
1

The PKtype processor

(Version 2.3, 23 April 2020)

Section Page
Introduction . 1 2
The character set . 9 4
Packed file format . 14 6
Input and output . 30 13
Character unpacking . 40 15
Terminal communication . 53 19
The main program . 55 20
System-dependent changes . 56 21
Index . 57 22

The preparation of this report was supported in part by the National Science Foundation
under grants IST-8201926 and MCS-8300984, and by the System Development Foundation.
‘TEX’ is a trademark of the American Mathematical Society.

March 17, 2021 at 13:04

2 INTRODUCTION PKtype §1

1. Introduction. This program reads a PK file, verifies that it is in the correct format, and writes it in
textual format.

2. The banner string defined here should be changed whenever PKtype gets modified.

define banner ≡ ´This is PKtype, Version 2.3´ { printed when the program starts }

3. This program is written in standard Pascal, except where it is necessary to use extensions; for example,
PKtype must read files whose names are dynamically specified, and that would be impossible in pure Pascal.

define othercases ≡ others : { default for cases not listed explicitly }
define endcases ≡ end { follows the default case in an extended case statement }
format othercases ≡ else
format endcases ≡ end

4. Both the input and output come from binary files. On line interaction is handled through Pascal’s
standard input and output files. Two macros are used to write to the type file, so this output can easily be
redirected.

define print ln (#) ≡ write ln (output , #)
define print (#) ≡ write (output , #)
define t print ln (#) ≡ write ln (typ file , #)
define t print (#) ≡ write (typ file , #)

program PKtype (input , output);
label 〈Labels in the outer block 5 〉
const 〈Constants in the outer block 6 〉
type 〈Types in the outer block 9 〉
var 〈Globals in the outer block 11 〉
procedure initialize ; { this procedure gets things started properly }

var i: integer ; { loop index for initializations }
begin print ln (banner);
〈Set initial values 12 〉
end;

5. If the program has to stop prematurely, it goes to the ‘final end ’.

define final end = 9999 { label for the end of it all }
〈Labels in the outer block 5 〉 ≡

final end ;

This code is used in section 4.

6. These constants determine the maximum length of a file name and the length of the terminal line, as
well as the widest character that can be translated.

〈Constants in the outer block 6 〉 ≡
name length = 80; {maximum length of a file name }
terminal line length = 132; {maximum length of an input line }

This code is used in section 4.

7. Here are some macros for common programming idioms.

define incr (#) ≡ #← # + 1 { increase a variable by unity }
define decr (#) ≡ #← #− 1 {decrease a variable by unity }
define do nothing ≡ { empty statement }

§8 PKtype INTRODUCTION 3

8. It is possible that a malformed packed file (heaven forbid!) or some other error might be detected by
this program. Such errors might occur in a deeply nested procedure, so the procedure called jump out has
been added to transfer to the very end of the program with an error message.

define abort (#) ≡
begin print ln (´ ´, #); t print ln (´ ´, #); jump out ;
end

procedure jump out ;
begin goto final end ;
end;

4 THE CHARACTER SET PKtype §9

9. The character set. Like all programs written with the WEB system, PKtype can be used with any
character set. But it uses ASCII code internally, because the programming for portable input-output is
easier when a fixed internal code is used.

The next few sections of PKtype have therefore been copied from the analogous ones in the WEB system
routines. They have been considerably simplified, since PKtype need not deal with the controversial ASCII
codes less than 4́0 or greater than 1́76 .

〈Types in the outer block 9 〉 ≡
ASCII code = " " . . "~"; { a subrange of the integers }

See also sections 10 and 30.

This code is used in section 4.

10. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lower case letters. Nowadays, of course, we need to deal with both upper and
lower case alphabets in a convenient way, especially in a program like PKtype. So we shall assume that the
Pascal system being used for PKtype has a character set containing at least the standard visible characters
of ASCII code ("!" through "~").

Some Pascal compilers use the original name char for the data type associated with the characters in text
files, while other Pascals consider char to be a 64-element subrange of a larger data type that has some
other name. In order to accommodate this difference, we shall use the name text char to stand for the
data type of the characters in the output file. We shall also assume that text char consists of the elements
chr (first text char) through chr (last text char), inclusive. The following definitions should be adjusted if
necessary.

define text char ≡ char { the data type of characters in text files }
define first text char = 0 { ordinal number of the smallest element of text char }
define last text char = 127 { ordinal number of the largest element of text char }

〈Types in the outer block 9 〉 +≡
text file = packed file of text char ;

11. The PKtype processor converts between ASCII code and the user’s external character set by means of
arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

〈Globals in the outer block 11 〉 ≡
xord : array [text char] of ASCII code ; { specifies conversion of input characters }
xchr : array [0 . . 255] of text char ; { specifies conversion of output characters }
See also sections 31, 33, 37, 39, 41, 47, and 51.

This code is used in section 4.

§12 PKtype THE CHARACTER SET 5

12. Under our assumption that the visible characters of standard ASCII are all present, the following
assignment statements initialize the xchr array properly, without needing any system-dependent changes.

