The GFtoPK processor

(Version 2.4, 06 January 2014)

Section
Introduction e 1
The character SEtot e e e e 9
Generic font file format 14
Packed file format e 21
Input and output for binary files 37
Plan of attack 48
Reading the generic font file 51
Converting the counts to packed format 62
System-dependent changes 88
IndeX .o e 96

The preparation of this report was supported in part by the National Science Founda-
tion under grants IST-8201926, MCS-8300984, and CCR-8610181, and by the System
Development Foundation. ‘TEX’ is a trademark of the American Mathematical Society.
‘METAFONT’ is a trademark of Addison-Wesley Publishing Company.

March 17, 2021 at 13:05

201

Page
202
204
205
205
205
207
208
211
212
214

202 INTRODUCTION GF to PK changes C 61

1¥ Introduction. This program reads a GF file and packs it into a PK file. PK files are significantly
smaller than GF files, and they are much easier to interpret. This program is meant to be the bridge between
METAFONT and DVI drivers that read PK files. Here are some statistics comparing typical input and output
file sizes:

Font Resolution GF size PK size Reduction factor
cmrl0 300 13200 5484 42%
cmrl0 360 15342 6496 42%
cmrl0 432 18120 7808 43%
cmrl0 511 21020 9440 45%
cmrl0 622 24880 11492 46%
cmrl0 746 29464 13912 47%
cminch 300 48764 22076 45%

It is hoped that the simplicity and small size of the PK files will make them widely accepted.

The PK format was designed and implemented by Tomas Rokicki during the summer of 1985. This program
borrows a few routines from GFtoPXL by Arthur Samuel.

The banner string defined here should be changed whenever GFtoPK gets modified. The preamble_comment
macro (near the end of the program) should be changed too.

define my_name = “gftopk”
define banner = “This,is GFtoPK, Version 2.4 {printed when the program starts }

4% The binary input comes from gf_file, and the output font is written on pk_file. All text output is written
on Pascal’s standard output file. The term print is used instead of write when this program writes on output,
so that all such output could easily be redirected if desired. Since the terminal output is really not very
interesting, it is produced only when the -v command line flag is presented.
define print(#) =
if verbose then write(stdout,#)
define print_in(#) =
if verbose then write_ln(stdout,#)
program GFtoPK (gf-file, pk_file, output);
const (Constants in the outer block 6*)
type (Types in the outer block 9)
var (Globals in the outer block 11)
(Define parse_arguments 88*)
procedure initialize; { this procedure gets things started properly }
var i: integer; {loop index for initializations }
begin kpse_set_program_name (argv[0], my_name); kpse_init_prog(GFTOPK ", 0, nil, nil);
parse_arguments; print(banner); print_ln(version_string); (Set initial values 12)
end;

)

5% This module is deleted, because it is only useful for a non-local goto, which we can’t use in C.

6* The following parameters can be changed at compile time to extend or reduce GFtoPK’s capacity. The
values given here should be quite adequate for most uses. Assuming an average of about three strokes per
raster line, there are six run-counts per line, and therefore maz_row will be sufficient for a character 2600
pixels high.
(Constants in the outer block 6*) =

line_length = 79; { bracketed lines of output will be at most this long }

MAX_ROW = 16000; {largest index in the initial main row array }

This code is used in section 4*.

68 GF to PK changes C INTRODUCTION 203

8% If the GF file is badly malformed, the whole process must be aborted; GFtoPK will give up, after issuing
an error message about the symptoms that were noticed.
Such errors might be discovered inside of subroutines inside of subroutines, so we might want to abort the
program with an error message.
define abort(#) =
begin write_In(stderr, #); uewxit(1);
end
define bad_gf (#) = abort(Bad GF file: ", #, ! ")

204 THE CHARACTER SET GF to PK changes C 89

10* The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lower case letters. Nowadays, of course, we need to deal with both upper and
lower case alphabets in a convenient way, especially in a program like GFtoPK. So we shall assume that the
Pascal system being used for GFtoPK has a character set containing at least the standard visible characters
of ASCII code ("!" through "~").

