
1

The PKtoGF processor

(Version 1.1, 22 April 2020)

Section Page
Introduction . 1 2
The character set . 9 4
Generic font file format . 14 6
Packed file format . 21 11
Input and output . 38 18
Character unpacking . 47 20
Terminal communication . 71 28
The main program . 73 29
System-dependent changes . 74 30
Index . 75 31

The preparation of this report was supported in part by the National Science Foundation
under grants IST-8201926 and MCS-8300984, and by the System Development Foundation.
‘TEX’ is a trademark of the American Mathematical Society.

March 17, 2021 at 13:04

2 INTRODUCTION PKtoGF §1

1. Introduction. This program takes a packed, or PK file, and converts it into the standard GF format.
The resulting GF file is standard in every way, and is essentially identical to the GF file from which the PK file
was produced in the first place. Note that, however, GF to PK to GF is not an exact identity transformation,
as the new GF file will have a different preamble string and the actual minimum bounding box will be used,
instead of a possibly larger bounding box in the original GF file.

2. The banner string defined here should be changed whenever PKtoGF gets modified. You should update
the preamble comment as well.

define banner ≡ ´This is PKtoGF, Version 1.1´ { printed when the program starts }
define preamble comment ≡ ´PKtoGF 1.1 output´

define comm length ≡ 17

3. This program is written in standard Pascal, except where it is necessary to use extensions; for example,
PKtoGF must read files whose names are dynamically specified, and that would be impossible in pure Pascal.

define othercases ≡ others : { default for cases not listed explicitly }
define endcases ≡ end { follows the default case in an extended case statement }
format othercases ≡ else
format endcases ≡ end

4. Both the input and output come from binary files. On line interaction is handled through Pascal’s
standard input and output files.

define print ln (#) ≡ write ln (output , #)
define print (#) ≡ write (output , #)

program PKtoGF (input , output);
label 〈Labels in the outer block 5 〉
const 〈Constants in the outer block 6 〉
type 〈Types in the outer block 9 〉
var 〈Globals in the outer block 11 〉
procedure initialize ; { this procedure gets things started properly }

var i: integer ; { loop index for initializations }
begin print ln (banner);
〈Set initial values 12 〉
end;

5. If the program has to stop prematurely, it goes to the ‘final end ’.

define final end = 9999 { label for the end of it all }
〈Labels in the outer block 5 〉 ≡

final end ;

This code is used in section 4.

6. These constants determine the maximum length of a file name and the length of the terminal line, as
well as the maximum number of run counts allowed per line of the GF file. (We need this to implement repeat
counts.)

〈Constants in the outer block 6 〉 ≡
name length = 80; {maximum length of a file name }
terminal line length = 132; {maximum length of an input line }
max counts = 400; {maximum number of run counts in a raster line }

This code is used in section 4.

§7 PKtoGF INTRODUCTION 3

7. Here are some macros for common programming idioms.

define incr (#) ≡ #← # + 1 { increase a variable by unity }
define decr (#) ≡ #← #− 1 {decrease a variable by unity }
define do nothing ≡ { empty statement }

8. It is possible that a malformed packed file (heaven forbid!) or some other error might be detected by
this program. Such errors might occur in a deeply nested procedure, so the procedure called jump out has
been added to transfer to the very end of the program with an error message.

define abort (#) ≡
begin print ln (´ ´, #); jump out ;
end

procedure jump out ;
begin goto final end ;
end;

4 THE CHARACTER SET PKtoGF §9

9. The character set. Like all programs written with the WEB system, PKtoGF can be used with any
character set. But it uses ASCII code internally, because the programming for portable input-output is
easier when a fixed internal code is used.

The next few sections of PKtoGF have therefore been copied from the analogous ones in the WEB system
routines. They have been considerably simplified, since PKtoGF need not deal with the controversial ASCII
codes less than 4́0 .

〈Types in the outer block 9 〉 ≡
ASCII code = " " . . "~"; { a subrange of the integers }

See also sections 10 and 38.

This code is used in section 4.

10. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lower case letters. Nowadays, of course, we need to deal with both upper and
lower case alphabets in a convenient way, especially in a program like GFtoPK. So we shall assume that the
Pascal system being used for GFtoPK has a character set containing at least the standard visible characters
of ASCII code ("!" through "~").

Some Pascal compilers use the original name char for the data type associated with the characters in text
files, while other Pascals consider char to be a 64-element subrange of a larger data type that has some
other name. In order to accommodate this difference, we shall use the name text char to stand for the
data type of the characters in the output file. We shall also assume that text char consists of the elements
chr (first text char) through chr (last text char), inclusive. The following definitions should be adjusted if
necessary.

define text char ≡ char { the data type of characters in text files }
define first text char = 0 { ordinal number of the smallest element of text char }
define last text char = 127 { ordinal number of the largest element of text char }

〈Types in the outer block 9 〉 +≡
text file = packed file of text char ;

11. The GFtoPK processor converts between ASCII code and the user’s external character set by means of
arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

〈Globals in the outer block 11 〉 ≡
xord : array [text char] of ASCII code ; { specifies conversion of input characters }
xchr : array [0 . . 255] of text char ; { specifies conversion of output characters }
See also sections 39, 41, 48, 50, 55, 57, 63, 67, and 69.

This code is used in section 4.

§12 PKtoGF THE CHARACTER SET 5

12. Under our assumption that the visible characters of standard ASCII are all present, the following
assignment statements initialize the xchr array properly, without needing any system-dependent changes.

〈Set initial values 12 〉 ≡
for i← 0 to 3́7 do xchr [i]← ´?´;
xchr [4́0]← ´ ´; xchr [4́1]← ´!´; xchr [4́2]← ´"´; xchr [4́3]← ´#´; xchr [4́4]← ´$´;
xchr [4́5]← ´%´; xchr [4́6]← ´&´; xchr [4́7]← ´´´´;
xchr [5́0]← ´(´; xchr [5́1]← ´)´; xchr [5́2]← ´*´; xchr [5́3]← ´+´; xchr [5́4]← ´,´;
xchr [5́5]← ´−´; xchr [5́6]← ´.´; xchr [5́7]← ´/´;
xchr [6́0]← ´0´; xchr [6́1]← ´1´; xchr [6́2]← ´2´; xchr [6́3]← ´3´; xchr [6́4]← ´4´;
xchr [6́5]← ´5´; xchr [6́6]← ´6´; xchr [6́7]← ´7´;
xchr [7́0]← ´8´; xchr [7́1]← ´9´; xchr [7́2]← ´:´; xchr [7́3]← ´;´; xchr [7́4]← ´<´;
xchr [7́5]← ´=´; xchr [7́6]← ´>´; xchr [7́7]← ´?´;
xchr [1́00]← ´@´; xchr [1́01]← ´A´; xchr [1́02]← ´B´; xchr [1́03]← ´C´; xchr [1́04]← ´D´;
xchr [1́05]← ´E´; xchr [1́06]← ´F´; xchr [1́07]← ´G´;
xchr [1́10]← ´H´; xchr [1́11]← ´I´; xchr [1́12]← ´J´; xchr [1́13]← ´K´; xchr [1́14]← ´L´;
xchr [1́15]← ´M´; xchr [1́16]← ´N´; xchr [1́17]← ´O´;
xchr [1́20]← ´P´; xchr [1́21]← ´Q´; xchr [1́22]← ´R´; xchr [1́23]← ´S´; xchr [1́24]← ´T´;
xchr [1́25]← ´U´; xchr [1́26]← ´V´; xchr [1́27]← ´W´;
xchr [1́30]← ´X´; xchr [1́31]← ´Y´; xchr [1́32]← ´Z´; xchr [1́33]← ´[´; xchr [1́34]← ´\´;
xchr [1́35]← ´]´; xchr [1́36]← ´^´; xchr [1́37]← ´_´;
xchr [1́40]← ´`´; xchr [1́41]← ´a´; xchr [1́42]← ´b´; xchr [1́43]← ´c´; xchr [1́44]← ´d´;
xchr [1́45]← ´e´; xchr [1́46]← ´f´; xchr [1́47]← ´g´;
xchr [1́50]← ´h´; xchr [1́51]← ´i´; xchr [1́52]← ´j´; xchr [1́53]← ´k´; xchr [1́54]← ´l´;
xchr [1́55]← ´m´; xchr [1́56]← ´n´; xchr [1́57]← ´o´;
xchr [1́60]← ´p´; xchr [1́61]← ´q´; xchr [1́62]← ´r´; xchr [1́63]← ´s´; xchr [1́64]← ´t´;
xchr [1́65]← ´u´; xchr [1́66]← ´v´; xchr [1́67]← ´w´;
xchr [1́70]← ´x´; xchr [1́71]← ´y´; xchr [1́72]← ´z´; xchr [1́73]← ´{´; xchr [1́74]← ´|´;
xchr [1́75]← ´}´; xchr [1́76]← ´~´;
for i← 1́77 to 255 do xchr [i]← ´?´;

See also sections 13, 51, and 58.

