The CTIE processor

(Version 1.1 [TEX Live])

Section Page

Introduction 1
Input and outpUb 8
Data structures e 10
File I/ oo 19
Reporting errors to the user 28
Handling multiple change files 38
Input/output OrganiSationeeettet ettt 42
System-dependent changes 70
IndeX o e 72

Copyright (©) 2002, 2003 Julian Gilbey
All rights reserved.

This program is distributed WITHOUT ANY WARRANTY, express or implied.

Permission is granted to make and distribute verbatim copies of this program provided that the copyright notice and

this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this program under the conditions for verbatim

copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical

to this one.

March 17, 2021 at 13:08

81 The CTIE processor INTRODUCTION 1

1* Introduction. Whenever a programmer wants to change a given WEB or CWEB program (referred to
as a WEB program throughout this program) because of system dependencies, she or he will create a new
change file. In addition there may be a second change file to modify system independent modules of the
program. But the WEB file cannot be tangled and weaved with more than one change file simultaneously. The
TIE program was designed to merge a WEB file and several change files producing a new WEB file, and since
the input files are tied together, the program was called TIE. Furthermore, the program could be used to
merge several change files giving a new single change file. This method seems to be more important because
it doesn’t modify the original source file.

However, the introduction of CWEB has meant that TIE is not quite able to perform its task correctly any
longer: CWEB introduced the idea of include files, which are input into CWEB files using the @i command, and
TIE is unable to handle such constructs if the change files modify lines included in those files. The present
program, CTIE, is designed to overcome this lack. Like TIE, upon which it is based, it can either output a
single master WEB file or a master change file. However, in both cases, any include commands will be totally
expanded and the files included in the output rather than the @i commands being left; this makes this
code feasible, which it would not necessarily be otherwise. Other than this difference, CTIE should function
identically to TIE on files which do not involve any CWEB include commands.

The algorithm used is essentially the same as that of TIE, with modifications to check for and handle @i
commands. Thus, as with TIE, the method used only needs one buffer line for each input file. Thus the
storage requirement of CTIE does not depend on the sizes of the input files but only on their number.

The program is written in C and has few system dependencies.

The “banner line” defined here should be changed whenever CTIE is modified. We also keep the version
number here separately for ease; it is used below.

#define wversion_.number "1.1"
#define banner "This is CTIE, Version, 1.1"
#define copyright "Copyright,,2002,2003_ Julian Gilbey."
"LuAll rights reserved. There_ is no warranty.\n"
"Run,,with the ,—-version option for other important information."

3* And this is the structure of the main function: this is where CTIE starts, and where it ends.

(The main function 3*) =
int main (int argc, string *argv)
{
(Set up PROGNAME feature and initialise the search path mechanism 71*)
(Initialise parameters 17)
(Scan the parameters 61)
(Print the banners 60*)
(Get the master file started 40*)
(Prepare the change files 41*)
(Prepare the output file 38*)
(Process the input 57)
(Check that all changes have been read 58)
exit (wrap_up());

}

This code is used in section 2.

4* We include the additional types boolean and string. CTIE replaces the complex TIE character set
handling (based on that of the original WEB system) with the standard CWEB behaviour, and so uses the char
type for input and output.

The kpathsea library (version 3.4.5 and higher) defines the boolean (with the values true and false)
and string (and const_string) types in <kpathsea/simpletypes.h>, so we do not actually need to define
them here.

2 INTRODUCTION The CTIE processor 85

5% We don’t need to predeclare any string handling functions here, as the kpathsea headers do the right
thing by including <string.h> behind the scenes.

6* The following parameters should be sufficient for most applications of CTIE.

#define buf size 1024 > maximum length of one input line «
#define maz_file_index 32 > we don't think that anyone needs more than 32 change files «
#define zisupper(c) (isupper((unsigned char) c) A ((unsigned char) ¢ < °200))

7¥ We introduce a history variable that allows us to set a return code if the operating system can use it.
First we introduce the coded values for the history. This variable must be initialised. (We do this even if
the value given may be the default for variables, just to document the need for the initial value.)
(Global variables 7+) =

typedef enum {

spotless, troublesome, fatal

} return_code;

static return_code history < spotless;
See also sections 15%, 16, 18, 22, 39*, and 66*.

This code is used in section 2.

68 The CTIE processor INPUT AND OUTPUT 3

8% Input and output. Standard output for the user is done by writing on stdout. Error messages
are written to stderr. Terminal input is not needed in this version of CTIE. stdin, stdout and stderr are
predefined as we include the <stdio.h> definitions through the kpathsea interface.