〈Set initial values 12 〉 ≡
for i← 0 to 3́7 do xchr [i]← ´?´;
xchr [4́0]← ´ ´; xchr [4́1]← ´!´; xchr [4́2]← ´"´; xchr [4́3]← ´#´; xchr [4́4]← ´$´;
xchr [4́5]← ´%´; xchr [4́6]← ´&´; xchr [4́7]← ´´´´;
xchr [5́0]← ´(´; xchr [5́1]← ´)´; xchr [5́2]← ´*´; xchr [5́3]← ´+´; xchr [5́4]← ´,´;
xchr [5́5]← ´−´; xchr [5́6]← ´.´; xchr [5́7]← ´/´;
xchr [6́0]← ´0´; xchr [6́1]← ´1´; xchr [6́2]← ´2´; xchr [6́3]← ´3´; xchr [6́4]← ´4´;
xchr [6́5]← ´5´; xchr [6́6]← ´6´; xchr [6́7]← ´7´;
xchr [7́0]← ´8´; xchr [7́1]← ´9´; xchr [7́2]← ´:´; xchr [7́3]← ´;´; xchr [7́4]← ´<´;
xchr [7́5]← ´=´; xchr [7́6]← ´>´; xchr [7́7]← ´?´;
xchr [1́00]← ´@´; xchr [1́01]← ´A´; xchr [1́02]← ´B´; xchr [1́03]← ´C´; xchr [1́04]← ´D´;
xchr [1́05]← ´E´; xchr [1́06]← ´F´; xchr [1́07]← ´G´;
xchr [1́10]← ´H´; xchr [1́11]← ´I´; xchr [1́12]← ´J´; xchr [1́13]← ´K´; xchr [1́14]← ´L´;
xchr [1́15]← ´M´; xchr [1́16]← ´N´; xchr [1́17]← ´O´;
xchr [1́20]← ´P´; xchr [1́21]← ´Q´; xchr [1́22]← ´R´; xchr [1́23]← ´S´; xchr [1́24]← ´T´;
xchr [1́25]← ´U´; xchr [1́26]← ´V´; xchr [1́27]← ´W´;
xchr [1́30]← ´X´; xchr [1́31]← ´Y´; xchr [1́32]← ´Z´; xchr [1́33]← ´[´; xchr [1́34]← ´\´;
xchr [1́35]← ´]´; xchr [1́36]← ´^´; xchr [1́37]← ´_´;
xchr [1́40]← ´`´; xchr [1́41]← ´a´; xchr [1́42]← ´b´; xchr [1́43]← ´c´; xchr [1́44]← ´d´;
xchr [1́45]← ´e´; xchr [1́46]← ´f´; xchr [1́47]← ´g´;
xchr [1́50]← ´h´; xchr [1́51]← ´i´; xchr [1́52]← ´j´; xchr [1́53]← ´k´; xchr [1́54]← ´l´;
xchr [1́55]← ´m´; xchr [1́56]← ´n´; xchr [1́57]← ´o´;
xchr [1́60]← ´p´; xchr [1́61]← ´q´; xchr [1́62]← ´r´; xchr [1́63]← ´s´; xchr [1́64]← ´t´;
xchr [1́65]← ´u´; xchr [1́66]← ´v´; xchr [1́67]← ´w´;
xchr [1́70]← ´x´; xchr [1́71]← ´y´; xchr [1́72]← ´z´; xchr [1́73]← ´{´; xchr [1́74]← ´|´;
xchr [1́75]← ´}´; xchr [1́76]← ´~´;
for i← 1́77 to 255 do xchr [i]← ´?´;

See also section 13.

This code is used in section 4.

13. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr .

〈Set initial values 12 〉 +≡
for i← first text char to last text char do xord [chr (i)]← 4́0 ;
for i← " " to "~" do xord [xchr [i]]← i;

6 PACKED FILE FORMAT PKtype §14

14. Packed file format. The packed file format is a compact representation of the data contained in
a GF file. The information content is the same, but packed (PK) files are almost always less than half the
size of their GF counterparts. They are also easier to convert into a raster representation because they do
not have a profusion of paint , skip , and new row commands to be separately interpreted. In addition, the
PK format expressly forbids special commands within a character. The minimum bounding box for each
character is explicit in the format, and does not need to be scanned for as in the GF format. Finally, the
width and escapement values are combined with the raster information into character “packets”, making it
simpler in many cases to process a character.

A PK file is organized as a stream of 8-bit bytes. At times, these bytes might be split into 4-bit nybbles or
single bits, or combined into multiple byte parameters. When bytes are split into smaller pieces, the ‘first’
piece is always the most significant of the byte. For instance, the first bit of a byte is the bit with value 128;
the first nybble can be found by dividing a byte by 16. Similarly, when bytes are combined into multiple
byte parameters, the first byte is the most significant of the parameter. If the parameter is signed, it is
represented by two’s-complement notation.

The set of possible eight-bit values is separated into two sets, those that introduce a character definition,
and those that do not. The values that introduce a character definition range from 0 to 239; byte values above
239 are interpreted as commands. Bytes that introduce character definitions are called flag bytes, and various
fields within the byte indicate various things about how the character definition is encoded. Command bytes
have zero or more parameters, and can never appear within a character definition or between parameters of
another command, where they would be interpreted as data.

A PK file consists of a preamble, followed by a sequence of one or more character definitions, followed
by a postamble. The preamble command must be the first byte in the file, followed immediately by its
parameters. Any number of character definitions may follow, and any command but the preamble command
and the postamble command may occur between character definitions. The very last command in the file
must be the postamble.

15. The packed file format is intended to be easy to read and interpret by device drivers. The small size of
the file reduces the input/output overhead each time a font is loaded. For those drivers that load and save
each font file into memory, the small size also helps reduce the memory requirements. The length of each
character packet is specified, allowing the character raster data to be loaded into memory by simply counting
bytes, rather than interpreting each command; then, each character can be interpreted on a demand basis.
This also makes it possible for a driver to skip a particular character quickly if it knows that the character
is unused.

§16 PKtype PACKED FILE FORMAT 7

16. First, the command bytes will be presented; then the format of the character definitions will be defined.
Eight of the possible sixteen commands (values 240 through 255) are currently defined; the others are reserved
for future extensions. The commands are listed below. Each command is specified by its symbolic name
(e.g., pk no op), its opcode byte, and any parameters. The parameters are followed by a bracketed number
telling how many bytes they occupy, with the number preceded by a plus sign if it is a signed quantity. (Four
byte quantities are always signed, however.)

pk xxx1 240 k[1] x[k]. This command is undefined in general; it functions as a (k + 2)-byte no op unless
special PK-reading programs are being used. METAFONT generates xxx commands when encountering
a special string. It is recommended that x be a string having the form of a keyword followed by
possible parameters relevant to that keyword.

pk xxx2 241 k[2] x[k]. Like pk xxx1 , but 0 ≤ k < 65536.

pk xxx3 242 k[3] x[k]. Like pk xxx1 , but 0 ≤ k < 224. METAFONT uses this when sending a special string
whose length exceeds 255.