This code is used in section 4.

13. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr .

〈Set initial values 12 〉 +≡
for i← first text char to last text char do xord [chr (i)]← 4́0 ;
for i← " " to "~" do xord [xchr [i]]← i;

6 GENERIC FONT FILE FORMAT PKtoGF §14

14. Generic font file format. The most important output produced by a typical run of METAFONT is
the “generic font” (GF) file that specifies the bit patterns of the characters that have been drawn. The term
generic indicates that this file format doesn’t match the conventions of any name-brand manufacturer; but
it is easy to convert GF files to the special format required by almost all digital phototypesetting equipment.
There’s a strong analogy between the DVI files written by TEX and the GF files written by METAFONT; and,
in fact, the file formats have a lot in common.

A GF file is a stream of 8-bit bytes that may be regarded as a series of commands in a machine-like language.
The first byte of each command is the operation code, and this code is followed by zero or more bytes that
provide parameters to the command. The parameters themselves may consist of several consecutive bytes;
for example, the ‘boc ’ (beginning of character) command has six parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters can be either
positive or negative, hence they range in value from −231 to 231 − 1. As in TFM files, numbers that occupy
more than one byte position appear in BigEndian order, and negative numbers appear in two’s complement
notation.

A GF file consists of a “preamble,” followed by a sequence of one or more “characters,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that introduce the file; this must
come first. Each “character” consists of a boc command, followed by any number of other commands that
specify “black” pixels, followed by an eoc command. The characters appear in the order that METAFONT

generated them. If we ignore no-op commands (which are allowed between any two commands in the file),
each eoc command is immediately followed by a boc command, or by a post command; in the latter case,
there are no more characters in the file, and the remaining bytes form the postamble. Further details about
the postamble will be explained later.

Some parameters in GF commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first file byte is number 0, then comes number 1, and so on.

15. The GF format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information relative instead of absolute. When a GF-reading program
reads the commands for a character, it keeps track of two quantities: (a) the current column number, m; and
(b) the current row number, n. These are 32-bit signed integers, although most actual font formats produced
from GF files will need to curtail this vast range because of practical limitations. (METAFONT output will
never allow |m| or |n| to get extremely large, but the GF format tries to be more general.)

How do GF’s row and column numbers correspond to the conventions of TEX and METAFONT? Well, the
“reference point” of a character, in TEX’s view, is considered to be at the lower left corner of the pixel in
row 0 and column 0. This point is the intersection of the baseline with the left edge of the type; it corresponds
to location (0, 0) in METAFONT programs. Thus the pixel in GF row 0 and column 0 is METAFONT’s unit
square, comprising the region of the plane whose coordinates both lie between 0 and 1. The pixel in GF

row n and column m consists of the points whose METAFONT coordinates (x, y) satisfy m ≤ x ≤ m + 1
and n ≤ y ≤ n + 1. Negative values of m and x correspond to columns of pixels left of the reference point;
negative values of n and y correspond to rows of pixels below the baseline.

Besides m and n, there’s also a third aspect of the current state, namely the paint switch , which is
always either black or white . Each paint command advances m by a specified amount d, and blackens
the intervening pixels if paint switch = black ; then the paint switch changes to the opposite state. GF’s
commands are designed so that m will never decrease within a row, and n will never increase within a
character; hence there is no way to whiten a pixel that has been blackened.

§16 PKtoGF GENERIC FONT FILE FORMAT 7

16. Here is a list of all the commands that may appear in a GF file. Each command is specified by its
symbolic name (e.g., boc), its opcode byte (e.g., 67), and its parameters (if any). The parameters are followed
by a bracketed number telling how many bytes they occupy; for example, ‘d[2]’ means that parameter d is
two bytes long.

paint 0 0. This is a paint command with d = 0; it does nothing but change the paint switch from black
to white or vice versa.

paint 1 through paint 63 (opcodes 1 to 63). These are paint commands with d = 1 to 63, defined as
follows: If paint switch = black , blacken d pixels of the current row n, in columns m through m + d − 1
inclusive. Then, in any case, complement the paint switch and advance m by d.

paint1 64 d[1]. This is a paint command with a specified value of d; METAFONT uses it to paint when
64 ≤ d < 256.

paint2 65 d[2]. Same as paint1 , but d can be as high as 65535.

paint3 66 d[3]. Same as paint1 , but d can be as high as 224 − 1. METAFONT never needs this command,
and it is hard to imagine anybody making practical use of it; surely a more compact encoding will be
desirable when characters can be this large. But the command is there, anyway, just in case.

boc 67 c[4] p[4] min m [4] max m [4] min n [4] max n [4]. Beginning of a character: Here c is the character
code, and p points to the previous character beginning (if any) for characters having this code number
modulo 256. (The pointer p is −1 if there was no prior character with an equivalent code.) The values
of registers m and n defined by the instructions that follow for this character must satisfy min m ≤ m ≤
max m and min n ≤ n ≤ max n . (The values of max m and min n need not be the tightest bounds
possible.) When a GF-reading program sees a boc , it can use min m , max m , min n , and max n to
initialize the bounds of an array. Then it sets m← min m , n← max n , and paint switch ← white .

boc1 68 c[1] del m [1] max m [1] del n [1] max n [1]. Same as boc , but p is assumed to be −1; also
del m = max m − min m and del n = max n − min n are given instead of min m and min n . The
one-byte parameters must be between 0 and 255, inclusive. (This abbreviated boc saves 19 bytes per
character, in common cases.)

eoc 69. End of character: All pixels blackened so far constitute the pattern for this character. In particular,
a completely blank character might have eoc immediately following boc .

skip0 70. Decrease n by 1 and set m← min m , paint switch ← white . (This finishes one row and begins
another, ready to whiten the leftmost pixel in the new row.)

skip1 71 d[1]. Decrease n by d + 1, set m ← min m , and set paint switch ← white . This is a way to
produce d all-white rows.

skip2 72 d[2]. Same as skip1 , but d can be as large as 65535.

skip3 73 d[3]. Same as skip1 , but d can be as large as 224 − 1. METAFONT obviously never needs this
command.

new row 0 74. Decrease n by 1 and set m ← min m , paint switch ← black . (This finishes one row and
begins another, ready to blacken the leftmost pixel in the new row.)

new row 1 through new row 164 (opcodes 75 to 238). Same as new row 0 , but with m ← min m + 1
through min m + 164, respectively.

xxx1 239 k[1] x[k]. This command is undefined in general; it functions as a (k + 2)-byte no op unless
special GF-reading programs are being used. METAFONT generates xxx commands when encountering
a special string; this occurs in the GF file only between characters, after the preamble, and before the
postamble. However, xxx commands might appear anywhere in GF files generated by other processors. It
is recommended that x be a string having the form of a keyword followed by possible parameters relevant
to that keyword.

xxx2 240 k[2] x[k]. Like xxx1 , but 0 ≤ k < 65536.

xxx3 241 k[3] x[k]. Like xxx1 , but 0 ≤ k < 224. METAFONT uses this when sending a special string
whose length exceeds 255.

8 GENERIC FONT FILE FORMAT PKtoGF §16

xxx4 242 k[4] x[k]. Like xxx1 , but k can be ridiculously large; k mustn’t be negative.

yyy 243 y[4]. This command is undefined in general; it functions as a 5-byte no op unless special GF-
reading programs are being used. METAFONT puts scaled numbers into yyy ’s, as a result of numspecial
commands; the intent is to provide numeric parameters to xxx commands that immediately precede.

no op 244. No operation, do nothing. Any number of no op ’s may occur between GF commands, but a
no op cannot be inserted between a command and its parameters or between two parameters.

char loc 245 c[1] dx [4] dy [4] w[4] p[4]. This command will appear only in the postamble, which will be
explained shortly.

char loc0 246 c[1] dm [1] w[4] p[4]. Same as char loc , except that dy is assumed to be zero, and the value
of dx is taken to be 65536 ∗ dm , where 0 ≤ dm < 256.

pre 247 i[1] k[1] x[k]. Beginning of the preamble; this must come at the very beginning of the file.
Parameter i is an identifying number for GF format, currently 131. The other information is merely
commentary; it is not given special interpretation like xxx commands are. (Note that xxx commands may
immediately follow the preamble, before the first boc .)

post 248. Beginning of the postamble, see below.

post post 249. Ending of the postamble, see below.