(Global #includes 8*) =

#include <kpathsea/kpathsea.h>

This code is used in section 2.

9¥ And we need dynamic memory allocation. This should cause no trouble in any C program. The
kpathsea include files handle the definition of malloc, too.

4 DATA STRUCTURES The CTIE processor §10

10* Data structures. The multiple primary input files (master file and change files) are treated the same
way. To organise the simultaneous usage of several input files, we introduce the data type in_file_modes.
The mode search indicates that CTIE searches for a match of the input line with any line of an input file
in reading mode. test is used whenever a match is found and it has to be tested if the next input lines do
match also. reading describes that the lines can be read without any check for matching other lines. ignore
denotes that the file cannot be used. This may happen because an error has been detected or because the
end of the file has been found.
file_types is used to describe whether a file is a master file or a change file. The value unknown is added
to this type to set an initial mode for the output file. This enables us to check whether any option was used
to select the kind of output. (This would even be necessary if we would assume a default action for missing
options.)
(Global types 10*) =
typedef enum {
search, test, reading, ignore
} in_file_modes;
typedef enum {
unknown , master, chf
} file_types;
See also sections 11%*, 12, 13, and 14.

This code is used in section 2.

11* A variable of type out_md_type will tell us in what state the output change file is during processing.
normal will be the state, when we did not yet start a change, pre will be set when we write the lines to be
changes and post will indicate that the replacement lines are written.

(Global types 10*) 4+=
typedef enum {
normal, pre, post
} out_md_type;

15*% Every one of the primary input files might include another file using the @i include mechanism. In
turn, each of these might include other files, and so on. We allow a limited number of these files to be opened
simultaneously, and we store information about the currently open include files as a linked list attached to
each primary file.

#define maz_include_files 20 > maximum number of include files open simultaneously <
#define maz_file_name_length 1024

(Global variables 7+) +=
int total_include_files < 0; > count 'em <«

§19 The CTIE processor FILE I/O 5

19*% File I/O. The basic function get_line can be used to get a line from an input file. The line is stored
in the buffer part of the descriptor. The components limit and line are updated. If the end of the file is
reached mode is set to ignore. On some systems it might be useful to replace tab characters by a proper
number of spaces since several editors used to create change files insert tab characters into a source file not
under control of the user. So it might be a problem to create a matching change file.

We define get_line to read a line from a file specified by the corresponding file descriptor. This function
returns true if it is successful and false if the end of the file has been reached.

(Internal functions 19*) =

static boolean get_line(file_index i, boolean do_includes)

{
register input_description xinp_desc + input_organisation[i];
register FILE xfp;
if (inp_desc-mode = ignore) return false;

restart:
if (inp_desc~current_include # A) {

register include_description xinc_desc < inp_desc-current_include;

fp « inc_desc~the_file; {Get include line into buffer or goto restart if end of file 24*)
}
else {

fo < inp_desc~the_file; {Get line into buffer, return false if end of file 20*)

if (do-includes) (Check for @i in newly read line, goto restart if include fails 26)
return true;
See also sections 32%, 42% 43* 46*, 47* 48* and 59%*.

This code is used in section 2.

20* Lines must fit into the buffer completely. We read all characters sequentially until an end of line is
found (but do not forget to check for EQF!). Too long input lines will be truncated. This will result in
a damaged output if they occur in the replacement part of a change file, or in an incomplete check if the
matching part is concerned. Tab character expansion might be done here.

(Get line into buffer, return false if end of file 20%) =
{
register int c; > the actual character read «
register char xk; > where the next character goes «

if (feof (fp)) (Handle end of file and return 21)
inp_desc-limit < k < inp_desc~buffer; > beginning of buffer <
while (k < inp_desc-buffer_end A (c < getc(fp)) # EOF Ac# ’\n’)
if ((x(k++) < ¢) #°u’ Ac# °\xr?) inp_desc-limit + k;
if (k > inp_desc-buffer_end)
if ((c + getc(fp)) #EOF Ac# \n’) {
ungetc(c, fp); inp_desc-loc + inp_desc~buffer; err_print(i," ! Input line too long");

if (¢ = EOF A inp_desc-limit = inp_desc~buffer) (Handle end of file and return 21)
(Increment the line number and print a progress report at certain times 23)

}

This code is used in section 19*.