Some Pascal compilers use the original name char for the data type associated with the characters in text
files, while other Pascals consider char to be a 64-element subrange of a larger data type that has some
other name. In order to accommodate this difference, we shall use the name text_char to stand for the
data type of the characters in the output file. We shall also assume that text_char consists of the elements
chr(first_text_char) through chr(last_text_char), inclusive. The following definitions should be adjusted if
necessary.

define char =0..255

define text_char = char {the data type of characters in text files }

define first_text_char =0 {ordinal number of the smallest element of text_char }
define last_text_char = 127 {ordinal number of the largest element of text_char }

(Types in the outer block 9) +=
text_file = packed file of text_char;

814 GF to PK changes C GENERIC FONT FILE FORMAT

39¥ 1In C, we do path searching based on the user’s environment or the default paths.
procedure open_gf file; { prepares to read packed bytes in gf file }

begin gf-file < kpse_open_file(gf-name, kpse_gf-format); gf-loc < 0;

end;

40%* To prepare the pk_file for output, we rewrite it.

procedure open_pk_file; { prepares to write packed bytes in pk_file }
begin rewritebin (pk_file, pk_name); pk_-loc + 0; pk_open <« true;
end;

205

44*% We also need a few routines to write data to the PX file. We write data in 4-, 8-, 16-, 24-, and 32-bit
chunks, so we define the appropriate routines. We must be careful not to let the sign bit mess us up, as

some Pascals implement division of a negative integer differently.
Output is handled through putbyte which is supplied by web2c.
define pk_byte(#) =
begin putbyte (#, pk_file); incr(pk_loc)
end
procedure pk_halfword(a : integer);
begin if a < 0 then a < a + 65536;
putbyte (a div 256, pk_file); putbyte(a mod 256, pk_file); pk_loc < pk_loc + 2;
end;

procedure pk_three_bytes(a : integer);
begin putbyte(a div 65536 mod 256, pk_file); putbyte(a div 256 mod 256, pk_file);
putbyte (a mod 256, pk_file); pk_loc < pk_loc + 3;
end;

procedure pk_word(a : integer);
var b: integer;
begin if a < 0 then
begin a « a + 10000000000; a < a + "10000000000; b < 128 + a div 16777216;
end
else b+ a div 16777216;
putbyte (b, pk_file); putbyte(a div 65536 mod 256, pk_file); putbyte(a div 256 mod 256, pk_file);
putbyte (a mod 256, pk_file); pk_loc « pk_loc + 4;
end;
procedure pk_nyb(a : integer);
begin if bit_weight = 16 then
begin output_byte < a x 16; bit_weight < 1;
end
else begin pk_byte(output_byte + a); bit_weight < 16;
end;
end;

206 INPUT AND OUTPUT FOR BINARY FILES GF to PK changes C 846

46* TFinally we come to the routines that are used for random access of the gf-file. To correctly find and
read the postamble of the file, we need two routines, one to find the length of the gf-file, and one to position
the gf_file. We assume that the first byte of the file is numbered zero.

Such routines are, of course, highly system dependent. They are implemented here in terms of two
assumed system routines called set_pos and cur_pos. The call set_pos(f,n) moves to item n in file f, unless
n is negative or larger than the total number of items in f; in the latter case, set_pos(f,n) moves to the end
of file f. The call cur_pos(f) gives the total number of items in f, if eof (f) is true; we use cur_pos only in
such a situation.

define find_gf-length = gf-len < gf_length

function gf.length: integer;
begin zfseck (gf-file, 0,2, gf-name); gf-length « zftell(gf-file, gf-name);
end;

procedure move_to_byte(n : integer);
begin zfseck (gf-file,n, 0, gf-name);
end;

F to PK changes PLAN OF ATTACK
48 G (@] AN OF ATTAC 207

48*% Plan of attack. It would seem at first that converting a GF file to PK format should be relatively
easy, since they both use a form of run-encoding. Unfortunately, several idiosyncrasies of the GF format make
this conversion slightly cumbersome. The GF format separates the raster information from the escapement
values and TFM widths; the PK format combines all information about a single character into one character
packet. The GF run-encoding is on a row-by-row basis, and the PK format is on a glyph basis, as if all of the
raster rows in the glyph were concatenated into one long row. The encoding of the run-counts in the GF files
is fixed, whereas the PK format uses a dynamic encoding scheme that must be adjusted for each character.
And, finally, any repeated rows can be marked and sent with a single command in the PK format.

There are four major steps in the conversion process. First, the postamble of the gf file is found and read,
and the data from the character locators is stored in memory. Next, the preamble of the pk_file is written.
The third and by far the most difficult step reads the raster representation of all of the characters from the
GF file, packs them, and writes them to the pk_file. Finally, the postamble is written to the pk_file.