Commands 250–255 are undefined at the present time.

define gf id byte = 131 { identifies the kind of GF files described here }

17. Here are the opcodes that GFtoPK actually refers to.

define paint 0 = 0 { beginning of the paint commands }
define paint1 = 64 {move right a given number of columns, then black↔ white }
define boc = 67 { beginning of a character }
define boc1 = 68 { abbreviated boc }
define eoc = 69 { end of a character }
define skip0 = 70 { skip no blank rows }
define skip1 = 71 { skip over blank rows }
define new row 0 = 74 {move down one row and then right }
define max new row = 238 {move down one row and then right }
define no op = 247 {noop }
define xxx1 = 239 { for special strings }
define yyy = 243 { for numspecial numbers }
define nop = 244 { no operation }
define char loc = 245 { character locators in the postamble }
define char loc0 = 246 { character locators in the postamble }
define pre = 247 { preamble }
define post = 248 {postamble beginning }
define post post = 249 { postamble ending }
define undefined commands ≡ 250, 251, 252, 253, 254, 255

§18 PKtoGF GENERIC FONT FILE FORMAT 9

18. The last character in a GF file is followed by ‘post ’; this command introduces the postamble, which
summarizes important facts that METAFONT has accumulated. The postamble has the form

post p[4] ds [4] cs [4] hppp [4] vppp [4] min m [4] max m [4] min n [4] max n [4]
〈 character locators 〉
post post q[4] i[1] 223’s[≥4]

Here p is a pointer to the byte following the final eoc in the file (or to the byte following the preamble, if
there are no characters); it can be used to locate the beginning of xxx commands that might have preceded
the postamble. The ds and cs parameters give the design size and check sum, respectively, which are exactly
the values put into the header of any TFM file that shares information with this GF file. Parameters hppp
and vppp are the ratios of pixels per point, horizontally and vertically, expressed as scaled integers (i.e.,
multiplied by 216); they can be used to correlate the font with specific device resolutions, magnifications,
and “at sizes.” Then come min m , max m , min n , and max n , which bound the values that registers m
and n assume in all characters in this GF file. (These bounds need not be the best possible; max m and
min n may, on the other hand, be tighter than the similar bounds in boc commands. For example, some
character may have min n = −100 in its boc , but it might turn out that n never gets lower than −50 in any
character; then min n can have any value ≤ −50. If there are no characters in the file, it’s possible to have
min m > max m and/or min n > max n .)

19. Character locators are introduced by char loc commands, which specify a character residue c, character
escapements (dx , dy), a character width w, and a pointer p to the beginning of that character. (If two or
more characters have the same code c modulo 256, only the last will be indicated; the others can be located
by following backpointers. Characters whose codes differ by a multiple of 256 are assumed to share the
same font metric information, hence the TFM file contains only residues of character codes modulo 256. This
convention is intended for oriental languages, when there are many character shapes but few distinct widths.)

The character escapements (dx , dy) are the values of METAFONT’s chardx and chardy parameters; they
are in units of scaled pixels; i.e., dx is in horizontal pixel units times 216, and dy is in vertical pixel units
times 216. This is the intended amount of displacement after typesetting the character; for DVI files, dy
should be zero, but other document file formats allow nonzero vertical escapement.

The character width w duplicates the information in the TFM file; it is 220 times the ratio of the true width
to the font’s design size.

The backpointer p points to the character’s boc , or to the first of a sequence of consecutive xxx or yyy
or no op commands that immediately precede the boc , if such commands exist; such “special” commands
essentially belong to the characters, while the special commands after the final character belong to the
postamble (i.e., to the font as a whole). This convention about p applies also to the backpointers in boc
commands, even though it wasn’t explained in the description of boc .

Pointer p might be −1 if the character exists in the TFM file but not in the GF file. This unusual situation
can arise in METAFONT output if the user had proofing < 0 when the character was being shipped out, but
then made proofing ≥ 0 in order to get a GF file.

10 GENERIC FONT FILE FORMAT PKtoGF §20

20. The last part of the postamble, following the post post byte that signifies the end of the character
locators, contains q, a pointer to the post command that started the postamble. An identification byte, i,
comes next; this currently equals 131, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., 3́37 in
octal). METAFONT puts out four to seven of these trailing bytes, until the total length of the file is a multiple
of four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s
is allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the
very end.

This curious way to finish off a GF file makes it feasible for GF-reading programs to find the postamble first,
on most computers, even though METAFONT wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the GF reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read q, and
move to byte q of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the GF reader can discover all the information needed for individual characters.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities,
so GF format has been designed to work most efficiently with modern operating systems. GFtoPK first reads
the postamble, and then scans the file from front to back.

§21 PKtoGF PACKED FILE FORMAT 11

21. Packed file format. The packed file format is a compact representation of the data contained in
a GF file. The information content is the same, but packed (PK) files are almost always less than half the
size of their GF counterparts. They are also easier to convert into a raster representation because they do
not have a profusion of paint , skip , and new row commands to be separately interpreted. In addition, the
PK format expressly forbids special commands within a character. The minimum bounding box for each
character is explicit in the format, and does not need to be scanned for as in the GF format. Finally, the
width and escapement values are combined with the raster information into character “packets”, making it
simpler in many cases to process a character.

A PK file is organized as a stream of 8-bit bytes. At times, these bytes might be split into 4-bit nybbles or
single bits, or combined into multiple byte parameters. When bytes are split into smaller pieces, the ‘first’
piece is always the most significant of the byte. For instance, the first bit of a byte is the bit with value 128;
the first nybble can be found by dividing a byte by 16. Similarly, when bytes are combined into multiple
byte parameters, the first byte is the most significant of the parameter. If the parameter is signed, it is
represented by two’s-complement notation.

The set of possible eight-bit values are separated into two sets, those that introduce a character definition,
and those that do not. The values that introduce a character definition comprise the range from 0 to 239;
byte values above 239 are interpreted commands. Bytes which introduce character definitions are called
flag bytes, and various fields within the byte indicate various things about how the character definition is
encoded. Command bytes have zero or more parameters, and can never appear within a character definition
or between parameters of another command, where they would be interpreted as data.

A PK file consists of a preamble, followed by a sequence of one or more character definitions, followed
by a postamble. The preamble command must be the first byte in the file, followed immediately by its
parameters. Any number of character definitions may follow, and any command but the preamble command
and the postamble command may occur between character definitions. The very last command in the file
must be the postamble.

22. The packed file format is intended to be easy to read and interpret by device drivers. The small size of
the file reduces the input/output overhead each time a font is defined. For those drivers that load and save
each font file into memory, the small size also helps reduce the memory requirements. The length of each
character packet is specified, allowing the character raster data to be loaded into memory by simply counting
bytes, rather than interpreting each command; then, each character can be interpreted on a demand basis.
This also makes it possible for a driver to skip a particular character quickly if it knows that the character
is unused.

12 PACKED FILE FORMAT PKtoGF §23

23. First, the command bytes shall be presented; then the format of the character definitions will be
defined. Eight of the possible sixteen commands (values 240 through 255) are currently defined; the others
are reserved for future extensions. The commands are listed below. Each command is specified by its
symbolic name (e.g., pk no op), its opcode byte, and any parameters. The parameters are followed by a
bracketed number telling how many bytes they occupy, with the number preceded by a plus sign if it is a
signed quantity. (Four byte quantities are always signed, however.)

pk xxx1 240 k[1] x[k]. This command is undefined in general; it functions as a (k + 2)-byte no op unless
special PK-reading programs are being used. METAFONT generates xxx commands when encountering a
special string. It is recommended that x be a string having the form of a keyword followed by possible
parameters relevant to that keyword.

pk xxx2 241 k[2] x[k]. Like pk xxx1 , but 0 ≤ k < 65536.

pk xxx3 242 k[3] x[k]. Like pk xxx1 , but 0 ≤ k < 224. METAFONT uses this when sending a special string
whose length exceeds 255.

pk xxx4 243 k[4] x[k]. Like pk xxx1 , but k can be ridiculously large; k mustn’t be negative.

pk yyy 244 y[4]. This command is undefined in general; it functions as a five-byte no op unless special PK
reading programs are being used. METAFONT puts scaled numbers into yyy ’s, as a result of numspecial
commands; the intent is to provide numeric parameters to xxx commands that immediately precede.

pk post 245. Beginning of the postamble. This command is followed by enough pk no op commands to
make the file a multiple of four bytes long. Zero through three bytes are usual, but any number is allowed.
This should make the file easy to read on machines which pack four bytes to a word.

pk no op 246. No operation, do nothing. Any number of pk no op ’s may appear between PK commands,
but a pk no op cannot be inserted between a command and its parameters, between two parameters, or
inside a character definition.

pk pre 247 i[1] k[1] x[k] ds [4] cs [4] hppp [4] vppp [4]. Preamble command. Here, i is the identification byte
of the file, currently equal to 89. The string x is merely a comment, usually indicating the source of the
PK file. The parameters ds and cs are the design size of the file in 1/220 points, and the checksum of the
file, respectively. The checksum should match the TFM file and the GF files for this font. Parameters hppp
and vppp are the ratios of pixels per point, horizontally and vertically, multiplied by 216; they can be used
to correlate the font with specific device resolutions, magnifications, and “at sizes”. Usually, the name of
the PK file is formed by concatenating the font name (e.g., cmr10) with the resolution at which the font is
prepared in pixels per inch multiplied by the magnification factor, and the letters PK. For instance, cmr10
at 300 dots per inch should be named CMR10.300PK; at one thousand dots per inch and magstephalf, it
should be named CMR10.1095PK.

