variables 21) +=
for k < int_base to eqtb_size do zeq_level[k] < level_one;

273. When the debugging routine search-mem is looking for pointers having a given value, it is interested

only in regions 1 to 3 of eqth, and in the first part of region 4.

(Search eqth for equivalents equal to p 273) =
for g + active_base to bor_base + 255 do
begin if equiv(q) = p then
begin print_nl("EQUIV("); print_int(q); print_char(")");
end;
end

This code is used in section 190.

118 PART 18: THE HASH TABLE pdfTEX §274

274. The hash table. Control sequences are stored and retrieved by means of a fairly standard hash
table algorithm called the method of “coalescing lists” (cf. Algorithm 6.4C in The Art of Computer Pro-
gramming). Once a control sequence enters the table, it is never removed, because there are complicated
situations involving \gdef where the removal of a control sequence at the end of a group would be a mistake
preventable only by the introduction of a complicated reference-count mechanism.

The actual sequence of letters forming a control sequence identifier is stored in the str_pool array together
with all the other strings. An auxiliary array hash consists of items with two halfword fields per word. The
first of these, called next(p), points to the next identifier belonging to the same coalesced list as the identifier
corresponding to p; and the other, called text(p), points to the str_start entry for p’s identifier. If position p
of the hash table is empty, we have text(p) = 0; if position p is either empty or the end of a coalesced hash
list, we have next(p) = 0. An auxiliary pointer variable called hash_used is maintained in such a way that
all locations p > hash_used are nonempty. The global variable cs_count tells how many multiletter control
sequences have been defined, if statistics are being kept.

A global boolean variable called no_new_control_sequence is set to true during the time that new hash
table entries are forbidden.

define next(#) = hash[#].lh {link for coalesced lists }

define text(#) = hash[#].rh {string number for control sequence name }

define hash_is_full = (hash_used = hash_base) { test if all positions are occupied }
define font_id_text(#) = text(font-id_base + #) {a frozen font identifier’s name }

{ Global variables 13) +=

hash: array [hash_base .. undefined_control_sequence — 1] of two_halves; {the hash table }
hash_used: pointer; { allocation pointer for hash }

no_new_control_sequence: boolean; { are new identifiers legal? }

cs_count: integer; {total number of known identifiers }

275. Primitive support needs a few extra variables and definitions

define prim_prime = 1777 {about 85% of primitive_size }

define prim_base =1

define prim_next(#) = prim[#].lh {link for coalesced lists }

define prim_text(#) = prim[#].rh {string number for control sequence name, plus one }
define prim_is_full = (prim_used = prim_base) { test if all positions are occupied }

define prim_eq_level_field (#) = #.hh.b1

define prim_eq_type_field (#) = #.hh.b0

define prim_equiv_field (#) = #.hh.rh

define prim_eq_level (#) = prim_eq_level_field (eqth [prim_eqtb_base + #]) {level of definition }
define prim_eq_type(#) = prim_eq_type_field (eqth [prim_eqtb_base + #]) {command code for equivalent }
define prim_equiv (#) = prim_equiv_field (eqth [prim_eqtb_base + #]) { equivalent value }
define undefined_primitive = 0

define biggest_char =255 { 65535 in XeTeX }

(Global variables 13) +=
prim: array [0 .. prim_size] of two_halves; {the primitives table }
prim_used: pointer; {allocation pointer for prim }

276. (Set initial values of key variables 21) 4=
no_new_control_sequence < true; {new identifiers are usually forbidden }
prim_next(0) < 0; prim_text(0) + 0;
for k < 1 to prim_size do prim[k] < prim[0];
next (hash_base) < 0; text(hash_-base) < 0;
for k < hash_base + 1 to undefined_control_sequence — 1 do hash[k] +— hash[hash_base];

8277 pdfTEX PART 18: THE HASH TABLE 119

277. (Initialize table entries (done by INITEX only) 182) +=
prim_used < prim_size; {nothing is used }
hash_used < frozen_control_sequence; {nothing is used }
cs_count < 0; eq_type (frozen_dont_expand) < dont_expand;
text(frozen_dont_expand) < "notexpanded:"; eq_type(frozen_primitive) < ignore_spaces;
equiv (frozen_primitive) < 1; eq_level (frozen_primitive) < level_one;
text (frozen_primitive) < "pdfprimitive";

278. Here is the subroutine that searches the hash table for an identifier that matches a given string of
length [> 1 appearing in buffer[j .. (j + 1 — 1)]. If the identifier is found, the corresponding hash table
address is returned. Otherwise, if the global variable no_new_control_sequence is true, the dummy address
undefined_control_sequence is returned. Otherwise the identifier is inserted into the hash table and its location
is returned.

function id_lookup(j,1 : integer): pointer; {search the hash table }
label found; {go here if you found it }
var h: integer; {hash code}
d: integer; {number of characters in incomplete current string }
p: pointer; {index in hash array }
k: pointer; {index in buffer array }
begin (Compute the hash code h 280);
p < h+ hash_base; {we start searching here; note that 0 < h < hash_prime }
loop begin if text(p) > 0 then
if length(text(p)) =1 then
if str_eg_buf (text(p),7j) then goto found;
if next(p) =0 then
begin if no_new_control_sequence then p < undefined_control_sequence
else (Insert a new control sequence after p, then make p point to it 279);
goto found;
end;
p < next(p);
end;
found: id_lookup + p;
end;

279. (Insert a new control sequence after p, then make p point to it 279) =
begin if tezt(p) > 0 then
begin repeat if hash_is_full then overflow ("hash,size", hash_size);
decr (hash_used);
until text(hash_used) = 0; {search for an empty location in hash }
next (p) < hash_used; p < hash_used;
end;
str_room(l); d < cur_length;
while pool_ptr > str_start[str_ptr] do
begin decr(pool_ptr); str_pool[pool_ptr + 1] < str_pool[pool_ptr];
end; {move current string up to make room for another }
for k< jto j+1—1do append_char(buffer[k]);
text(p) < make_string; pool_ptr < pool_ptr + d;
stat incr(cs-count); tats
end

This code is used in section 278.

120 PART 18: THE HASH TABLE pdfTEX §280

280. The value of hash_prime should be roughly 85% of hash_size, and it should be a prime number. The
theory of hashing tells us to expect fewer than two table probes, on the average, when the search is successful.
[See J. S. Vitter, Journal of the ACM 30 (1983), 231-258.]

(Compute the hash code h 280) =
h « buffer[j];
for k< j+1toj+[1—1do
begin h < h + h + buffer[k];
while h > hash_prime do h < h — hash_prime;
end

This code is used in section 278.

281. Here is the subroutine that searches the primitive table for an identifier:

function prim_lookup (s : str_number): pointer; {search the primitives table }
label found; {go here if you found it }
var h: integer; {hash code}
p: pointer; {index in hash array }
k: pointer; {index in string pool }
7,1: integer;
begin if s < biggest_char then
begin if s < 0 then
begin p < undefined_primitive; goto found;
end
else p «+ (s mod prim_prime) + prim_base; { we start searching here }
end
else begin j « str_start[s];
if s = str_ptr then [< cur_length
else [« length(s);
(Compute the primitive code h 283);
p < h+ prim_base; {we start searching here; note that 0 < h < prim_prime }
end;
loop begin if prim_text(p) > 1 + biggest_char then { p points a multi-letter primitive }
begin if length(prim_text(p) — 1) =1 then
if str_eq_str(prim_text(p) — 1,s) then goto found;
end
else if prim_text(p) = 1+ s then goto found; { p points a single-letter primitive }
if prim_next(p) = 0 then
begin if no_new_control_sequence then p < undefined_primitive
else (Insert a new primitive after p, then make p point to it 282);
goto found;
end;
p <+ prim_next(p);
end;
found: prim_lookup < p;
end;

6282 pdfTExX PART 18: THE HASH TABLE 121

282. (Insert a new primitive after p, then make p point to it 282) =

begin if prim_text(p) > 0 then

begin repeat if prim_is_full then overflow("primitive_ size", prim_size);
decr (prim_used);

until prim_text (prim_used) = 0; {search for an empty location in prim }
prim_next(p) < prim_used; p < prim_used;
end;

prim_text(p) < s+ 1;

end

This code is used in section 281.

283. The value of prim_prime should be roughly 85% of prim_size, and it should be a prime number.

(Compute the primitive code h 283) =
h < str_pool[j];
for k<~ j+1toj+1l—1do
begin h < h+ h + str_pool [k];
while h > prim_prime do h < h — prim_prime;
end

This code is used in section 281.

284. Single-character control sequences do not need to be looked up in a hash table, since we can use
the character code itself as a direct address. The procedure print_cs prints the name of a control sequence,
given a pointer to its address in eqtb. A space is printed after the name unless it is a single nonletter or an
active character. This procedure might be invoked with invalid data, so it is “extra robust.” The individual
characters must be printed one at a time using print, since they may be unprintable.
(Basic printing procedures 57) +=
procedure print_cs(p : integer); {prints a purported control sequence }
begin if p < hash_base then {single character }
if p > single_base then
if p = null_cs then
begin print_esc("csname"); print_esc("endcsname"); print_char(",");
end
else begin print_esc(p — single_base);
if cat_code(p — single_base) = letter then print_char(",");
end
else if p < active_base then print_esc("IMPOSSIBLE.")
else print(p — active_base)
else if p > undefined_control_sequence then print_esc("IMPOSSIBLE.")
else if (text(p) < 0) V (text(p) > str_ptr) then print_esc("NONEXISTENT.")
else begin if (p > prim_eqtb_base) A (p < frozen_null_font) then
print_esc(prim_text(p — prim_eqtb_base) — 1)
else print_esc(text(p));
print_char ("u");
end;
end;

122 PART 18: THE HASH TABLE pdfTEX §285

285. Here is a similar procedure; it avoids the error checks, and it never prints a space after the control
sequence.

(Basic printing procedures 57) +=
procedure sprint_cs(p : pointer); {prints a control sequence }
begin if p < hash_base then
if p < single_base then print(p — active_base)
else if p < null_cs then print_esc(p — single_base)
else begin print_esc("csname"); print_esc("endcsname");
end
else if (p > prim_eqtb_base) A (p < frozen_null_font) then print_esc(prim_text(p — prim_eqtb_base) — 1)
else print_esc(text(p));
end;

§286 pdfTEX PART 18: THE HASH TABLE 123

286. We need to put TgX’s “primitive” control sequences into the hash table, together with their command
code (which will be the eq_type) and an operand (which will be the equiv). The primitive procedure does
this, in a way that no TEX user can. The global value cur_val contains the new eqtb pointer after primitive
has acted.

Until pdfTEX 1.40.19 (released in 2018), a bug in primitive handling caused, e.g., \pdfprimitive\ \q to
swallow the \q instead of giving an undefined control sequence error. The original report was posted by
Hironori Kitagawa (tug.org/pipermail/tex-k/2017-0ctober/002816.html). Largely quoting from that
message:

The cause was cur_tok not being set in the “Cases of main_control...” module, because back_input
unscans the token, but only looks at cur_tok, which represents the internalized \pdfprimitive at that
time. So \pdfprimitive\vrule\q becomes “(internalized \pdfprimitive)”\q, hence no error (and \vrule
disappears).