The conversion of the character raster information from the gf file to the format required by the pk_file
takes several smaller steps. The GF file is read, the commands are interpreted, and the run counts are
stored in the working row array. Each row is terminated by a end_of row value, and the character glyph is
terminated by an end_of_char value. Then, this representation of the character glyph is scanned to determine
the minimum bounding box in which it will fit, correcting the min_m, max_m, min_n, and maz_n values, and
calculating the offset values. The third sub-step is to restructure the row list from a list based on rows to a
list based on the entire glyph. Then, an optimal value of dyn_f is calculated, and the final size of the counts
is found for the PK file format, and compared with the bit-wise packed glyph. If the run-encoding scheme
is shorter, the character is written to the pk_file as row counts; otherwise, it is written using a bit-packed
scheme.

To save various information while the GF file is being loaded, we need several arrays. The tfm_width,
dx, and dy arrays store the obvious values. The status array contains the current status of the particular
character. A value of 0 indicates that the character has never been defined; a 1 indicates that the character
locator for that character was read in; and a 2 indicates that the raster information for at least one character
was read from the gf_file and written to the pk_file. The row array contains row counts. It is filled anew for
each character, and is used as a general workspace. The GF counts are stored starting at location 2 in this
array, so that the PK counts can be written to the same array, overwriting the GF counts, without destroying
any counts before they are used. (A possible repeat count in the first row might make the first row of the
PX file one count longer; all succeeding rows are guaranteed to be the same length or shorter because of the
end_of_-row flags in the GF format that are unnecessary in the PK format.)

define wvirgin =0 {never heard of this character yet }
define located =1 {locators read for this character }
define sent =2 {at least one of these characters has been sent }

(Globals in the outer block 11) +=

tfm_width: array [0 .. 255] of integer; {the TFM widths of characters }

dz,dy: array [0 ..255] of integer; {the horizontal and vertical escapements }
status: array [0 .. 255] of wvirgin .. sent; {character status }

row: Tinteger; {the row counts for working }

max_row: integer; {largest index in the main row array }

49*% Here we initialize all of the character status values to virgin.

(Set initial values 12) +=
row < xmalloc_array (integer, MAX_ROW); maz_row + MAX_ROW
for i < 0 to 255 do status[i| < virgin;

208 READING THE GENERIC FONT FILE GF to PK changes C 851

51* Reading the generic font file. There are two major procedures in this program that do all of
the work. The first is convert_gf-file, which interprets the GF commands and puts row counts into the row
array. The second, which we only anticipate at the moment, actually packs the row counts into nybbles and
writes them to the packed file.

(Packing procedures 62);
procedure row_overflow;
var new_row: integer;
begin new_row < maz_row + MAX_ROW

print_In(Reallocated row,array,to, ", new_row : 1, " items, from ", maz_row : 1, ~.");
row < arealloc_array (row, integer , new_row); Mar_-row — NEW_-row;
end;

procedure convert_gf_file;
var i, j, k: integer; {general purpose indices }

gf-com: integer; {current gf command }
(Locals to convert_gf_file 58*)
begin open_gf-file;
if gf-byte # pre then bad_gf ("First byte_ is not preamble’);
if gf-byte # gf-id_byte then bad_gf ("Identification byte is incorrect”);
(Find and interpret postamble 60);
move_to_byte(2); open_pk_file; { Write preamble 81*);
repeat gf com < gf-byte; do_the_rows < false;

case gf-com of

boc, bocl: (Interpret character 54);

(Specials and no_op cases 53);

post: ; {we will actually do the work for this one later }
othercases bad_gf ("Unexpected,,”, gf-com : 1, " ,command, between characters”)
endcases;

until gf_-com = post;
(Write postamble 84);
end;

)

52¥% We need a few easy macros to expand some case statements:

define four_cases(#) =#,#+ 1, #+ 2 #+3

define sizteen_cases(#) = four_cases (#), four_cases (¥ + 4), four_cases (# + 8), four_cases (# + 12)

define sizty_four_cases (#) = sizteen_cases(#), sizteen_cases(# + 16), sizteen_cases (# + 32),
sizteen_cases (# + 48)

define thirty_seven_cases(#) = sizteen_cases (#), sizteen_cases(# + 16), four_cases (# + 32),# + 36

define new_row_64 = new_row_0 + 64

define new_row_128 = new_row_64 + 64

56* Now we are at the beginning of a character that we need the raster for. Before we get into the
complexities of decoding the paint, skip, and new_row commands, let’s define a macro that will help us fill
up the row array. Note that we check that row_ptr never exceeds maz_row; Instead of calling bad_gf directly,
as this macro is repeated eight times, we simply set the bad flag true.