24. We put a few of the above opcodes into definitions for symbolic use by this program.

define pk id = 89 { the version of PK file described }
define pk xxx1 = 240 { special commands }
define pk yyy = 244 {numspecial commands }
define pk post = 245 {postamble }
define pk no op = 246 {no operation }
define pk pre = 247 { preamble }

§25 PKtoGF PACKED FILE FORMAT 13

25. The PK format has two conflicting goals; to pack character raster and size information as compactly as
possible, while retaining ease of translation into raster and other forms. A suitable compromise was found
in the use of run-encoding of the raster information. Instead of packing the individual bits of the character,
we instead count the number of consecutive ‘black’ or ‘white’ pixels in a horizontal raster row, and then
encode this number. Run counts are found for each row, from the top of the character to the bottom.
This is essentially the way the GF format works. Instead of presenting each row individually, however, let
us concatenate all of the horizontal raster rows into one long string of pixels, and encode this row. With
knowledge of the width of the bit-map, the original character glyph can be easily reconstructed. In addition,
we do not need special commands to mark the end of one row and the beginning of the next.

Next, let us put the burden of finding the minimum bounding box on the part of the font generator, since
the characters will usually be used much more often than they are generated. The minimum bounding box
is the smallest rectangle which encloses all ‘black’ pixels of a character. Let us also eliminate the need for
a special end of character marker, by supplying exactly as many bits as are required to fill the minimum
bounding box, from which the end of the character is implicit.

Let us next consider the distribution of the run counts. Analysis of several dozen pixel files at 300 dots per
inch yields a distribution peaking at four, falling off slowly until ten, then a bit more steeply until twenty,
and then asymptotically approaching the horizontal. Thus, the great majority of our run counts will fit in a
four-bit nybble. The eight-bit byte is attractive for our run-counts, as it is the standard on many systems;
however, the wasted four bits in the majority of cases seems a high price to pay. Another possibility is to
use a Huffman-type encoding scheme with a variable number of bits for each run-count; this was rejected
because of the overhead in fetching and examining individual bits in the file. Thus, the character raster
definitions in the PK file format are based on the four-bit nybble.

26. The analysis of the pixel files yielded another interesting statistic: fully 37% of the raster rows were
duplicates of the previous row. Thus, the PK format allows the specification of repeat counts, which indicate
how many times a horizontal raster row is to be repeated. These repeated rows are taken out of the character
glyph before individual rows are concatenated into the long string of pixels.

For elegance, we disallow a run count of zero. The case of a null raster description should be gleaned from
the character width and height being equal to zero, and no raster data should be read. No other zero counts
are ever necessary. Also, in the absence of repeat counts, the repeat value is set to be zero (only the original
row is sent.) If a repeat count is seen, it takes effect on the current row. The current row is defined as the
row on which the first pixel of the next run count will lie. The repeat count is set back to zero when the
last pixel in the current row is seen, and the row is sent out.

This poses a problem for entirely black and entirely white rows, however. Let us say that the current
row ends with four white pixels, and then we have five entirely empty rows, followed by a black pixel at the
beginning of the next row, and the character width is ten pixels. We would like to use a repeat count, but
there is no legal place to put it. If we put it before the white run count, it will apply to the current row. If
we put it after, it applies to the row with the black pixel at the beginning. Thus, entirely white or entirely
black repeated rows are always packed as large run counts (in this case, a white run count of 54) rather than
repeat counts.

27. Now let us turn our attention to the actual packing of the run counts and repeat counts into nybbles.
There are only sixteen possible nybble values. We need to indicate run counts and repeat counts. Since the
run counts are much more common, we will devote the majority of the nybble values to them. We therefore
indicate a repeat count by a nybble of 14 followed by a packed number, where a packed number will be
explained later. Since the repeat count value of one is so common, we indicate a repeat one command by a
single nybble of 15. A 14 followed by the packed number 1 is still legal for a repeat one count, however. The
run counts are coded directly as packed numbers.

For packed numbers, therefore, we have the nybble values 0 through 13. We need to represent the positive
integers up to, say, 231 − 1. We would like the more common smaller numbers to take only one or two
nybbles, and the infrequent large numbers to take three or more. We could therefore allocate one nybble
value to indicate a large run count taking three or more nybbles. We do this with the value 0.

14 PACKED FILE FORMAT PKtoGF §28

28. We are left with the values 1 through 13. We can allocate some of these, say dyn f , to be one-nybble
run counts. These will work for the run counts 1 . . dyn f . For subsequent run counts, we will use a nybble
greater than dyn f , followed by a second nybble, whose value can run from 0 through 15. Thus, the two-byte
nybble values will run from dyn f + 1 . . (13− dyn f) ∗ 16 + dyn f . We have our definition of large run count
values now, being all counts greater than (13− dyn f) ∗ 16 + dyn f .

We can analyze our several dozen pixel files and determine an optimal value of dyn f , and use this value
for all of the characters. Unfortunately, values of dyn f that pack small characters well tend to pack the
large characters poorly, and values that pack large characters well are not efficient for the smaller characters.
Thus, we choose the optimal dyn f on a character basis, picking the value which will pack each individual
character in the smallest number of nybbles. Legal values of dyn f run from 0 (with no one-byte run counts)
to 13 (with no two-byte run counts).

29. Our only remaining task in the coding of packed numbers is the large run counts. We use a scheme
suggested by D. E. Knuth which will simply and elegantly represent arbitrarily large values. The general
scheme to represent an integer i is to write its hexadecimal representation, with leading zeros removed.
Then we count the number of digits, and prepend one less than that many zeros before the hexadecimal
representation. Thus, the values from one to fifteen occupy one nybble; the values sixteen through 255
occupy three, the values 256 through 4095 require five, etc.

For our purposes, however, we have already represented the numbers one through (13−dyn f)∗16+dyn f .
In addition, the one-nybble values have already been taken by our other commands, which means that only
the values from sixteen up are available to us for long run counts. Thus, we simply normalize our long run
counts, by subtracting (13−dyn f)∗16+dyn f +1 and adding 16, and then representing the result according
to the scheme above.

30. The final algorithm for decoding the run counts based on the above scheme might look like this,
assuming a procedure called pk nyb is available to get the next nybble from the file, and assuming that the
global repeat count indicates whether a row needs to be repeated. Note that this routine is recursive, but
since a repeat count can never directly follow another repeat count, it can only be recursive to one level.

〈Packed number procedure 30 〉 ≡
function pk packed num : integer ;

var i, j, k: integer ;
begin i← get nyb ;
if i = 0 then

begin repeat j ← get nyb ; incr (i);
until j 6= 0;
while i > 0 do

begin j ← j ∗ 16 + get nyb ; decr (i);
end;

pk packed num ← j − 15 + (13− dyn f) ∗ 16 + dyn f ;
end

else if i ≤ dyn f then pk packed num ← i
else if i < 14 then pk packed num ← (i− dyn f − 1) ∗ 16 + get nyb + dyn f + 1

else begin if i = 14 then repeat count ← pk packed num
else repeat count ← 1;
pk packed num ← pk packed num ;
end;

end;

This code is used in section 62.

§31 PKtoGF PACKED FILE FORMAT 15

31. For low resolution fonts, or characters with ‘gray’ areas, run encoding can often make the character
many times larger. Therefore, for those characters that cannot be encoded efficiently with run counts, the PK
format allows bit-mapping of the characters. This is indicated by a dyn f value of 14. The bits are packed
tightly, by concatenating all of the horizontal raster rows into one long string, and then packing this string
eight bits to a byte. The number of bytes required can be calculated by (width ∗ height + 7) div 8. This
format should only be used when packing the character by run counts takes more bytes than this, although,
of course, it is legal for any character. Any extra bits in the last byte should be set to zero.

32. At this point, we are ready to introduce the format for a character descriptor. It consists of three
parts: a flag byte, a character preamble, and the raster data. The most significant four bits of the flag byte
yield the dyn f value for that character. (Notice that only values of 0 through 14 are legal for dyn f , with
14 indicating a bit mapped character; thus, the flag bytes do not conflict with the command bytes, whose
upper nybble is always 15.) The next bit (with weight 8) indicates whether the first run count is a black
count or a white count, with a one indicating a black count. For bit-mapped characters, this bit should be
set to a zero. The next bit (with weight 4) indicates whether certain later parameters (referred to as size
parameters) are given in one-byte or two-byte quantities, with a one indicating that they are in two-byte
quantities. The last two bits are concatenated on to the beginning of the length parameter in the character
preamble, which will be explained below.