Hironori’s explanation of the previous behavior and fix continues (off-list):

7

* back_input (and similar routine (Insert token p into TEX’s input)) only stores cur_tok to a token list.
* When TEX gets input from a token list (at module (Input from token list, goto restart ...)), TEX
looks at the saved cur_tok value t, and recover the command code (cur_cmd) and its modifier (cur_chr)
from it:
—If t > cs_token_flag, t points to an eqtb location t — cs_token_flag.
— Ift < cs_token_flag, cur_cmd and cur_chr are set with cur_cmd < tdiv 400; cur_chr < tmod 400.
— This ¢ is used to display the token (show_token_list).
* pdfTEX defines cs_token_flag as "FFF. So simply using cur_tok < (cur_cmd x 400) + cur_chr by
\pdfprimitive does not work correctly with primitives whose command codes cur_cmd > 16.
Increasing cs_token_flag to "FFFF or somewhat higher might suffice for fixing this situation in pdfTEX.
However, this approach does not seem good, because
1) an (indirect) mapping from cur_tok to control sequence name is needed anyway, for displaying the
token, and
2) this does not work in Japanese e-(u)pTEX.
Thus, we now put prim_eqtb entries into the end of region 2 of eqtb (which contains some frozen primitives,
such as “frozen \fi” and “frozen \cr”), thus treating prim_eqtb entries as a permanent location for primitives.

init procedure primitive (s : str_number; ¢ : quarterword; o : halfword);
var k: pool_pointer; {index into str_pool }
J: 0.. buf-size; {index into buffer }
I: small_number; {length of the string }
prim_val: integer; {needed to fill prim_eqtb }
begin if s < 256 then
begin cur_val + s+ single_base; prim_val < prim_lookup(s);
end
else begin k + str_start[s]; | + str_start[s + 1] — k;
{we will move s into the (possibly non-empty) buffer }
if first +1 > buf_size + 1 then overflow("buffer size", buf size);
for j + 0tol—1do buffer[first + j] < so(str_pool[k + j]);
cur_val < id_lookup (first,l); { no_new_control_sequence is false }
flush_string; text(cur_val) < s; {we don’t want to have the string twice }
prim_val < prim_lookup (s);
end;
eq_level (cur_val) <+ level_one; eq_type(cur_val) < ¢; equiv(cur_-val) < o;
prim_eq_level (prim_val) <+ level_one; prim_eq_type (prim_val) < ¢; prim_equiv (prim_val) < o;
end;
tini

124 PART 18: THE HASH TABLE pdfTEX

287. Many of TEX’s primitives need no equiv, since they are identifiable by their eq_type alone.

primitives are loaded into the hash table as follows:

(Put each of TEX’s primitives into the hash table 244) +=
primitive (",", ex_space, 0);
primitive (" /", ital_corr,0);
primitive ("accent", accent, 0);
primitive ("advance", advance, 0);

(

(n
(n
primitive ("afterassignment", after_assignment,0);
primitive ("aftergroup", after_group, 0);

primitive ("begingroup", begin_group,0);

primitive ("char", char_num,0);

primitive (" csname", cs_name, 0);

primitive ("delimiter", delim_num,0);

primitive ("divide", divide,0);

primitive ("endcsname", end_cs_name, 0);

primitive ("endgroup", end_group, 0); text(frozen_end_group) < "endgroup";
eqth[frozen_end_group] < eqtb|cur_vall;

primitive ("expandafter", expand_after,0);

Q. Q

(|

primitive ("font", def_font, 0);

primitive ("letterspacefont", letterspace_font,0);

primitive ("pdfcopyfont", pdf_copy_font,0);

primitive ("fontdimen", assign_font_dimen, 0);

primitive("halign", halign,0);

primitive ("hrule", hrule,0);

primitive ("ignorespaces", ignore_spaces,0);

primitive ("insert", insert,0);

primitive ("mark", mark, 0);

primitive ("mathaccent", math_accent,0);

primitive ("mathchar", math_char_num, 0);

primitive ("mathchoice", math_choice,0);
(
(
(
(
(
(
(
(
(
(
(
(

primitive ("multiply", multiply,0);
primitive ("noalign", no_align,0);
primitive ("noboundary", no_boundary,0);
primitive ("noexpand", no_expand, 0);
primitive ("pdfprimitive", no_expand, 1);
primitive("nonscript", non_script, 0);
primitive("omit", omit,0);

primitive ("parshape", set_shape, par_shape_loc);

primitive ("penalty", break_penalty, 0);

primitive ("prevgraf", set_prev_graf , 0);

primitive ("radical", radical,0);

primitive ("read", read_to_cs, 0);

primitive ("relax", relax,256); {cf. scan_file_name }
text(frozen_relax) < "relax"; eqtb[frozen_relaz] < eqtb[cur_vall;

primitive ("setbox", set_box,0);

primitive ("the", the,0);

primitive ("toks", toks_register, mem_bot);
primitive ("vadjust", vadjust, 0);
primitive("valign", valign,0);

primitive ("vcenter", vcenter, 0);
primitive ("vrule", vrule,0);

§287

These

§288 pdfTEX PART 18: THE HASH TABLE 125

288. Each primitive has a corresponding inverse, so that it is possible to display the cryptic numeric
contents of eqth in symbolic form. Every call of primitive in this program is therefore accompanied by some
straightforward code that forms part of the print_cmd_chr routine below.

(Cases of print_cmd_chr for symbolic printing of primitives 245) +=
accent: print_esc("accent");
advance: print_esc("advance");
after_assignment: print_esc("afterassignment");
after_group: print_esc("aftergroup");
assign_font_dimen: print_esc("fontdimen");
begin_group: print_esc("begingroup");
break_penalty: print_esc("penalty");
char_num: print_esc("char");
cs-name: print_esc("csname");
def_font: print_esc("font");
letterspace_font: print_esc("letterspacefont");
pdf_copy_font: print_esc("pdfcopyfont");
delim_num: print_esc("delimiter");
divide: print_esc("divide");
end_cs_name: print_esc("endcsname");
end_group: print_esc("endgroup");
ex_space: print_esc(",");
expand_after: if chr_code = 0 then prini_esc("expandafter")
(Cases of expandafter for print_cmd_chr 1760);
halign: print_esc("halign");
hrule: print_esc("hrule");
ignore_spaces: if chr_code = 0 then print_esc("ignorespaces")
else print_esc("pdfprimitive");
insert: print_esc("insert");
ital_corr: print_esc("/");
mark: begin print_esc("mark");
if chr_code > 0 then print_char("s");
end;
math_accent: print_esc("mathaccent");
math_char_num: print_esc("mathchar");
math_choice: print_esc("mathchoice");
multiply: print_esc("multiply");
no_align: print_esc("noalign");
no_boundary: print_esc("noboundary");
no_expand: if chr_code = 0 then print_esc("noexpand")
else print_esc("pdfprimitive");
non_script: print_esc("nonscript");
omit: print_esc("omit");
radical: print_esc("radical");
read_to_cs: if chr_code = 0 then print_esc("read") (Cases of read for print_cmd_chr 1757);
relaz: print_esc("relax");
set_box: print_esc("setbox");
set_prev_graf: print_esc("prevgraf");
set_shape: case chr_code of
par_shape_loc: print_esc("parshape");
(Cases of set_shape for print_cmd_chr 1862)
end; {there are no other cases }
the: if chr_code = 0 then print_esc("the") (Cases of the for print_cmd_chr 1684);

126 PART 18: THE HASH TABLE pdfTEX §288

toks_register: (Cases of toks_register for print_cmd_chr 1830);
vadjust: print_esc("vadjust");
valign: if chr_code = 0 then print_esc("valign")
(Cases of valign for print_cmd_chr 1699);
veenter: print_esc("vcenter");
vrule: print_esc("vrule");

289. We will deal with the other primitives later, at some point in the program where their eq_type and
equiv values are more meaningful. For example, the primitives for math mode will be loaded when we
consider the routines that deal with formulas. It is easy to find where each particular primitive was treated
by looking in the index at the end; for example, the section where "radical" entered eqtb is listed under
“\radical primitive’. (Primitives consisting of a single nonalphabetic character, like ‘\/’, are listed under
‘Single-character primitives’.)

Meanwhile, this is a convenient place to catch up on something we were unable to do before the hash table
was defined:

§290 pdfTEX PART 19: SAVING AND RESTORING EQUIVALENTS 127

290. Saving and restoring equivalents. The nested structure provided by ‘{...} groups in TEX
means that eqtb entries valid in outer groups should be saved and restored later if they are overridden inside
the braces. When a new eqtb value is being assigned, the program therefore checks to see if the previous
entry belongs to an outer level. In such a case, the old value is placed on the save_stack just before the new
value enters eqtb. At the end of a grouping level, i.e., when the right brace is sensed, the save_stack is used
to restore the outer values, and the inner ones are destroyed.

Entries on the save_stack are of type memory_word. The top item on this stack is save_stack[p], where
p = save_ptr — 1; it contains three fields called save_type, save_level, and save_index, and it is interpreted in
one of five ways:

1) If save_type(p) = restore_old_value, then save_index (p) is a location in eqtb whose current value should
be destroyed at the end of the current group and replaced by save_stack[p — 1]. Furthermore if
save_index (p) > int_base, then save_level (p) should replace the corresponding entry in zeq_level.

2) If save_type (p) = restore_zero, then save_index (p) is a location in eqtb whose current value should be de-
stroyed at the end of the current group, when it should be replaced by the value of eqtb [undefined_control_sequc

3) If save_type(p) = insert_token, then save_index(p) is a token that should be inserted into TEX’s input
when the current group ends.

4) If save_type(p) = level_boundary, then save_level(p) is a code explaining what kind of group we were
previously in, and save_index (p) points to the level boundary word at the bottom of the entries for
that group. Furthermore, in extended e-TEX mode, save_stack[p — 1] contains the source line number
at which the current level of grouping was entered.

5) If save_type(p) = restore_sa, then sa_chain points to a chain of sparse array entries to be restored at the
end of the current group. Furthermore save_indez (p) and save_level(p) should replace the values of
sa_chain and sa_level respectively.

define save_type (#) = save_stack[#].hh.b0 { classifies a save_stack entry }

define save_level (#) = save_stack[#].hh.b1 {saved level for regions 5 and 6, or group code }
define save_index (#) = save_stack[#].hh.rh { eqtb location or token or save_stack location }
define restore_old_value =0 { save_type when a value should be restored later }

define restore_zero =1 { save_type when an undefined entry should be restored }

define insert_token =2 { save_type when a token is being saved for later use }

define level boundary =3 { save_type corresponding to beginning of group }

define restore_sa =4 { save_type when sparse array entries should be restored }

(Declare e-TEX procedures for tracing and input 306)

128 PART 19: SAVING AND RESTORING EQUIVALENTS pdfTEX §291

291. Here are the group codes that are used to discriminate between different kinds of groups. They allow
TEX to decide what special actions, if any, should be performed when a group ends.