define put_in_rows(#) =
begin if row_ptr > maz_row then row_overflow;
row [row_ptr] < #; incr(row_ptr);
end

857 GF to PK changes C READING THE GENERIC FONT FILE 209

57% Now we have the procedure that decodes the various commands and puts counts into the row array.
This would be a trivial procedure, except for the paint_0 command. Because the paint_0 command exists,
it is possible to have a sequence like paint 42, paint_0, paint 38, paint_0, paint_0, paint_0, paint 33, skip_0.
This would be an entirely empty row, but if we left the zeros in the row array, it would be difficult to
recognize the row as empty.

This type of situation probably would never occur in practice, but it is defined by the GF format, so we
must be able to handle it. The extra code is really quite simple, just difficult to understand; and it does not
cut down the speed appreciably. Our goal is this: to collapse sequences like paint 42, paint_0, paint 32 to a
single count of 74, and to insure that the last count of a row is a black count rather than a white count. A
buffer variable extra, and two state flags, on and state, enable us to accomplish this.

The on variable is essentially the paint_switch described in the GF description. If it is true, then we are
currently painting black pixels. The extra variable holds a count that is about to be placed into the row
array. We hold it in this array until we get a paint command of the opposite color that is greater than 0. If
we get a paint_0 command, then the state flag is turned on, indicating that the next count we receive can
be added to the extra variable as it is the same color.

(Convert character to packed form 57+) =
begin row_ptr < 2; on < false; extra < 0; state < true;
repeat gf-com < gf.byte;
case gf-com of
(Cases for paint commands 59);
four_cases(skip0): begin i < 0;
for j «+ 1to gf.com — skip0 do i <+ i* 256 + gf_-byte;
if on = state then put_in_rows(extra);
for j + 0to i do put_in_rows(end-of-row);
on < false; extra < 0; state < true;
end;
sixty_four_cases (new_row_0): do_the_rows < true;
siaty_four_cases (new_row_64): do_the_rows < true;
thirty_seven_cases (new_row_128): do_the_rows < true;
(Specials and no-op cases 53);
eoc: begin if on = state then put_in_rows(extra);
if (row_ptr > 2) A (row[row_ptr — 1] # end_of-row) then put_in_rows(end_of-row);
put_in_rows (end_of-char); pack_and_send_character; status[gf-ch-mod_256] < sent;
if pk_loc # pred_pk_loc then abort(Internal error while writing ,character!’);
end;
othercases bad_gf ("Unexpected,,”, gf-com : 1, " command, ,in character definition~)
endcases;
if do_the_rows then
begin do_the_rows <+ false;
if on = state then put_in_rows(extra);
put_in_rows (end_of-row); on < true; extra < gf-com — new_row-0; state < false;
end;
until gf com = eoc;
end

This code is used in section 54.

210 READING THE GENERIC FONT FILE GF to PK changes C §58

58% A few more locals used above and below:

(Locals to convert_gf file 58*) =

do_the_rows: boolean;

on: boolean; {indicates whether we are white or black }

state: boolean; {a state variable—is the next count the same race as the one in the extra buffer? }
extra: integer; {where we pool our counts }

See also section 61.

This code is used in section 51*.

862 GF to PK changes C CONVERTING THE COUNTS TO PACKED FORMAT

81* Now we are ready for the routine that writes the preamble of the packed file.

define preamble_comment = “GFtoPK_ 2.4 output from "~
define comm_length =0 {length of preamble_.comment }
define from_length =0 {length of its ",from,~ part }

(Write preamble 81*) =
pk_byte (pk_pre); pk_byte(pk_id); i < gf-byte; { get length of introductory comment }
repeat if i =0 then j <+ "." else j < gf -byte;
decr(i); {some people think it’s wise to avoid goto statements }
until j # ""; {remove leading blanks }
incr(i); {this many bytes to copy }
if i =0 then k < comm_length — from_length
else k < i + comm_length;
if k> 255 then pk_byte(255) else pk_byte (k);
for k + 1 to comm_length do
if (i > 0)V (k < comm_length — from_length) then pk_byte(zord[comment[k]]);
print(7777);
for k< 1toido
begin if k£ > 1 then j < gf byte;
print(zchr(j]);
if k < 256 — comm_length then pk_byte(j);
end;
print_in(”""7);
pk_word (design_size); pk-word(check_sum); pk_word(hppp); pk_word (vppp)

This code is used in section 51%*.
83¥ This module is empty in the C version.