However, if the last three bits of the flag byte are all set (normally indicating that the size parameters
are two-byte values and that a 3 should be prepended to the length parameter), then a long format of the
character preamble should be used instead of one of the short forms.

Therefore, there are three formats for the character preamble, and which one is used depends on the least
significant three bits of the flag byte. If the least significant three bits are in the range zero through three, the
short format is used. If they are in the range four through six, the extended short format is used. Otherwise,
if the least significant bits are all set, then the long form of the character preamble is used. The preamble
formats are explained below.

Short form: flag [1] pl [1] cc [1] tfm [3] dm [1] w[1] h[1] hoff [+1] voff [+1]. If this format of the character
preamble is used, the above parameters must all fit in the indicated number of bytes, signed or unsigned as
indicated. Almost all of the standard TEX font characters fit; the few exceptions are fonts such as aminch.

Extended short form: flag [1] pl [2] cc [1] tfm [3] dm [2] w[2] h[2] hoff [+2] voff [+2]. Larger characters use
this extended format.

Long form: flag [1] pl [4] cc [4] tfm [4] dx [4] dy [4] w[4] h[4] hoff [4] voff [4]. This is the general format which
allows all of the parameters of the GF file format, including vertical escapement.

The flag parameter is the flag byte. The parameter pl (packet length) contains the offset of the byte
following this character descriptor, with respect to the beginning of the tfm width parameter. This is given
so a PK reading program can, once it has read the flag byte, packet length, and character code (cc), skip over
the character by simply reading this many more bytes. For the two short forms of the character preamble,
the last two bits of the flag byte should be considered the two most-significant bits of the packet length. For
the short format, the true packet length might be calculated as (flag mod 4) ∗ 256 + pl ; for the extended
format, it might be calculated as (flag mod 4) ∗ 65536 + pl .

The w parameter is the width and the h parameter is the height in pixels of the minimum bounding box.
The dx and dy parameters are the horizontal and vertical escapements, respectively. In the short formats,
dy is assumed to be zero and dm is dy but in pixels; in the long format, dx and dy are both in pixels
multiplied by 216. The hoff is the horizontal offset from the upper left pixel to the reference pixel; the voff
is the vertical offset. They are both given in pixels, with right and down being positive. The reference pixel
is the pixel which occupies the unit square in METAFONT; the METAFONT reference point is the lower left
hand corner of this pixel. (See the example below.)

16 PACKED FILE FORMAT PKtoGF §33

33. TEX requires that all characters which have the same character codes modulo 256 also have the same
tfm widths, and escapement values. The PK format does not itself make this a requirement, but in order for
the font to work correctly with the TEX software, this constraint should be observed.

Following the character preamble is the raster information for the character, packed by run counts or by
bits, as indicated by the flag byte. If the character is packed by run counts and the required number of
nybbles is odd, then the last byte of the raster description should have a zero for its least significant nybble.

34. As an illustration of the PK format, the character Ξ from the font amr10 at 300 dots per inch will
be encoded. (Note: amr fonts are obsolete, and the reference to this character is retained from an older
version of the Computer Modern fonts solely for illustration.) This character was chosen because it illustrates
some of the borderline cases. The raster for the character looks like this (the row numbers are chosen for
convenience, and are not METAFONT’s row numbers.)

0 MMMMMMMMMMMMMMMMMMMM
1 MMMMMMMMMMMMMMMMMMMM
2 MMMMMMMMMMMMMMMMMMMM
3 MMMMMMMMMMMMMMMMMMMM
4 MM MM
5 MM MM
6 MM MM
7
8
9 MM MM

10 MM MM
11 MM MM
12 MMMMMMMMMMMMMMMM
13 MMMMMMMMMMMMMMMM
14 MMMMMMMMMMMMMMMM
15 MMMMMMMMMMMMMMMM
16 MM MM
17 MM MM
18 MM MM
19
20
21
22 MM MM
23 MM MM
24 MM MM
25 MMMMMMMMMMMMMMMMMMMM
26 MMMMMMMMMMMMMMMMMMMM
27 MMMMMMMMMMMMMMMMMMMM
28 * MMMMMMMMMMMMMMMMMMMM

The width of the minimum bounding box for this character is 20; its height is 29. The ‘*’ represents the
reference pixel; notice how it lies outside the minimum bounding box. The hoff value is −2, and the voff
is 28.

The first task is to calculate the run counts and repeat counts. The repeat counts are placed at the first
transition (black to white or white to black) in a row, and are enclosed in brackets. White counts are enclosed
in parentheses. It is relatively easy to generate the counts list:

82 [2] (16) 2 (42) [2] 2 (12) 2 (4) [3]
16 (4) [2] 2 (12) 2 (62) [2] 2 (16) 82

Note that any duplicated rows that are not all white or all black are removed before the repeat counts are
calculated. The rows thus removed are rows 5, 6, 10, 11, 13, 14, 15, 17, 18, 23, and 24.

§35 PKtoGF PACKED FILE FORMAT 17

35. The next step in the encoding of this character is to calculate the optimal value of dyn f . The details
of how this calculation is done are not important here; suffice it to say that there is a simple algorithm which
in one pass over the count list can determine the best value of dyn f . For this character, the optimal value
turns out to be 8 (atypically low). Thus, all count values less than or equal to 8 are packed in one nybble;
those from nine to (13 − 8) ∗ 16 + 8 or 88 are packed in two nybbles. The run encoded values now become
(in hex, separated according to the above list):

D9 E2 97 2 B1 E2 2 93 2 4 E3

97 4 E2 2 93 2 C5 E2 2 97 D9

which comes to 36 nybbles, or 18 bytes. This is shorter than the 73 bytes required for the bit map, so we
use the run count packing.

36. The short form of the character preamble is used because all of the parameters fit in their respective
lengths. The packet length is therefore 18 bytes for the raster, plus eight bytes for the character preamble
parameters following the character code, or 26. The tfm width for this character is 640796, or 9C71C in
hexadecimal. The horizontal escapement is 25 pixels. The flag byte is 88 hex, indicating the short preamble,
the black first count, and the dyn f value of 8. The final total character packet, in hexadecimal, is:

Flag byte 88

Packet length 1A

Character code 04

tfm width 09 C7 1C

Horizontal escapement (pixels) 19

Width of bit map 14

Height of bit map 1D

Horizontal offset (signed) FE

Vertical offset 1C

Raster data D9 E2 97

2B 1E 22

93 24 E3

97 4E 22

93 2C 5E

22 97 D9

37. This format was written by Tomas Rokicki in August, 1985.

18 INPUT AND OUTPUT PKtoGF §38

38. Input and output. There are two types of files that this program must deal with—standard text
files and files of bytes (packed files and generic font files.) For our purposes, we shall consider an eight-bit
byte to consist of the values 0 . . 255. If your system does not pack these values to a byte, it is no major
difficulty; you must only insure that the input function pk byte can read packed bytes, and that the output
function gf byte packs the bytes to be shipped.

〈Types in the outer block 9 〉 +≡
eight bits = 0 . . 255; { packed file byte }
byte file = packed file of eight bits ; { for packed file words }

39. 〈Globals in the outer block 11 〉 +≡
gf file , pk file : byte file ; { the I/O streams }

40. To prepare these files for input, we reset them. An extension of Pascal is needed in the case of gf file ,
since we want to associate it with external files whose names are specified dynamically (i.e., not known at
compile time). The following code assumes that ‘reset (f, s)’ does this, when f is a file variable and s is
a string variable that specifies the file name. If eof (f) is true immediately after reset (f, s) has acted, we
assume that no file named s is accessible.

procedure open gf file ; { prepares to write packed bytes in a gf file }
begin rewrite (gf file , gf name); gf loc ← 0;
end;

procedure open pk file ; {prepares the input for reading }
begin reset (pk file , pk name); pk loc ← 0;
end;

41. We need a place to store the names of the input and output files, as well as a byte counter for the
output file.

〈Globals in the outer block 11 〉 +≡
gf name , pk name : packed array [1 . . name length] of char ; { names of input and output files }
gf loc , pk loc : integer ; { how many bytes have we sent? }

42. We need a procedure that will write a byte to the GF file. If the particular system requires buffering,
here is the place to do it.

procedure gf byte (i : integer);
begin gf file↑ ← i; put (gf file); incr (gf loc);
end;

43. We also need a function that will get a single byte from the PK file. Again, buffering may be done in
this procedure.

function pk byte : eight bits ;
var nybble , temp : eight bits ;
begin temp ← pk file↑; get (pk file); pk loc ← pk loc + 1; pk byte ← temp ;
end;

44. Now we are ready to open the files and write the identification of the pixel file.

〈Open files 44 〉 ≡
open pk file ; open gf file

This code is used in section 73.