pk xxx4 243 k[4] x[k]. Like pk xxx1 , but k can be ridiculously large; k mustn’t be negative.

pk yyy 244 y[4]. This command is undefined in general; it functions as a five-byte no op unless special
PK reading programs are being used. METAFONT puts scaled numbers into yyy ’s, as a result of
numspecial commands; the intent is to provide numeric parameters to xxx commands that imme-
diately precede.

pk post 245. Beginning of the postamble. This command is followed by enough pk no op commands to make
the file a multiple of four bytes long. Zero through three bytes are usual, but any number is allowed.
This should make the file easy to read on machines that pack four bytes to a word.

pk no op 246. No operation, do nothing. Any number of pk no op ’s may appear between PK commands, but
a pk no op cannot be inserted between a command and its parameters, between two parameters, or
inside a character definition.

pk pre 247 i[1] k[1] x[k] ds [4] cs [4] hppp [4] vppp [4]. Preamble command. Here, i is the identification byte of
the file, currently equal to 89. The string x is merely a comment, usually indicating the source of the
PK file. The parameters ds and cs are the design size of the file in 1/220 points, and the checksum of
the file, respectively. The checksum should match the TFM file and the GF files for this font. Parameters
hppp and vppp are the ratios of pixels per point, horizontally and vertically, multiplied by 216; they can
be used to correlate the font with specific device resolutions, magnifications, and “at sizes”. Usually,
the name of the PK file is formed by concatenating the font name (e.g., cmr10) with the resolution at
which the font is prepared in pixels per inch multiplied by the magnification factor, and the letters
pk. For instance, cmr10 at 300 dots per inch should be named cmr10.300pk; at one thousand dots
per inch and magstephalf, it should be named cmr10.1095pk.

17. We put a few of the above opcodes into definitions for symbolic use by this program.

define pk id = 89 { the version of PK file described }
define pk xxx1 = 240 { special commands }
define pk yyy = 244 {numspecial commands }
define pk post = 245 {postamble }
define pk no op = 246 {no operation }
define pk pre = 247 { preamble }
define pk undefined ≡ 248, 249, 250, 251, 252, 253, 254, 255

8 PACKED FILE FORMAT PKtype §18

18. The PK format has two conflicting goals: to pack character raster and size information as compactly as
possible, while retaining ease of translation into raster and other forms. A suitable compromise was found
in the use of run-encoding of the raster information. Instead of packing the individual bits of the character,
we instead count the number of consecutive ‘black’ or ‘white’ pixels in a horizontal raster row, and then
encode this number. Run counts are found for each row from left to right, traversing rows from the top
to bottom. This is essentially the way the GF format works. Instead of presenting each row individually,
however, we concatenate all of the horizontal raster rows into one long string of pixels, and encode this row.
With knowledge of the width of the bit-map, the original character glyph can easily be reconstructed. In
addition, we do not need special commands to mark the end of one row and the beginning of the next.

Next, we place the burden of finding the minimum bounding box on the part of the font generator, since
the characters will usually be used much more often than they are generated. The minimum bounding box is
the smallest rectangle that encloses all ‘black’ pixels of a character. We also eliminate the need for a special
end of character marker, by supplying exactly as many bits as are required to fill the minimum bounding
box, from which the end of the character is implicit.

Let us next consider the distribution of the run counts. Analysis of several dozen pixel files at 300 dots per
inch yields a distribution peaking at four, falling off slowly until ten, then a bit more steeply until twenty,
and then asymptotically approaching the horizontal. Thus, the great majority of our run counts will fit in a
four-bit nybble. The eight-bit byte is attractive for our run-counts, as it is the standard on many systems;
however, the wasted four bits in the majority of cases seem a high price to pay. Another possibility is to
use a Huffman-type encoding scheme with a variable number of bits for each run-count; this was rejected
because of the overhead in fetching and examining individual bits in the file. Thus, the character raster
definitions in the PK file format are based on the four-bit nybble.

19. An analysis of typical pixel files yielded another interesting statistic: Fully 37% of the raster rows
were duplicates of the previous row. Thus, the PK format allows the specification of repeat counts, which
indicate how many times a horizontal raster row is to be repeated. These repeated rows are taken out of the
character glyph before individual rows are concatenated into the long string of pixels.

For elegance, we disallow a run count of zero. The case of a null raster description should be gleaned from
the character width and height being equal to zero, and no raster data should be read. No other zero counts
are ever necessary. Also, in the absence of repeat counts, the repeat value is set to be zero (only the original
row is sent.) If a repeat count is seen, it takes effect on the current row. The current row is defined as the
row on which the first pixel of the next run count will lie. The repeat count is set back to zero when the
last pixel in the current row is seen, and the row is sent out.

This poses a problem for entirely black and entirely white rows, however. Let us say that the current
row ends with four white pixels, and then we have five entirely empty rows, followed by a black pixel at the
beginning of the next row, and the character width is ten pixels. We would like to use a repeat count, but
there is no legal place to put it. If we put it before the white run count, it will apply to the current row. If
we put it after, it applies to the row with the black pixel at the beginning. Thus, entirely white or entirely
black repeated rows are always packed as large run counts (in this case, a white run count of 54) rather than
repeat counts.

20. Now we turn our attention to the actual packing of the run counts and repeat counts into nybbles.
There are only sixteen possible nybble values. We need to indicate run counts and repeat counts. Since the
run counts are much more common, we will devote the majority of the nybble values to them. We therefore
indicate a repeat count by a nybble of 14 followed by a packed number, where a packed number will be
explained later. Since the repeat count value of one is so common, we indicate a repeat one command by
a single nybble of 15. A 14 followed by the packed number 1 is still legal for a repeat one count. The run
counts are coded directly as packed numbers.

For packed numbers, therefore, we have the nybble values 0 through 13. We need to represent the positive
integers up to, say, 231 − 1. We would like the more common smaller numbers to take only one or two
nybbles, and the infrequent large numbers to take three or more. We could therefore allocate one nybble
value to indicate a large run count taking three or more nybbles. We do this with the value 0.