6

24%

FILE I/O The CTIE processor

§24

The following is very similar to the above, but for the case where we are reading from an include file.

(Get include line into buffer or goto restart if end of file 24*) =

{

}

register int c; > the actual character read «
register char xk; > where the next character goes <

if (feof (fp)) (Handle end of include file and goto restart 25)
inp_desc-limit < k < inp_desc~buffer; > beginning of buffer <
while (k < inp_desc-buffer_end A (c < getc(fp)) #EOF Ac# ’\n’)
if ((%(k++) <) # 0’ Ae#°\x?) inp_desc-limit < k;
if (k > inp_desc-buffer_end)
if ((c + getc(fp)) #EOF Ac# \n’) {
ungetc(c, fp); inp_desc-loc + inp_desc~buffer; err_print(i," !, Input line too long");

}

if (¢ = EOF A inp_desc~limit = inp_desc-buffer) (Handle end of include file and goto restart 25)

inc_desc-line ++;

This code is used in section 19*.

827 The CTIE processor FILE I/O 7

27¥ When an @i line is found in the file, we must temporarily stop reading it and start reading from the
named include file. The @i line should give a complete file name with or without double quotes. We use the
KPATHSEA library (in particular, the CWEBINPUTS variable) to search for this file. The remainder of the @i
line after the file name is ignored.

#define too_long()

total_include_files —; free(new_inc); err_print(i," ' Include file name too long");
goto restart;

}

('Try to open include file, abort push if unsuccessful, go to restart 27*) =
{
include_description *xnew_inc;
char xfile_name_end;
string fullname;
char xk;

new_inc < (include_description *) malloc(sizeof (include_description));

if (new_inc = A) fatal_error (i, " ! No_memory_ for new,include descriptor","");
new_inc-line <— 0; k < new_inc-file_name; file_name_end < k + maz_file_name_length — 1;
if (xinp_desc~loc = ") {

inp_desc-loc++;
while (xinp_desc-loc # "’ ANk < file_name_end) xk++ < xinp_desc~loc++;
if (inp_desc~loc = inp_desc-limit) k < file_name_end + 1; > unmatched quote is ‘too long’ «
}
else
while (xinp_desc-loc # >,> A xinp_desc~loc # *\t’ A xinp_desc~loc # "> ANk < file_name_end)
xk++ < xinp_desc-loc++;
if (k > file_name_end) too_long();
xk < >\0?; fullname < kpse_find_cweb(new_inc-file_name);
if (fullname) new_inc-the_file < fopen(fullname,"x");
if (fullname # A A new_inc~the_file # A) {

free(fullname); new_inc~parent < inp_desc~current_include; > link it in <
inp_desc-current_include < new_inc; goto restart; > success <
total_include_files —; free(new_inc);

if (fullname) {
free(fullname); err_print(i," ! Cannot open include file");

else err_print(i,"! Cannot,find include file");

goto restart;

}

This code is used in section 26.

8 REPORTING ERRORS TO THE USER The CTIE processor 628

28*% Reporting errors to the user. There may be errors if a line in a given change file does not match
a line in the master file or a replacement in a previous change file. Such errors are reported to the user by
saying

err_print (file_no, " ! _Error message");

where file_no is the number of the file which is concerned by the error. Please note that no trailing dot is
supplied in the error message because it is appended by err_print.
(Predeclaration of functions 28*) =
void err_print (file_index, const char x);
See also sections 33*, 35% and 67*.

This code is used in section 2.

29¥ Here is the outline of the err_print function.

(Error handling functions 29*) =
void err_print(file_index i, const char xs) > prints ‘. and location of error message <

char *k, *[; > pointers into an appropriate buffer <
forintf (stderr,xs = 217 7 "\n%s" : "%s", s);
if (i > 0) (Print error location based on input buffer 30)
else putc(’\n’, stderr);
fflush (stderr); history < troublesome;
}
See also section 36*.

This code is used in section 2.

32¥ Some implementations may wish to pass the history value to the operating system so that it can be
used to govern whether or not other programs are started. Here, for instance, we pass the operating system
a status of 0 if and only if only harmless messages were printed.

(Internal functions 19*) +=
int wrap_up (void)

(Print the job history 34);
if (history > spotless) return EXIT_FAILURE;
else return EXIT_SUCCESS;

}

33* Always good to prototype.