§45 PKtoGF INPUT AND OUTPUT 19

45. As we are reading the packed file, we often need to fetch 16 and 32 bit quantities. Here we have two
procedures to do this.

function signed byte : integer ;
var a: integer ;
begin a← pk byte ;
if a > 127 then a← a− 256;
signed byte ← a;
end;

function get 16 : integer ;
var a: integer ;
begin a← pk byte ; get 16 ← a ∗ 256 + pk byte ;
end;

function signed 16 : integer ;
var a: integer ;
begin a← signed byte ; signed 16 ← a ∗ 256 + pk byte ;
end;

function get 32 : integer ;
var a: integer ;
begin a← get 16 ;
if a > 32767 then a← a− 65536;
get 32 ← a ∗ 65536 + get 16 ;
end;

46. As we are writing the GF file, we often need to write signed and unsigned, one, two, three, and four-byte
values. These routines give us that capability.

procedure gf sbyte (i : integer);
begin if i < 0 then i← i + 256;
gf byte (i);
end;

procedure gf 16 (i : integer);
begin gf byte (i div 256); gf byte (i mod 256);
end;

procedure gf 24 (i : integer);
begin gf byte (i div 65536); gf 16 (i mod 65536);
end;

procedure gf quad (i : integer);
begin if i ≥ 0 then

begin gf byte (i div 16777216);
end

else begin i← (i + 1073741824) + 1073741824; gf byte (128 + (i div 16777216));
end;

gf 24 (i mod 16777216);
end;

20 CHARACTER UNPACKING PKtoGF §47

47. Character unpacking. Now we deal with unpacking characters into the GF representation.

〈Unpack and write character 47 〉 ≡
dyn f ← flag byte div 16; flag byte ← flag byte mod 16; turn on ← flag byte ≥ 8;
if turn on then flag byte ← flag byte − 8;
if flag byte = 7 then 〈Read long character preamble 52 〉
else if flag byte > 3 then 〈Read extended short character preamble 53 〉

else 〈Read short character preamble 54 〉;
〈Calculate and check min m , max m , min n , and max n 56 〉;
〈Save character locator 60 〉;
〈Write character preamble 59 〉;
〈Read and translate raster description 65 〉;
gf byte (eoc); last eoc ← gf loc ;
if end of packet 6= pk loc then abort (´Bad pk file! Bad packet length.´)

This code is used in section 73.

48. We need a whole lot of globals used but not defined up there.

〈Globals in the outer block 11 〉 +≡
i, j: integer ; { index pointers }
end of packet : integer ; {where we expect the end of the packet to be }
dyn f : integer ; { dynamic packing variable }
car : integer ; { the character we are reading }
tfm width : integer ; { the TFM width of the current character }
x off , y off : integer ; { the offsets for the character }

49. Now we read and check the preamble of the PK file. In the preamble, we find the hppp , design size ,
checksum . We write the relevant parameters to the GF file, including the preamble comment.

〈Read preamble 49 〉 ≡
if pk byte 6= pk pre then abort (´Bad pk file! pre command missing.´);
gf byte (pre);
if pk byte 6= pk id then abort (´Wrong version of packed file!.´);
gf byte (gf id byte); j ← pk byte ;
for i← 1 to j do hppp ← pk byte ;
gf byte (comm length);
for i← 1 to comm length do gf byte (xord [comment [i]]);
design size ← get 32 ; checksum ← get 32 ; hppp ← get 32 ; vppp ← get 32 ;
if hppp 6= vppp then print ln (´Warning: aspect ratio not 1:1!´);
magnification ← round (hppp ∗ 72.27 ∗ 5/65536); last eoc ← gf loc

This code is used in section 73.

50. Of course, we need to define the above variables.

〈Globals in the outer block 11 〉 +≡
comment : packed array [1 . . comm length] of char ;
magnification : integer ; { resolution at which pixel file is prepared }
design size : integer ; { design size in FIXes }
checksum : integer ; { checksum of pixel file }
hppp , vppp : integer ; { horizontal and vertical points per inch }

51. 〈Set initial values 12 〉 +≡
comment ← preamble comment ;

§52 PKtoGF CHARACTER UNPACKING 21

52. Now, the character preamble reading modules. First, we have the general case: the long character
preamble format.

〈Read long character preamble 52 〉 ≡
begin packet length ← get 32 ; car ← get 32 ; end of packet ← packet length + pk loc ;
tfm width ← get 32 ; hor esc ← get 32 ; ver esc ← get 32 ; c width ← get 32 ; c height ← get 32 ;
word width ← (c width + 31) div 32; x off ← get 32 ; y off ← get 32 ;
end

This code is used in section 47.

53. This module reads the character preamble with double byte parameters.

〈Read extended short character preamble 53 〉 ≡
begin packet length ← (flag byte − 4) ∗ 65536 + get 16 ; car ← pk byte ;
end of packet ← packet length + pk loc ; i← pk byte ; tfm width ← i ∗ 65536 + get 16 ;
hor esc ← get 16 ∗ 65536; ver esc ← 0; c width ← get 16 ; c height ← get 16 ;
word width ← (c width + 31) div 32; x off ← signed 16 ; y off ← signed 16 ;
end

This code is used in section 47.

54. Here we read the most common character preamble, that with single byte parameters.

〈Read short character preamble 54 〉 ≡
begin packet length ← flag byte ∗ 256 + pk byte ; car ← pk byte ; end of packet ← packet length + pk loc ;
i← pk byte ; tfm width ← i ∗ 65536 + get 16 ; hor esc ← pk byte ∗ 65536; ver esc ← 0;
c width ← pk byte ; c height ← pk byte ; word width ← (c width + 31) div 32; x off ← signed byte ;
y off ← signed byte ;
end

This code is used in section 47.

55. Some more globals:

〈Globals in the outer block 11 〉 +≡
c height , c width : integer ; { sizes of the character glyphs }
word width : integer ; {width of character in raster words }
hor esc , ver esc : integer ; { the character escapement }
packet length : integer ; { the length of the packet in bytes }
last eoc : integer ; { the last end of character }

22 CHARACTER UNPACKING PKtoGF §56

56. The GF format requires the minimum and maximum m and n values in the postamble, so we generate
them here. One thing that should be noted, here. The value max n − min n will be the height of the
character glyph, but for the width, you need to use max m −min m − 1, because of the peculiarities of the
GF format.

〈Calculate and check min m , max m , min n , and max n 56 〉 ≡
if (c height = 0) ∨ (c width = 0) then

begin c height ← 0; c width ← 0; x off ← 0; y off ← 0;
end;

min m ← −x off ;
if min m < mmin m then mmin m ← min m ;
max m ← c width + min m ;
if max m > mmax m then mmax m ← max m ;
min n ← y off − c height + 1; max n ← y off ;
if min n > max n then min n ← max n ;
if min n < mmin n then mmin n ← min n ;
if max n > mmax n then mmax n ← max n

This code is used in section 47.

57. We have to declare the variables which hold the bounding box. We also need the arrays that hold the
back pointers to the characters, the horizontal and vertical escapements, and the TFM widths.

〈Globals in the outer block 11 〉 +≡
min m ,max m ,min n ,max n : integer ;
mmin m ,mmax m ,mmin n ,mmax n : integer ;
char pointer , s tfm width : array [0 . . 255] of integer ;
s hor esc , s ver esc : array [0 . . 255] of integer ;
this char ptr : integer ;

58. We initialize these bounding box values to be ridiculous, and say that there were no characters seen
yet.

〈Set initial values 12 〉 +≡
mmin m ← 999999; mmin n ← 999999; mmax m ← −999999; mmax n ← −999999;
for i← 0 to 255 do char pointer [i]← −1;

59. This module takes care of the simple job of writing the character preamble, after picking one to fit.

〈Write character preamble 59 〉 ≡
begin if (char pointer [car mod 256] = −1) ∧ (car ≥ 0) ∧ (car < 256) ∧ (max m ≥ 0) ∧ (max m <

256) ∧ (max n ≥ 0) ∧ (max n < 256) ∧ (max m ≥ min m) ∧ (max n ≥ min n) ∧ (max m <
min m + 256) ∧ (max n < min n + 256) then

begin char pointer [car mod 256]← this char ptr ; gf byte (boc1); gf byte (car);
gf byte (max m −min m); gf byte (max m); gf byte (max n −min n); gf byte (max n);
end

else begin gf byte (boc); gf quad (car); gf quad (char pointer [car mod 256]);
char pointer [car mod 256]← this char ptr ; gf quad (min m); gf quad (max m); gf quad (min n);
gf quad (max n);
end;

end

This code is used in section 47.

§60 PKtoGF CHARACTER UNPACKING 23

60. In this routine we either save or check the current character parameters.

〈Save character locator 60 〉 ≡
begin i← car mod 256;
if (char pointer [i] = −1) then

begin s ver esc [i]← ver esc ; s hor esc [i]← hor esc ; s tfm width [i]← tfm width ;
end

else begin if (s ver esc [i] 6= ver esc) ∨ (s hor esc [i] 6= hor esc) ∨ (s tfm width [i] 6= tfm width) then
print ln (´Two characters mod ´, i : 1, ´ have mismatched parameters´);

end;
end

This code is used in section 47.