Some groups are not supposed to be ended by right braces. For example, the ‘¢’ that begins a math
formula causes a math_shift_group to be started, and this should be terminated by a matching ‘$’. Similarly,
a group that starts with \left should end with \right, and one that starts with \begingroup should end
with \endgroup.

define bottom_level =0 {group code for the outside world }

define simple_group =1 {group code for local structure only }

define hboz_group =2 {code for ‘\hbox{...} }

define adjusted_hboz_group =3 {code for ‘\hbox{. ..} in vertical mode }
define wvbox_group =4 {code for ‘\vbox{...}'}

define wtop_group =5 {code for ‘\vtop{...}’}

define align_group =6 {code for ‘\halign{...}’, ‘\valign{...}’}
define no_align_group =7 {code for ‘\noalign{...}’}

define output_group =8 { code for output routine }

define math_group =9 {code for, e.g., *"{...}"}

define disc_group =10 {code for ‘\discretionary{...}{...}{...}’}
define insert_group =11 {code for ‘\insert{...}’, ‘\vadjust{...} }
define wvcenter_group = 12 {code for ‘\vcenter{...} }

define math_choice_group =13 {code for ‘\mathchoice{...}{...}...}{...}’'}
define semi_simple_group =14 {code for ‘\begingroup. . .\endgroup’ }
define math_shift_group =15 {code for ‘$...$"}

define math_left_group =16 {code for ‘\left...\right’}

define maz_group_code = 16

(Types in the outer block 18) +=
group_code = 0 .. max_group_code; { save_level for a level boundary }

292. The global variable cur_group keeps track of what sort of group we are currently in. Another global
variable, cur_boundary, points to the topmost level_boundary word. And cur_level is the current depth of
nesting. The routines are designed to preserve the condition that no entry in the save_stack or in eqth ever
has a level greater than cur_level.

293. (Global variables 13) +=

save_stack: array [0 .. save_size] of memory_word;

save_ptr: 0 .. save_size; {first unused entry on save_stack }
maz_save_stack: 0 .. save_size; { maximum usage of save stack }
cur_level: quarterword; {current nesting level for groups }
cur_group: group_code; {current group type }

cur_boundary: 0 .. save_size; { where the current level begins }

294. At this time it might be a good idea for the reader to review the introduction to eqth that was given
above just before the long lists of parameter names. Recall that the “outer level” of the program is level_one,
since undefined control sequences are assumed to be “defined” at level_zero.

(Set initial values of key variables 21) +=
save_ptr < 0; cur_level < level_one; cur_group < bottom_level; cur_boundary < 0; max_save_stack < 0;

§295 pdfTEX PART 19: SAVING AND RESTORING EQUIVALENTS 129

295. The following macro is used to test if there is room for up to seven more entries on save_stack. By
making a conservative test like this, we can get by with testing for overflow in only a few places.

define check_full_save_stack =
if save_ptr > max_save_stack then
begin maz_save_stack <+ save_ptr;
if maz_save_stack > save_size — 7 then overflow ("save_ size", save_size);
end

296. Procedure new_save_level is called when a group begins. The argument is a group identification code
like ‘hbox_group’. After calling this routine, it is safe to put five more entries on save_stack.

In some cases integer-valued items are placed onto the save_stack just below a level_boundary word, because
this is a convenient place to keep information that is supposed to “pop up” just when the group has finished.
For example, when ‘\hbox to 100pt{...}’ is being treated, the 100pt dimension is stored on save_stack
just before new_save_level is called.

We use the notation saved (k) to stand for an integer item that appears in location save_ptr + k of the
save stack.

define saved (#) = save_stack [save_ptr + #].int

procedure new_save_level(c : group_code); {begin a new level of grouping }
begin check_full_save_stack;
if eTeX_ex then
begin saved(0) « line; incr(save_ptr);
end;
save_type (save_ptr) + level_boundary; save_level (save_ptr) < cur_group;
save_index (save_ptr) + cur_boundary;
if cur_level = maz_quarterword then
overflow ("grouping levels", maz_quarterword — min_quarterword);
{ quit if (cur_level + 1) is too big to be stored in eqth }
cur_boundary < save_ptr; cur_group < c;
stat if tracing_groups > 0 then group_trace(false);
tats
incr (cur_level); incr(save_ptr);
end;

297. Just before an entry of eqtb is changed, the following procedure should be called to update the other
data structures properly. It is important to keep in mind that reference counts in mem include references
from within save_stack, so these counts must be handled carefully.

procedure eq_destroy(w : memory-word); { gets ready to forget w }

var ¢: pointer; { equiv field of w }

begin case eq_type_field (w) of

call, long_call, outer_call, long_outer_call: delete_token_ref (equiv_field (w));

glue_ref : delete_glue_ref (equiv_field (w));

shape_ref : begin ¢ < equiv_field(w); {we need to free a \parshape block }
if g # null then free_node(q, info(q) + info(q) + 1);
end; {such a block is 2n + 1 words long, where n = info(q) }

box_ref : flush_node_list (equiv_field (w));
(Cases for eq_destroy 1831)

othercases do_nothing

endcases;

end;

130 PART 19: SAVING AND RESTORING EQUIVALENTS pdfTEX 6208

298. To save a value of eqtb[p] that was established at level I, we can use the following subroutine.

procedure eq_save(p : pointer; 1 : quarterword); {saves eqtb[p] }
begin check_full_save_stack;
if | = level_zero then save_type(save_ptr) + restore_zero
else begin save_stack[save_ptr] < eqtb[p]; incr(save_ptr); save_type(save_ptr) < restore_old_value;
end;

save_level (save_ptr) < l; save_index (save_ptr) < p; incr(save_ptr);
end;

299. The procedure eq_define defines an eqtb entry having specified eq_type and equiv fields, and saves the
former value if appropriate. This procedure is used only for entries in the first four regions of eqtb, i.e., only
for entries that have eq_type and equiv fields. After calling this routine, it is safe to put four more entries
on save_stack, provided that there was room for four more entries before the call, since eq_save makes the
necessary test.

define assign_trace(#) =
stat if tracing_assigns > 0 then restore_trace (#);
tats

procedure eq_define(p : pointer; t : quarterword; e : halfword); {new data for eqth }
label exit;
begin if eTeX_ex A (eq_type(p) =t) A (equiv(p) = e) then
begin assign_trace(p, "reassigning")
eq_destroy (eqtb[p]); return;
end;
assign_trace (p, "changing")
if eq_level(p) = cur_level then eq_destroy(eqtb[p])
else if cur_level > level_one then eq_save(p, eq_level (p));
eq_level (p) < cur_level; eq_type(p) < t; equiv(p) < e; assign_trace(p, "into")
erit: end;

300. The counterpart of eg_define for the remaining (fullword) positions in eqtb is called eq_word_define.
Since xeq_level[p] > level_one for all p, a ‘restore_zero’ will never be used in this case.

procedure eq_word_define(p : pointer; w : integer);
label exit;
begin if eTeX_ex A (eqth[p].int = w) then
begin assign_trace(p, "reassigning")
return;
end;
assign_trace (p, "changing")
if zeq_level[p] # cur_level then
begin eq_save(p, zeq-level[p)]); weq_level[p] < cur_level;
end;
eqth[p|.int < w; assign_trace(p,"into")
exit: end;

§301 pdfTEX PART 19: SAVING AND RESTORING EQUIVALENTS 131

301. The eq_define and eq-word_define routines take care of local definitions. Global definitions are done in
almost the same way, but there is no need to save old values, and the new value is associated with level_one.

procedure geq_define(p : pointer; t : quarterword; e : halfword); { global eq_define }
begin assign_trace(p, "globally, changing")
begin eq_destroy(eqtb[p]); eq-level(p) < level_one; eqtype(p) < t; equiv(p) < e;
end; assign_trace(p,"into")
end;

procedure geq-word_define(p : pointer; w : integer); {global eq_word_define }
begin assign_trace(p, "globally changing")
begin eqtb[p].int « w; zeq_level[p] + level_one;
end; assign_trace(p,"into")
end;

302. Subroutine save_for_after puts a token on the stack for save-keeping.

procedure save_for_after (t : halfword);
begin if cur_level > level_one then
begin check_full_save_stack; save_type(save_ptr) < insert_token; save_level(save_ptr) «+ level_zero;
save_index (save_ptr) < t; incr(save_ptr);
end;
end;

303. The unsave routine goes the other way, taking items off of save_stack. This routine takes care of
restoration when a level ends; everything belonging to the topmost group is cleared off of the save stack.

procedure back_input; forward;
procedure unsave; {pops the top level off the save stack }
label done;
var p: pointer; { position to be restored }
I: quarterword; {saved level, if in fullword regions of eqtb }
t: halfword; {saved value of cur_tok }
a: boolean; {have we already processed an \aftergroup 7}
begin a + false;
if cur_level > level_one then
begin decr(cur_level); (Clear off top level from save_stack 304);
end
else confusion("curlevel"); {unsave is not used when cur_group = bottom_level }
end;

132 PART 19: SAVING AND RESTORING EQUIVALENTS pdfTEX 8304

304. (Clear off top level from save_stack 304) =
loop begin decr (save_ptr);
if save_type(save_ptr) = level_boundary then goto done;
p + save_index (save_ptr);
if save_type(save_ptr) = insert_token then (Insert token p into TEX’s input 348)
else if save_type(save_ptr) = restore_sa then
begin sa_restore; sa_chain < p; sa_level + save_level (save_ptr);
end
else begin if save_type (save_ptr) = restore_old_value then
begin [+ save_level (save_ptr); decr(save_ptr);
end
else save_stack[save_ptr] « eqth[undefined_control_sequence];
(Store save_stack[save_ptr] in eqth[p], unless eqth[p] holds a global value 305);
end;
end;
done: stat if tracing_groups > 0 then group_trace(true);
tats
if grp_stack|[in-open] = cur_boundary then group_warning;
{ groups possibly not properly nested with files }
cur_group < save_level (save_ptr); cur_boundary < save_index (save_ptr);
if eTeX ex then decr(save_ptr)

This code is used in section 303.

305. A global definition, which sets the level to level_one, will not be undone by unsave. If at least one
global definition of eqtb[p] has been carried out within the group that just ended, the last such definition
will therefore survive.

(Store save_stack[save_ptr] in eqth[p], unless eqth[p] holds a global value 305) =
if p < int_base then

if eq_level(p) = level_one then
begin eq_destroy(save_stack[save_ptr]); { destroy the saved value }
stat if tracing-restores > 0 then restore_trace(p,"retaining");
tats
end

else begin eq_destroy(eqth[p]); {destroy the current value }
eqth[p] < save_stack[save_ptr]; {restore the saved value }
stat if tracing-restores > 0 then restore_trace(p, "restoring");
tats
end

else if zeq_level[p] # level_one then

begin eqtb[p] < save_stack[save_ptr]; xeq.level[p] < ;
stat if tracing-restores > 0 then restore_trace(p, "restoring");
tats
end

else begin stat if tracing_restores > 0 then restore_trace(p, "retaining");
tats
end

This code is used in section 304.

§306 pdfTEX PART 19: SAVING AND RESTORING EQUIVALENTS 133

306. (Declare e-TEX procedures for tracing and input 306) =
stat procedure restore_trace(p : pointer; s : str-number); { eqtb[p] has just been restored or retained }
begin begin_diagnostic; print_char("{"); print(s); print_char("L"); show_eqtb(p); print_char("}");
end_diagnostic(false);
end;
tats

See also sections 1658, 1659, 1753, 1754, 1771, 1773, 1774, 1818, 1820, 1834, 1835, 1836, 1837, and 1838.

This code is used in section 290.

307. When looking for possible pointers to a memory location, it is helpful to look for references from eqtbh
that might be waiting on the save stack. Of course, we might find spurious pointers too; but this routine is
merely an aid when debugging, and at such times we are grateful for any scraps of information, even if they
prove to be irrelevant.