(Predeclaration of functions 28*) +=
int wrap_up (void);

35% If there’s a system error, we may be able to give the user more information with the pfatal_error
function. This prints out system error information if it is available.
(Predeclaration of functions 28*) +=

void pfatal_error(const char x,const char x);

§36 The CTIE processor REPORTING ERRORS TO THE USER 9

36* (Error handling functions 29*) +=
void pfatal_error(const char xs,const char xt)

{

char xstrerr < strerror(errno);
forintf (stderr, "\n%s%s", s,1t);

if (strerr) fprintf (stderr,",(%s)\n", strerr);
else fprintf (stderr,"\n");

history < fatal; exit(wrap_up());

}

37¥ The <errno.h> include file for the above comes via the kpathsea interface.

10 HANDLING MULTIPLE CHANGE FILES The CTIE processor §38

38*% Handling multiple change files. In the standard version we take the name of the files from the
command line. It is assumed that filenames can be used as given in the command line without changes.

First there are some sections to open all files. If a file is not accessible, the run will be aborted. Otherwise
the name of the open file will be displayed.

(Prepare the output file 38*) =

out_file < fopen(out_name, "wb");
if (out_file = A) {
pfatal_error (" ! Cannot open/create output, file","");
}
}

This code is used in section 3*.

39*% The name of the file and the file descriptor are stored in global variables.

(Global variables 7*) +=
FILE xout_file;
string out_name;

40%* For the master file we start by reading its first line into the buffer, if we could open it. We use the
kpathsea library to find the file.

(Get the master file started 40*) =

string fullname;

fullname <« kpse_find_cweb (input_organisation|[0]-file_name);
if (fullname) input_organisation[0]~the_file < fopen(fullname,"r");
if (fullname = AV input_organisation[0]-the_file = A) {
if (fullname) {
pfatal_error ("' Cannot open master file. ", input_organisation [O]ﬂﬁle,name);
}
else {
fatal_error(—1," ! Cannot find master file.", input_organisation [0]-file_name);

}

else free(fullname);
printf (" (%s)\n", input_organisation [0]=file_name); input_organisation [0]~type_of-file < master;
get_line (0, true);

}

This code is used in section 3*.

841 The CTIE processor HANDLING MULTIPLE CHANGE FILES 11

41%* TFor the change files we must skip any comment part and see whether there are any changes in it. This
is done by init_change_file.

(Prepare the change files 41*) =

file_index i;
string fullname;
i+ 1
while (¢ < no_ch) {

fullname «+ kpse_find_cweb (input_organisation[i]~file_name);

if (fullname) input_organisationi]-the_file < fopen (fullname,"r");

if (fullname = AV input_organisation[i]~the_file = A) {

if (fullname) {
pfatal_error ("' Cannot open change file ", input_organisation[i]~file_name);

else {
fatal_error(—1," ' Cannot,find change file, ", input-organisation[i]~file_name);

}

else free(fullname);
printf (" (%hs)\n", input_organisation[i]-file_name); init_change_file(i); i++;
}
}

This code is used in section 3*.

12

42¥

INPUT/OUTPUT ORGANISATION The CTIE processor 842

Input/output organisation. Here’s a simple function that checks if two lines are different.

(Internal functions 19*) +=
static boolean lines_dont_match(file_index i, file_index j)

{

}

43*

register input_description xiptr < input_organisation[i], *jptr < input_organisation[j|;
if (iptr-limit — iptr-buffer # jptr-limit — jptr-buffer) return true;
return strncmp (iptr-buffer, jptr-buffer, iptr-limit — iptr-buffer);

Function init_change_file(7) is used to ignore all lines of the input file with index ¢ until the next change

module is found.

(Internal functions 19*) +=
static void init_change_file (file_index 1)

{

}

44¥

register input_description xinp_desc + input_organisation [i];
char ccode;

inp_desc~limit + inp_desc~buffer; (Skip over comment lines; return if end of file 44*)
(Skip to the next nonblank line; return if end of file 45)
inp_desc~dont_match < 0;

While looking for a line that begins with @x in the change file, we allow lines that begin with @, as

long as they don’t begin with @y, @z or @i (which would probably mean that the change file is fouled up).

(Skip over comment lines; return if end of file 44*) =
while (1) {

}

if (—get_line(i, false)) return; > end of file reached <
if (inp_desc-limit < inp_desc~buffer + 2) continue;
if (inp_desc~buffer[0] # *@’) continue;
ccode + inp_desc~buffer[1];
if (zisupper(ccode)) ccode < tolower ((unsigned char) ccode);
if (ccode = ’x’) break;
if (ccode =y’ V ccode =’z V ccode = 717) {
inp_desc~loc < inp_desc-buffer + 2; err_print(i,"! Missing ,@x_in change file");

}

This code is used in section 43*.

