81 TWINX-CHANGES INTRODUCTION 1

March 17, 2021 at 13:14

1¥ Introduction. This short program compiles a master index for a set of programs that have been
processed by CTWILL. To use it, you say, e.g., twinx *.tex >index.tex. The individual programs should
define their names with a line of the form ‘\def\title{NAME}’.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
(Type definitions 4*)
(Global variables 2)
(Procedures 5*)

int main(int argc, char xargv|])
{
(Local variables 9);
(Initialize the data structures 8);
while (—argce) {
if ((f < fopen(x++argv,"r")) = A)
forintf (stderr, "twinx: ,Couldn’t open, file_ %s for reading!\n", *argv);
else {
(Scan file f until coming to the title 3*);
felose(f); strnepy (xargu + strien(xargv) — 3, "idx", 3);
if ((f « fopen(xargv,"x")) = A)
forintf (stderr, "twinx: Couldn’t open file %s for reading!\n", xargv);
else {
(Copy the index file f into the data structures 10);
fclose(f);
}
¥
}

(Output the data structures to make a master index 13);
return 0;

}

3¥* For your convenience, TWINX grabs the first “word” in \title and turns it into uppercase form.
(Scan file f until coming to the title 3*) =
while (1) {
if (fgets(buf, buf_size, f) = A) {
forintf (stderr, "twinx:(no title found in file_ %s)\n", xargv); title[0] + >\0’; break;

if (strnemp (buf, "\\def\\title\{",11) =0) { register char *p, xq;
for (p < buf + 11,q « title; *p Axp # > A*p # Y375 p++) xq++ < toupper (xp);
*q < °\0’; break;
}
¥

This code is used in section 1%*.

2 DATA STRUCTURES TWINX-CHANGES ~ §4

4* Data structures. Our main task is to collate a bunch of texts associated with keys that have already
been sorted. It seems easiest to do this by repeatedly merging the new data into the old, even though this
means we’ll be passing over some of the same keys 30 times or more; the computer is fast, and this program
won’t be run often.

Further examination shows that a merging strategy isn’t so easy after all, because the sorting done by
CTWILL (and by CWEAVE) is weird in certain cases. When two index entries agree except for their “ilk,” the
order in which they appear in the index depends on the order in which they appear in the program. Thus,
they might well appear in different order in two of the indexes we are merging. (There’s also another glitch,
although not quite as devasting: When two index entries have the same letters and the same ilk, but differ
with respect to uppercase versus lowercase, the order in which they appear depends on the hash code used
in CWEB’s common.w code!)

So we’ll use Plan B: All index entries will first be copied into a long list. The list will almost always consist
of many sorted sublists, but we will not assume anything about its order. After all the copying has been
done, we will use a list-merge sort to finish the job.

The data structure is built from nodes that each contain three pointers. The first pointer is to an id string;
the third pointer is to the next node; and the second pointer is either data.s, a pointer to a string of text,
or data.n, a pointer to a node. In the main list, the id fields are the keys of the index, and the data.n fields
point to lists of associated texts. In the latter lists, the id fields are the individual program titles, while the
data.s fields are the texts.

(Type definitions 4*) =

typedef union {
char xs;
struct node_struct *n;

} mixed;

typedef struct node_struct {
const char xid;
mixed data;
struct node_struct xnext;

} node;

This code is used in section 1%*.

85 TWINX-CHANGES DATA STRUCTURES 3

5% We copy strings into blocks of storage that are allocated as needed. Here’s a routine that stashes away
a given string. It makes no attempt to handle extremely long strings, because such strings will arise only if
the input is all screwed up.

#define string_block_size 8192 > number of bytes per string block «

(Procedures 5*) =
char xsave_string (char *s)
{
register char #*p, *q;
register int [;
for (p < s; *p; p++) 5
l—p—s+1;
if (I > string-block_size) {
forintf (stderr, "twinx : Huge string,,‘%.20s...’ ,will be truncated!\n",s);
l + string_block_size; s[l —1] + *\0’;
}
if (next_string + 1 > bad_string) {
next_string < (char x) malloc(string_block_size);
if (next_string = A) {
forintf (stderr, "twinx: Not enough room_for strings!\n"); exit(—1);
}

bad_string < next_string + string_block_size;

}
for (p < s,q < next_string; *p; p++) *q++ < *p;
*xq < \0’; next_string < q+ 1; return next_string — [;
}
See also sections 6*, 17*, and 20*.

This code is used in section 1%*.