86* Finally, the main program.
begin initialize; convert_gf file; { Check for unrasterized locators 85);
print_In(gf-len : 1, " bytes packed to, ", pk_loc : 1, " bytes. ");
end.

211

212 SYSTEM-DEPENDENT CHANGES GF to PK changes C 688

88*¥ System-dependent changes. Parse a Unix-style command line.
define argument_is (#) = (stremp (long_options|option_index].name,#) = 0)
define do_nothing = {empty statement }
(Define parse_arguments 88*) =
procedure parse_arguments;
const n_options = 3; {Pascal won’t count array lengths for us. }
var long_options: array [0 .. n_options] of getopt_struct;
getopt_return_val: integer; option_index: c_int_type; current_option: 0 .. n_options;
begin (Initialize the option variables 93*);
(Define the option table 89*);
repeat getopt_return_val < getopt_long_only(argc, argv, ~~, long-options, address_of (option_indez));
if getopt_return_val = —1 then
begin do_nothing; {End of arguments; we exit the loop below. }

end
else if getopt_return_val = "?" then
begin usage(my-name); { getopt has already given an error message. }
end

else if argument_is(“help”) then
begin usage_help(GFTOPK_HELP nil);
end
else if argument_is(“version”) then
begin print_version_and_exit(banner,nil, “Tomas_ Rokicki ", nil);
end; {Else it was a flag; getopt has already done the assignment. }
until getopt_return_val = —1; {Now optind is the index of first non-option on the command line. We
must have one or two remaining arguments. }
if (optind + 1 # arge) A (optind + 2 # arge) then
begin write_ln(stderr, my-name, ~: Need one or two file arguments. "); usage(my-name);
end;
gf-name <+ cmdline (optind); {If an explicit output filename isn’t given, construct it from gf-name. }
if optind + 2 = argc then
begin pk_name < cmdline(optind + 1);
end
else begin pk_name < basename_change_suffiz (gf-name, “gf ~, "pk”);
end;
end;

This code is used in section 4*.

89% Here are the options we allow. The first is one of the standard GNU options.

(Define the option table 89*) =
current_option < 0; long_options|current_option].name < “help”;
long_options[current_option].has_arg < 0; long_options|current_option].flag < 0;
long_options[current_option].val < 0; incr(current_option);

See also sections 90*, 91%, and 94*.

This code is used in section 88%*.

90* Another of the standard options.

(Define the option table 89*) +=
long_options[current_option].name < “version~; long_options|current_option].has_arg < 0;
long_options[current_option].flag < 0; long_options|current_option].val < 0; incr(current_option);

891 GF to PK changes C SYSTEM-DEPENDENT CHANGES

91* Print progress information?

{ Define the option table 89*) +=
long_options|[current_option].name < “verbose; long_options|current_option].has_arg < 0;
long_options[current_option].flag < address_of (verbose); long-options|current_option].val + 1;
incr (current_option);

92% (Globals in the outer block 11) +=
verbose: c_int_type;

93* (Initialize the option variables 93*) =
verbose <+ false;

This code is used in section 88*.

94% An element with all zeros always ends the list.

{ Define the option table 89*) +=
long_options[current_option].name < 0; long_options|current_option].has_arg + 0;
long_options[current_option].flag < 0; long_options|current_option].val < 0;

95* Global filenames.

(Globals in the outer block 11) +=
gf-name, pk_name: const_c_string;

213

214 INDEX GF to PK changes C §96

96* Index. Pointers to error messages appear here together with the section numbers where each ident-
ifier is used.

The following sections were changed by the change file: 1, 4, 5, 6, 8, 10, 39, 40, 44, 46, 48, 49, 51, 52, 56, 57, 58, 81, 83, 86, 88,
89, 90, 91, 92, 93, 94, 95, 96.

-help: 89* debugging: 2.