46*

The put_line function is used to write a line from input buffer j to the output file.

(Internal functions 19*) +=
static void put_line (file_index j)

{

char xptr < input_organisation[j]~buffer;
char *Imt < input_organisation[j|-limit;
while (ptr < Imt) putc(xptr++, out_file);
putc(’\n’, out_file);

847 The CTIE processor INPUT/OUTPUT ORGANISATION 13

47* The function e_of_ch_module returns true if the input line from file ¢ starts with @z.

(Internal functions 19*) +=
static boolean e_of-ch-module (file_index 1)

{
register input_description xinp_desc + input_organisation [i];
if (inp_desc-limit = A) {
err,pm'nt(i, " !uChangeufileuendeduwithoutu@z"); return true;

else if (inp_desc-limit > inp_desc-buffer + 2)
if (inp_desc-buffer[0] = @ A (inp_desc-buffer[l] = *Z’ V inp_desc-buffer[l] = *z’)) return true;
return false;

}

48%* The function e_of ch_preamble returns true if the input line from file ¢ starts with @y.

(Internal functions 19*) 4+=
static boolean e_of ch_preamble(file_.index i)

{
register input_description xinp_desc < input_organisation[i];
if (inp_desc~limit > inp_desc-buffer + 2 A inp_desc~buffer[0] = >@?)
if (inp_desc-buffer[l] =Y’ V inp_desc-buffer[l] = ’y?*) {
if (inp_desc~dont_match > 0) {
inp_desc~loc + inp_desc-buffer + 2; fprintf (stderr,"\n! Hmm. . . %d,", inp_desc~dont_match);
err_print (i, "of jthe preceding lines failed, to_match");
}

return true;

}

return false;

}

59% We want to tell the user about our command line options if they made a mistake. This is done by the
usage_error() function. It contains merely the necessary print statements and exits afterwards.
(Internal functions 19*) +=

static void usage_error(void)

{

(Print the banners 60*);
forintf (stderr, "Usage: ctie —m|-c outfile master changefile(s)\n");
forintf (stderr, "Typectie —-help for more information\n"); exit(EXIT_FAILURE);

}

60* Printing our welcome banners; we only do this if we are not asked for version or help information.
(Print the banners 60*) =

printf ("hsu(%hs)\n", banner, kpathsea_version_string); > print a “banner line” <

printf ("%hs\n", copyright); > include the copyright notice <

This code is used in sections 3* and 59%*.

14 INPUT/OUTPUT ORGANISATION The CTIE processor 863

63* We have to distinguish whether this is the very first file name (which is the case if no_ch = none) or
if the next element of input_organisation must be filled.

(Get a file name 63*) =
{
if (no_ch = none) {
out_name < *arqu;
}

else {
register input_description xinp_desc;

inp_desc + (input_description *) malloc(sizeof (input_description));

if (inp-desc = A) fatal_error(—1,"! No memory for input, descriptor","");

inp_desc~mode <+ search; inp_desc-line < 0; inp_desc~type_of_file < chf;

inp_desc~limit < inp_desc~buffer; inp_desc=buffer[0] < *.’; inp_desc~loc <+ inp_desc-buffer + 1;
inp_desc-buffer_end < inp_desc~buffer + buf_size — 2; inp_desc-file_name < xargv;
inp_desc~current_include < A; input_organisation|[no_ch] < inp_desc;

}

no_ch++;

}

This code is used in section 61.

66* Here is the usage information for —-help.

(Global variables 7+) +=

const_string CTIEHELP|[] < {"Usage:,ctie —m|-c outfile master changefile(s)",
"uuCreateya new master; file jor ,change file from the ,given",
"uumaster (C)WEB_file and changefiles.",
"uuAll filenames are taken literally; noysuffixes are added.","",
"-m,,create a new master file from original,,(C)WEB and change file(s)",
"-c_create a master change file for original,,(C)WEB file from changefile(s)",
"--help Luuuudisplaythis help ,and exit",
"--versionydisplay version information and exit", A};

67* (Predeclaration of functions 28*) 4+=
static void usage_help (void);
static void print_version_and_exit (const_string, const_string);

68% static void usage_help(void)