6* Nodes are allocated with a similar but simpler mechanism.
#define nodes_per_block 340

(Procedures 5*) +=
node *new_node(void)

{
if (next_node = bad_node) {

next_node < (node x) calloc(nodes_per_block, sizeof (node));
if (next_node = A) {
fprintf(stderr, "twinx: Not_enough room_ for nodes! \n"); e;m't(—Q);

}

bad_node < next_node + nodes_per_block;

}

next_node++; return next_node — 1;

4

11%*

COPYING TWINX-CHANGES §11

(Copy a new index entry into cur_name and cur_node 11*) =

if (buf[4] #°{7) {

}
{

}

forintf (stderr, "twinx: missing brace,in file %s:,‘%.20s...°\n", *xargv, buf); break;

register char xp, xq; register int bal < 1;
cur_namel[0] < buf[2]; cur_name[l] < buf[3]; cur_name[2] + *{’;
for (p « buf +5,q + cur_name + 3; *p A (bal Vxp={?); p++) {
switch (xp) {
case ’\\’: xq++ < *p++; break;
case ’{’: bal++; break;
case ’}’: bal—; break;

}

k@t <— xp;

}
if (bal) {
forintf (stderr, "twinx: junbalanced entry in file %s:,‘%.20s...’\n", xargv, buf); break;

}
if (xp++#7,7) {
forintf (stderr, "twinx: missing comma in file %s:,‘%.20s...’\n",*xargv, buf); break;

}
if (xp++ #07) {
fprintf (stderr, "twinx: missing space,in file %s:,‘%.20s...°\n", xargu, buf); break;

}

xq < °\0’; (Copy the text part of the index entry into cur_node 12);

This code is used in section 10.

17¥ Comparison is a three-stage process in general. First we compare the keys without regarding case or
format type. If they are equal with respect to that criterion, we try again, with case significant. If they are
still equal, we look at the format characters (the first two characters of the id field).
{Procedures 5*) +=

int compare(node *p,node xq)

{

register unsigned char *pp, *qq;

for (pp < (unsigned char *) p~id + 3, g¢ < (unsigned char x) g~id + 3; *pp A ord[«pp] = ord[*qq];
PP+, qq+)

if (xpp V xqq) return ord[xpp| — ord[*qq];

for (pp + (unsigned char x) p~id + 3, g¢ < (unsigned char x) g~id + 3; *pp A xpp = *xqq;
PP+, qg++)

if (xpp V xqq) return (int) xpp — (int) xqg;

if (p~id[0] # ¢~id[0]) return p~id[0] — ¢~id[0];

return p~id[1] — ¢~id[1];

6§19 TWINX-CHANGES SORTING 5

19¥ The right brace is placed lowest in collating order, because each key is actually followed by a right
brace when we are sorting.

Apology: T haven’t had time to update this part of the program to allow 8-bit characters. At present the
data is assumed to be 7-bit ASCII, as it was in the early versions of CWEAVE.

(Initialize the data structures 8) +=
collate[0] < 0; strepy (collate + 1,
"FONIAN2\3\4\5\6\7\10\11\12\13\14\15\16\17\20\21\22\23\24\25\26\27\30\31\32\33\34\
\35\36\37 1 \42#$%&’> O *+,-./:;<=>7@[\\]1~ ‘{|~_abcdefghijklmnopqrstuvwxyz0123456789");
{ register int j;
for (j < 1; collate[j]; j++) ord[(int) collate[j]] < 7;
ord [128] «+ j; > this affects the ordering of sentinel.id <
for (j <« ’A%; §<°Z%; j++) ord[j] « ord[tolower(j)];

}

20¥ When two lists are combined, we put the data from the second node before the data from the first
node, because we are going to reverse the order when printing. After this procedure has acted, the field
g¢~data.n should not be considered an active pointer.

(Procedures 5*) +=
void collapse(node *p,node xq)
{ register node xz;

for (z < g~data.n; xz-next; x < x-next) ;
r-next < p-data.n; p-data.n < q-data.n;

}

22% (Output z~id in suitable TEX format 22*) =
{ register const char xp + x-id;
if (sp=7.") {
if (x(p+1)# °L’) goto unknown;
goto known;
}
if (xp # °\\’) goto unknown;
switch (x(p+1)) {
case ’\\’: case ’|’: case ’.’: case ’&’: case ’9’: printf ("\\%c",*(p+ 1)); goto known;
case ’$’: printf ("$\\");
for (p +=3; xp #°}’; p++)
if (xp=-_7) putchar(’x’);
else putchar (xp);
putchar(’$’); goto done;
default: goto unknown;
}
unknown: fprintf (stderr, "twinx:_‘%s’ has_ unknown format!\n",p);
known:
for (p +=2; *p; p++)
if (xp="_"Ax(p—1)#\\") putchar(’°\\");
putchar (xp);
}

done: ;

}

This code is used in section 21.