(Search save_stack for equivalents that point to p 307) =
if save_ptr > 0 then
for g < 0 to save_ptr — 1 do
begin if equiv_field (save_stack[g]) = p then
begin print_nl("SAVE("); print_int(q); print_char(")");
end;
end

This code is used in section 190.

308. Most of the parameters kept in eqtb can be changed freely, but there’s an exception: The magnification
should not be used with two different values during any TEX job, since a single magnification is applied to
an entire run. The global variable mag_set is set to the current magnification whenever it becomes necessary
to “freeze” it at a particular value.

(Global variables 13) +=
mag_set: integer; {if nonzero, this magnification should be used henceforth }

309. (Set initial values of key variables 21) +=
mag-set < 0;

310. The prepare_mag subroutine is called whenever TEX wants to use mag for magnification.

procedure prepare_mag;
begin if (mag_set > 0) A (mag # mag-set) then
begin print_err("Incompatible magnification,("); print_int(mag); print(");");
print_-nl (" the previous value will be retained");
help2 (" I can handle only one magnification ratioperjob. So,I ’ve")
("revertedutoutheumagnification._,youuused._,earlieruonuthis._,run . ");
int_error (mag_set); geq-word_define (int_base + mag_code, mag_set); {mag + mag_set }
end;
if (mag <0)V (mag > 32768) then
begin prmt,err("Illegalumagnificationuhasubeenuchangeduto_,1000");
help! ("The_ magnification ratio must be_ between, 1 and 32768."); int_error(mag);
geq-word_define (int_base + mag-_code, 1000);
end;
mag_set < mag;
end;

134 PART 20: TOKEN LISTS pdfTRX §311

311. Token lists. A TgX token is either a character or a control sequence, and it is represented internally
in one of two ways: (1) A character whose ASCII code number is ¢ and whose command code is m is
represented as the number 28m + ¢; the command code is in the range 1 < m < 14. (2) A control sequence
whose eqth address is p is represented as the number cs_token_flag +p. Here cs_token_flag = 2'? — 1 is larger
than 28m + ¢, yet it is small enough that cs_token_flag + p < maz_halfword; thus, a token fits comfortably
in a halfword.

A token t represents a left_brace command if and only if ¢ < left_brace_limit; it represents a right_brace
command if and only if we have left_brace_limit < t < right_brace_limit; and it represents a match or
end_match command if and only if match_token <t < end_match_token. The following definitions take care
of these token-oriented constants and a few others.

define cs_token_flag = 7777 {amount added to the egth location in a token that stands for a control
sequence; is a multiple of 256, less 1}

define left_brace_token = ‘0400 {28 - left_brace }

define left_brace_limit = 1000 {28 - (left-brace + 1) }

define right_brace_token = ‘1000 {2% - right_brace }

define right_brace_limit = ‘1400 {28 - (right_brace + 1) }

define math_shift_token = ‘1400 {28 - math_shift }

define tab_token = 2000 {2%- tab_mark }

define out_param_token = 2400 {28 - out_param }

define space_token = 5040 {2%- spacer +""}

define letter_token = 5400 {2%. letter }

define other_token = ‘6000 {2%- other_char }

define match_token = 6400 {2® - match }

define end_-match_token = 7000 {28 - end_match }

define protected_token = 7001 {2 - end-match + 1}

312. (Check the “constant” values for consistency 14) +=
if cs_token_flag + undefined_control_sequence > max_halfword then bad < 21;

8313 pdfTEX PART 20: TOKEN LISTS 135

313. A token list is a singly linked list of one-word nodes in mem, where each word contains a token
and a link. Macro definitions, output-routine definitions, marks, \write texts, and a few other things are
remembered by TEX in the form of token lists, usually preceded by a node with a reference count in its
token_ref_count field. The token stored in location p is called info(p).

Three special commands appear in the token lists of macro definitions. When m = match, it means
that TEX should scan a parameter for the current macro; when m = end_match, it means that parameter
matching should end and TEX should start reading the macro text; and when m = out_param, it means that
TEX should insert parameter number ¢ into the text at this point.

The enclosing { and } characters of a macro definition are omitted, but an output routine will be enclosed
in braces.

Here is an example macro definition that illustrates these conventions. After TEX processes the text

\def\mac a#1#2 \b {#1\-a ##1#2 #2}

the definition of \mac is represented as a token list containing

(reference count), letter a, match #, match #, spacer ., \b, end_match,
out_param 1, \-, letter a, spacer ., mac_param #, other_char 1,
out_param 2, spacer ., out_param 2.

The procedure scan_toks builds such token lists, and macro_call does the parameter matching.
Examples such as

\def\m{\def\m{a} b}

explain why reference counts would be needed even if TEX had no \let operation: When the token list for
\m is being read, the redefinition of \m changes the eqtb entry before the token list has been fully consumed,
so we dare not simply destroy a token list when its control sequence is being redefined.

If the parameter-matching part of a definition ends with ‘#{’, the corresponding token list will have ‘{’
just before the ‘end_match’ and also at the very end. The first ‘{’ is used to delimit the parameter; the
second one keeps the first from disappearing.

136 PART 20: TOKEN LISTS pdfTEX §314

314. The procedure show_token_list, which prints a symbolic form of the token list that starts at a given
node p, illustrates these conventions. The token list being displayed should not begin with a reference count.
However, the procedure is intended to be robust, so that if the memory links are awry or if p is not really a
pointer to a token list, nothing catastrophic will happen.

An additional parameter ¢ is also given; this parameter is either null or it points to a node in the token
list where a certain magic computation takes place that will be explained later. (Basically, ¢ is non-null
when we are printing the two-line context information at the time of an error message; g marks the place
corresponding to where the second line should begin.)

For example, if p points to the node containing the first a in the token list above, then show_token_list
will print the string

‘a#1#2, \b—>#1\-a ##1#2 #2’;

and if ¢ points to the node containing the second a, the magic computation will be performed just before
the second a is printed.

The generation will stop, and ‘\ETC.’ will be printed, if the length of printing exceeds a given limit [.
Anomalous entries are printed in the form of control sequences that are not followed by a blank space, e.g.,
‘\BAD.’; this cannot be confused with actual control sequences because a real control sequence named BAD
would come out ‘\BAD,, .

(Declare the procedure called show_token_list 314) =
procedure show_token_list(p, q : integer; l : integer);
label exit;
var m,c: integer; {pieces of a token }
match_chr: ASCII_code; { character used in a ‘match’ }
n: ASCII code; {the highest parameter number, as an ASCII digit }
begin match_chr < "#"; n < "0"; tally < 0;
while (p # null) A (tally < 1) do
begin if p = ¢ then (Do magic computation 342);
(Display token p, and return if there are problems 315);
p < link(p);
end;
if p # null then print_esc("ETC.");
exit: end;

This code is used in section 137.

315. (Display token p, and return if there are problems 315) =

if (p < hi_mem_min) V (p > mem_end) then

begin print_esc("CLOBBERED."); return;

end;
if info(p) > cs_token_flag then print_cs(info(p) — cs_token_flag)
else begin m <« info(p) div 400; ¢ < info(p) mod "400;

if info(p) < 0 then print_esc("BAD.")

else (Display the token (m,c) 316);

end

This code is used in section 314.

8316 pdfTEX PART 20: TOKEN LISTS 137

316. The procedure usually “learns” the character code used for macro parameters by seeing one in a
match command before it runs into any out_param commands.
(Display the token (m,c) 316) =
case m of
left_brace, right_brace, math_shift, tab_mark , sup_mark, sub_mark , spacer, letter, other_char: print(c);
mac_param: begin print(c); print(c);
end;
out_param: begin print(match_chr);
if ¢ <9 then print_char(c+ "0")
else begin print_char("!"); return;
end;
end;
match: begin match_chr < ¢; print(c); incr(n); print_char(n);
if n > "9" then return;
end;
end_match: if ¢ =0 then print("->");
othercases print_esc("BAD.")
endcases

This code is used in section 315.

317. Here’s the way we sometimes want to display a token list, given a pointer to its reference count; the
pointer may be null.

procedure token_show (p : pointer);

begin if p # null then show_token_list(link (p), null,10000000);
end;

318. The print_meaning subroutine displays cur_cmd and cur_chr in symbolic form, including the expan-
sion of a macro or mark.

procedure print_meaning;
begin print_cmd_chr (cur-cmd, cur_chr);
if cur_emd > call then
begin print_char(":"); print_ln; token_show (cur_chr);
end
else if (cur_cmd = top_bot_mark) A (cur_chr < marks_code) then
begin print_char(":"); print_In; token_show (cur-mark[cur_chr]);
end;
end;

138 PART 21: INTRODUCTION TO THE SYNTACTIC ROUTINES pdfTEX 8319

319. Introduction to the syntactic routines. Let’s pause a moment now and try to look at the Big
Picture. The TEX program consists of three main parts: syntactic routines, semantic routines, and output
routines. The chief purpose of the syntactic routines is to deliver the user’s input to the semantic routines,
one token at a time. The semantic routines act as an interpreter responding to these tokens, which may be
regarded as commands. And the output routines are periodically called on to convert box-and-glue lists into
a compact set of instructions that will be sent to a typesetter. We have discussed the basic data structures
and utility routines of TEX, so we are good and ready to plunge into the real activity by considering the
syntactic routines.

Our current goal is to come to grips with the get_next procedure, which is the keystone of TEX’s input
mechanism. Each call of get_nezt sets the value of three variables cur_cmd, cur_chr, and cur_cs, representing
the next input token.

cur_cmd denotes a command code from the long list of codes given above;
cur_chr denotes a character code or other modifier of the command code;
cur_cs is the eqtb location of the current control sequence,

if the current token was a control sequence, otherwise it’s zero.

Underlying this external behavior of get_next is all the machinery necessary to convert from character files
to tokens. At a given time we may be only partially finished with the reading of several files (for which
\input was specified), and partially finished with the expansion of some user-defined macros and/or some
macro parameters, and partially finished with the generation of some text in a template for \halign, and so
on. When reading a character file, special characters must be classified as math delimiters, etc.; comments
and extra blank spaces must be removed, paragraphs must be recognized, and control sequences must be
found in the hash table. Furthermore there are occasions in which the scanning routines have looked ahead
for a word like ‘plus’ but only part of that word was found, hence a few characters must be put back into
the input and scanned again.

To handle these situations, which might all be present simultaneously, TEX uses various stacks that
hold information about the incomplete activities, and there is a finite state control for each level of the
input mechanism. These stacks record the current state of an implicitly recursive process, but the get_next
procedure is not recursive. Therefore it will not be difficult to translate these algorithms into low-level
languages that do not support recursion.

(Global variables 13) +=

cur-emd: eight_bits; {current command set by get_next }

cur_chr: halfword; {operand of current command }

cur_cs: pointer; { control sequence found here, zero if none found }
cur_tok: halfword; {packed representative of cur_cmd and cur_chr }

§320 pdfTEX PART 21: INTRODUCTION TO THE SYNTACTIC ROUTINES 139

320. The print_cmd_chr routine prints a symbolic interpretation of a command code and its modifier. This
is used in certain ‘You can’t’ error messages, and in the implementation of diagnostic routines like \show.

