
{zx-calculus}
ZX-calculus with TikZ

Version 2021/10/15

github.com/leo-colisson/zx-calculus

Contents

1 Introduction 1

2 Installation 2

3 Usage 2
3.1 Add a diagram . 2
3.2 Nodes . 2
3.3 Phase in label style . 5
3.4 Wires . 7

4 Advanced styling 14
4.1 Overlaying or creating styles . 14
4.2 Further customization . 17

5 Acknowledgement 19

Index 20

1 Introduction

This library (based on the great TikZ and TikZ-cd packages) allows you to typeset ZX-calculus
directly in LATEX. It comes with a default—but highly customizable—style:

α 9π
4

\begin{ZX}

\zxZ{\alpha} \arrow[r] & \zxFracX-{\pi}{4}

\end{ZX}

Even if this has not yet been tested a lot, you can also use a “phase in label” style, without
really changing the code:

α

9π/4

\begin{ZX}[phase in label right]

\zxZ{\alpha} \arrow[d] \\

\zxFracX-{\pi}{4}

\end{ZX}

The goal is to provide an alternative to the great tikzit package: we wanted a solution that
does not require the creation of an additional file, the use of an external software, and which
automatically adapts the width of columns and rows depending on the content of the nodes (in
tikzit one needs to manually tune the position of each node, especially when dealing with large
nodes). Our library also provides a default style and tries to separate the content from the style:
that way it should be easy to globally change the styling of a given project without redesigning
all diagrams. However, it should be fairly easy to combine tikzit and this library: when some
diagrams are easier to design in tikzit, then it should be possible to directly load the style of this
library inside tikzit.

1

https://github.com/leo-colisson/zx-calculus

This library is quite young, so feel free to propose improvements or report issues on
github.com/leo-colisson/zx-calculus. We will of course try to maintain backward compati-
bility as much as possible, but we can’t guarantee at 100% that small changes (spacing. . .) won’t
be made later. In case you want a completely unalterable style, just copy this library in your
project forever! The documentation is also a work in progress, so feel free to check the code to
discover new functionalities.

2 Installation

If your CTAN distribution is recent enough, you can directly insert in your file:

\usepackage{zx-calculus}

or load TikZ and then use:

\usetikzlibrary{zx-calculus}

If this library is not yet packaged into CTAN (which is very likely in 2021), you must first download
tikzlibraryzx-calculus.code.tex1 and zx-calculus.sty2 (right-click on “Raw” and “Save
link as”) and save them at the root of your project.

3 Usage

3.1 Add a diagram

\zx[〈options〉]{〈your diagram〉}
\begin{ZX}[〈options〉]
〈environment contents〉

\end{ZX}

You can create a new ZX-diagram either with a command (quicker for inline diagrams) or with
an environment. The 〈options〉 can be used to locally change the style of the diagram, using
the same options as the {tikz-cd} environment (from the tikz-cd package3). The 〈your
diagram〉 argument, or the content of {ZX} environment is a TikZ matrix of nodes, exactly
like in the tikz-cd package: columns are separated using &, columns using \\, and nodes are
created using |[tikz style]| node content or with shortcut commands presented later in
this document (recommended). Content is typeset in math mode by default, and diagrams
can be included in any equation. Wires can be added like in tikz-cd (see more below) using
\arrow or \ar: we provide later recommended styles to quickly create different kinds of wires
which can change with the configured style.

Spider α , equation = and custom diagram:
β α

γ

Spider \zx{\zxZ{\alpha}}, equation $\zx{\zxZ{}} = \zx{\zxX{}}$ %

and custom diagram: %

\begin{ZX}[red]

\zxZ{\beta} \arrow[r] & \zxZ{\alpha} \\

|[fill=pink,draw]| \gamma \arrow[ru,bend right]

\end{ZX}

3.2 Nodes

The following commands are useful to create different kinds of nodes. Always add empty arguments
like \example{} if none are already present, otherwise if you type \example we don’t guarantee
backward compatibility.

1https://github.com/leo-colisson/zx-calculus/blob/main/tikzlibraryzx-calculus.code.tex
2https://github.com/leo-colisson/zx-calculus/blob/main/zx-calculus.sty
3https://www.ctan.org/pkg/tikz-cd

2

https://github.com/leo-colisson/zx-calculus
https://github.com/leo-colisson/zx-calculus/blob/main/tikzlibraryzx-calculus.code.tex
https://github.com/leo-colisson/zx-calculus/blob/main/zx-calculus.sty
https://www.ctan.org/pkg/tikz-cd
https://github.com/leo-colisson/zx-calculus/blob/main/tikzlibraryzx-calculus.code.tex
https://github.com/leo-colisson/zx-calculus/blob/main/zx-calculus.sty
https://www.ctan.org/pkg/tikz-cd

\zxEmptyDiagram

Create an empty diagram.

\begin{ZX}

\zxEmptyDiagram{}

\end{ZX}

\zxNone+-{〈text〉}
\zxN+-{〈text〉}

Adds an empty node with \zxNone{} (alias \zxN{}). \zxNone is just a coordinate, but
\zxNone-{} and \zxNone|{} are actually nodes with inner sep=0 along one direction. For
that reason, they still have a tiny height or width (impossible to remove as far as I know). If
you don’t want to get holes when connecting multiple wires to them, it is therefore necessary
to use the wire centered style for straight lines or C-like wires (alias wc), or between none

style (alias bn) for other curved lines. Moreover, you should also add column and row spacing
&[\zxWCol] and \\[\zxWRow] to avoid too shrinked diagrams when only wires are involved.
The -|+ decorations are used to add a bit of (respectively) horizontal (\zxNone-{}), vertical
(\zxNone|{}) and both (\zxNone+{}) spacing (I don’t know how to add | in the documenta-
tion of the function).

\begin{ZX}

\zxNone{} \ar[C,d] \ar[rd,s,bn] &[\zxWCol] \zxNone{}\\[\zxWRow]

\zxNone{} \ar[ru,s,bn] & \zxNone{}

\end{ZX}

\zxNoneDouble+-{〈text〉}
Like \zxNone, but the spacing for +-| is large enough to fake two lines in only one. Not
extremely useful (or one needs to play with start anchor=south,end anchor=north).

\begin{ZX}

\zxNoneDouble|{} \ar[r,s,start anchor=north,end

anchor=south,ls=1.2] \ar[r,s,start anchor=south,end

anchor=north,ls=1.2] &[\zxWCol] \zxNoneDouble|{}

\end{ZX}

\zxFracZ-{〈numerator〉}[〈numerator with parens〉][〈denominator with
parens〉]{〈denominator〉}
Adds a Z node with a fraction, use the minus decorator to add a small minus in front (the
default minus is very big).