{

const_string xmessage < CTIEHELP;

while (xmessage) {
fouts(xmessage, stdout); putchar(’\n’); ++message;

}

putchar(’\n’); exit(EXIT_SUCCESS);

}

§69

The CTIE processor INPUT/OUTPUT ORGANISATION

69% static void print_version_and_exit (const_string name, const_string version)

{

printf ("%hsuks\n", name, version); puts(kpathsea_version_string);
puts ("Copyright,,(C),2002,2003,Julian Gilbey.");

puts ("Kpathsea,is copyright,,(C) 1999 Free Software Foundation, Inc.");
puts("There is NO warranty. . This_ is free_ software.");

puts ("Redistributionuofuthisusoftwareuisucovereduby_,the_,termsuof ");
puts("both, the CTIE copyright and the GNU General Public Licence.");
puts ("Forumoreuinformat ion about these matters, see the files");

puts ("named ,COPYING and, the CTIE_ source.");

puts("Primary author of ,CTIE: Julian Gilbey.");

puts("Kpathsea written by Karl Berry, and others."); exit(EXIT_SUCCESS);

15

16 SYSTEM-DEPENDENT CHANGES The CTIE processor 870

70¥ System-dependent changes. The ctie program from the original CTIE package uses the compile-
time default directory or the value of the environment variable CWEBINPUTS as an alternative place to be
searched for files, if they could not be found in the current directory.
This version uses the KPATHSEA mechanism for searching files. The directories to be searched for come
from three sources:
(a) a user-set environment variable CWEBINPUTS (overridden by CWEBINPUTS_ctie);
(b) a line in KPATHSEA configuration file texmf . cnf,
e.g., CWEBINPUTS=$TEXMFDOTDIR: $TEXMF/texmf/cweb//
or CWEBINPUTS. ctie=$TEXMFDOTDIR : $TEXMF/texmf/cweb//;
(c) compile-time default directories (specified in texmf.in),
i.e., $TEXMFDOTDIR: $TEXMF/texmf /cweb//.

#tdefine kpse_find_cweb(name) kpse_find_file(name, kpse_cweb_format, true)

71¥ The simple file searching is replaced by the ‘path searching’ mechanism that the KPATHSEA library
provides.

We set kpse_program_name to ‘ctie’. This means if the variable CWEBINPUTS. ctie is present in texmf . cnf
(or CWEBINPUTS_ctie in the environment) its value will be used as the search path for filenames. This allows
different flavors of CTIE to have different search paths.

(Set up PROGNAME feature and initialise the search path mechanism 71*) =
kpse_set_program_name (argu[0], "ctie");

This code is used in section 3*.

872 The CTIE processor

72*% Index.

INDEX 17

The following sections were changed by the change file: 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 19, 20, 24, 27, 28, 29, 32, 33, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 59, 60, 63, 66, 67, 68, 69, 70, 71, 72.

--help: 64.
--version: 65.
_idsc: 14.
_indsc: 13.

actual_input: 16, 17, 49, 50, 51, 52, 54, 55, 56, 57.

arge: 3F 61.

argv: 3% 61, 62, 63F 71*

banner: 1F 60*

boolean: 4F19F 22, 42F 4Tk 48*

buf_size: G¥ 14, 63*

buffer: 14, 19% 20% 24% 26, 29% 30, 42* 43% 44*
45, 46F 47 48F 58, 63*

buffer_end: 14, 207 247F 63*

c: 207 24%F

Cannot find change file: 41%*

Cannot find master file: 40%

Cannot open change file: 41%*

Cannot open include file: 2T7%

Cannot open master file: 40%*

Cannot open/create output file: 38

ccode: 43F 44%*

Change file ended without @z: 47*

Change file ended...: 45.

Change file entry ...: 8.

chf: 10% 52, 55, 62, 63*

const_string: 4% 667 67F 68F 69*

copyright: 1F 60*

CTIEHELP: 66} 68*

current_include: 14, 19F%25, 27*% 30, 63*

CWEBINPUTS: 27F 70 71*

do_includes: 19%

dont_match: 14, 437 487 51.

e_of_ch_module: 47F 50.

e_of_ch_preamble: 487 56.