§21 PKtype PACKED FILE FORMAT 9

21. We are left with the values 1 through 13. We can allocate some of these, say dyn f , to be one-nybble
run counts. These will work for the run counts 1 . . dyn f . For subsequent run counts, we will use a nybble
greater than dyn f , followed by a second nybble, whose value can run from 0 through 15. Thus, the two-
nybble values will run from dyn f + 1 . . (13− dyn f) ∗ 16 + dyn f . We have our definition of large run count
values now, being all counts greater than (13− dyn f) ∗ 16 + dyn f .

We can analyze our several dozen pixel files and determine an optimal value of dyn f , and use this value
for all of the characters. Unfortunately, values of dyn f that pack small characters well tend to pack the
large characters poorly, and values that pack large characters well are not efficient for the smaller characters.
Thus, we choose the optimal dyn f on a character basis, picking the value that will pack each individual
character in the smallest number of nybbles. Legal values of dyn f run from 0 (with no one-nybble run
counts) to 13 (with no two-nybble run counts).

22. Our only remaining task in the coding of packed numbers is the large run counts. We use a scheme
suggested by D. E. Knuth that simply and elegantly represents arbitrarily large values. The general scheme
to represent an integer i is to write its hexadecimal representation, with leading zeros removed. Then we
count the number of digits, and prepend one less than that many zeros before the hexadecimal representation.
Thus, the values from one to fifteen occupy one nybble; the values sixteen through 255 occupy three, the
values 256 through 4095 require five, etc.

For our purposes, however, we have already represented the numbers one through (13−dyn f)∗16+dyn f .
In addition, the one-nybble values have already been taken by our other commands, which means that only
the values from sixteen up are available to us for long run counts. Thus, we simply normalize our long run
counts, by subtracting (13−dyn f)∗16+dyn f +1 and adding 16, and then we represent the result according
to the scheme above.

23. The final algorithm for decoding the run counts based on the above scheme looks like this, assuming
that a procedure called get nyb is available to get the next nybble from the file, and assuming that the global
repeat count indicates whether a row needs to be repeated. Note that this routine is recursive, but since a
repeat count can never directly follow another repeat count, it can only be recursive to one level.

〈Packed number procedure 23 〉 ≡
function pk packed num : integer ;

var i, j: integer ;
begin i← get nyb ;
if i = 0 then

begin repeat j ← get nyb ; incr (i);
until j 6= 0;
while i > 0 do

begin j ← j ∗ 16 + get nyb ; decr (i);
end;

pk packed num ← j − 15 + (13− dyn f) ∗ 16 + dyn f ;
end

else if i ≤ dyn f then pk packed num ← i
else if i < 14 then pk packed num ← (i− dyn f − 1) ∗ 16 + get nyb + dyn f + 1

else begin if repeat count 6= 0 then abort (´Second repeat count for this row!´);
repeat count ← 1; { prevent recursion more than one level }
if i = 14 then repeat count ← pk packed num ;
send out (true , repeat count); pk packed num ← pk packed num ;
end;

end;

This code is used in section 46.

10 PACKED FILE FORMAT PKtype §24

24. For low resolution fonts, or characters with ‘gray’ areas, run encoding can often make the character
many times larger. Therefore, for those characters that cannot be encoded efficiently with run counts, the PK
format allows bit-mapping of the characters. This is indicated by a dyn f value of 14. The bits are packed
tightly, by concatenating all of the horizontal raster rows into one long string, and then packing this string
eight bits to a byte. The number of bytes required can be calculated by (width ∗ height + 7) div 8. This
format should only be used when packing the character by run counts takes more bytes than this, although,
of course, it is legal for any character. Any extra bits in the last byte should be set to zero.

25. At this point, we are ready to introduce the format for a character descriptor. It consists of three
parts: a flag byte, a character preamble, and the raster data. The most significant four bits of the flag byte
yield the dyn f value for that character. (Notice that only values of 0 through 14 are legal for dyn f , with
14 indicating a bit mapped character; thus, the flag bytes do not conflict with the command bytes, whose
upper nybble is always 15.) The next bit (with weight 8) indicates whether the first run count is a black
count or a white count, with a one indicating a black count. For bit-mapped characters, this bit should be
set to a zero. The next bit (with weight 4) indicates whether certain later parameters (referred to as size
parameters) are given in one-byte or two-byte quantities, with a one indicating that they are in two-byte
quantities. The last two bits are concatenated on to the beginning of the packet-length parameter in the
character preamble, which will be explained below.

However, if the last three bits of the flag byte are all set (normally indicating that the size parameters
are two-byte values and that a 3 should be prepended to the length parameter), then a long format of the
character preamble should be used instead of one of the short forms.

Therefore, there are three formats for the character preamble; the one that is used depends on the least
significant three bits of the flag byte. If the least significant three bits are in the range zero through three, the
short format is used. If they are in the range four through six, the extended short format is used. Otherwise,
if the least significant bits are all set, then the long form of the character preamble is used. The preamble
formats are explained below.

Short form: flag [1] pl [1] cc [1] tfm [3] dm [1] w[1] h[1] hoff [+1] voff [+1]. If this format of the character
preamble is used, the above parameters must all fit in the indicated number of bytes, signed or
unsigned as indicated. Almost all of the standard TEX font characters fit; the few exceptions are fonts
such as cminch.

Extended short form: flag [1] pl [2] cc [1] tfm [3] dm [2] w[2] h[2] hoff [+2] voff [+2]. Larger characters use this
extended format.

Long form: flag [1] pl [4] cc [4] tfm [4] dx [4] dy [4] w[4] h[4] hoff [4] voff [4]. This is the general format that
allows all of the parameters of the GF file format, including vertical escapement.

The flag parameter is the flag byte. The parameter pl (packet length) contains the offset of the byte
following this character descriptor, with respect to the beginning of the tfm width parameter. This is given
so a PK reading program can, once it has read the flag byte, packet length, and character code (cc), skip over
the character by simply reading this many more bytes. For the two short forms of the character preamble,
the last two bits of the flag byte should be considered the two most-significant bits of the packet length.
For the short format, the true packet length might be calculated as (flag mod 4) ∗ 256 + pl ; for the short
extended format, it might be calculated as (flag mod 4) ∗ 65536 + pl .