π
2

9π
2

\begin{ZX}

\zxFracZ{\pi}{2} & \zxFracZ-{\pi}{2}

\end{ZX}

The optional arguments are useful when the numerator or the denominator need parens when
they are written inline (in that case optional arguments must be specified): it will prove useful
when using a style that writes the fraction inline, for instance the default style for labels:

Compare a+b
c+d with (a+ b)/(c+ d)

Compare

\begin{ZX}

\zxFracZ{a+b}[(a+b)][(c+d)]{c+d}

\end{ZX} with %

\begin{ZX}[phase in label right]

\zxFracZ{a+b}[(a+b)][(c+d)]{c+d}

\end{ZX}

3

\zxFracX-{〈numerator〉}{〈denominator〉}
Adds an X node with a fraction.

π
2

9π
2

\begin{ZX}

\zxFracX{\pi}{2} & \zxFracX-{\pi}{2}

\end{ZX}

\zxZ[〈other styles〉]{〈text〉}
Adds a Z node.

α α+β (a⊕b)π

\begin{ZX}

\zxZ{} & \zxZ{\alpha} & \zxZ{\alpha + \beta} & \zxZ[text=red]{(a \oplus b)\pi}

\end{ZX}

\zxX[〈other styles〉]{〈text〉}
Adds an X node.

α α+β (a⊕b)π

\begin{ZX}

\zxX{} & \zxX{\alpha} & \zxX{\alpha + \beta} & \zxX[text=green]{(a \oplus b)\pi}

\end{ZX}

\zxH[〈other styles〉]
Adds an Hadamard node. See also H wire style.

\begin{ZX}

\zxNone{} \rar & \zxH{} \rar & \zxNone{}

\end{ZX}

\leftManyDots[〈text scale〉][〈dots scale〉]{〈text〉}
Shortcut to add a dots and a text next to it. It automatically adds the new column, see more
examples below.

n ... α \begin{ZX}

\leftManyDots{n} \zxX{\alpha}

\end{ZX}

\leftManyDots[〈text scale〉][〈dots scale〉]{〈text〉}
Shortcut to add a dots and a text next to it. It automatically adds the new column, see more
examples below.

α
...m \begin{ZX}

\zxX{\alpha} \rightManyDots{m}

\end{ZX}

\middleManyDots

Shortcut to add a dots and a text next to it. It automatically adds the new column, see more
examples below.

α β
...

\begin{ZX}

\zxX{\alpha} \middleManyDots{} & \zxX{\beta}

\end{ZX}

4

\zxLoop[〈direction angle〉][〈opening angle〉][〈other styles〉]
Adds a loop in 〈direction angle〉 (defaults to 90), with opening angle 〈opening angle〉 (defaults
to 20).

α

\begin{ZX}

\zxX{\alpha} \zxLoop{} & \zxX{} \zxLoop[45]{} & \zxX{} \zxLoop[0][30][red]{}

\end{ZX}

\zxLoopAboveDots[〈opening angle〉][〈other styles〉]
Adds a loop above the node with some dots.

α

...
\begin{ZX}

\zxX{\alpha} \zxLoopAboveDots{}

\end{ZX}

The previous commands can be useful to create this figure:

n ... α β
...m

...
...

...

% Forces code/example on two lines.

\begin{ZX}

\leftManyDots{n} \zxX{\alpha} \zxLoopAboveDots{} \middleManyDots{} \ar[r,o’=60]

& \zxX{\beta} \zxLoopAboveDots{} \rightManyDots{m}

\end{ZX}

3.3 Phase in label style

We also provide styles to place the phase on a label next to an empty node (not yet very well
tested):

/zx/styles rounded style/phase in content (style, no value)
/zx/styles rounded style/phase in label=style (style, default)
/zx/styles rounded style/pil=style (style, default)
/zx/styles rounded style/phase in label above=style (style, default)
/zx/styles rounded style/pila=style (style, default)
/zx/styles rounded style/phase in label below=style (style, default)
/zx/styles rounded style/pilb=style (style, default)
/zx/styles rounded style/phase in label right=style (style, default)
/zx/styles rounded style/pilr=style (style, default)
/zx/styles rounded style/phase in label left=style (style, default)
/zx/styles rounded style/pill=style (style, default)

The above styles are useful to place a spider phase in a label outside the node. They can
either be put on the style of a node to modify a single node at a time:

α
α

\zx{\zxX[phase in label]{\alpha} \rar & \zxX{\alpha}}

It can also be configured on a per-figure basis:

α

α

\zx[phase in label right]{

\zxZ{\alpha} \dar \\

\zxX{\alpha} \dar \\

\zxZ{}}

or globally:

5

9π/2
{

\tikzset{

/zx/user post preparation labels/.style={

phase in label={label position=-45, text=purple,fill=none}

}

}

\zx{

\zxFracX-{\pi}{2}

}

}

Note that we must use user post preparation labels and not /zx/user overlay nodes

because this will be run after all the machinery for labels has been setup.

While phase in content forces the content of the node to be inside the node instead of inside
a label (which is the default behavior), all other styles are special cases of phase in label.
The 〈style〉 parameter can be any style made for a tikz label:

α \zx{

\zxX[phase in label={label position=45, text=purple}]{\alpha}

}

For ease of use, the special cases of label position above, below, right and left have their
respective shortcut style. The pil* versions are shortcuts of the longer style written above.
For instance, pilb stands for phase in label below. Note also that by default labels will
take some space, but it’s possible to make them overlay without taking space using the overlay
label style. . . however do it at your own risks as it can overlay the content around (also the
text before and after):

α+ β γγ + η

\zx{

\zxZ[pilb]{\alpha+\beta} \rar & \zxX[pilb]{\gamma} \rar & \zxZ[pilb=overlay]{\gamma+\eta}

}

The above also works for fractions:

9π/2 \zx{\zxFracX[pilr]-{\pi}{2}}

For fractions, you can configure how you want the label text to be displayed, either in a single
line (default) or on two lines, like in nodes. The function \zxConvertToFracInLabel is in
charge of that conversion, and can be changed to your needs to change this option document-
wise. To use the same notation in both content and labels, you can do:

Compare
π/2

(a+ b)/(c+ d)
with

π
2

a+b
c+d

(exact same code!)