6 INDEX

24* Index.

TWINX-CHANGES

The following sections were changed by the change file: 1, 3, 4, 5, 6, 11, 17, 19, 20, 22, 24.

argc: 1%

argv: 1F3F10, 11F 12.
bad_node: 6F7, 8.
bad_string: 5% 7, 8.

bal: 11F*

buf: 2, 3% 10, 11% 12.
buf_size: 2, 3¥ 10, 12.
calloc: 6%

collapse: 15, 16, 20*
collate: 18, 19*
compare: 14, 15, 16, 17*
continuation: 12.
cur_name: 2, 10, 11} 12.
cur_node: 10, 12.

d: 15, 16.

data: 4% 10, 12, 20* 23.

done: 22¥

exit: 5F 6%

f 2

fclose: 1%

fgets: 3¥ 10, 12.

fopen: 1F

forintf: 1% 3%5%6% 10, 11* 12, 22%
fouts: 23.

header: 7, 8, 14, 21.
id: 4%8, 10, 12, 14, 15, 16, 17F 197} 22F 23.

4 19*
known: 22F
l: 5%
main: 1F

main_node: 8, 9, 10, 14.

malloc: 5%

mixed: 4F

n: 4F

new-node: 6¥ 10, 12.

next: 4*7, 8,10, 12, 14, 15, 16, 20%21, 23.
next_node: 6¥ 7, 8.

next_string: 5F7, 8.

node: 4*6*7, 9, 10, 12, 14, 17%20% 21, 23.
node_struct: 4F

nodes_per_block: 6¥

ord: 17¥ 18, 19*

p: 35 11¥ 14, 17F 20F 22¥
period_sensed: 12.

pp: 1T*

printf: 21, 22F 23.

putchar: 22F 23.

puts: 23.

q: 3F5F11% 14, 17F 20%*

qq: 17*

r.
S:

14.

45 5¥ 14.

save_string: 5% 10, 12.
sentinel: 7, 8, 14, 16, 19*
stderr: 1% 3% 5% 6% 10, 11% 12, 22%

stdout: 23.

strepy: 19%
string_block_size: 5%
strlen: 1%
strnemp: 3¥ 10.
strncpy: 1%

t: 14.

title: 2, 3% 12.
tolower: 19%F
toupper: 3%
unknown: 22F

w:

T
Yy:
z

23.
20F 21.
23.
23.

§24

TWINX-CHANGES NAMES OF THE SECTIONS

(Advance s until it exceeds r + s~next 15) Used in section 14.

(Copy a new index entry into cur_name and cur_-node 11*) Used in section 10.
{ Copy the index file f into the data structures 10) Used in section 1*.

(Copy the text part of the index entry into cur_node 12) Used in section 11*.
<G10ba1 variables 2, 7, 18> Used in section 1%*.

(Initialize the data structures 8, 19*) Used in section 1*.

(Local variables 9) Used in section 1*.

(Merge p and ¢, appending to ¢ 16) Used in section 14.

(Output the data structures to make a master index 13) Used in section 1*.
(Output the lines of z~data.n in reverse order 23) Used in section 21.
(Output the main list in suitable TEX format 21) Used in section 13.

(Output 2~id in suitable TEX format 22*) Used in section 21.

(Procedures 5*, 6%, 17%, 20%) Used in section 1*.

(Scan file f until coming to the title 3*) Used in section 1*.

(Sort the main list, collapsing entries with the same id 14) Used in section 13.
(Type definitions 4*) Used in section 1*.

TWINX-CHANGES

Section Page

Introduction 1 1
Data sStructures 4 2
(070172 1 1Y P 10 3
0 5 1 Y 13 4
IdeX .o 24 6

	Introduction
	Data structures
	Copying
	Sorting
	Index
	Names of the sections
	Advance s until it exceeds r=s->next
	Copy a new index entry into cur_name and cur_node
	Copy the index file f into the data structures
	Copy the text part of the index entry into cur_node
	Global variables
	Initialize the data structures
	Local variables
	Merge p and q, appending to t
	Output the data structures to make a master index
	Output the lines of x->data.n in reverse order
	Output the main list in suitable TeX format
	Output x->id in suitable TeX format
	Procedures
	Scan file f until coming to the title
	Sort the main list, collapsing entries with the same id
	Type definitions