The w parameter is the width and the h parameter is the height in pixels of the minimum bounding box.
The dx and dy parameters are the horizontal and vertical escapements, respectively. In the short formats,
dy is assumed to be zero and dm is dx but in pixels; in the long format, dx and dy are both in pixels
multiplied by 216. The hoff is the horizontal offset from the upper left pixel to the reference pixel; the voff
is the vertical offset. They are both given in pixels, with right and down being positive. The reference pixel
is the pixel that occupies the unit square in METAFONT; the METAFONT reference point is the lower left
hand corner of this pixel. (See the example below.)

§26 PKtype PACKED FILE FORMAT 11

26. TEX requires all characters that have the same character codes modulo 256 to have also the same tfm
widths and escapement values. The PK format does not itself make this a requirement, but in order for the
font to work correctly with the TEX software, this constraint should be observed. (The standard version of
TEX cannot output character codes greater than 255, but extended versions do exist.)

Following the character preamble is the raster information for the character, packed by run counts or by
bits, as indicated by the flag byte. If the character is packed by run counts and the required number of
nybbles is odd, then the last byte of the raster description should have a zero for its least significant nybble.

27. As an illustration of the PK format, the character Ξ from the font amr10 at 300 dots per inch will
be encoded. This character was chosen because it illustrates some of the borderline cases. The raster for
the character looks like this (the row numbers are chosen for convenience, and are not METAFONT’s row
numbers.)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 +

The width of the minimum bounding box for this character is 20; its height is 29. The ‘+’ represents the
reference pixel; notice how it lies outside the minimum bounding box. The hoff value is −2, and the voff
is 28.

The first task is to calculate the run counts and repeat counts. The repeat counts are placed at the first
transition (black to white or white to black) in a row, and are enclosed in brackets. White counts are enclosed
in parentheses. It is relatively easy to generate the counts list:

82 [2] (16) 2 (42) [2] 2 (12) 2 (4) [3]
16 (4) [2] 2 (12) 2 (62) [2] 2 (16) 82

Note that any duplicated rows that are not all white or all black are removed before the run counts are
calculated. The rows thus removed are rows 5, 6, 10, 11, 13, 14, 15, 17, 18, 23, and 24.

12 PACKED FILE FORMAT PKtype §28

28. The next step in the encoding of this character is to calculate the optimal value of dyn f . The details
of how this calculation is done are not important here; suffice it to say that there is a simple algorithm that
can determine the best value of dyn f in one pass over the count list. For this character, the optimal value
turns out to be 8 (atypically low). Thus, all count values less than or equal to 8 are packed in one nybble;
those from nine to (13 − 8) ∗ 16 + 8 or 88 are packed in two nybbles. The run encoded values now become
(in hex, separated according to the above list):

D9 E2 97 2 B1 E2 2 93 2 4 E3

97 4 E2 2 93 2 C5 E2 2 97 D9

which comes to 36 nybbles, or 18 bytes. This is shorter than the 73 bytes required for the bit map, so we
use the run count packing.

29. The short form of the character preamble is used because all of the parameters fit in their respective
lengths. The packet length is therefore 18 bytes for the raster, plus eight bytes for the character preamble
parameters following the character code, or 26. The tfm width for this character is 640796, or 9C71C in
hexadecimal. The horizontal escapement is 25 pixels. The flag byte is 88 hex, indicating the short preamble,
the black first count, and the dyn f value of 8. The final total character packet, in hexadecimal, is:

Flag byte 88

Packet length 1A

Character code 04

tfm width 09 C7 1C

Horizontal escapement (pixels) 19

Width of bit map 14

Height of bit map 1D

Horizontal offset (signed) FE

Vertical offset 1C

Raster data D9 E2 97

2B 1E 22

93 24 E3

97 4E 22

93 2C 5E

22 97 D9

§30 PKtype INPUT AND OUTPUT 13

30. Input and output. There are two types of files that this program must deal with—standard text
files and files of bytes (packed files.) For our purposes, we shall consider an eight-bit byte to consist of the
values 0 . . 255. If your system does not pack these values to a byte, it is no major difficulty; you must only
insure that the input function pk byte can read packed bytes.

〈Types in the outer block 9 〉 +≡
eight bits = 0 . . 255; { packed file byte }
byte file = packed file of eight bits ; { for packed file words }

31. 〈Globals in the outer block 11 〉 +≡
pk file : byte file ; {where the input comes from }
typ file : text file ; {where the final output goes }

32. To prepare these files for input and output, we reset and rewrite them. An extension of Pascal is
needed, since we want to associate files with external names that are specified dynamically (i.e., not known
at compile time). The following code assumes that ‘reset (f, s)’ does this, when f is a file variable and s is
a string variable that specifies the file name. If eof (f) is true immediately after reset (f, s) has acted, we
assume that no file named s is accessible.

procedure open pk file ; {prepares the input for reading }
begin reset (pk file , pk name); pk loc ← 0;
end;

procedure open typ file ; { prepares to write text data to the typ file }
begin rewrite (typ file , typ name);
end;

33. We need a place to store the names of the input and output file, as well as a byte counter for the
output file.

〈Globals in the outer block 11 〉 +≡
pk name , typ name : packed array [1 . . name length] of char ; { name of input and output files }
pk loc : integer ; { how many bytes have we read? }

34. We also need a function that will get a single byte from the pk file.

function pk byte : eight bits ;
var temp : eight bits ;
begin temp ← pk file↑; get (pk file); incr (pk loc); pk byte ← temp ;
end;

35. Now we are ready to open the files.

〈Open files 35 〉 ≡
open pk file ; open typ file ; t print ln (banner); t print (´Input file: ´); i← 1;
while pk name [i] 6= ´ ´ do

begin t print (pk name [i]); incr (i);
end;

t print ln (´ ´)

This code is used in section 55.