Compare

\begin{ZX}[phase in label right]

\zxFracZ{\pi}{2} \dar \\

\zxFracZ{a+b}[(a+b)][(c+d)]{c+d}

\end{ZX} with

{\RenewExpandableDocumentCommand{\zxConvertToFracInLabel}{mmmmm}{

\zxConvertToFracInContent{#1}{#2}{#3}{#4}{#5}%

}

\begin{ZX}[phase in label right]

\zxFracZ{\pi}{2} \dar \\

\zxFracZ{a+b}[(a+b)][(c+d)]{c+d}

\end{ZX} (exact same code!)

}

Note that in \zxFracZ{a+b}[(a+b)][(c+d)]{c+d} the optional arguments are useful to put
parens appropriately when the fraction is written inline.

6

\zxDebugMode

If this macro is defined, debug mode is active. See below how it can be useful.

/tikz/every node/a=alias (style, no default)

Shortcut to add an alias to a wire, and in debug mode it also displays the alias of the
nodes next to it (very practical to quickly add wires as we will see later). To enable de-
bug mode, just type \def\zxDebugMode{} before your drawing, potentially in a group like
{\def\zxDebugMode{} your diagram...} if you want to apply it to a single diagram.

This will be very practical later when using names instead of directions to connect
wires (this can improve readability and maintainability). This is added automatically in
/tikz/every node style. Note that debug mode is effective only for a and not alias.

β
A

β
B

\begin{ZX}

\zxX[a=A]{} & \zxZ[a=B]{\beta}

\ar[from=A,to=B]

\end{ZX}

{\def\zxDebugMode{} %% Enable debug mode for next diagram%

\begin{ZX}

\zxX[a=A]{} & \zxZ[a=B]{\beta}

\ar[from=A,to=B]

\end{ZX}

}

3.4 Wires

\arrow[〈options〉]
\ar[〈options〉]

These synonym commands (actually coming from tikz-cd) are used to draw wires between
nodes. We refer to tikz-cd for an in-depth documentation, but what is important for our
purpose is that the direction of the wires can be specified in the 〈options〉 using a string of
letters r (right), l (left), u (up), d (down). It’s also possible to specify a node alias as a source
or destination as shown below.

=
\zx{\zxZ{} \ar[r] & \zxX{}} = \zx{\zxX{} \arrow[rd] \\ & \zxZ{}}

〈options〉 can also be used to add any additional style, either custom ones, or the ones defined
in this library (this is recommended since it can be easily changed document-wise by simply
changing the style). Multiple wires can be added in the same cell. Other shortcuts provided
in tikz-cd like \rar. . . can be used.

α γ

β

9π
4

◦

\begin{ZX}

\zxZ{\alpha} \arrow[d, C] % C = Bell-like wire

\ar[r,H,o’] % o’ = top part of circle

% H adds Hadamard, combine with \zxHCol

\ar[r,H,o.] &[\zxHCol] \zxZ{\gamma}\\

\zxZ{\beta} \rar & \zxX{} \ar[ld,red,"\circ" {marking,blue}] \ar[rd,s] \\

\zxFracX-{\pi}{4} & &\zxZ{}

\end{ZX}

As explained in tikz-cd, there are further shortened forms:

\rar[〈options〉]
\lar[〈options〉]

7

\dar[〈options〉]
\uar[〈options〉]
\drar[〈options〉]
\urar[〈options〉]
\dlar[〈options〉]
\ular[〈options〉]

The first one is equivalent to

\arrow[〈options〉]{r}

and the other ones work analogously.
Note that sometimes, it may be practical to properly organize big diagrams to increase

readability. To that end, one surely wants to have a small and well indented matrix (emacs
M-x align-current is very practical to indent matrices automatically). Unfortunately, adding
wires inside the matrix can make the line really long and hard to read. Similarly, some nodes
involving fractions or long expressions can also be quite long. It is however easy to increase read-
ability (and maintainability) by moving the wires at the very end of the diagram, using alias

(shortcut a) to connect nodes and \def to create shortcuts. Putting inside a macro with \def long
node definitions can also be useful to keep small items in the matrix:

π

π
2

9π
4

\begin{ZX}[row sep=1pt,

execute at begin picture={%

%%% Definition of long items (the goal is to have a small and readable matrix

% (warning: macro can’t have numbers in TeX. Also, make sure not to use existing names)

\def\Zpifour{\zxFracZ[a=Zpi4]-{\pi}{4}}%

\def\mypitwo{\zxFracX[a=mypi2]{\pi}{2}}%

}

]

%%% Matrix: in emacs "M-x align-current" is practical to automatically format it.

%%% a is for ’alias’... but also provides a debug mode, see below.

& & & & \zxZ[a=toprightpi]{\pi} \\

\zxN[a=in1]{} & \zxX[a=X1]{} & & & & \zxN[a=out1]{} \\

& & \zxZ[a=xmiddle]{} & \mypitwo{} & & \zxN[a=out2]{} \\

\zxN[a=in2]{} & \Zpifour{} & & \zxX[a=Xdown]{} & & \zxN[a=out3]{}

%%% Arrows

% Column 1

\ar[from=in1,to=X1]

\ar[from=in2,to=Zpi4]

% Column 2

\ar[from=X1,to=xmiddle,(.]

\ar[from=X1,to=toprightpi,<’,H]

\ar[from=Zpi4,to=xmiddle,(’]

\ar[from=Zpi4,to=Xdown,o.]

% Column 3

\ar[from=xmiddle,to=Xdown,s.]

\ar[from=xmiddle,to=mypi2]

% Column 4

\ar[from=mypi2,to=toprightpi,(’]

\ar[from=mypi2,to=out1,<’]

\ar[from=mypi2,to=out2]

\ar[from=Xdown,to=out3]

\end{ZX}

In that setting, it is often useful to enable the debug mode via \def\zxDebugMode{} as ex-
plained above to quickly visualize the alias given to each node (note that debug mode works with
a= but not with alias=). For instance, it was easy to rewrite the above diagram by moving nodes
in the matrix and arrows after checking their name on the produced pdf (NB: you can increase
column sep and row sep temporarily to make the debug information more visible):

8

n
xmiddle out1

in19
π
4

Zpi4 Xdown

π
2

mypi2
out2

in2 X1
π

toprightpi
out3

{

\def\zxDebugMode{}%%%%

\begin{ZX}[row sep=1pt,

execute at begin picture={%

%%% Definition of long items (the goal is to have a small and readable matrix

% (warning: macro can’t have numbers in TeX. Also, make sure not to use existing names)

