pinouTikz

v1.0.1

User's manual

Robert BLAZEK robert.h.blazek@gmail.com

Abstract

This package which requires ε -TEX, provides macros manipulating strings of tokens. For a basic use, tokens can be alphanumeric chars, but the macros can also be useful for manipulating tokens, i.e. TEX code.

Contents

1	Introduction				
	1.1 Description				
	1.2 Motivation				
2	The macros				
	The macros 2.1 The pinout diagrams 2.1.1 \PDIP				

1 Introduction

1.1 Description

This package defines macros for generating symbolic pinout diagrams for different package classes, such as DIP, PLCC, etc.

1.2 Motivation

Whoever has ever had to do with FPGA or MCUs (whether for living and leisure), it's just natural he or she might have been in a need to document some pins. So was my case and since I failed in finding any package in $\[Mathemath{E}TEX$ to suit my needs, I opted for creating one myself.

I hope others will find it as useful as it was to me and my colleagues.

This is my first latex package documentation ever - and since I hate reinventing the wheel - this manual has been based upon that of **xstrings** - with the courtesy of the author, of course.

2 The macros

For a better understanding, let's see first the macros with the simpler arguments possible. No special catcode, no exotic token, no control sequence neither: only alphanumeric chars will be contained in the arguments.

In the following chapters, all the macros will be presented this way:

- a short description of the operation;
- the operation under special conditions. For each conditions considered, the operation described has priority on that (those) below;
- finally, several examples are given. I tried to find them most easily comprehensible and most representative of the situations met in normal use.

Important: in the following, a $\langle number \rangle$ can be an integer written with numeric chars, a counter, or the result of an arithmetic operation made with the command \numexpr .

All the macros of pinouTikz are displayed in red.

2.1 The pinout diagrams

2.1.1 \PDIP

 $PDIP(\langle pinnumber \rangle) \{\langle pinarray \rangle\}$

- (*pinnumber*) thethe number of pins of a DIP package and should be an even number.
- {\(\langle pinarray\)\} is a list of pins position of every pin's description is defined by its position in this array.

```
1 \begin{figure}
2 \centering
3 \PDIP(4){%
4 1/E,2/B,3/NC,4/C}
5 \caption{NPN-Transistor, 4-pin PDIP package} \label{fig:X_DIP4}
6 \end{figure}
```

		\bigcirc			
Ε [1		4]	С
В [2		3]	NC

Figure 1: NPN-Transistor, 4-pin PDIP package

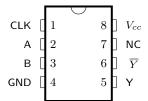


Figure 2: TTL logic chip, 8-pin PDIP package

```
\begin{figure}
1
    \centering
2
    \PDIP(8){%
3
      1/CLK,
4
      2/A,
5
      З/В,
6
      4/GND,
7
      5/Y,
8
      6/\FormatPinLabel{~Y~},
g
      7/NC,
10
      8/$V_{cc}$%
11
      }
12
    \caption{TTL logic chip, 8-pin PDIP package} \label{fig:X_DIP8}
13
  \end{figure}
14
  \begin{figure}
1
    \centering
2
    \PDIP(14){%
3
                                                        %1
      1/A1,
      2/B1,
                                                        %2
5
      3/\FormatPinLabel{\#1 AND/~OR~/GPI01},
                                                             %3
6
      4/Y1,
                                                        %4
7
                                                        %5
      5/C1,
8
      6/\FormatPinLabel{\#2 AND/~OR~/GPIO2},
                                                             %6
9
      7/GND,
                                                    %7
10
                                                    %8
      8/PCLK,
11
      9/PDAT,
                                                    %9
12
                                                    %10
      10/A2,
13
      11/B2,
                                                    %11
14
      12/\FormatPinLabel{\#2 INV/~SME~/GPI03},
                                                             %12
15
      13/C2,
                                                    %13
16
      14/$V_{cc}$
                                                        %14
17
    \caption{Generic programmable TTL logic chip, 14-pin PDIP package} \label{fig:X_DIP
18
          14}
  \end{figure}
19
```

* *

That's all, I hope you will find this package useful!

Please, send me an email if you find a bug or if you have any idea of improvement...

Robert Blazek

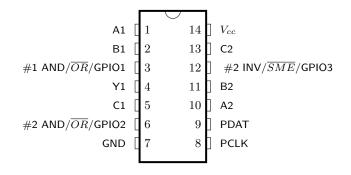


Figure 3: Generic programmable TTL logic chip, 14-pin PDIP package