61. And another module to write out those character locators we have so carefully saved up the information
for.

〈Write character locators 61 〉 ≡
for i← 0 to 255 do

if char pointer [i] 6= −1 then
begin if (s ver esc [i] = 0)∧(s hor esc [i] ≥ 0)∧(s hor esc [i] < 16777216)∧(s hor esc [i]mod65536 = 0)

then
begin gf byte (char loc0); gf byte (i); gf byte (s hor esc [i] div 65536);
end

else begin gf byte (char loc); gf byte (i); gf quad (s hor esc [i]); gf quad (s ver esc [i]);
end;

gf quad (s tfm width [i]); gf quad (char pointer [i]);
end

This code is used in section 68.

62. Now we have the most important part of the program, where we actually interpret the commands in
the raster description. First of all, we need a procedure to get a single nybble from the file, as well as one to
get a single bit. We also use the pk packed num procedure defined in the PK file description.

function get nyb : integer ;
var temp : eight bits ;
begin if bit weight = 0 then

begin input byte ← pk byte ; bit weight ← 16;
end;

temp ← input byte div bit weight ; input byte ← input byte − temp ∗ bit weight ;
bit weight ← bit weight div 16; get nyb ← temp ;
end;

function get bit : boolean ;
var temp : boolean ;
begin bit weight ← bit weight div 2;
if bit weight = 0 then

begin input byte ← pk byte ; bit weight ← 128;
end;

temp ← input byte ≥ bit weight ;
if temp then input byte ← input byte − bit weight ;
get bit ← temp ;
end; 〈Packed number procedure 30 〉

24 CHARACTER UNPACKING PKtoGF §63

63. Now, the globals to help communication between these procedures, and a buffer for the raster row
counts.

〈Globals in the outer block 11 〉 +≡
input byte : eight bits ; { the byte we are currently decimating }
bit weight : eight bits ; {weight of the current bit }
nybble : eight bits ; { the current nybble }
row counts : array [0 . . max counts] of integer ; {where the row is constructed }
rcp : integer ; { the row counts pointer }

64. Actually, if the character is a bit mapped character, then we make it look like run counts by determining
the appropriate values ourselves. Thus, we have a routine which gets the next count value, below.

〈Get next count value into count 64 〉 ≡
begin turn on ← ¬turn on ;
if dyn f = 14 then

begin count ← 1; done ← false ;
while ¬done do

begin if count down ≤ 0 then done ← true
else if (turn on = get bit) then count ← count + 1

else done ← true ;
count down ← count down − 1;
end;

end
else count ← pk packed num ;
end

This code is used in section 65.

§65 PKtoGF CHARACTER UNPACKING 25

65. And the main procedure.

〈Read and translate raster description 65 〉 ≡
if (c width > 0) ∧ (c height > 0) then

begin bit weight ← 0; count down ← c height ∗ c width − 1;
if dyn f = 14 then turn on ← get bit ;
repeat count ← 0; x to go ← c width ; y to go ← c height ; cur n ← c height ; count ← 0;
first on ← turn on ; turn on ← ¬turn on ; rcp ← 0;
while y to go > 0 do

begin if count = 0 then 〈Get next count value into count 64 〉;
if rcp = 0 then first on ← turn on ;
while count ≥ x to go do

begin row counts [rcp]← x to go ; count ← count − x to go ;
for i← 0 to repeat count do

begin 〈Output row 66 〉;
y to go ← y to go − 1;
end;

repeat count ← 0; x to go ← c width ; rcp ← 0;
if (count > 0) then first on ← turn on ;
end;

if count > 0 then
begin row counts [rcp]← count ;
if rcp = 0 then first on ← turn on ;
rcp ← rcp + 1;
if rcp > max counts then

begin print ln (´A character had too many run counts´); jump out ;
end;

x to go ← x to go − count ; count ← 0;
end;

end;
end

This code is used in section 47.

26 CHARACTER UNPACKING PKtoGF §66

66. This routine actually outputs a row to the GF file.

〈Output row 66 〉 ≡
if (rcp > 0) ∨ first on then

begin j ← 0; max ← rcp ;
if ¬turn on then max ← max − 1;
if cur n − y to go = 1 then

begin if first on then gf byte (new row 0)
else if row counts [0] < 165 then

begin gf byte (new row 0 + row counts [0]); j ← j + 1;
end

else gf byte (skip0);
end

else if cur n > y to go then
begin if cur n − y to go < 257 then

begin gf byte (skip1); gf byte (cur n − y to go − 1);
end

else begin gf byte (skip1 + 1); gf 16 (cur n − y to go − 1);
end;

if first on then gf byte (paint 0);
end

else if first on then gf byte (paint 0);
cur n ← y to go ;
while j ≤ max do

begin if row counts [j] < 64 then gf byte (paint 0 + row counts [j])
else if row counts [j] < 256 then

begin gf byte (paint1); gf byte (row counts [j]);
end

else begin gf byte (paint1 + 1); gf 16 (row counts [j]);
end;

j ← j + 1;
end;

end

This code is used in section 65.

67. Here we need the array which counts down the number of bits, and the current state flag.

〈Globals in the outer block 11 〉 +≡
count down : integer ; { have we run out of bits yet? }
done : boolean ; { are we done yet? }
max : integer ; { the maximum number of counts to output }
repeat count : integer ; {how many times to repeat the next row? }
x to go , y to go : integer ; { how many columns/rows left? }
turn on ,first on : boolean ; { are we black here? }
count : integer ; { how many bits of current color left? }
cur n : integer ; {what row are we at? }

§68 PKtoGF CHARACTER UNPACKING 27

68. To finish the GF file, we write out a postamble, including the character locators that we stored away.

〈Write GF postamble 68 〉 ≡
j ← gf loc ; gf byte (post); gf quad (last eoc); gf quad (design size); gf quad (checksum); gf quad (hppp);
gf quad (vppp); gf quad (mmin m); gf quad (mmax m); gf quad (mmin n); gf quad (mmax n);
〈Write character locators 61 〉;
gf byte (post post); gf quad (j); gf byte (gf id byte);
for i← 0 to 3 do gf byte (223);
while gf loc mod 4 6= 0 do gf byte (223)

This code is used in section 73.

69. We need the flag byte variable.

〈Globals in the outer block 11 〉 +≡
flag byte : integer ; { command or character flag byte }

70. Another necessary procedure skips over any specials between characters and before and after the
postamble. (It echoes the specials exactly.)

procedure skip specials ;
var i, j, k: integer ;
begin this char ptr ← gf loc ;
repeat flag byte ← pk byte ;

if flag byte ≥ 240 then
case flag byte of
240, 241, 242, 243: begin i← 0; gf byte (flag byte − 1);

for j ← 240 to flag byte do
begin k ← pk byte ; gf byte (k); i← 256 ∗ i + k;
end;

for j ← 1 to i do gf byte (pk byte);
end;

244: begin gf byte (243); gf quad (get 32);
end;

245: begin end;
246: begin end;
247, 248, 249, 250, 251, 252, 253, 254, 255: abort (´Unexpected ´,flag byte : 1, ´!´);
endcases;

until (flag byte < 240) ∨ (flag byte = pk post);
end;

28 TERMINAL COMMUNICATION PKtoGF §71

71. Terminal communication. We must get the file names and determine whether input is to be in
hexadecimal or binary. To do this, we use the standard input path name. We need a procedure to flush the
input buffer. For most systems, this will be an empty statement. For other systems, a print ln will provide
a quick fix. We also need a routine to get a line of input from the terminal. On some systems, a simple
read ln will do. Finally, a macro to print a string to the first blank is required.

define flush buffer ≡
begin end

define get line (#) ≡
if eoln (input) then read ln (input);

i← 1;
while ¬(eoln (input) ∨ eof (input)) do

begin #[i]← input↑; incr (i); get (input);
end;

#[i]← ´ ´

72.
procedure dialog ;

var i: integer ; { index variable }
buffer : packed array [1 . . name length] of char ; { input buffer }

begin for i← 1 to name length do
begin gf name [i]← ´ ´; pk name [i]← ´ ´;
end;

print (´Input file name: ´); flush buffer ; get line (pk name); print (´Output file name: ´);
flush buffer ; get line (gf name);
end;

§73 PKtoGF THE MAIN PROGRAM 29

73. The main program. Now that we have all the pieces written, let us put them together.

begin initialize ; dialog ; 〈Open files 44 〉;
〈Read preamble 49 〉;
skip specials ;
while flag byte 6= pk post do

begin 〈Unpack and write character 47 〉;
skip specials ;
end;

while ¬eof (pk file) do i← pk byte ;
〈Write GF postamble 68 〉;
print ln (pk loc : 1, ´ bytes unpacked to ´, gf loc : 1, ´ bytes.´);

final end : end.