The body of print_cmd_chr is a rather tedious listing of print commands, and most of it is essentially an
inverse to the primitive routine that enters a TEX primitive into eqth. Therefore much of this procedure
appears elsewhere in the program, together with the corresponding primitive calls.

define chr_cmd(#) =
begin print(#); print_ASCII (chr_code);
end

(Declare the procedure called print_cmd_chr 320) =
procedure print_cmd_chr(cmd : quarterword; chr_code : halfword);
var n: integer; {temp variable }
begin case ¢md of
left_brace: chr_cmd("begin-group character,");
right_brace: chr_cmd ("end-group character,");
math_shift: chr_cmd("math,shift character,");
mac-_param: chr_cmd ("macro_parameter character,");
sup_mark: chr_cmd("superscript,character");
sub_mark: chr_cmd("subscript,character,");
endv: print("end of alignment template");
spacer: chr_cmd("blank space_");
letter: chr_cmd("the letter,");
other_char: chr_cmd("the character,");
(Cases of print_cmd_chr for symbolic printing of primitives 245)
othercases print (" [unknown ,command,,code!]")
endcases;
end;

This code is used in section 270.

140 PART 21: INTRODUCTION TO THE SYNTACTIC ROUTINES pdfTEX

321. Here is a procedure that displays the current command.

procedure show_cur_cmd_chr;
var n: integer; {level of \if...\fi nesting}
I: integer; {line where \if started }
p: pointer;
begin begin_diagnostic; print_nl("{");
if mode # shown_mode then
begin print_mode(mode); print(":,"); shown-mode < mode;
end;
print_cmd_chr (cur_cmd, cur_chr);
if tracing_ifs > 0 then
if cur_cmd > if-test then
if cur_ecmd < fi_or_else then
begin print(":,");
if cur_cmd = fi_or_else then
begin print_cmd_chr (if-test, cur_if); print_char(","); n < 0; 1 + if-line;
end
else begin n < 1; | < line;
end;
p < cond_ptr;
while p # null do
begin incr(n); p < link(p);
end;
print (" (Levely"); print_int(n); print_char(")"); print_if-line(l);
end;
print_char("}"); end_diagnostic(false);
end;

§321

§322 pdfTEX PART 22: INPUT STACKS AND STATES 141

322. Input stacks and states. This implementation of TEX uses two different conventions for repre-
senting sequential stacks.

1) If there is frequent access to the top entry, and if the stack is essentially never empty, then the top entry
is kept in a global variable (even better would be a machine register), and the other entries appear in
the array stack[0 .. (ptr — 1)]. For example, the semantic stack described above is handled this way,
and so is the input stack that we are about to study.

2) If there is infrequent top access, the entire stack contents are in the array stack[0 .. (ptr — 1)]. For
example, the save_stack is treated this way, as we have seen.

The state of TEX’s input mechanism appears in the input stack, whose entries are records with six fields,
called state, index, start, loc, limit, and name. This stack is maintained with convention (1), so it is declared
in the following way:

(Types in the outer block 18) +=
in_state_record = record state_field, indez_field: quarterword;
start_field , loc_field, limit_field , name_field: halfword;
end;

323. (Global variables 13) +=

input_stack: array [0 .. stack_size] of in_state_record;

input_ptr: 0 .. stack_size; {first unused location of input_stack }

max_in_stack: 0 .. stack_size; {largest value of input_ptr when pushing }
cur_input: in_state_record; {the “top” input state, according to convention (1) }

324. We've already defined the special variable loc = cur_input.loc_field in our discussion of basic input-
output routines. The other components of cur_input are defined in the same way:

define state = cur_input.state_field { current scanner state }

define index = cur_input.indez_field {reference for buffer information }
define start = cur_input.start_field {starting position in buffer }
define limit = cur_input.limit_field {end of current line in buffer }
define name = cur_input.name_field {name of the current file }

142 PART 22: INPUT STACKS AND STATES pdfTEX §325

325. Let’s look more closely now at the control variables (state, index, start, loc, limit, name), assuming
that TEX is reading a line of characters that have been input from some file or from the user’s terminal.
There is an array called buffer that acts as a stack of all lines of characters that are currently being read
from files, including all lines on subsidiary levels of the input stack that are not yet completed. TEX will
return to the other lines when it is finished with the present input file.

(Incidentally, on a machine with byte-oriented addressing, it might be appropriate to combine buffer with
the str_pool array, letting the buffer entries grow downward from the top of the string pool and checking
that these two tables don’t bump into each other.)

The line we are currently working on begins in position start of the buffer; the next character we are about
to read is buffer[loc]; and limit is the location of the last character present. If loc > limit, the line has been
completely read. Usually buffer[limit] is the end_line_char, denoting the end of a line, but this is not true
if the current line is an insertion that was entered on the user’s terminal in response to an error message.

The name variable is a string number that designates the name of the current file, if we are reading a
text file. It is zero if we are reading from the terminal; it is n + 1 if we are reading from input stream n,
where 0 < n < 16. (Input stream 16 stands for an invalid stream number; in such cases the input is actually
from the terminal, under control of the procedure read_toks.) Finally 18 < name < 19 indicates that we are
reading a pseudo file created by the \scantokens command.

The state variable has one of three values, when we are scanning such files:

1) state = mid_line is the normal state.
2) state = skip_blanks is like mid_line, but blanks are ignored.

3) state = new_line is the state at the beginning of a line.

These state values are assigned numeric codes so that if we add the state code to the next character’s
command code, we get distinct values. For example, ‘mid_line + spacer’ stands for the case that a blank
space character occurs in the middle of a line when it is not being ignored; after this case is processed, the
next value of state will be skip_blanks.

define mid_line =1 { state code when scanning a line of characters }
define skip_blanks = 2 + maz_char_code { state code when ignoring blanks }
define new_line = 3 + maxz_char_code + maz_char_code { state code at start of line }

§326 pdfTEX PART 22: INPUT STACKS AND STATES 143

326. Additional information about the current line is available via the index variable, which counts how
many lines of characters are present in the buffer below the current level. We have index = 0 when reading
from the terminal and prompting the user for each line; then if the user types, e.g., ‘\input paper’, we will
have indexr = 1 while reading the file paper.tex. However, it does not follow that indez is the same as the
input stack pointer, since many of the levels on the input stack may come from token lists. For example,
the instruction ‘\input paper’ might occur in a token list.

The global variable in_open is equal to the index value of the highest non-token-list level. Thus, the
number of partially read lines in the buffer is in_open + 1, and we have in_open = index when we are not
reading a token list.

If we are not currently reading from the terminal, or from an input stream, we are reading from the file
variable input_file[index]. We use the notation terminal_input as a convenient abbreviation for name = 0,
and cur_file as an abbreviation for input_file[indez].

The global variable line contains the line number in the topmost open file, for use in error messages. If
we are not reading from the terminal, line_stack [indez] holds the line number for the enclosing level, so that
line can be restored when the current file has been read. Line numbers should never be negative, since the
negative of the current line number is used to identify the user’s output routine in the mode_line field of the
semantic nest entries.

If more information about the input state is needed, it can be included in small arrays like those shown
here. For example, the current page or segment number in the input file might be put into a variable
page, maintained for enclosing levels in ‘page_stack: array [1 .. maz_in_open] of integer’ by analogy with
line_stack.

define terminal_input = (name = 0) {are we reading from the terminal? }
define cur_file = input_file[index] {the current alpha_file variable }

(Global variables 13) +=

in_open: 0 .. maz_in_open; {the number of lines in the buffer, less one }
open_parens: 0 .. maz_in_open; {the number of open text files }
input_file: array [1 .. maz_in_open] of alpha._file;

line: integer; {current line number in the current source file }
line_stack: array [l .. maz_in_open] of integer;

144 PART 22: INPUT STACKS AND STATES pdfTEX 8327

327. Users of TEX sometimes forget to balance left and right braces properly, and one of the ways TEX
tries to spot such errors is by considering an input file as broken into subfiles by control sequences that are
declared to be \outer.

A variable called scanner_status tells TEX whether or not to complain when a subfile ends. This variable
has six possible values:

normal, means that a subfile can safely end here without incident.

skipping, means that a subfile can safely end here, but not a file, because we’re reading past some conditional
text that was not selected.

defining, means that a subfile shouldn’t end now because a macro is being defined.

matching, means that a subfile shouldn’t end now because a macro is being used and we are searching for
the end of its arguments.

aligning, means that a subfile shouldn’t end now because we are not finished with the preamble of an \halign
or \valign.

absorbing, means that a subfile shouldn’t end now because we are reading a balanced token list for \message,
\write, etc.

If the scanner_status is not normal, the variable warning_index points to the eqtb location for the relevant
control sequence name to print in an error message.

define skipping =1 { scanner_status when passing conditional text }
define defining =2 { scanner_status when reading a macro definition }
define matching =3 { scanner_status when reading macro arguments }
define aligning =4 { scanner_status when reading an alignment preamble }
define absorbing =5 { scanner_status when reading a balanced text }

(Global variables 13) +=

scanner_status: normal .. absorbing; {can a subfile end now? }
warning-index: pointer; {identifier relevant to non-normal scanner status }
def_ref : pointer; {reference count of token list being defined }

328. Here is a procedure that uses scanner_status to print a warning message when a subfile has ended,
and at certain other crucial times:

(Declare the procedure called runaway 328) =
procedure runaway;
var p: pointer; {head of runaway list }
begin if scanner_status > skipping then
begin print_nl("Runaway,");
case scanner_status of
defining: begin print("definition"); p < def-ref;
end;
matching: begin print("argument"); p « temp_head;
end;
aligning: begin print("preamble"); p + hold_head;
end;
absorbing: begin print("text"); p < def-ref;
end;
end; {there are no other cases }
print_char ("?"); print_ln; show_token_list (link (p), null, error_line — 10);
end;
end;

This code is used in section 137.

§329 pdfTEX PART 22: INPUT STACKS AND STATES 145

329. However, all this discussion about input state really applies only to the case that we are inputting
from a file. There is another important case, namely when we are currently getting input from a token list.
In this case state = token_list, and the conventions about the other state variables are different:

loc is a pointer to the current node in the token list, i.e., the node that will be read next. If loc = null, the
token list has been fully read.

start points to the first node of the token list; this node may or may not contain a reference count, depending
on the type of token list involved.

token_type, which takes the place of indezr in the discussion above, is a code number that explains what kind
of token list is being scanned.

name points to the eqtb address of the control sequence being expanded, if the current token list is a macro.

param_start, which takes the place of limit, tells where the parameters of the current macro begin in the
param_stack , if the current token list is a macro.

The token_type can take several values, depending on where the current token list came from:

parameter, if a parameter is being scanned;

u-template, if the (u;) part of an alignment template is being scanned;

v_template, if the (v;) part of an alignment template is being scanned,;

backed_up, if the token list being scanned has been inserted as ‘to be read again’;

inserted, if the token list being scanned has been inserted as the text expansion of a \count or similar
variable;

macro, if a user-defined control sequence is being scanned;

output_text, if an \output routine is being scanned;

every_par_text, if the text of \everypar is being scanned;

every-math_text, if the text of \everymath is being scanned;

every_display_tezt, if the text of \everydisplay is being scanned;

every_hbox_text, if the text of \everyhbox is being scanned;

every_vbox_text, if the text of \everyvbox is being scanned;

every_job_text, if the text of \everyjob is being scanned;

every_cr_text, if the text of \everycr is being scanned;

mark_text, if the text of a \mark is being scanned;

write_text, if the text of a \write is being scanned.

The codes for output_text, every_par_text, etc., are equal to a constant plus the corresponding codes for token
list parameters output_routine_loc, every_par_loc, etc. The token list begins with a reference count if and
only if token_type > macro.