14 INPUT AND OUTPUT PKtype §36

36. As we are reading the packed file, we often need to fetch 16 and 32 bit quantities. Here we have two
procedures to do this.

function get 16 : integer ;
var a: integer ;
begin a← pk byte ; get 16 ← a ∗ 256 + pk byte ;
end;

function get 32 : integer ;
var a: integer ;
begin a← get 16 ;
if a > 32767 then a← a− 65536;
get 32 ← a ∗ 65536 + get 16 ;
end;

37. We still need the term pos variable.

〈Globals in the outer block 11 〉 +≡
term pos : integer ; { current terminal position }

38. Now we read and check the preamble of the PK file. In the preamble, we find the hppp , design size ,
checksum .

〈Read preamble 38 〉 ≡
if pk byte 6= pk pre then abort (´Bad PK file: pre command missing!´);
if pk byte 6= pk id then abort (´Wrong version of PK file!´);
j ← pk byte ; t print (´´´´);
for i← 1 to j do t print (xchr [pk byte]);
t print ln (´´´´); design size ← get 32 ; t print ln (´Design size = ´, design size : 1);
checksum ← get 32 ; t print ln (´Checksum = ´, checksum : 1); hppp ← get 32 ; vppp ← get 32 ;
t print (´Resolution: horizontal = ´, hppp : 1, ´ vertical = ´, vppp : 1);
magnification ← round (hppp ∗ 72.27/65536); t print ln (´ (´,magnification : 1, ´ dpi)´);
if hppp 6= vppp then print ln (´Warning: aspect ratio not 1:1!´)

This code is used in section 55.

39. Of course, we need to define the above variables.

〈Globals in the outer block 11 〉 +≡
magnification : integer ; { resolution at which pixel file is prepared }
design size : integer ; { design size in FIXes }
checksum : integer ; { checksum of pixel file }
hppp , vppp : integer ; { horizontal and vertical points per inch }

§40 PKtype CHARACTER UNPACKING 15

40. Character unpacking. Here we simply unpack the character, writing the information we glean to
the typ file .

〈Unpack and write character 40 〉 ≡
t print ((pk loc − 1) : 1, ´: Flag byte = ´,flag byte : 1); dyn f ← flag byte div 16;
flag byte ← flag byte mod 16; turn on ← flag byte ≥ 8;
if turn on then flag byte ← flag byte − 8;
if flag byte = 7 then 〈Read long character preamble 42 〉
else if flag byte > 3 then 〈Read extended short character preamble 43 〉

else 〈Read short character preamble 44 〉;
t print ln (´ Character = ´, car : 1, ´ Packet length = ´, packet length : 1);
t print ln (´ Dynamic packing variable = ´, dyn f : 1);
t print (´ TFM width = ´, tfm width : 1, ´ dx = ´, dx : 1);
if dy 6= 0 then t print ln (´ dy = ´, dy : 1)
else t print ln (´ ´);
t print ln (´ Height = ´, height : 1, ´ Width = ´,width : 1, ´ X−offset = ´, x off : 1,

´ Y−offset = ´, y off : 1); 〈Read and translate raster description 48 〉;
if end of packet 6= pk loc then abort (´Bad PK file: Bad packet length!´)

This code is used in section 55.

41. We need a whole lot of globals used but not defined up there.

〈Globals in the outer block 11 〉 +≡
i, j: integer ; { index pointers }
flag byte : integer ; { the byte that introduces the character definition }
end of packet : integer ; {where we expect the end of the packet to be }
width , height : integer ; {width and height of character }
x off , y off : integer ; { x and y offsets of character }
tfm width : integer ; { character tfm width }
tfms : array [0 . . 255] of integer ; { character tfm widths }
dx , dy : integer ; { escapement values }
dxs , dys : array [0 . . 255] of integer ; { escapement values }
status : array [0 . . 255] of boolean ; { has the character been seen? }
dyn f : integer ; { dynamic packing variable }
car : integer ; { the character we are reading }
packet length : integer ; { the length of the character packet }

42. Now, the preamble reading modules. First, we have the general case: the long character preamble
format.

〈Read long character preamble 42 〉 ≡
begin packet length ← get 32 ; car ← get 32 ; end of packet ← packet length + pk loc ;
packet length ← packet length + 9; tfm width ← get 32 ; dx ← get 32 ; dy ← get 32 ; width ← get 32 ;
height ← get 32 ; x off ← get 32 ; y off ← get 32 ;
end

This code is used in section 40.

16 CHARACTER UNPACKING PKtype §43

43. This module reads the character preamble with double byte parameters.

〈Read extended short character preamble 43 〉 ≡
begin packet length ← (flag byte − 4) ∗ 65536 + get 16 ; car ← pk byte ;
end of packet ← packet length + pk loc ; packet length ← packet length + 4; i← pk byte ;
tfm width ← i ∗ 65536 + get 16 ; dx ← get 16 ∗ 65536; dy ← 0; width ← get 16 ; height ← get 16 ;
x off ← get 16 ; y off ← get 16 ;
if x off > 32767 then x off ← x off − 65536;
if y off > 32767 then y off ← y off − 65536;
end

This code is used in section 40.

44. Here we read the most common character preamble, that with single byte parameters.

〈Read short character preamble 44 〉 ≡
begin packet length ← flag byte ∗ 256 + pk byte ; car ← pk byte ; end of packet ← packet length + pk loc ;
packet length ← packet length + 3; i← pk byte ; tfm width ← i ∗ 65536 + get 16 ; dx ← pk byte ∗ 65536;
dy ← 0; width ← pk byte ; height ← pk byte ; x off ← pk byte ; y off ← pk byte ;
if x off > 127 then x off ← x off − 256;
if y off > 127 then y off ← y off − 256;
end

This code is used in section 40.