\def\Zpifour{\zxFracZ[a=Zpi4]-{\pi}{4}}%

\def\mypitwo{\zxFracX[a=mypi2]{\pi}{2}}%

}

]

%%% Matrix: in emacs "M-x align" is practical to automatically format it. a is for ’alias’

& \zxN[a=n]{} & \zxZ[a=xmiddle]{} & & \zxN[a=out1]{} \\

\zxN[a=in1]{} & \Zpifour{} & \zxX[a=Xdown]{} & \mypitwo{} & \\

& & & & \zxN[a=out2]{} \\

\zxN[a=in2]{} & \zxX[a=X1]{} & \zxZ[a=toprightpi]{\pi} & & \zxN[a=out3]{}

%%% Arrows

% Column 1

\ar[from=in1,to=X1,s]

\ar[from=in2,to=Zpi4,.>]

% Column 2

\ar[from=X1,to=xmiddle,N’=70]

\ar[from=X1,to=toprightpi,H]

\ar[from=Zpi4,to=n,C] \ar[from=n,to=xmiddle,wc]

\ar[from=Zpi4,to=Xdown]

% Column 3

\ar[from=xmiddle,to=Xdown,C-]

\ar[from=xmiddle,to=mypi2,)]

% Column 4

\ar[from=mypi2,to=toprightpi,(’]

\ar[from=mypi2,to=out1,<’]

\ar[from=mypi2,to=out2,<.]

\ar[from=Xdown,to=out3,<.]

\end{ZX}

}

We give now a list of wire styles provided in this library (/zx/wires definition/ is an auto-
matically loaded style). We recommend using them instead of manual styling to ensure they are
the same document-wise, but they can of course be customized to your need. Note that the name
of the styles are supposed to graphically represent the action of the style, and some characters are
added to precise the shape: typically ’ means top, . bottom, X- is right to X (or should arrive
with angle 0), -X is left to X (or should leave with angle zero). These shapes are usually designed
to work when the starting node is left most (or above of both nodes have the same column). But
they may work both way for some of them.

/zx/wires definition/C=radius ratio (style, default 1)
/zx/wires definition/C.=radius ratio (style, default 1)
/zx/wires definition/C’=radius ratio (style, default 1)
/zx/wires definition/C-=radius ratio (style, default 1)

Bell-like wires with an arrival at “right angle”, C represents the shape of the wire, while .

(bottom), ’ (top) and - (side) represent (visually) its position. Combine with wire centered

(wc) to avoid holes when connecting multiple wires.

Bell pair and funny graph .

9

Bell pair \zx{\zxNone{} \ar[d,C,wc] \\[\zxWRow]

\zxNone{}}

and funny graph

\begin{ZX}

\zxX{} \ar[d,C] \ar[r,C’] & \zxZ{} \ar[d,C-]\\

\zxZ{} \ar[r,C.] & \zxX{}

\end{ZX}.

Note that this style is actually connecting the nodes using a perfect circle (it is not based on
curve to), and therefore should not be used together with in, out, looseness. . . It has the
advantage of connecting nicely nodes which are not aligned or with different shapes:

α \begin{ZX}

\zxX{\alpha} \ar[dr,C]\\

& \zxNone{}

\end{ZX}

The 〈radius ratio〉 parameter can be used to turn the circle into an ellipse using this ratio
between both axis:

α .

\begin{ZX}

\zxX{\alpha}

\ar[dr,C=0.5,red]

\ar[dr,C,green]

\ar[dr,C=2,blue]

\ar[dr,C=3,purple]\\

& \zxNone{}

\end{ZX}

\begin{ZX}

\zxX{} \ar[d,C=2] \ar[r,C’=2] & \zxZ{} \ar[d,C-=2,H]\\

\zxZ{} \ar[r,C.=2] & \zxX{}

\end{ZX}.

/zx/wires definition/o’=angle (style, default 40)
/zx/wires definition/o.=angle (style, default 40)
/zx/wires definition/o-=angle (style, default 40)
/zx/wires definition/-o=angle (style, default 40)

Curved wire, similar to C but with a soften angle (optionally specified via 〈angle〉, and globally
editable with \zxDefaultLineWidth). Again, the symbols specify which part of the circle
(represented with o) must be kept.

.
\begin{ZX}

\zxX{} \ar[d,-o] \ar[d,o-]\\

\zxZ{} \ar[r,o’] \ar[r,o.] & \zxX{}

\end{ZX}.

Note that these wires can be combined with H, X or Z, in that case one should use appropriate
column and row spacing as explained in their documentation:

α

β

.

\begin{ZX}

\zxX{\alpha} \ar[d,-o,H] \ar[d,o-,H]\\[\zxHRow]

\zxZ{\beta} \rar & \zxZ{} \ar[r,o’,X] \ar[r,o.,Z] &[\zxSCol] \zxX{}

\end{ZX}.

/zx/wires definition/(=angle (style, default 30)
/zx/wires definition/)=angle (style, default 30)
/zx/wires definition/(’=angle (style, default 30)
/zx/wires definition/(’=angle (style, default 30)

Curved wire, similar to o but can be used for diagonal items. The angle is, like in bend right,
the opening angle from the line which links the two nodes. For the first two commands, the
(and) symbols must be imagined as if the starting point was on top of the parens, and the
ending point at the bottom.

10

.
\begin{ZX}

\zxX{} \ar[rd,(] \ar[rd,),red]\\

& \zxZ{}

\end{ZX}.

Then, (’=(and (.=); this notation is, I think, more intuitive when linking nodes from left
to right. (’ is used when going to top right and (. when going to bottom right.

\begin{ZX}

\zxN{} & \zxX{}\\

\zxZ{} \ar[ru,(’] \ar[rd,(.] & \\

& \zxX{}

\end{ZX}

When the nodes are too far appart, the default angle of 30 may produce strange results as it
will go above (for (’) the vertical line. Either choose a shorter angle, or see <’ instead.

/zx/wires definition/s (style, no value)
/zx/wires definition/s’=angle (style, default 30)
/zx/wires definition/s.=angle (style, default 30)
/zx/wires definition/-s’=angle (style, default 30)
/zx/wires definition/-s.=angle (style, default 30)
/zx/wires definition/s’-=angle (style, default 30)
/zx/wires definition/s.-=angle (style, default 30)

s is used to create a s-like wire, to have nicer soften diagonal lines between nodes. Other
versions are soften versions (the input and output angles are not as sharp, and the difference
angle can be configured as an argument or globally using \zxDefaultSoftAngleS). Adding ’

or . specifies if the wire is going up-right or down-right.