—version: 90% decr: 7, 30, 60, 63, 69, 76, 81%

a: 43. del_m: 16.

abort: 8% 57* del_n: 16.

address_of : 88% 91%* deriv: 68, 69, 70.

all 223’s: 60. design size: 18.

argc: 88%* design_size: 60, 81F 87.

arqgument_is: 88%* dm: 16, 32.

argu: 4F 88* do_nothing: 88%*

ASCII code: 9, 11. do_the_rows: 51F 57F 58*

b: 43, 44* ds: 18, 23.

b_comp_size: 68, 70. dz: 16, 19, 32, 48%60, 71, 72, 73, 74.
backpointers: 19. dy: 16, 19, 32, 48F 60, 71, 72.

bad: 56% dyn_f: 28, 29, 30, 31, 32, 35, 36, 48% 62, 68,
Bad GF file: &% 69, 70, 71, 75.

bad_gf: 8% 43, 51% 54, 56* 57% 60. cight_bits: 37, 43.

banner: 1% 4F 88%* else: 3.

basename_change_suffiz: 88%* end: 3.

bit_weight: 44% 45, 75. end_of char: 48%50, 57%63, 64, 66, 68, 75, 76.
black: 15, 16. end-of row: 48* 50, 57F 63, 64, 66, 67.
boc: 14, 16, 17, 18, 19, 51F 54. endcases: 3.

bocl: 16, 17, 51% coc: 14, 16, 17, 18, 57*

boolean: 41, 58% 70, 77. eof : 43, 46%*

buff: 64, 65, 67, 76, S0. extra: 5T* 58% 59, 63, 65, 66, 67.
byte is not post: 60. false: 42, 51¥ 57% 59, 67, 76, 93*
byte_file: 37, 38. find_gf_length: 46F 60.

c: 43. First byte is not preamble: 51F
c_int_type: 88F 92%F first_on: 68, 70, 7T1.

cc: 32 first_text_char: 10% 13.

char: 10F 82. flag: 32, 89F 90F 91F 94*

char_loc: 16, 17, 19, 60. flag_byte: 70, 71, 72, 73, T4.
char_loc0: 16, 17, 60. four_cases: 52F 53, 57*

check sum: 18. from_length: 81%*

check_sum: 60, 81F 87. Fuchs, David Raymond: 20.

Chinese characters: 19. get_nyb: 30.

chr: 10¥ 11, 13. getopt: 88%

cmdline: 88* getopt_long_only: 88*

comm_length: 81F 82. getopt_return_val: 88%*

comment: 81F 82. getopt_struct: 88%*

comp_size: 68, 69, 71, 72, 73, 74, 77. gf-byte: 43, 51¥53, 54, 57F 59, 60, 81*
const_c_string: 95F gf-ch: 54, 55, 60, 71, 72, 73, 74.
convert_gf-file: 51% 55, 86* gf-ch_mod_256: 54, 55, 57¥71, 72, 73, 74.
count: 76, 77, 80. gf-com: 51F%53, 54, 57F 59, 60.

cs: 18, 23. of file: 4%38, 39%41, 42, 43, 46* 47, 48*
cur_pos: 46%* gf-id_byte: 16, 51F 60.
current_option: 88% 89F 90F 91F 94* gf-len: 46F 47, 60, 86*

d: 43 gf-length: 46%*

d_print_ln: 2, 54, 63, 68. gf-loc: 39F 41, 43.

§96 GF to PK changes C

gf-name: 39% 46} 88F 95%*
gf-signed_quad: 43, 53, 54, 60.
GFtoPK: 4F

GFTOPK_HELP: 88¥*

h_bit: 65, 67, 76, 80.

h-mag: 60, 87.

has_arg: 89F 90F 91F 94*

height: 31, 63, 68, 70, T1, 72, 73, T4.
hoff: 32, 34.

hppp: 18, 23, 60, 61, 81%F

ir 4 30, 517 62, 87.

ID byte is wrong: 60.

Identification byte incorrect: 51%

incr: 7, 30, 43, 44F 56F 63, 64, 66, 67, 68, 69,
75, 80, 81F 89F 90F 91*

initialize: 4F 86*

integer: 4% 30, 41, 43, 44F 45, 46F 47, 48F 49¥ 517
55, 58F 61, 62, 65, 70, 77, 78, 87, 88*

Internal error: 5H7*

j= 30, 51F 62.
Japanese characters: 19.
k. 51F 62.