EOF: 20%* 24*

err_print: 20F 247F 26, 27F 28%F 29F 31, 44F 45,
47F 48F 58.

errno: 36¥

exit: 3% 31, 36% 59* 68* 69

EXIT_FAILURE: 32F 59%

EXIT_SUCCESS: 32F 68F 69%F

false: 4% 19F 21, 22, 44F 47F 48% 51, 57.

fatal: 7F 31, 34, 36*

fatal_error: 27F 31, 40F% 417 50, 63*

felose: 21, 25.

feof - 20F 24%*

flush: 23, 29%

file_index: 12, 16, 10% 28% 20% 41% 42% 43* 46*
47F 48F 49, 58.

file_name: 13, 14, 27F 30, 40F 41F 63*

file_name_end: 27*

file_no: 28%*

file_types: 107 14, 16.

fopen: 27F 38% 407 41%*

fp: 19% 20% 21, 24% 25,

fprintf: 29%30, 31, 36%48%53, 54, 55, 57, 59%

fputs: 68%F

free: 25, 27F 40F 41*

fullname: 27F 40F 41°%*

get_line: 19¥ 40F 44F 45, 56.

getc: 20F 24*

history: 7F29F 31, 32F 34, 36*

ir 19F 20F 417F 427 43 4T 487 58.

ignore: 10F 19F 21, 51, 58.

in_file_modes: 10F 14.

wme_desc: 19F 24 25, 30.

Include file name ...: 26, 27F

include_description: 13, 14, 19725, 27F30.

wmit_change_file: 41 43F 50.

mp_desc: 19F 20¥ 21, 23, 24F 25, 26, 27F 30, 43F
447 45, 47F 487 50, 63*

Input line too long: 207 24*

input_description: 14, 18, 19¥ 30, 42 43% 47*
48% 50, 63*

input_has_ended: 21, 22, 49, 57.

input_organisation: 18, 19730, 407 41} 42F 43F 467
AT¥A8% 49, 50, 51, 54, 55, 56, 58, 61, 63*

iptr: 42%F

isupper: 6¥*

jo 42F 46¥

gptr: 42%F

k: 20F 24F 27F 29*

kpathsea_version_string: 60¥ 69%*

kpse_cweb_format: 70%

kpse_find_cweb: 27F 40F 41F 70*

kpse_find_file: 70%

kpse_program_name: T1*

kpse_set_program_name: T1*

l: 29%

limit: 14, 19% 20% 21, 24% 26, 27* 30, 42% 43* 44%
A5, 4G ATF 48F 63*

line: 13, 14, 19% 23, 24% 27% 30, 63*

lines_dont_match: 42F 51.

Imt: 46F
loc: 14, 20¥ 24F 26, 27F 30, 44 48F 58, 63*
main: 3¥

malloc: 9F 27F 63*
master: 10721, 23, 30, 40¥ 50, 54, 62.

18 INDEX

maz_file_index: 6F 12, 18, 61.
max_file_name_length: 13, 15* 27*
maz_include_files: 15F 26.
message: 68%F

Missing @x...: 44%*

mode: 14, 19%21, 50, 51, 56, 58, 63*
name: 69F 70*

new_inc: 27F

No memory for descriptor: 63¥
no_ch: 16, 41% 51, 58, 61, 63*
none: 51, 52, 53, 54, 55, 56, 63*
normal: 11% 17, 53, 55.

out_file: 38% 39% 46% 53, b4, 55, 57.
out_md_type: 117 16.
out_mode: 16, 17, 53, 54, 55, 57.
out_name: 38F 39% 63*F

parent: 13, 25, 27

pfatal_error: 35F 36F 38F 40% 41°*
post: 11F 54, 55, 57.

pre: 11F 53, 54.
print_version_and_exit: 65, 67F 69*
printf: 23, 34, 40F 41F 60F 69%*
prod_chf: 16, 52, 61, 62.

ptr: 467

put_line: 467 52, 54, 55.

putc: 29F 30, 46%*

putchar: 23, 68%F

puts: 69F

reading: 10¥ 50, 51, 56.

restart: 19F 25, 26, 27*
return_code: T7F

st 29F 36

search: 10F 50, 51, 63*

spotless: TF 32F 34.

stderr: 8F297F 30, 31, 34, 36} 48F 59*F
stdin: 8%

stdout: 8F 23, 34, 68%F

stremp: 61.

strerr: 36%F

strerror: 36%*

string: 37 4F 14, 27F 39F 40F 41%*
strnemp: 42¥

system dependencies: 67 9% 30, 32F 34, 70*

t: 36F

tab character expansion: 197 20%*
temp: 25.

test: 10F 51.

test_file: 49, 51.