α

β

α

β

α

β

α

β

\begin{ZX}

\zxX{\alpha} \ar[s,rd] \\

& \zxZ{\beta}\\

\zxX{\alpha} \ar[s.,rd] \\

& \zxZ{\beta}\\

& \zxZ{\alpha}\\

\zxX{\beta} \ar[s,ru] \\

& \zxZ{\alpha}\\

\zxX{\beta} \ar[s’,ru] \\

\end{ZX}

- forces the angle on the side of - to be horizontal.

α

β

α

β

α

β

\begin{ZX}

\zxX{\alpha} \ar[s.,rd] \\

& \zxZ{\beta}\\

\zxX{\alpha} \ar[-s.,rd] \\

& \zxZ{\beta}\\

\zxX{\alpha} \ar[s.-,rd] \\

& \zxZ{\beta}\\

\end{ZX}

/zx/wires definition/ss (style, no value)
/zx/wires definition/ss.=angle (style, default 30)
/zx/wires definition/.ss=angle (style, default 30)
/zx/wires definition/sIs.=angle (style, default 30)
/zx/wires definition/.sIs=angle (style, default 30)

11

/zx/wires definition/ss.I-=angle (style, default 30)
/zx/wires definition/I.ss-=angle (style, default 30)

ss is similar to s except that we go from top to bottom instead of from left to right. The
position of . says if the node is wire is going bottom right (ss.) or bottom left (.ss).

α

β

α

β

β

α

β

α

\begin{ZX}

\zxX{\alpha} \ar[ss,rd] \\

& \zxZ{\beta}\\

\zxX{\alpha} \ar[ss.,rd] \\

& \zxZ{\beta}\\

& \zxX{\beta} \ar[.ss,dl] \\

\zxZ{\alpha}\\

& \zxX{\beta} \ar[.ss=40,dl] \\

\zxZ{\alpha}\\

\end{ZX}

I forces the angle above (if in between the two s) or below (if on the same side as .) to be
vertical.

α

β

α

β

α

β

β

α

β

α

\begin{ZX}

\zxX{\alpha} \ar[ss,rd] \\

& \zxZ{\beta}\\

\zxX{\alpha} \ar[sIs.,rd] \\

& \zxZ{\beta}\\

\zxX{\alpha} \ar[ss.I,rd] \\

& \zxZ{\beta}\\

& \zxX{\beta} \ar[.sIs,dl] \\

\zxZ{\alpha}\\

& \zxX{\beta} \ar[I.ss,dl] \\

\zxZ{\alpha}\\

\end{ZX}

/zx/wires definition/<’=angle (style, default 60)
/zx/wires definition/<.=angle (style, default 60)
/zx/wires definition/’v=angle (style, default 60)
/zx/wires definition/v’=angle (style, default 60)

These keys are a bit like (’ or (. but the arrival angle is vertical (or horizontal for the ^

(up-down) and v (down-up) versions). As before, the position of the decorator .,’ denote the
direction of the wire.

\begin{ZX}

\zxN{} & & \zxZ{}\\

\zxX{} \ar[rru,<’] \ar[rrd,<.] & \\

\zxN{} & & \zxZ{}\\

\end{ZX}

π
2

12

\begin{ZX}

\zxN{} & \zxFracX{\pi}{2} \ar[ddl,.^] \ar[ddr,^.] & \\

& & \\

\zxZ{} & & \zxX{}

\end{ZX}

\begin{ZX}

\zxZ{} & & \zxX{}\\

& & \\

\zxN{} & \zxX{} \ar[uul,’v] \ar[uur,v’] &

\end{ZX}

/zx/wires definition/3 dots=text (style, default =)
/zx/wires definition/3 vdots=text (style, default =)

The styles put in the middle of the wire (without drawing the wire) . . . (for 3 dots) or
... (for

3 vdots). The dots are scaled according to \zxScaleDots and the text 〈text〉 is written on
the left. Use &[\zxDotsRow] and \\[\zxDotsRow] to properly adapt the spacing of columns
and rows.

α π
2

α π
2

. . .

n
...

\begin{ZX}

\zxZ{\alpha} \ar[r,o’] \ar[r,o.]

\ar[r,3 dots]

\ar[d,3 vdots={£n£\,}] &[\zxDotsCol] \zxFracX{\pi}{2}\\[\zxDotsRow]

\zxZ{\alpha} \rar & \zxFracX{\pi}{2}

\end{ZX}

/zx/wires definition/H (style, no value)
/zx/wires definition/Z (style, no value)
/zx/wires definition/X (style, no value)

Adds a H (Hadamard), Z or X node (without phase) in the middle of the wire. Width of
column or rows should be adapted accordingly using \zxNameRowcolFlatnot where Name is
replaced by H, S (for “spiders”, i.e. X or Z), HS (for both H and S) or W, Rowcol is either Row

(for changing row sep) or Col (for changing column sep) and Flatnot is empty or Flat (if the
wire is supposed to be a straight line as it requires more space). For instance:

α β

α

γ

\begin{ZX}

\zxZ{\alpha} \ar[d] \ar[r,o’,H] \ar[r,o.,H] &[\zxHCol] \zxX{\beta}\\

\zxZ{\alpha} \ar[d,-o,X] \ar[d,o-,Z] \\[\zxHSRow]

\zxX{\gamma}

\end{ZX}

/zx/wires definition/wire centered (style, no value)
/zx/wires definition/wc (style, no value)
/zx/wires definition/wire centered start (style, no value)
/zx/wires definition/wcs (style, no value)
/zx/wires definition/wire centered end (style, no value)
/zx/wires definition/wce (style, no value)

When the wires are drawn, they start from the border of the node. However, it can make
strange results if nodes do not have the same size, or if we connect none nodes (we will
get holes). It is therefore possible to force the wire to start at the center of the node
(wire centered start, alias wcs), to end at the center of the node -wire centered end,
alias wce) or both (wire centered, alias wc). See also between node to also increase loose-
ness when connecting only wires.