Knuth, Donald Ervin: 29.
kpse_gf-format: 39%
kpse_init_prog: 4F
kpse_open_file: 39%*
kpse_set_program_name: 4%
last_text_char: 10%F 13.
line_length: 6%

located: 48F 60, 85.
Locator...already found: 60.
long_options: 88F 89F 90F 91F 94*
maz_m: 16, 18, 48% 54, 55, 63.
maz-n: 16, 18, 48F 54, 55, 63.
mazx_new_row: 17.

maz_row: 6F 48F 49F 51F 56*
MAX_ROW: 6% 49% 51*

max_-2: 75, T7.

man_m: 16, 18, 48% 54, 55, 63.
16, 18, 48% 54, 55, 63.
missing raster information: 85.
move_to_byte: 467 517 60.
my_name: 1F 4% 88*

n_options: 88%F

MIN_n:

name: 88F 89F 90F 917F 94*
new_row: 51¥ 56*
new_row.0: 16, 17, 52F 57*

new_row-1: 16.
new_row_128: 52F 5T*
new-row-164: 16.
new_row_64: 52¥ 57*

no character locator...: 5H4.

INDEX

no_op: 16, 17, 19, 53.
0dd aspect ratio: 60.
on: b57F58%59, 70, 76, 80.
only n bytes long: 60.
open_gf-file: 39¥ 51
open_pk_file: 40F 51%*
optind: 88%
option_index: 88%

ord: 11.

oriental characters: 19.
othercases: 3.

others: 3.

output: 4%

output_byte: 44F 45, 75.
p-bit: 76, 77, 80.
pack_and_send_character:
paint: 56F 5T
paint_switch: 15, 16, 57*
paint_0: 16, 17, 57F 59.
paintl: 16, 17, 59.
paint2: 16.

paint3: 16.
parse_arquments: 4% 88%
pk_byte: 44F53, 72, 73, 74, 75, 76, 80, 81} 84.
pk_file: 47F 38, 40F 41, 42, 44F 487 60.
pk_halfword: 44F 74.

pk_id: 24, 81%

pkloc: 4041, 44%57% 72, 73, 74, 84, 86*
pk_name: 40F 88% 95%*

pk_no_op: 23, 24, 84.

pk_nyb: 44F 75.

pk_open: 40F 41, 42.

pk_packed_num: 30.

pk_post: 23, 24, 84.

pk_pre: 23, 24, 81*

pk_three_bytes: 44% 73, T4.

pk_word: 44F 53, 72, 81%*

pk_xxxl: 23, 24, 53.

pk_yyy: 23, 24, 53.

pl: 32

post: 14, 16, 17, 18, 20, 517 60.

post location is: 60.

post pointer is wrong: 60.

55, 57% 62, 65.

post_loc: 60, 61.
post_post: 16, 17, 18, 20, 60.
power: 78, 79, 80.

pre: 14, 16, 17, 51%*
preamble_comment: 1F 81*
pred_pk_loc: 55, 57F 72, 73, T4.
print: 4F 81F

println: 2, 4¥ 51% 60, 81F 85, 86*
print_version_and_exit: 88%

215

216 INDEX GF to PK changes C §96

proofing: 19. usage_help: 88%
put_count: 64, 67. val: 89F 90F 91F 94*
put_in_rows: 56F 57F 59. verbose: 4F 91F 92F 93*
put_ptr: 64, 65. version_string: 4F
putbyte: 44%* virgin: 48% 49F 54, 60.
q: 61. voff: 32, 34.
r_count: 76, 77. vppp: 18, 23, 60, 61, 81*
ri: 76, 77. white: 16.
ron: 176, 77. width: 31, 63, 66, 67, 68, 70, 71, 72, 73, T4, 76, 80.
read: 43. write: 4%
repeat_count: 30. write_ln: 4F 8F 88*
repeat_flag: 64, 65, 66, 76, 80. x-offset: 63, 70, 71, 72, 73, T4.
rewrite: 40¥ zchr: 11, 12, 13, 81%
rewritebin: 40% xfseek: 46%F
Rokicki, Tomas Gerhard Paul: 1% zftell: 46*
round: 60. xmalloc_array: 49%F
row: 6% 48% 49% 51% 55, 56* 57* 63, 64, 65, 66, ord: 11, 13, 81*