test_input: 16, 51, 52, 53, 54, 55, 56.
the_file: 13, 14, 19F% 27F 40F 41*

This can’t happen...: 50.
tolower: 44%*

The CTIE processor

Too many nested includes: 26.
too_long: 27*F

total_include_files: 15% 25, 26, 27*
troublesome: TF 29F 34.

true:

4% 10% 21, 40% 42F 45, AT* 48% 56, T0%

type_of-file: 14, 21, 23, 30, 40¥50, 54, 55, 63*

ungetc:

20% 24%

unknown: 10F 16, 61, 62.
usage_error: 59¥ 61, 62.
usage_help: 64, 67F 68F
version: 69F
version_number: 1F 65.
wrap_up: 3% 31, 32F 33F 36*
zisupper: 6F 44%*

§72

The CTIE processor NAMES OF THE SECTIONS

(Check for @i in newly read line, goto restart if include fails 26) Used in section 19*.
(Check that all changes have been read 58) Used in section 3*.
(Check the current files for any ends of changes 50) Used in section 49.
(Display help message and exit 64) Used in section 61.
(Display version information and exit 65) Used in section 61.
(Error handling functions 29% 36*) Used in section 2.

(Get a file name 63*) Used in section 61.

(Get include line into buffer or goto restart if end of file 24*) Used in section 19*.
(Get line into buffer, return false if end of file 20%) Used in section 19*.
(Get the master file started 40*) Used in section 3*.

(Global #includes 8*) Used in section 2.

(Global types 10%, 11*, 12, 13, 14) Used in section 2.

(Global variables 7+, 15*, 16, 18, 22, 39*%, 66*) Used in section 2.
(Handle end of file and return 21) Used in section 20*.

(Handle end of include file and goto restart 25) Used in section 24*.
(Handle output 52) Used in section 49.

(Increment the line number and print a progress report at certain times 23) Used in section 20*.
(Initialise parameters 17) Used in section 3*.

(Internal functions 19%, 32%, 42%, 43*%, 46*, 47*, 48* 59*) Used in section 2.
(Predeclaration of functions 28*, 33*, 35%, 67*) Used in section 2.
(Prepare the change files 41*) Used in section 3*.

(Prepare the output file 38*) Used in section 3*.

(Print error location based on input buffer 30) Used in section 29*.

(Print the banners 60*) Used in sections 3* and 59%*.

(Print the job history 34) Used in section 32*.

(Process a line, break when end of source reached 49) Used in section 57.

(Process the input 57) Used in section 3*.

(Scan all other files for changes to be done 51) Used in section 49.

(Scan the parameters 61) Used in section 3*.

(Set a flag 62) Used in section 61.

(Set up PROGNAME feature and initialise the search path mechanism 71*) Used in section 3*.
(Skip over comment lines; return if end of file 44*) Used in section 43*.

(Skip to the next nonblank line; return if end of file 45) Used in section 43*.

(Step to next line 56) Used in section 49.

{ Test for normal, break when done 53) Used in section 52.

(Test for post, break when done 55) Used in section 52.

(Test for pre, break when done 54) Used in section 52.

(The main function 3*) Used in section 2.

(Try to open include file, abort push if unsuccessful, go to restart 27*) Used in section 26.

19

	Introduction
	Input and output
	Data structures
	File I/O
	Reporting errors to the user
	Handling multiple change files
	Input/output organisation
	System-dependent changes
	Index
	Names of the sections
	Check for @i in newly read line, goto restart if include fails
	Check that all changes have been read
	Check the current files for any ends of changes
	Display help message and exit
	Display version information and exit
	Error handling functions
	Get a file name
	Get include line into buffer or goto restart if end of file
	Get line into buffer, return false if end of file
	Get the master file started
	Global #includes
	Global types
	Global variables
	Handle end of file and return
	Handle end of include file and goto restart
	Handle output
	Increment the line number and print a progress report at certain times
	Initialise parameters
	Internal functions
	Predeclaration of functions
	Prepare the change files
	Prepare the output file
	Print error location based on input buffer
	Print the banners
	Print the job history
	Process a line, break when end of source reached
	Process the input
	Scan all other files for changes to be done
	Scan the parameters
	Set a flag
	Set up PROGNAME feature and initialise the search path mechanism
	Skip over comment lines; return if end of file
	Skip to the next nonblank line; return if end of file
	Step to next line
	Test for normal, break when done
	Test for post, break when done
	Test for pre, break when done
	The main function
	Try to open include file, abort push if unsuccessful, go to restart