13

α

α

\begin{ZX}

\zxZ{} \ar[o’,r] \ar[o.,r] & \zxX{\alpha}\\

\zxZ{} \ar[o’,r,wc] \ar[o.,r,wc] & \zxX{\alpha}

\end{ZX}

Without wc (note that because there is no node, we need to use &[\zxWCol] (for columns)
and \\[\zxWRow] (for rows) to get nicer spacing):

\zx{\zxNone{} \rar &[\zxWCol] \zxNone{} \rar &[\zxWCol] \zxNone{} }

With wc:

\zx{\zxNone{} \rar[wc] &[\zxWCol] \zxNone{} \rar[wc] &[\zxWCol] \zxNone{}}

/zx/wires definition/ls=looseness (style, no default)

Shortcut for looseness, allows to quickly redefine looseness. Use with care (or redefine style
directly). Note that you can also change yourself other values, like in, out. . .

\begin{ZX}

\zxZ{} \ar[rd,s] \\

& \zxX{}\\

\zxZ{} \ar[rd,s,ls=3] \\

& \zxX{}

\end{ZX}

/zx/wires definition/between none (style, no value)
/zx/wires definition/bn (style, no value)

When drawing wires only, the default looseness may not be good looking and holes may
appear in the line. This style (whose alias is bn) should therefore be used when curved wires
(except C which already has a good looseness, use wire centered instead) are connected
together. In that case, also make sure to separate columns using &[\zxWCol] and row using
\\[\zxWRow].

A swapped Bell pair is

A swapped Bell pair is %

\begin{ZX}

\zxNone{} \ar[C,d,wc] \ar[rd,s,bn] &[\zxWCol] \zxNone{} \\[\zxWRow]

\zxNone{} \ar[ru,s,bn] & \zxNone{}

\end{ZX}

4 Advanced styling

4.1 Overlaying or creating styles

It is possible to arbitrarily customize the styling, create or update ZX or tikz styles. . . First, any
option that can be given to a tikz-cd matrix can also be given to a ZX environment (we refer to
the manual of tikz-cd for more details). We also provide overlays to quickly modify the ZX style.

/zx/default style nodes (style, no value)

This is where the default style must be loaded. By default, it simply loads the (nested) style
packed with this library, /zx/styles/rounded style. You can change the style here if you
would like to globally change a style.

Note that a style must typically define at least zxZ2, zxX2, zxFracZ6, zxFracX6, \zxH,
zxHSmall, zxNoPhaseSmallZ, zxNoPhaseSmallX, zxNone{,+,-,I}, zxNoneDouble{,+,-,I}

and all the phase in label*, pil* styles (see code on how to define them). Because the

14

above styles (notably zxZ* and zxFrac*) are slightly complex to define (this is needed in
order to implement phase in label), it may be quite long to implement them all properly
by yourself.

For that reason, it may be easier to load our default style and overlay only some of the
styles we use (see example in /zx/user overlay nodes right after). You can check our
code in /zx/styles/rounded style to see what you can redefine (intuitively, the styles like
my style name should be callable by the end user, myStyleName may be redefined by users
or used in tikzit, and my@style@name are styles that should not be touched by the user). The
styles that have most interests are zxNoPhase (for Z and X nodes without any phase inside),
zxShort (for Z and X nodes for fractions typically), zxLong (for other Z and X nodes) and
stylePhaseInLabel (for labels when using phase in label). These basic styles are extended
to add colors (just add Z/X after the name) like zxNoPhaseZ. . . You can change them, but if
you just want to change the color, prefer to redefine colorZxZ/colorZxZ instead (note that
this color does not change stylePhaseInLabelZ/X, so you are free to redefine these styles as
well). All the above styles can however be called from inside a tikzit style, if you want to use
tikzit internally (make sure to load this library then in *.tikzdefs).

Note however that you should avoid to call these styles from inside \zx{...} since \zx* and
\zxFrac* are supposed to choose automatically the good style for you depending on the mode
(fractions, labels in phase. . .). For more details, we encourage the advanced users too look at
the code of the library, and examples for simple changes will be presented now.

/zx/user overlay nodes (style, no value)

If a user just wants to overlay some parts of the node styles, add your changes here.

{\tikzset{

/zx/user overlay nodes/.style={

zxH/.append style={dashed,inner sep=2mm}

}}

\zx{\zxNone{} \rar & \zxH{} \rar & \zxNone{}}

}

You can also change it on a per-diagram basis:

α 9π
2

\zx[text=yellow,/zx/user overlay nodes/.style={

zxSpiders/.append style={thick,draw=purple}}

]{\zxX{} \rar & \zxX{\alpha} \rar & \zxFracZ-{\pi}{2}}

The list of keys that can be changed will be given below in /zx/styles/rounded style/*.

/zx/default style wires (style, no value)

Default style for wires. Note that /zx/wires definition/ is always loaded by default, and we
don’t add any other style for wires by default. But additional styles may use this functionality.

/zx/user overlay wires (style, no value)

The user can add here additional styles for wires.

\begin{ZX}[/zx/user overlay wires/.style={thick,->,C/.append

style={dashed}}]

\zxNone{} \ar[d,C] \rar[] &[\zxWCol] \zxNone{}\\[\zxWRow]

\zxNone{} \rar[] & \zxNone{}

\end{ZX}

/zx/styles/rounded style (style, no value)

This is the style loaded by default. It contains internally other (nested) styles that must be
defined for any custom style.

We present now all the properties that a new node style must have (and that can overlayed as
explained above).

15

/zx/styles/rounded style/zxAllNodes (style, no value)

Style applied to all nodes.

/zx/styles/rounded style/zxEmptyDiagram (style, no value)

Style to draw an empty diagram.

/zx/styles/rounded style/zxNone (style, no value)
/zx/styles/rounded style/zxNone+ (style, no value)
/zx/styles/rounded style/zxNone- (style, no value)
/zx/styles/rounded style/zxNoneI (style, no value)

Styles for None wires (no inner sep, useful to connect to wires). The -,I,+ have additional
horizontal, vertical, both spaces.

/zx/styles/rounded style/zxNoneDouble (style, no value)
/zx/styles/rounded style/zxNoneDouble+ (style, no value)
/zx/styles/rounded style/zxNoneDouble- (style, no value)
/zx/styles/rounded style/zxNoneDoubleI (style, no value)

Like zxNone, but with more space to fake two nodes on a single line (not very used).

/zx/styles/rounded style/zxSpiders (style, no value)

Style that apply to all circle spiders.

/zx/styles/rounded style/zxNoPhase (style, no value)

Style that apply to spiders without any angle inside. Used by \zxX{} when the argument is
empty.

/zx/styles/rounded style/zxNoPhaseSmall (style, no value)

Like zxNoPhase but for spiders drawn in between wires.