45. Now we have the most important part of the program, where we actually interpret the commands in
the raster description. First of all, we need a procedure to get a single nybble from the file, as well as one to
get a single bit.

function get nyb : integer ;
var temp : eight bits ;
begin if bit weight = 0 then

begin input byte ← pk byte ; bit weight ← 16;
end;

temp ← input byte div bit weight ; input byte ← input byte − temp ∗ bit weight ;
bit weight ← bit weight div 16; get nyb ← temp ;
end;

function get bit : boolean ;
var temp : boolean ;
begin bit weight ← bit weight div 2;
if bit weight = 0 then

begin input byte ← pk byte ; bit weight ← 128;
end;

temp ← input byte ≥ bit weight ;
if temp then input byte ← input byte − bit weight ;
get bit ← temp ;
end;

§46 PKtype CHARACTER UNPACKING 17

46. We also need a function to write output to the screen. We put as many counts on a line as possible, to
reduce the volume of output. Each count will appear as a number, with white counts enclosed by parentheses
and repeat counts by brackets.

procedure send out (repeat count : boolean ; value : integer);
var i, len : integer ;
begin i← 10; len ← 1;
while value ≥ i do

begin incr (len); i← i ∗ 10;
end;

if repeat count ∨ ¬turn on then len ← len + 2;
if term pos + len > 78 then

begin term pos ← len + 2; t print ln (´ ´); t print (´ ´);
end

else term pos ← term pos + len ;
if repeat count then t print (´[´, value : 1, ´]´)
else if turn on then t print (value : 1)

else t print (´(´, value : 1, ´)´);
end; 〈Packed number procedure 23 〉

47. Now, the globals to help communication between these procedures.

〈Globals in the outer block 11 〉 +≡
input byte : eight bits ; { the byte we are currently decimating }
bit weight : eight bits ; {weight of the current bit }
nybble : eight bits ; { the current nybble }

48. And the main procedure.

〈Read and translate raster description 48 〉 ≡
bit weight ← 0;
if dyn f = 14 then 〈Get raster by bits 49 〉
else 〈Create normally packed raster 50 〉

This code is used in section 40.

49. If dyn f = 14, then we need to get the raster representation one bit at a time.

〈Get raster by bits 49 〉 ≡
begin for i← 1 to height do

begin t print (´ ´);
for j ← 1 to width do

if get bit then t print (´*´)
else t print (´.´);

t print ln (´ ´);
end;

end

This code is used in section 48.

18 CHARACTER UNPACKING PKtype §50

50. Otherwise, we translate the bit counts into the raster rows. count contains the number of bits of the
current color, and turn on indicates whether or not they should be black. rows left contains the number of
rows to be sent.

〈Create normally packed raster 50 〉 ≡
begin term pos ← 2; t print (´ ´); rows left ← height ; h bit ← width ; repeat count ← 0;
while rows left > 0 do

begin count ← pk packed num ; send out (false , count);
if count ≥ h bit then

begin rows left ← rows left − repeat count − 1; repeat count ← 0; count ← count − h bit ;
h bit ← width ; rows left ← rows left − count div width ; count ← count mod width ;
end;

h bit ← h bit − count ; turn on ← ¬turn on ;
end;

t print ln (´ ´);
if (rows left 6= 0) ∨ (h bit 6= width) then abort (´Bad PK file: More bits than required!´);
end

This code is used in section 48.

51. We need to declare the repeat flag, bit counter, and color flag here.

〈Globals in the outer block 11 〉 +≡
repeat count : integer ; {how many times to repeat the next row? }
rows left : integer ; {how many rows left? }
turn on : boolean ; { are we black here? }
h bit : integer ; {what is our horizontal position? }
count : integer ; { how many bits of current color left? }

52. If any specials are found, we write them out here.

define four cases (#) ≡ #, # + 1, # + 2, # + 3

procedure skip specials ;
var i, j: integer ;
begin repeat flag byte ← pk byte ;

if flag byte ≥ 240 then
case flag byte of
four cases (pk xxx1): begin t print ((pk loc − 1) : 1, ´: Special: ´´´); i← 0;

for j ← pk xxx1 to flag byte do i← 256 ∗ i + pk byte ;
for j ← 1 to i do t print (xchr [pk byte]);
t print ln (´´´´);
end;

pk yyy : t print ln ((pk loc − 1) : 1, ´: Num special: ´, get 32 : 1);
pk post : t print ln ((pk loc − 1) : 1, ´: Postamble´);
pk no op : t print ln ((pk loc − 1) : 1, ´: No op´);
pk pre , pk undefined : abort (´Unexpected ´,flag byte : 1, ´!´);
endcases;

until (flag byte < 240) ∨ (flag byte = pk post);
end;

§53 PKtype TERMINAL COMMUNICATION 19

53. Terminal communication. We must get the file names and determine whether input is to be in
hexadecimal or binary. To do this, we use the standard input path name. We need a procedure to flush the
input buffer. For most systems, this will be an empty statement. For other systems, a print ln will provide
a quick fix. We also need a routine to get a line of input from the terminal. On some systems, a simple
read ln will do. Finally, a macro to print a string to the first blank is required.

define flush buffer ≡
begin end

define get line (#) ≡
if eoln (input) then read ln (input);

i← 1;
while ¬(eoln (input) ∨ eof (input)) do

begin #[i]← input↑; incr (i); get (input);
end;

#[i]← ´ ´

54.
procedure dialog ;

var i: integer ; { index variable }
buffer : packed array [1 . . name length] of char ; { input buffer }

begin for i← 1 to name length do
begin typ name [i]← ´ ´; pk name [i]← ´ ´;
end;

print (´Input file name: ´); flush buffer ; get line (pk name); print (´Output file name: ´);
flush buffer ; get line (typ name);
end;

20 THE MAIN PROGRAM PKtype §55

55. The main program. Now that we have all the pieces written, let us put them together.

begin initialize ; dialog ; 〈Open files 35 〉;
〈Read preamble 38 〉;
skip specials ;
while flag byte 6= pk post do

begin 〈Unpack and write character 40 〉;
skip specials ;
end;

j ← 0;
while ¬eof (pk file) do

begin i← pk byte ;
if i 6= pk no op then abort (´Bad byte at end of file: ´, i : 1);
t print ln ((pk loc − 1) : 1, ´: No op´); incr (j);
end;

t print ln (pk loc : 1, ´ bytes read from packed file.´);
final end : end.

§56 PKtype SYSTEM-DEPENDENT CHANGES 21

56. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make PKtype work at a particular installation. Any additional routines
should be inserted here.