67, 68, 69, 75, 76, 80. xrealloc_array: 51%F
row_overflow: 51F 56F zrzl: 16, 17, 53.
row_ptr: 55, 56F 57F 63, 64, 66, 67. zzz2: 16.
s_count: 76, 77. zzzd: 16.
s_i: 76, 77. zazg: 16.
s.on: 76, T1. y_offset: 63, 70, 71, 72, 73, 74.
Samuel, Arthur Lee: 1¥ yyy: 16, 17, 19, 23, 53.

scaled: 16, 18, 19, 23.
sent: 48F 57F
set_pos: 46%*
sizteen_cases: H2¥

sizty_four_cases: 52F 57F 59.

skip: 56¥*

skip_0: 5T7*

skip0: 16, 17, 57*
skip1: 16, 17.
skip2: 16.

skip3: 16.

state: 5T¥58%59, 64, 67, 70, 76, 80.
status: 48F 49F 54, 57F 60, 85.
stderr: 8F 88%F

stdout: 4%

stremp: 88

system dependencies: 3, 8F10%20, 37, 43, 46*
text_char: 10F 11.

text_file: 10%*

tfm: 32, 33, 36.

tfm_width: 48* 60, 71, 72, 73, T4.
thirty_seven_cases: 52F 57*

true: 40F 57F 64, 67, 76.

uewit: 8%F

undefined_commands: 17.
Unexpected command: 51577 60.
Unexpected end of file: 43.
usage: 88%F

GF to PK changes C NAMES OF THE SECTIONS

(Calculate dyn_f and packed size and write character 68) Used in section 62.
(Cases for paint commands 59) Used in section 57*.

(Check for unrasterized locators 85) Used in section 86*.

(Constants in the outer block 6*) Used in section 4*.

(Convert character to packed form 57*) Used in section 54.
(Convert row-list to glyph-list 64) Used in section 62.
(Define the option table 89*, 90%, 91*, 94*) Used in section 88*.
(Define parse_arguments 88*) Used in section 4*.

(Find and interpret postamble 60) Used in section 51*.
(Globals in the outer block 11, 38, 41, 45, 47, 48*, 55, 78, 82, 87, 92*, 95%) Used in section 4*.
(Initialize the option variables 93*) Used in section 88*.
(Interpret character 54) Used in section 51*.

(Locals to convert_gf-file 58*,61) Used in section 51*.
(Locals to pack_and_send_character 65,70, 77) Used in section 62.
(Packing procedures 62) Used in section 51*.

(Process count for best dyn_f value 69) Used in section 68.
(Reformat count list 67) Used in section 64.

(Scan for bounding box 63) Used in section 62.

(Send bit map 76) Used in section 68.

(Send compressed format 75) Used in section 68.

(Send one row by bits 80) Used in section 76.

<Set initial values 12, 13, 42, 49%, 79> Used in section 4*.
(Skip over repeated rows 66) Used in section 64.

(Specials and no_op cases 53) Used in sections 51%, 57%, and 60.
(Types in the outer block 9, 10*, 37) Used in section 4*.

(Write character preamble 71) Used in section 68.

(Write long character preamble 72) Used in section 71.

(Write one-byte short character preamble 73) Used in section 71.
(Write postamble 84) Used in section 51*.

(Write preamble 81*) Used in section 51*.

(Write two-byte short character preamble 74) Used in section 71.

217

	 Introduction
	 The character set
	 Generic font file format
	 Packed file format
	 Input and output for binary files
	 Plan of attack
	 Reading the generic font file
	 Converting the counts to packed format
	 System-dependent changes
	 Index
	Names of the sections
	Calculate dynf and packed size and write character
	Cases for paint commands
	Check for unrasterized locators
	Constants in the outer block
	Convert character to packed form
	Convert row-list to glyph-list
	Define the option table
	Define parsearguments
	Find and interpret postamble
	Globals in the outer block
	Initialize the option variables
	Interpret character
	Locals to convertgffile
	Locals to packandsendcharacter
	Packing procedures
	Process count for best dynf value
	Reformat count list
	Scan for bounding box
	Send bit map
	Send compressed format
	Send one row by bits
	Set initial values
	Skip over repeated rows
	Specials and noop cases
	Types in the outer block
	Write character preamble
	Write long character preamble
	Write one-byte short character preamble
	Write postamble
	Write preamble
	Write two-byte short character preamble