/zx/styles/rounded style/zxShort (style, no value)

Spider with text but no inner space. Used notably to obtain nice fractions.

/zx/styles/rounded style/zxLong (style, no value)

Spider with potentially large text. Used by \zxX{\alpha} when the argument is not empty.

/zx/styles/rounded style/zxNoPhaseZ (style, no value)
/zx/styles/rounded style/zxNoPhaseX (style, no value)
/zx/styles/rounded style/zxNoPhaseSmallZ (style, no value)
/zx/styles/rounded style/zxNoPhaseSmallX (style, no value)
/zx/styles/rounded style/zxShortZ (style, no value)
/zx/styles/rounded style/zxShortX (style, no value)
/zx/styles/rounded style/zxLongZ (style, no value)
/zx/styles/rounded style/zxLongX (style, no value)

Like above styles, but with colors of X and Z spider added. The color can be changed globally
by updating the colorZxX color. By default we use:

\definecolor{colorZxZ}{RGB}{204,255,204}

\definecolor{colorZxX}{RGB}{255,136,136}

\definecolor{colorZxH}{RGB}{255,255,0}

as the second recommendation in zxcalculus.com/accessibility.html.

/zx/styles/rounded style/zxH (style, no value)

Style for Hadamard spiders, used by \zxH{} and uses the color colorZxH.

/zx/styles/rounded style/zxHSmall (style, no value)

Like zxH but for Hadamard on wires, (see H style).

16

https://zxcalculus.com/accessibility.html

\zxConvertToFracInContent{〈sign〉}{〈num no parens〉}{〈denom no parens〉}{〈nom
parens〉}{〈denom parens〉}

\zxConvertToFracInLabel

These functions are not meant to be used, but redefined using something like (we use \zxMinus
as a shorter minus compared to −):

\RenewExpandableDocumentCommand{\zxConvertToFracInLabel}{mmmmm}{%

\ifthenelse{\equal{#1}{-}}{\zxMinus}{#1}\frac{#2}{#3}%

}

This is used to change how the library does the conversion between \zxFrac and the actual
written text (either in the node content or in the label depending on the function). The
first argument is the sign (string - for minus, anything else must be written in place of the
minus), the second and third argument are the numerator and denominator of the fraction
when used in \frac{}{} while the last two arguments are the same except that they include
the parens which should be added when using an inline version. For instance, one could get a
call \zxConvertToFracInLabel{-}{a+b}{c+d}{(a+b)}{(c+d)}. See part on labels to see an
example of use.

We also define several spacing commands that can be redefined to your needs:

\zxHCol

\zxHRow

\zxHColFlat

\zxHRowFlat

\zxSCol

\zxSRow

\zxSColFlat

\zxSRowFlat

\zxHSCol

\zxHSRow

\zxHSColFlat

\zxHSRowFlat

\zxWCol

\zxWRow

\zxDotsCol

\zxDotsRow

These are spaces, to use like &[\zxHCol] or \\[\zxHRow] in order to increase the default
spacing of rows and columns depending on the style of the wire. H stands for Hadamard, S
for Spiders, W for Wires only, HS for both Spiders and Hadamard, Dots for the 3 dots styles.
And of course Col for columns, Row for rows.

\zxDefaultSoftAngleS

\zxDefaultSoftAngleO

\zxDefaultSoftAngleChevron

Default opening angles of S, o and v/< wires. Defaults to respectively 30, 40 and 45.

\zxMinus

The minus sign used in fractions.

4.2 Further customization

You can further customize your drawings using any functionality from TikZ and tikz-cd (but it
is of course at your own risk). For instance, we can change the separation between rows and/or
columns for a whole picture using:

17

π

π
2

9π
4

\begin{ZX}[row sep=1mm]

& & & & \zxZ{\pi} \\

\zxN{} \rar & \zxX{} \ar[rd,(.] \ar[urrr,(’,H] & & & & \zxN{} \\

& & \zxZ{} \ar[rd,s.] \rar &

\zxFracX{\pi}{2} \ar[uur,(’] \ar[rru,<’] \ar[rr] & & \zxN{} \\

\zxN{} \rar & \zxFracZ-{\pi}{4} \ar[ru,(’] \ar[rr,o.] & & \zxX{} \ar[rr] & & \zxN{}

\end{ZX}

Or we can define our own style to create blocks:

f g α

{ % \usetikzlibrary{shadows}

\tikzset{

my bloc/.style={

anchor=center,

inner sep=2pt,

inner xsep=.7em,

minimum height=3em,

draw,

thick,

fill=blue!10!white,

double copy shadow={opacity=.5},tape,

}

}

\zx{|[my bloc]| f \rar &[1mm] |[my bloc]| g \rar &[1mm] \zxZ{\alpha} \rar & \zxNone{}}

}

We can also use for instance fit, alias, execute at end picture and layers (the user can use
background for things behind the drawing, box for special nodes above the drawings (like multi-
column nodes, see below), and foreground which is even higher) to do something like that:

cnot % \usetikzlibrary{fit}

\begin{ZX}[

execute at end picture={

\node[

inner sep=2pt,

node on layer=background, %% Ensure the node is behind the drawing

rounded corners,

draw=blue,

dashed,

fill=blue!50!white,

opacity=.5,

fit=(cnot1)(cnot2), %% position of the node, thanks fit library

"\textsc{cnot}" above %% Adds label, thanks quote library

] {};

}

]

\zxNone{} \rar & \zxZ[alias=cnot1]{} \dar \rar & \zxNone{}\\

\zxNone{} \rar & \zxX[alias=cnot2]{} \rar & \zxNone{}\\

\end{ZX}

This can also be used to fake multi-columns nodes (I need to check later if I can facilitate this
kind of operation from the library directly):

18

g
f

% \usetikzlibrary{fit}

\tikzset{

my box/.style={inner sep=4pt, draw, thick, fill=white,anchor=center},

}

\begin{ZX}[

execute at end picture={

\node[

my box,

node on layer=box, %% Ensure the node is above the wires

fit=(f1)(f2), %% position of the node, thanks fit library

label={[node on layer=box]center:£f£},

] {};

}

]

\zxNoneDouble+[alias=f1]{} \rar &[1mm] |[my box]| g \rar & \zxNone{}\\

\zxNoneDouble+[alias=f2]{} \rar &[1mm] \zxZ{} \rar & \zxNone{}\\

\end{ZX}

5 Acknowledgement

I’m very grateful of course to everybody that worked on these amazing field which made diagramatic
quantum computing possible, and to the many StackExchange users (sorry, I don’t want to risk
an incomplete list) that helped me to understand a bit more LATEXand TikZ. I also thank Robert
Booth for making me realize how my old style was bad, and for giving advices on how to improve
it. Thanks to John van de Wetering, whose style has also been a source of inspiration.