30 SYSTEM-DEPENDENT CHANGES PKtoGF §74

74. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make PKtoGF work at a particular installation. Any additional routines
should be inserted here.

§75 PKtoGF INDEX 31

75. Index. Pointers to error messages appear here together with the section numbers where each ident-
ifier is used.

a: 45.
abort : 8, 47, 49, 70.
ASCII code : 9, 11.
backpointers: 19.
banner : 2, 4.
bit weight : 62, 63, 65.
black : 15, 16.
boc : 14, 16, 17, 18, 19, 59.
boc1 : 16, 17, 59.
boolean : 62, 67.
buffer : 72.
byte file : 38, 39.
c height : 52, 53, 54, 55, 56, 65.
c width : 52, 53, 54, 55, 56, 65.
car : 48, 52, 53, 54, 59, 60.
cc : 32.
char : 10, 41, 50, 72.
char loc : 16, 17, 19, 61.
char loc0 : 16, 17, 61.
char pointer : 57, 58, 59, 60, 61.
check sum: 18.
checksum : 49, 50, 68.
Chinese characters: 19.
chr : 10, 11, 13.
comm length : 2, 49, 50.
comment : 49, 50, 51.
count : 64, 65, 67.
count down : 64, 65, 67.
cs : 18, 23.
cur n : 65, 66, 67.
decr : 7, 30.
del m : 16.
del n : 16.
design size: 18.
design size : 49, 50, 68.
dialog : 72, 73.
dm : 16, 32.
do nothing : 7.
done : 64, 67.
ds : 18, 23.
dx : 16, 19, 32.
dy : 16, 19, 32.
dyn f : 28, 29, 30, 31, 32, 35, 36, 47, 48, 64, 65.
eight bits : 38, 43, 62, 63.
else: 3.
end: 3.
end of packet : 47, 48, 52, 53, 54.
endcases: 3.
eoc : 14, 16, 17, 18, 47.
eof : 40, 71, 73.

eoln : 71.
false : 64.
final end : 5, 8, 73.
first on : 65, 66, 67.
first text char : 10, 13.
flag : 32.
flag byte : 47, 53, 54, 69, 70, 73.
flush buffer : 71, 72.
Fuchs, David Raymond: 20.
get : 43, 71.
get bit : 62, 64, 65.
get line : 71, 72.
get nyb : 30, 62.
get 16 : 45, 53, 54.
get 32 : 45, 49, 52, 70.
gf byte : 38, 42, 46, 47, 49, 59, 61, 66, 68, 70.
gf file : 39, 40, 42.
gf id byte : 16, 49, 68.
gf loc : 40, 41, 42, 47, 49, 68, 70, 73.
gf name : 40, 41, 72.
gf quad : 46, 59, 61, 68, 70.
gf sbyte : 46.
gf 16 : 46, 66.
gf 24 : 46.
height : 31.
hoff : 32, 34.
hor esc : 52, 53, 54, 55, 60.
hppp : 18, 23, 49, 50, 68.
i: 4, 30, 48, 70, 72.
incr : 7, 30, 42, 71.
initialize : 4, 73.
input : 4, 71.
input byte : 62, 63.
integer : 4, 30, 41, 42, 45, 46, 48, 50, 55, 57,

62, 63, 67, 69, 70, 72.
j: 48.
Japanese characters: 19.
jump out : 8, 65.
Knuth, D. E.: 29.
last eoc : 47, 49, 55, 68.
last text char : 10, 13.
magnification : 49, 50.
max : 66, 67.
max counts : 6, 63, 65.
max m : 16, 18, 56, 57, 59.
max n : 16, 18, 56, 57, 59.
max new row : 17.
min m : 16, 18, 56, 57, 59.
min n : 16, 18, 56, 57, 59.
mmax m : 56, 57, 58, 68.

32 INDEX PKtoGF §75

mmax n : 56, 57, 58, 68.
mmin m : 56, 57, 58, 68.
mmin n : 56, 57, 58, 68.
name length : 6, 41, 72.
new row 0 : 16, 17, 66.
new row 1 : 16.
new row 164 : 16.
no op : 16, 17, 19.
nop : 17.
nybble : 43, 63.
open gf file : 40, 44.
open pk file : 40, 44.
ord : 11.
oriental characters: 19.
othercases: 3.
others : 3.
output : 4.
packet length : 52, 53, 54, 55.
paint switch : 15, 16.
paint 0 : 16, 17, 66.
paint1 : 16, 17, 66.
paint2 : 16.
paint3 : 16.
pk byte : 38, 43, 45, 49, 53, 54, 62, 70, 73.
pk file : 39, 40, 43, 73.
pk id : 24, 49.
pk loc : 40, 41, 43, 47, 52, 53, 54, 73.
pk name : 40, 41, 72.
pk no op : 23, 24.
pk packed num : 30, 62, 64.
pk post : 23, 24, 70, 73.
pk pre : 23, 24, 49.
pk xxx1 : 23, 24.
pk yyy : 23, 24.
PKtoGF : 4.
pl : 32.
post : 14, 16, 17, 18, 20, 68.
post post : 16, 17, 18, 20, 68.
pre : 14, 16, 17, 49.
preamble comment : 2, 51.
print : 4, 72.
print ln : 4, 8, 49, 60, 65, 71, 73.
proofing : 19.
put : 42.
rcp : 63, 65, 66.
read ln : 71.
repeat count : 30, 65, 67.
reset : 40.
rewrite : 40.
round : 49.
row counts : 63, 65, 66.
s hor esc : 57, 60, 61.

s tfm width : 57, 60, 61.
s ver esc : 57, 60, 61.
scaled : 16, 18, 19, 23.
signed byte : 45, 54.
signed 16 : 45, 53.
skip specials : 70, 73.
skip0 : 16, 17, 66.
skip1 : 16, 17, 66.
skip2 : 16.
skip3 : 16.
system dependancies: 6, 38.
system dependencies: 10, 20, 39, 40, 42, 74.
temp : 43, 62.
terminal line length : 6.
text char : 10, 11.
text file : 10.
tfm : 32, 33, 36.
tfm width : 48, 52, 53, 54, 60.
this char ptr : 57, 59, 70.
true : 64.
turn on : 47, 64, 65, 66, 67.
undefined commands : 17.
ver esc : 52, 53, 54, 55, 60.
voff : 32, 34.
vppp : 18, 23, 49, 50, 68.
white : 16.
width : 31.
word width : 52, 53, 54, 55.
write : 4.
write ln : 4.
x off : 48, 52, 53, 54, 56.
x to go : 65, 67.
xchr : 11, 12, 13.
xord : 11, 13, 49.
xxx1 : 16, 17.
xxx2 : 16.
xxx3 : 16.
xxx4 : 16.
y off : 48, 52, 53, 54, 56.
y to go : 65, 66, 67.
yyy : 16, 17, 19, 23.

PKtoGF NAMES OF THE SECTIONS 33

〈Calculate and check min m , max m , min n , and max n 56 〉 Used in section 47.

〈Constants in the outer block 6 〉 Used in section 4.

〈Get next count value into count 64 〉 Used in section 65.

〈Globals in the outer block 11, 39, 41, 48, 50, 55, 57, 63, 67, 69 〉 Used in section 4.

〈Labels in the outer block 5 〉 Used in section 4.

〈Open files 44 〉 Used in section 73.

〈Output row 66 〉 Used in section 65.

〈Packed number procedure 30 〉 Used in section 62.

〈Read and translate raster description 65 〉 Used in section 47.

〈Read extended short character preamble 53 〉 Used in section 47.

〈Read long character preamble 52 〉 Used in section 47.

〈Read preamble 49 〉 Used in section 73.

〈Read short character preamble 54 〉 Used in section 47.

〈Save character locator 60 〉 Used in section 47.

〈Set initial values 12, 13, 51, 58 〉 Used in section 4.

〈Types in the outer block 9, 10, 38 〉 Used in section 4.

〈Unpack and write character 47 〉 Used in section 73.

〈Write GF postamble 68 〉 Used in section 73.

〈Write character locators 61 〉 Used in section 68.

〈Write character preamble 59 〉 Used in section 47.

	 Introduction
	 The character set
	 Generic font file format
	 Packed file format
	 Input and output
	 Character unpacking
	 Terminal communication
	 The main program
	 System-dependent changes
	 Index
	Names of the sections
	Calculate and check minm, maxm, minn, and maxn
	Constants in the outer block
	Get next count value into count
	Globals in the outer block
	Labels in the outer block
	Open files
	Output row
	Packed number procedure
	Read and translate raster description
	Read extended short character preamble
	Read long character preamble
	Read preamble
	Read short character preamble
	Save character locator
	Set initial values
	Types in the outer block
	Unpack and write character
	Write GF postamble
	Write character locators
	Write character preamble