Since e-TEX’s additional token list parameters precede toks_base, the corresponding token types must
precede write_text.

define token_list =0 { state code when scanning a token list }
define token_type = index {type of current token list }

define param_start = limit { base of macro parameters in param_stack }
define parameter =0 { token_type code for parameter }

define wu_template =1 {token_type code for (u;) template }

define wv_template =2 {token_type code for (v;) template }

define backed_-up =3 {token_type code for text to be reread }
define inserted =4 {token_type code for inserted texts }

define macro =5 {token_type code for defined control sequences }
define output_text =6 { token_type code for output routines }
define cvery_par_text =7 { token_type code for \everypar }

define every_math_text =8 { token_type code for \everymath }
define every_display_text =9 { token_type code for \everydisplay }
define every_hbox_text =10 { token_type code for \everyhbox }
define every vboz_text = 11 { token_type code for \everyvbox }

146 PART 22: INPUT STACKS AND STATES pdfTEX §329

define every_job_text =12 { token_type code for \everyjob }
define every_cr_text =13 { token_type code for \everycr }
define mark_text = 14 { token_type code for \topmark, etc. }

define eTeX _text_offset = output_routine_loc — output_text
define every_eof_text = every_eof_loc — eTeX_text_offset { token_type code for \everyeof }

define write_text = toks_base — eTeX text_offset { token_type code for \write }

330. The param_stack is an auxiliary array used to hold pointers to the token lists for parameters at the
current level and subsidiary levels of input. This stack is maintained with convention (2), and it grows at a
different rate from the others.

(Global variables 13) +=

param_stack: array [0 .. param_size] of pointer; {token list pointers for parameters }
param_ptr: 0 .. param_size; {first unused entry in param_stack }

maz_param_stack: integer; {largest value of param_ptr, will be < param_size + 9}

331. The input routines must also interact with the processing of \halign and \valign, since the appear-
ance of tab marks and \cr in certain places is supposed to trigger the beginning of special (v;) template text
in the scanner. This magic is accomplished by an align_state variable that is increased by 1 when a ‘{’ is
scanned and decreased by 1 when a ‘}’ is scanned. The align_state is nonzero during the (u;) template, after
which it is set to zero; the (v;) template begins when a tab mark or \cr occurs at a time that align_state = 0.

(Global variables 13) +=
align_state: integer; {group level with respect to current alignment }

332. Thus, the “current input state” can be very complicated indeed; there can be many levels and each
level can arise in a variety of ways. The show_context procedure, which is used by TEX’s error-reporting
routine to print out the current input state on all levels down to the most recent line of characters from an
input file, illustrates most of these conventions. The global variable base_ptr contains the lowest level that
was displayed by this procedure.

(Global variables 13) +=
base_ptr: 0 .. stack_size; {shallowest level shown by show_context }

8333 pdfTEX PART 22: INPUT STACKS AND STATES 147

333. The status at each level is indicated by printing two lines, where the first line indicates what was
read so far and the second line shows what remains to be read. The context is cropped, if necessary, so
that the first line contains at most half_error_line characters, and the second contains at most error_line.
Non-current input levels whose token_type is ‘backed_up’ are shown only if they have not been fully read.

procedure show_context; {prints where the scanner is }

label done;
var old_setting: 0 .. maz_selector; {saved selector setting }

nn: integer; {number of contexts shown so far, less one }

bottom_line: boolean; {have we reached the final context to be shown? }

(Local variables for formatting calculations 337)
begin base_ptr < input_ptr; input_stack[base_ptr] < cur_input; {store current state }
nn < —1; bottom_line < false;
loop begin cur_input <+ input_stack[base_ptr]; {enter into the context }

if (state # token_list) then

if (name > 19) V (base_ptr = 0) then bottom_line + true;
if (base_ptr = input_ptr) V bottom_line V (nn < error_context_lines) then
(Display the current context 334)
else if nn = error_context_lines then
begin print_nl("..."); incr(nn); {omitted if error_context_lines < 0}
end;

if bottom_line then goto done;

decr (base_ptr);

end;

done: cur_input <+ input_stack [input_ptr]; {restore original state }

end;

334. (Display the current context 334) =
begin if (base_ptr = input_ptr) V (state # token_list) V (token_type # backed_up) V (loc # null) then
{ we omit backed-up token lists that have already been read }
begin tally + 0; {get ready to count characters }
old_setting < selector;
if state # token_list then
begin (Print location of current line 335);
(Pseudoprint the line 340);
end
else begin (Print type of token list 336);
(Pseudoprint the token list 341);
end;
selector < old_setting; {stop pseudoprinting }
(Print two lines using the tricky pseudoprinted information 339);
incr(nn);
end;
end

This code is used in section 333.

148 PART 22: INPUT STACKS AND STATES pdfTEX 8335

335. This routine should be changed, if necessary, to give the best possible indication of where the current
line resides in the input file. For example, on some systems it is best to print both a page and line number.

(Print location of current line 335) =
if name < 17 then
if terminal_input then
if base_ptr = 0 then print_nl("<*>")
else print_nl("<insert>,")
else begin print_nl("<read,");
if name = 17 then print_char("*") else print_int(name — 1);
print_char (">");
end
else if index # in_open then {input from a pseudo file }
begin print_nl("1."); print_int(line_stack[index + 1]);
end
else begin print_nl("1."); print_int(line);
end;
print_char(",")

This code is used in section 334.

336. (Print type of token list 336) =

case token_type of

parameter: print_nl("<argument> ");

u_template, v_template: print_nl("<template>,");

backed_up: if loc = null then print_nl("<recently read>_ ")

else print_nl("<to_be read again> ");
inserted: print_-nl("<inserted text>,");
macro: begin print_ln; print_cs(name);
end;

output_text: print_nl("<output>,");
every-par-text: print-nl("<everypar>,");
every-math_text: print_nl("<everymath>,");
every_display_text: print_nl("<everydisplay>,");
every_hbox_text: print_nl("<everyhbox>,");
every_vboz_text: print_nl("<everyvbox>");
every_job_text: print_nl("<everyjob>_,");
every-cr-text: print-nl("<everycr>,");
mark_text: print_nl("<mark>");
every_eof_text: print_nl("<everyeof> ");
write_text: print_nl("<write>,");
othercases print_nl("?") {this should never happen }
endcases

This code is used in section 334.

8337 pdfTEX PART 22: INPUT STACKS AND STATES 149

337. Here it is necessary to explain a little trick. We don’t want to store a long string that corresponds
to a token list, because that string might take up lots of memory; and we are printing during a time
when an error message is being given, so we dare not do anything that might overflow one of TEX’s tables.
So ‘pseudoprinting’ is the answer: We enter a mode of printing that stores characters into a buffer of
length error_line, where character k + 1 is placed into trick_buf [k mod error_line] if k < trick_count,
otherwise character k is dropped. Initially we set tally < 0 and trick_count < 1000000; then when
we reach the point where transition from line 1 to line 2 should occur, we set first_.count < tally and
trick_count < max(error_line, tally + 1+ error_line — half_error_line). At the end of the pseudoprinting, the
values of first_count, tally, and trick_count give us all the information we need to print the two lines, and
all of the necessary text is in trick_buf .

Namely, let [be the length of the descriptive information that appears on the first line. The length of
the context information gathered for that line is k = first_count, and the length of the context information
gathered for line 2 is m = min(tally, trick_count) — k. If | + k < h, where h = half_error_line, we print
trick-buf [0 .. k — 1] after the descriptive information on line 1, and set n « | + k; here n is the length of
line 1. If [+ k& > h, some cropping is necessary, so we set n <— h and print ‘. ..’ followed by

trick-buf [(I+k —h+3) .. k—1],

where subscripts of trick_buf are circular modulo error_line. The second line consists of n spaces followed
by trick-buf [k .. (k+m — 1)], unless n +m > error_line; in the latter case, further cropping is done. This
is easier to program than to explain.

(Local variables for formatting calculations 337) =

i: 0.. buf_size; {index into buffer }

j: 0.. buf-size; {end of current line in buffer }

I: 0.. half-error_line; {length of descriptive information on line 1}
m: integer; { context information gathered for line 2 }

n: 0.. error_line; {length of line 1}

p: integer; {starting or ending place in trick_buf }

q: integer; {temporary index }

This code is used in section 333.

338. The following code sets up the print routines so that they will gather the desired information.

define begin_pseudoprint =
begin [< tally; tally < 0; selector < pseudo; trick_count < 1000000;
end
define set_trick_count =
begin first_count < tally; trick_count < tally + 1 + error_line — half_error_line;
if trick_count < error_line then trick_count < error_line;
end

150 PART 22: INPUT STACKS AND STATES pdfTEX 8339

339. And the following code uses the information after it has been gathered.

(Print two lines using the tricky pseudoprinted information 339) =
if trick_count = 1000000 then set_trick-count; { set_trick_count must be performed }
if tally < trick_count then m < tally — first_count
else m « trick_count — first_count; {context on line 2}
if [+ first_count < half_error_line then
begin p < 0; n < [+ first_count;

end

else begin print("..."); p <l + first_.count — half-error_line + 3; n < half-error_line;
end;

for g < p to first_count — 1 do print_char (trick-buf [¢ mod error_line]);

print_ln;

for ¢ < 1ton do print_char("y"); {print n spaces to begin line 2}
if m+ n < error_line then p «+ first_count +m

else p « first_count + (error_line — n — 3);

for g «+ first_.count to p — 1 do print_char (trick-buf [¢ mod error_line]);
if m +n > error_line then print("...")

This code is used in section 334.

340. But the trick is distracting us from our current goal, which is to understand the input state. So let’s
concentrate on the data structures that are being pseudoprinted as we finish up the show_context procedure.

(Pseudoprint the line 340) =
begin_pseudoprint;
if buffer[limit] = end_line_char then j + limit
else j < limit +1; {determine the effective end of the line }
if 7 > 0 then
for ¢ + start to 7 — 1 do

begin if i = loc then set_trick_count;

print (buffer|i]);

end

This code is used in section 334.

341. (Pseudoprint the token list 341) =
begin_pseudoprint;
if token_type < macro then show_token_list(start, loc,100000)
else show_token_list(link (start), loc,100000) { avoid reference count }

This code is used in section 334.

342. Here is the missing piece of show_token_list that is activated when the token beginning line 2 is about
to be shown:

(Do magic computation 342) =
set_trick_count

This code is used in section 314.