22 INDEX PKtype §57

57. Index. Pointers to error messages appear here together with the section numbers where each ident-
ifier is used.

a: 36.
abort : 8, 23, 38, 40, 50, 52, 55.
ASCII code : 9, 11.
Bad byte at end of file : 55.
Bad packet length : 40.
banner : 2, 4, 35.
bit weight : 45, 47, 48.
boolean : 41, 45, 46, 51.
buffer : 54.
byte file : 30, 31.
car : 40, 41, 42, 43, 44.
cc : 25.
char : 10, 33, 54.
checksum : 38, 39.
chr : 10, 11, 13.
count : 50, 51.
cs : 16.
decr : 7, 23.
design size : 38, 39.
dialog : 54, 55.
dm : 25.
do nothing : 7.
ds : 16.
dx : 25, 40, 41, 42, 43, 44.
dxs : 41.
dy : 25, 40, 41, 42, 43, 44.
dyn f : 21, 22, 23, 24, 25, 28, 29, 40, 41, 48, 49.
dys : 41.
eight bits : 30, 34, 45, 47.
else: 3.
end: 3.
end of packet : 40, 41, 42, 43, 44.
endcases: 3.
eof : 32, 53, 55.
eoln : 53.
false : 50.
final end : 5, 8, 55.
first text char : 10, 13.
flag : 25.
flag byte : 40, 41, 43, 44, 52, 55.
flush buffer : 53, 54.
four cases : 52.
get : 34, 53.
get bit : 45, 49.
get line : 53, 54.
get nyb : 23, 45.
get 16 : 36, 43, 44.
get 32 : 36, 38, 42, 52.
h bit : 50, 51.
height : 24, 40, 41, 42, 43, 44, 49, 50.

hoff : 25, 27.
hppp : 16, 38, 39.
i: 4, 23, 41, 46, 52, 54.
incr : 7, 23, 34, 35, 46, 53, 55.
initialize : 4, 55.
input : 4, 53.
input byte : 45, 47.
integer : 4, 23, 33, 36, 37, 39, 41, 45, 46, 51, 52, 54.
j: 23, 41, 52.
jump out : 8.
Knuth, Donald Ervin: 22.
last text char : 10, 13.
len : 46.
magnification : 38, 39.
More bits than required : 50.
name length : 6, 33, 54.
nybble : 47.
open pk file : 32, 35.
open typ file : 32, 35.
ord : 11.
othercases: 3.
others : 3.
output : 4.
packet length : 40, 41, 42, 43, 44.
pk byte : 30, 34, 36, 38, 43, 44, 45, 52, 55.
pk file : 31, 32, 34, 55.
pk id : 17, 38.
pk loc : 32, 33, 34, 40, 42, 43, 44, 52, 55.
pk name : 32, 33, 35, 54.
pk no op : 16, 17, 52, 55.
pk packed num : 23, 50.
pk post : 16, 17, 52, 55.
pk pre : 16, 17, 38, 52.
pk undefined : 17, 52.
pk xxx1 : 16, 17, 52.
pk yyy : 16, 17, 52.
PKtype : 4.
pl : 25.
pre command missing : 38.
print : 4, 54.
print ln : 4, 8, 38, 53.
read ln : 53.
repeat count : 23, 46, 50, 51.
reset : 32.
rewrite : 32.
round : 38.
rows left : 50, 51.
scaled : 16.
Second repeat count... : 23.
send out : 23, 46, 50.

§57 PKtype INDEX 23

skip specials : 52, 55.
status : 41.
system dependencies: 6, 10, 30, 31, 32, 56.
t print : 4, 35, 38, 40, 46, 49, 50, 52.
t print ln : 4, 8, 35, 38, 40, 46, 49, 50, 52, 55.
temp : 34, 45.
term pos : 37, 46, 50.
terminal line length : 6.
text char : 10, 11.
text file : 10, 31.
tfm : 25, 26, 29.
tfm width : 40, 41, 42, 43, 44.
tfms : 41.
true : 23.
turn on : 40, 46, 50, 51.
typ file : 4, 31, 32, 40.
typ name : 32, 33, 54.
Unexpected bbb : 52.
value : 46.
voff : 25, 27.
vppp : 16, 38, 39.
width : 24, 40, 41, 42, 43, 44, 49, 50.
write : 4.
write ln : 4.
Wrong version of PK file : 38.
x off : 40, 41, 42, 43, 44.
xchr : 11, 12, 13, 38, 52.
xord : 11, 13.
y off : 40, 41, 42, 43, 44.
yyy : 16.

24 NAMES OF THE SECTIONS PKtype

〈Constants in the outer block 6 〉 Used in section 4.

〈Create normally packed raster 50 〉 Used in section 48.

〈Get raster by bits 49 〉 Used in section 48.

〈Globals in the outer block 11, 31, 33, 37, 39, 41, 47, 51 〉 Used in section 4.

〈Labels in the outer block 5 〉 Used in section 4.

〈Open files 35 〉 Used in section 55.

〈Packed number procedure 23 〉 Used in section 46.

〈Read and translate raster description 48 〉 Used in section 40.

〈Read extended short character preamble 43 〉 Used in section 40.

〈Read long character preamble 42 〉 Used in section 40.

〈Read preamble 38 〉 Used in section 55.

〈Read short character preamble 44 〉 Used in section 40.

〈Set initial values 12, 13 〉 Used in section 4.

〈Types in the outer block 9, 10, 30 〉 Used in section 4.

〈Unpack and write character 40 〉 Used in section 55.

	 Introduction
	 The character set
	 Packed file format
	 Input and output
	 Character unpacking
	 Terminal communication
	 The main program
	 System-dependent changes
	 Index
	Names of the sections
	Constants in the outer block
	Create normally packed raster
	Get raster by bits
	Globals in the outer block
	Labels in the outer block
	Open files
	Packed number procedure
	Read and translate raster description
	Read extended short character preamble
	Read long character preamble
	Read preamble
	Read short character preamble
	Set initial values
	Types in the outer block
	Unpack and write character