19

Index

This index only contains automatically generated entries. A good index should also contain care-
fully selected keywords. This index is not a good index.

’v key, 12
(key, 10
(’ key, 10
) key, 10
-o key, 10
-s’ key, 11
-s. key, 11
.sIs key, 11
.ss key, 11
<’ key, 12
<. key, 12
3 dots key, 13
3 vdots key, 13

a key, 7
\ar, 7
\arrow, 7

between none key, 14
bn key, 14

C key, 9
C’ key, 9
C- key, 9
C. key, 9
zx-calculus library, 2

\dar, 8
default style nodes key, 14
default style wires key, 15
\dlar, 8
\drar, 8

Environments
ZX, 2

H key, 13

I.ss- key, 12

\lar, 7
\leftManyDots, 4
Libraries

zx-calculus, 2
ls key, 14

\middleManyDots, 4

o’ key, 10
o- key, 10
o. key, 10

Packages and files
zx-calculus, 2

phase in content key, 5
phase in label key, 5

phase in label above key, 5
phase in label below key, 5
phase in label left key, 5
phase in label right key, 5
pil key, 5
pila key, 5
pilb key, 5
pill key, 5
pilr key, 5

\rar, 7
rounded style key, 15
rounded style/zxAllNodes key, 16
rounded style/zxEmptyDiagram key, 16
rounded style/zxH key, 16
rounded style/zxHSmall key, 16
rounded style/zxLong key, 16
rounded style/zxLongX key, 16
rounded style/zxLongZ key, 16
rounded style/zxNone key, 16
rounded style/zxNone+ key, 16
rounded style/zxNone- key, 16
rounded style/zxNoneDouble key, 16
rounded style/zxNoneDouble+ key, 16
rounded style/zxNoneDouble- key, 16
rounded style/zxNoneDoubleI key, 16
rounded style/zxNoneI key, 16
rounded style/zxNoPhase key, 16
rounded style/zxNoPhaseSmall key, 16
rounded style/zxNoPhaseSmallX key, 16
rounded style/zxNoPhaseSmallZ key, 16
rounded style/zxNoPhaseX key, 16
rounded style/zxNoPhaseZ key, 16
rounded style/zxShort key, 16
rounded style/zxShortX key, 16
rounded style/zxShortZ key, 16
rounded style/zxSpiders key, 16

s key, 11
s’ key, 11
s’- key, 11
s. key, 11
s.- key, 11
sIs. key, 11
ss key, 11
ss. key, 11
ss.I- key, 12

/tikz/

every node/

a, 7

\uar, 8
\ular, 8
\urar, 8

20

user overlay nodes key, 15
user overlay wires key, 15

v’ key, 12

wc key, 13
wce key, 13
wcs key, 13
wire centered key, 13
wire centered end key, 13
wire centered start key, 13

X key, 13

Z key, 13
ZX environment, 2
\zx, 2
zx-calculus package, 2
/zx/

default style nodes, 14
default style wires, 15
styles/

rounded style, 15
rounded style/zxAllNodes, 16
rounded style/zxEmptyDiagram, 16
rounded style/zxH, 16
rounded style/zxHSmall, 16
rounded style/zxLong, 16
rounded style/zxLongX, 16
rounded style/zxLongZ, 16
rounded style/zxNone, 16
rounded style/zxNone+, 16
rounded style/zxNone-, 16
rounded style/zxNoneDouble, 16
rounded style/zxNoneDouble+, 16
rounded style/zxNoneDouble-, 16
rounded style/zxNoneDoubleI, 16
rounded style/zxNoneI, 16
rounded style/zxNoPhase, 16
rounded style/zxNoPhaseSmall, 16
rounded style/zxNoPhaseSmallX, 16
rounded style/zxNoPhaseSmallZ, 16
rounded style/zxNoPhaseX, 16
rounded style/zxNoPhaseZ, 16
rounded style/zxShort, 16
rounded style/zxShortX, 16
rounded style/zxShortZ, 16
rounded style/zxSpiders, 16

styles rounded style/

phase in content, 5
phase in label, 5
phase in label above, 5
phase in label below, 5
phase in label left, 5
phase in label right, 5
pil, 5
pila, 5
pilb, 5
pill, 5
pilr, 5

user overlay nodes, 15

user overlay wires, 15
wires definition/

’v, 12
(, 10
(’, 10
), 10
-o, 10
-s’, 11
-s., 11
.sIs, 11
.ss, 11
<’, 12
<., 12
3 dots, 13
3 vdots, 13
between none, 14
bn, 14
C, 9
C’, 9
C-, 9
C., 9
H, 13
I.ss-, 12
ls, 14
o’, 10
o-, 10
o., 10
s, 11
s’, 11
s’-, 11
s., 11
s.-, 11
sIs., 11
ss, 11
ss., 11
ss.I-, 12
v’, 12
wc, 13
wce, 13
wcs, 13
wire centered, 13
wire centered end, 13
wire centered start, 13
X, 13
Z, 13

\zxConvertToFracInContent, 17
\zxConvertToFracInLabel, 17
\zxDebugMode, 7
\zxDefaultSoftAngleChevron, 17
\zxDefaultSoftAngleO, 17
\zxDefaultSoftAngleS, 17
\zxDotsCol, 17
\zxDotsRow, 17
\zxEmptyDiagram, 3
\zxFracX, 4
\zxFracZ, 3
\zxH, 4
\zxHCol, 17
\zxHColFlat, 17
\zxHRow, 17
\zxHRowFlat, 17

21

\zxHSCol, 17
\zxHSColFlat, 17
\zxHSRow, 17
\zxHSRowFlat, 17
\zxLoop, 5
\zxLoopAboveDots, 5
\zxMinus, 17
\zxN, 3
\zxNone, 3
\zxNoneDouble, 3
\zxSCol, 17
\zxSColFlat, 17
\zxSRow, 17
\zxSRowFlat, 17
\zxWCol, 17
\zxWRow, 17
\zxX, 4
\zxZ, 4

22

	Introduction
	Installation
	Usage
	Add a diagram
	Nodes
	Phase in label style
	Wires

	Advanced styling
	Overlaying or creating styles
	Further customization

	Acknowledgement
	Index