§343 pdfTEX PART 23: MAINTAINING THE INPUT STACKS 151

343. Maintaining the input stacks. The following subroutines change the input status in commonly
needed ways.

First comes push_input, which stores the current state and creates a new level (having, initially, the same
properties as the old).

define push_input = {enter a new input level, save the old }

begin if input_ptr > maz_in_stack then
begin max_in_stack < input_ptr;
if input_ptr = stack_size then overflow ("input_stack_ size", stack_size);
end;

input_stack [input_ptr] < cur_input; {stack the record }

incr (input_ptr);

end

344. And of course what goes up must come down.

define pop_input = {leave an input level, re-enter the old }
begin decr (input_ptr); cur_input < input_stack [input_ptr];
end

345. Here is a procedure that starts a new level of token-list input, given a token list p and its type ¢. If
t = macro, the calling routine should set name and loc.

define back_list(#) = begin_token_list (#, backed_up) {backs up a simple token list }
define ins_list (#) = begin_token_list (#, inserted) {inserts a simple token list }

procedure begin_token_list (p : pointer; t : quarterword);
begin push_input; state < token_list; start < p; token_type < t;
if ¢ > macro then {the token list starts with a reference count }
begin add_token_ref (p);
if ¢ = macro then param_start < param_ptr
else begin loc + link(p);
if tracing_macros > 1 then
begin begin_diagnostic; print_nl("");
case t of
mark_text: print_esc("mark");
write_text: print_esc("write");
othercases print_cmd_chr (assign_toks,t — output_text + output_routine_loc)

endcases;
print("=>"); token_show(p); end_diagnostic(false);
end;
end;
end

else loc < p;
end;

)

152 PART 23: MAINTAINING THE INPUT STACKS pdfTEX 8346

346. When a token list has been fully scanned, the following computations should be done as we leave
that level of input. The token_type tends to be equal to either backed_up or inserted about 2/3 of the time.

procedure end_token_list; {leave a token-list input level }
begin if token_type > backed_up then {token list to be deleted }
begin if token_type < inserted then flush_list(start)
else begin delete_token_ref (start); {update reference count }
if token_type = macro then {parameters must be flushed }
while param_ptr > param_start do
begin decr (param_ptr); flush_list(param_stack [param_ptr]);
end;
end;
end
else if token_type = u_template then
if align_state > 500000 then align_state < 0
else fatal_error (" (interwoven alignment preambles are not allowed)");
pop_input; check_interrupt;
end;

347. Sometimes TEX has read too far and wants to “unscan” what it has seen. The back_input procedure
takes care of this by putting the token just scanned back into the input stream, ready to be read again. This
procedure can be used only if cur_tok represents the token to be replaced. Some applications of TEX use
this procedure a lot, so it has been slightly optimized for speed.

procedure back_input; {undoes one token of input }
var p: pointer; {a token list of length one }
begin while (state = token_list) A (loc = null) A (token_type # v_template) do end_token_list;
{ conserve stack space }
p get_avail; info(p) < cur_tok;
if cur_tok < right_brace_limit then
if cur_tok < left_brace_limit then decr (align_state)
else incr(align_state);
push_input; state < token_list; start < p; token_type < backed_up; loc < p;
{that was back_list(p), without procedure overhead }
end;

348. (Insert token p into TEX’s input 348) =
begin t «+ cur_tok; cur_tok < p;
if a then
begin p «+ get_avail; info(p) < cur_tok; link(p) < loc; loc < p; start < p;
if cur_tok < right_brace_limit then
if cur_tok < left_brace_limit then decr (align_state)
else incr(align_state);
end
else begin back_input; a + eTeX ex;
end;
cur_tok < t;
end

This code is used in section 304.

§349 pdfTEX PART 23: MAINTAINING THE INPUT STACKS 153

349. The back_error routine is used when we want to replace an offending token just before issuing an error
message. This routine, like back_input, requires that cur_tok has been set. We disable interrupts during the
call of back_input so that the help message won’t be lost.

procedure back_error; {back up one token and call error }
begin OK _to_interrupt < false; back_input; OK_to_interrupt < true; error;
end;
procedure ins_error; {back up one inserted token and call error }
begin OK _to_interrupt < false; back_input; token_type < inserted; OK_to_interrupt < true; error;
end;

350. The begin_file_reading procedure starts a new level of input for lines of characters to be read from a
file, or as an insertion from the terminal. It does not take care of opening the file, nor does it set loc or limit
or line.

procedure begin_file_reading;
begin if in_open = maz_in_open then overflow("text input levels", maz_in_open);
if first = buf_size then overflow ("buffer size", buf size);
incr(in_open); push_input; index <+ in_open; eof seen[index] + false;
grp-stack[index] < cur_boundary; if-stack[index] < cond_ptr; line_stack[indezx] < line; start < first;
state <— mid_line; name < 0; { terminal_input is now true }
end;

351. Conversely, the variables must be downdated when such a level of input is finished:

procedure end._file_reading;
begin first < start; line < line_stack[index];
if (name = 18) V (name = 19) then pseudo_close
else if name > 17 then a_close(cur_file); {forget it}
pop_input; decr(in_open);
end;

352. In order to keep the stack from overflowing during a long sequence of inserted ‘\show’ commands,
the following routine removes completed error-inserted lines from memory.

procedure clear_for_error_prompt;
begin while (state # token_list) A terminal_input A (input_ptr > 0) A (loc > limit) do end_file_reading;
print_ln; clear_terminal;
end;

353. To get TEX’s whole input mechanism going, we perform the following actions.

(Initialize the input routines 353) =
begin input_ptr < 0; max_in_stack < 0; in_open < 0; open_parens < 0; maz_buf stack < 0;
grp_stack|[0] < 0; if_stack[0] < null; param_ptr < 0; maz_param_stack < 0; first + buf_size;
repeat buffer|first] < 0; decr(first);
until first = 0;
scanner_status < normal; warning_indexr < null; first < 1; state < new_line; start < 1; index + 0;
line < 0; name < 0; force_eof < false; align_state < 1000000;
if —init_terminal then goto final_end;
limit < last; first < last +1; {init_terminal has set loc and last }
end

This code is used in section 1515.

154 PART 24: GETTING THE NEXT TOKEN pdfTEX 8354

354. Getting the next token. The heart of TEX’s input mechanism is the get_next procedure, which
we shall develop in the next few sections of the program. Perhaps we shouldn’t actually call it the “heart,”
however, because it really acts as TEX’s eyes and mouth, reading the source files and gobbling them up. And
it also helps TEX to regurgitate stored token lists that are to be processed again.

The main duty of get_next is to input one token and to set cur_cmd and cur_chr to that token’s command
code and modifier. Furthermore, if the input token is a control sequence, the eqtb location of that control
sequence is stored in cur_cs; otherwise cur_cs is set to zero.

Underlying this simple description is a certain amount of complexity because of all the cases that need to
be handled. However, the inner loop of get_next is reasonably short and fast.

When get_nezt is asked to get the next token of a \read line, it sets cur_cmd = cur_chr = cur_cs =0 in
the case that no more tokens appear on that line. (There might not be any tokens at all, if the end_line_char
has ignore as its catcode.)

355. The value of par_loc is the eqtb address of ‘\par’. This quantity is needed because a blank line of
input is supposed to be exactly equivalent to the appearance of \par; we must set cur_cs < par_loc when
detecting a blank line.

(Global variables 13) +=
par_loc: pointer; {location of ‘\par’ in eqth }
par_token: halfword; {token representing ‘\par’ }

356. (Put each of TEX’s primitives into the hash table 244) +=
primitive ("par", par_end,256); {cf. scan_file_name }
par_loc < cur_val; par_token < cs_token_flag + par_loc;

357. (Cases of print_cmd_chr for symbolic printing of primitives 245) +=
par_end: print_esc("par");

358. Before getting into get_next, let’s consider the subroutine that is called when an ‘\outer’ control
sequence has been scanned or when the end of a file has been reached. These two cases are distinguished by
cur_cs, which is zero at the end of a file.

procedure check_outer_validity;
var p: pointer; {points to inserted token list }
q: pointer; { auxiliary pointer }
begin if scanner_status # normal then
begin deletions_allowed < false; (Back up an outer control sequence so that it can be reread 359);
if scanner_status > skipping then (Tell the user what has run away and try to recover 360)
else begin print_err("Incomplete,"); print_cmd_chr(if-test, cur_if);
print(";all text was ignored after line."); print_int(skip-line);
help3 ("Auforbiddenl_,controlusequenceuoccurreduinuskippedutext . ")
("Thisukinduof,_,error._,happens,_,when,_,youusayu‘ \if...]_,and._,forget")
("the matching ,"\fi~. I ve,inserted a, \fi~;_ this might work.");
if cur_cs # 0 then cur_cs <0
else help_line[2] + "The file ended while I, was skipping conditional text.";
cur_tok <+ cs_token_flag + frozen_fi; ins_error;
end;
deletions_allowed < true;
end;
end;

§359 pdfTEX PART 24: GETTING THE NEXT TOKEN 155

359. An outer control sequence that occurs in a \read will not be reread, since the error recovery for
\read is not very powerful.

(Back up an outer control sequence so that it can be reread 359) =
if cur_cs # 0 then

begin if (state = token_list) V (name < 1) V (name > 17) then

begin p + get_avail; info(p) < cs_token_flag + cur_cs; back_list(p);
{ prepare to read the control sequence again }

end;

cur_emd < spacer; cur_chr < ","; {replace it by a space }

end

This code is used in section 358.

360. (Tell the user what has run away and try to recover 360) =

begin runaway; {print a definition, argument, or preamble }

if cur_cs =0 then print_err("File ended")

else begin cur_cs + 0; print_err("Forbidden control sequence found");

end;

print (" while scanning,"); (Print either ‘definition’ or ‘use’ or ‘preamble’ or ‘text’, and insert
tokens that should lead to recovery 361);

print ("uofy"); sprint_cs(warning-index);

help4 ("I suspect you have forgotten a, } , causing me")

("toread jpast where you wanted me to,stop.")

("I"11, try to recover; but,if the error is serious,")

("you d better,type, E Lor, X unow,and fix your file.");

error;

end

This code is used in section 358.

361. The recovery procedure can’t be fully understood without knowing more about the TEX routines that
should be aborted, but we can sketch the ideas here: For a runaway definition or a runaway balanced text
we will insert a right brace; for a runaway preamble, we will insert a special \cr token and a right brace;
and for a runaway argument, we will set long_state to outer_call and insert \par.

(Print either ‘definition’ or ‘use’ or ‘preamble’ or ‘text’, and insert tokens that should lead to
recovery 361) =
P < get_avail,
case scanner_status of
defining: begin print("definition"); info(p) + right_brace_token + "}";
end;
matching: begin print("use"); info(p) < par_token; long_state < outer_call;
end;
aligning: begin print("preamble"); info(p) < right_brace_token + "}"; q < p; p < get_avail;
link (p) < q; info(p) < cs_token_flag + frozen_cr; align_state < —1000000;
end;
absorbing: begin print("text"); info(p) < right_brace_token + "}";
end;
end; {there are no other cases }
ins_list (p)

This code is used in section 360.

362. We need to mention a procedure here that may be called by get_next.

procedure firm_up_the_line; forward;

156 PART 24: GETTING THE NEXT TOKEN pdfTEX 8363

363. Now we'’re ready to take the plunge into get_next itself. Parts of this routine are executed more often
than any other instructions of TEX.

define switch =25 {alabel in get_next }
define start_cs =26 {another }

procedure get_next; {sets cur_cmd, cur_chr, cur_cs to next token }
label restart, {go here to get the next input token }
switch, {go here to eat the next character from a file }
reswitch, {go here to digest it again }
start_cs, {go here to start looking for a control sequence }
found, {go here when a control sequence has been found }
exit; {go here when the next input token has been got }
var k: 0 .. buf_size; {an index into buffer }
t: halfword; {a token }
cat: 0 .. maz_char_code; { cat_code(cur_chr), usually }
¢, cc: ASCII code; { constituents of a possible expanded code }
d: 2..3; {number of excess characters in an expanded code }
begin restart: cur_cs < 0;
if state # token_list then (Input from external file, goto restart if no input found 365)
else (Input from token list, goto restart if end of list or if a parameter needs to be expanded 379);
(If an alignment entry has just ended, take appropriate action 364);
exit: end;

364. An alignment entry ends when a tab or \cr occurs, provided that the current level of braces is the
same as the level that was present at the beginning of that alignment entry; i.e., provided that align_state
has returned to the value it had after the (u;) template for that entry.

(If an alignment entry has just ended, take appropriate action 364) =
if cur_cmd < car_ret then
if cur_cmd > tab_mark then
if align_state = 0 then (Insert the (v;) template and goto restart 963)

This code is used in section 363.

365. (Input from external file, goto restart if no input found 365) =
begin switch: if loc < limit then {current line not yet finished }
begin cur_chr < buffer|loc]; incr(loc);
reswitch: cur-cmd < cat_code(cur—chr); (Change state if necessary, and goto switch if the current
character should be ignored, or goto reswitch if the current character changes to another 366);
end
else begin state < new_line;
{Move to next line of file, or goto restart if there is no next line, or return if a \read line has
finished 382);
check_interrupt; goto switch;
end;
end

This code is used in section 363.

§366 pdfTEX PART 24: GETTING THE NEXT TOKEN 157

366. The following 48-way switch accomplishes the scanning quickly, assuming that a decent Pascal
compiler has translated the code. Note that the numeric values for mid_line, skip_blanks, and mew_line
are spaced apart from each other by maz_char_code 4+ 1, so we can add a character’s command code to the
state to get a single number that characterizes both.

define any_state_plus(#) = mid_line + #, skip_blanks + #, new_line + #

(Change state if necessary, and goto switch if the current character should be ignored, or goto reswitch if
the current character changes to another 366) =
case state + cur_cmd of
(Cases where character is ignored 367): goto switch;
any_state_plus(escape): {Scan a control sequence and set state < skip_blanks or mid_line 376);
any-state_plus (active_char): (Process an active-character control sequence and set state < mid_line 375);
any_state_plus (sup-mark): (If this sup_mark starts an expanded character like “~A or ~~df, then goto
reswitch, otherwise set state <— mid_line 374);
any_state_plus (invalid_char): {Decry the invalid character and goto restart 368);
(Handle situations involving spaces, braces, changes of state 369)
othercases do_nothing
endcases

This code is used in section 365.

367. (Cases where character is ignored 367) =
any_state_plus (ignore), skip_blanks + spacer, new_line + spacer

This code is used in section 366.

368. We go to restart instead of to switch, because state might equal token_list after the error has been
dealt with (cf. clear_for_error_prompt).

(Decry the invalid character and goto restart 368) =
begin pm’nt,ew’("Text._lline._lcontainsuanl_,invaliducharacter");
help2("A_funny symbol that I can "t read has just been input.")
("Continue, and, I 11, ,forget that, it ever happened.");
deletions_allowed < false; error; deletions_allowed < true; goto restart;
end

This code is used in section 366.

369. define add_delims_to(#) = # + math_shift, # + tab_mark,# + mac_param, # + sub_mark, # + letter,
+ other_char

(Handle situations involving spaces, braces, changes of state 369) =

mid_line + spacer: (Enter skip_blanks state, emit a space 371);

mid_line + car_ret: (Finish line, emit a space 370);

skip_blanks + car_ret, any_state_plus(comment): (Finish line, goto switch 372);

new_line + car_ret: (Finish line, emit a \par 373);

mid_line + left_brace: incr(align_state);

skip_blanks + left_brace, new_line + left_brace: begin state < mid_line; incr(align_state);
end;

mid_line + right_brace: decr(align_state);

skip_blanks + right_brace, new_line + right_brace: begin state < mid_line; decr (align_state);
end;

add_delims_to (skip_blanks), add_delims_to (new_line): state < mid_line;

This code is used in section 366.

158 PART 24: GETTING THE NEXT TOKEN pdfTEX 8370

370. When a character of type spacer gets through, its character code is changed to "," = 40. This
means that the ASCII codes for tab and space, and for the space inserted at the end of a line, will be treated
alike when macro parameters are being matched. We do this since such characters are indistinguishable on
most computer terminal displays.
(Finish line, emit a space 370) =

begin loc < limit + 1; cur_cmd < spacer; cur_chr < "_";

end

This code is used in section 369.

371. The following code is performed only when cur_cmd = spacer.

(Enter skip_blanks state, emit a space 371) =
begin state < skip_blanks; cur_chr < ",";
end

This code is used in section 369.

372. (Finish line, goto switch 372) =
begin loc < limit + 1; goto switch;
end

This code is used in section 369.

373. (Finish line, emit a \par 373) =
begin loc « limit + 1; cur_cs < par_loc; cur_cmd < eq_type(cur_cs); cur_chr < equiv(cur_cs);
if cur_ecmd > outer_call then check_outer_validity;
end

This code is used in section 369.

374. Notice that a code like ~~8 becomes x if not followed by a hex digit.
define is_hex(#) = ((#>"0")A#<"9")V((#>"a")A(# < "E")))
define hex_to_cur_chr =

if ¢ <"9" then cur_chr < ¢— "0" else cur_chr < c—"a" + 10;
if cc < "9" then cur_chr < 16 * cur_chr + cc — "0"
else cur_chr < 16 x cur_chr + cc — "a" + 10

(If this sup_mark starts an expanded character like ~~A or ~~df, then goto reswitch, otherwise set
state < mid_line 374) =
begin if cur_chr = buffer[loc] then
if loc < limit then
begin c¢ < buffer[loc + 1]; if ¢ < 200 then {yes we have an expanded char }
begin loc + loc + 2;
if is_hex(c) then
if loc < limit then
begin cc + buffer[loc]; if is_hex(cc) then
begin incr(loc); hex_to_cur_chr; goto reswitch;
end;
end;
if ¢ < 100 then cur_chr < ¢+ ‘100 else cur_chr < ¢— "100;
goto reswitch;
end;
end;
state < mid_line;
end

This code is used in section 366.

§375 pdfTEX PART 24: GETTING THE NEXT TOKEN 159

375. (Process an active-character control sequence and set state < mid_line 375) =
begin cur_cs + cur_chr + active_base; cur_cmd < eq_type(cur_cs); cur_chr < equiv(cur-cs);
state < mid_line;
if cur_cmd > outer_call then check_outer_validity;
end

This code is used in section 366.

376. Control sequence names are scanned only when they appear in some line of a file; once they have
been scanned the first time, their eqtb location serves as a unique identification, so TEX doesn’t need to refer
to the original name any more except when it prints the equivalent in symbolic form.

The program that scans a control sequence has been written carefully in order to avoid the blowups that
might otherwise occur if a malicious user tried something like ‘\catcode “15=0". The algorithm might look
at buffer[limit + 1], but it never looks at buffer[limit + 2.

If expanded characters like ‘“~A’ or ‘~~df’ appear in or just following a control sequence name, they are
converted to single characters in the buffer and the process is repeated, slowly but surely.

(Scan a control sequence and set state < skip_blanks or mid_line 376) =
begin if loc > limit then cur_cs < null_cs { state is irrelevant in this case }
else begin start_cs: k < loc; cur_chr < buffer[k]; cat < cat_code(cur_chr); incr(k);
if cat = letter then state < skip_blanks
else if cat = spacer then state < skip_blanks
else state < mid_line;
if (cat = letter) A (k < limit) then (Scan ahead in the buffer until finding a nonletter; if an expanded
code is encountered, reduce it and goto start_cs; otherwise if a multiletter control sequence is
found, adjust cur_cs and loc, and goto found 378)
else (If an expanded code is present, reduce it and goto start_cs 377);
cur—cs <+ single_base + buffer|loc]; incr(loc);
end;
found: cur_cmd < eq_type(cur_cs); cur_chr < equiv(cur_cs);
if cur_ecmd > outer_call then check_outer_validity;
end

This code is used in section 366.

160 PART 24: GETTING THE NEXT TOKEN pdfTEX §377

377. Whenever we reach the following piece of code, we will have cur_chr = buffer[k—1] and k < limit +1
and cat = cat_code(cur_chr). If an expanded code like “~A or ~"~df appears in buffer[(k — 1) .. (k+ 1)] or
buffer[(k—1) .. (k+2)], we will store the corresponding code in buffer [k — 1] and shift the rest of the buffer
left two or three places.

(If an expanded code is present, reduce it and goto start_cs 377) =
begin if buffer[k] = cur_chr then if cat = sup_mark then if k < limit then
begin ¢ + buffer[k + 1]; if ¢ < 200 then {yes, one is indeed present }
begin d + 2;
if is_hex(c) then if k + 2 < limit then
begin cc + buffer[k + 2|; if is_hex(cc) then incr(d);
end;
if d > 2 then
begin hex_to_cur_chr; buffer[k — 1] < cur_chr;
end
else if ¢ < 100 then buffer[k — 1] + ¢+ 100
else buffer[k — 1] + ¢ — "100;
limit < limit — d; first < first — d,
while k£ < limit do
begin buffer[k] < buffer[k + d]; incr(k);
end;
goto start_cs;
end;
end;

)

end
This code is used in sections 376 and 378.

378. (Scan ahead in the buffer until finding a nonletter; if an expanded code is encountered, reduce it
and goto start_cs; otherwise if a multiletter control sequence is found, adjust cur_cs and loc, and
goto found 378) =

begin repeat cur_chr < buffer[k]; cat < cat_code(cur_chr); incr(k);

until (cat # letter) Vv (k > limit);

(If an expanded code is present, reduce it and goto start_cs 377);

if cat # letter then decr(k); {now k points to first nonletter }

if k> loc +1 then {multiletter control sequence has been scanned }
begin cur_cs + id_lookup (loc,k — loc); loc < k; goto found;
end;

end

This code is used in section 376.

8379 pdfTEX PART 24: GETTING THE NEXT TOKEN 161

379. Let’s consider now what happens when get_next is looking at a token list.

(Input from token list, goto restart if end of list or if a parameter needs to be expanded 379) =
if loc # null then {list not exhausted }

begin t < info(loc); loc + link(loc); {move to next }

if t > cs_token_flag then {a control sequence token }
begin cur_cs < t — cs_token_flag; cur_cmd < eq_type(cur_cs); cur_chr < equiv(cur_cs);
if cur_cmd > outer_call then

if cur_ecmd = dont_expand then (Get the next token, suppressing expansion 380)
else check_outer_validity;

end

else begin cur_cmd < tdiv 400; cur_chr < t mod 400;
case cur_cmd of
left_brace: incr(align_state);
right_brace: decr (align_state);
out_param: (Insert macro parameter and goto restart 381);
othercases do_nothing
endcases;
end;

end

else begin {we are done with this token list }
end_token_list; goto restart; {resume previous level }
end

This code is used in section 363.

380. The present point in the program is reached only when the expand routine has inserted a special
marker into the input. In this special case, info(loc) is known to be a control sequence token, and
link (loc) = null.

define no_ezpand_flag = 257 {this characterizes a special variant of relaz }

(Get the next token, suppressing expansion 380) =
begin cur_cs « info(loc) — cs-token_flag; loc < null;
cur-emd <+ eq_type(cur_cs); cur_chr < equiv(cur_cs);
if cur_ecmd > max_command then

begin cur_cmd < relaz; cur_chr < no_expand_flag;
end;
end

This code is used in section 379.

381. (Insert macro parameter and goto restart 381) =
begin begin_token_list (param_stack[param_start + cur_chr — 1], parameter); goto res