
Typesetting Karnaugh Maps with LATEX and TikZ

Luis Paulo Laus

e-mail: laus@utfpr.edu.br

Version: 1.4, Version date: 2022-02-08

Abstract

Karnaugh maps are used to simplify logic equations leading to the most compact expression of two levels
for a given truth table. The drawing of them used to be a boring, annoying and error-prone task. This set
of macros intend to simplify the task. They can typeset Karnaugh maps with up to twelve variables1, which
is more than you might likely need2. You only have to provide a list of variable identi�ers plus the truth
table of your logic function. The macros also allow to highlight the simpli�cations of your logic function
directly within a Karnaugh map. This package is based on kvmacros.tex from karnaugh package, but two
drastically di�erent ways of input the truth table are supported. The modi�cations carried out intended to
use TikZ instead of native LATEX commands allowing easier customisation, easier extension when you need
to draw other elements along with the map and resulting in higher graph quality. The labels that indicate
values of the variables across de rows and columns may be represented in both numerical and simpli�ed
form.

1 Introduction

Karnaugh maps [1] and Veitch charts are used to simplify logic equations. They are map representations
of logic functions, and in that they are equivalent. Veitch charts are not supported by this package, but it
should not be a big problem to port Andreas W. Wieland's veitch macro, available in karnaugh package, if
you need it. Please note that this package, including its documentation, is based on Andreas W. Wieland's
previous work and the author wishes to register his acknowledgment. Modi�cations and extensions were
made in order to support customization and a diversity of input forms.

Typesetting Karnaugh maps tend to be a boring, annoying and error-prone task. Please consider using
a companion free java software (JQM, see Section 8).

1.1 Introductory example

With tikz-karnaugh you can typeset big (up to twelve variables or 4096 cells) good looking maps like:

American style

00 01 11 10

00

01

11

10

a, c

b, d
f(a, b, c, d)

1 1

1 0

01

10

0 1

1 0

01

10

and
simpli�ed labels

f(a, b, c, d)

a

b

c

d

1 1

1 0

01

10

0 1

1 0

01

10

1The actual limit may be di�erent for you.
2A twelve variables map contains of 4096 cells in a 64×64 grid. They are simply too big to handle manually and you should

consider to use a software.

1

On the left we have a more traditional Gray coded labels map (American style) just like the maps found
in many books on Digital Electronics and Digital System Design. On the right, the same map is presented
using variable bars (simpli�ed labels). It is very easy to con�gure the appearance of all maps (globally) or
a particular map (individually). Just change the values of some TikZ keys.

1.2 Comparison with other packages

If you ask yourself �why another Karnaugh map typesetting package?� the answer is easy: because I was
not completely happy with the available packages I know and those are:

1. karnaugh: it is a great package that uses native LATEX commands to draw the map. It supports
Karnaugh maps and Veitch charts. It employs a recursive algorithm with no size limit3 which leads
to an interesting kind of symmetry. Remember, Karnaugh maps are all about symmetry. It is not
customisable, for instance, one cannot change the distance between bars4 (the marks showing around
the map with variable identi�ers on them) and if the variable identi�er is long, it will overlap another
bar. Also, I want to use TikZ to draw colourful semi-transparent �gures on to top of the map to
highlight groups (prime implicants) and, although it is possible, it is rather di�cult and the result is
not very good because they always look a bit o�. I have a long-time experience with this package and
I have also written a java program to draw the maps because, though typesetting simple maps is easy,
highlighting the prime implicants is not.

2. karnaughmap: it uses TikZ so you got a lot of options for customisation. It is limited to eight variable
which, to be honest, should be enough for anyone. The problem is that it only draws bars (those
marking mentioned above) up to four variables. Also, the order in which the variables list is inputted
is di�erent from the order employed by karnaugh.

3. askmaps: this package generates con�gurable American style Karnaugh maps for 2, 3, 4 and 5 variables.
This style is supported by tikz-karnaugh (see Section 6), though, in my twenty years of experience
teaching the subject, I have found out that simpli�ed labels are much more intuitive. Package askmaps
contains four macros, one for each number of variables, and it can be used to highlight the prime
implicants in the very same way that karnaugh does.

4. karnaugh-map: uses TikZ to draw up to four maps of four variables leading to a 3D six variables map.
The values are input as a list of indices. It contains commands for drawing implicants on top of the
map. Like askmaps, this package uses American style, but the label position can be centred or moved
to corner (new in version 2.0).

5. kvmap: this is a relatively new package (released on 16 September, 2020) that allows you to typeset a
Karnaugh map similarly as you use a tabular environment. The current version of tikz-karnaugh has
a similar feature, though the syntax is somehow simpler. In Section 8 the same result is obtained using
a java software, but in this case the implicants (bundles or groups) highlighting is done automatically.

6. cartonaugh: This is also a relatively new package (released on 15 July, 2021). It is a fork of
karnaugh-map package that draws Karnaugh maps with up to 6 variables. The documentation of
both packages looks very similar; one notable di�erence is the position of the function and variable
labels are equivalent as used tikz-karnaugh if American style is enabled.

Roughly speaking, there are two input orders, or formats, for the function values:

� the same order as they appear on the map.

� the order they appear in a linear truth table following a canonical binary code. In some packages,
namely karnaugh-map and cartonaugh, a list of indices is provided instead of an ordered list of values.

These formats must be minded very carefully in order to produce the desired map, therefore users are
urged to read Section 1.3 and, for more details, Section 1.4. In Section 8 a companion software that helps
with inputting the data necessary to produced the map is discussed.

Also, there are two main styles:

3It works until you blow the memory out which will happen about ten to twelve variables.
4Those bars have been underappreciated along the history. Karnaugh [1] himself called them �simpli�ed labels� and used

them only to replace the Gray coded numbers showing around the map. Their true strength is the ease way they point out
which variable belong to a prime implicant and which does not. An approach much easier than interpreting the Gray coded
numbers.

2

� American style is very popular in books, the association of variable and cell position is shown by Gray
coded number outside the map grid;

� simpli�ed labels represent graphically the regions (columns or rows) for which a given variable is true
or false. Because Karnaugh map is a graphical method, this style is very appealing although much less
popular than American style.

The following table shows how each package deals with those two features.

Package
Input Order Style

Truth Table Karnaugh Map American Simpli�ed Labels

karnaugh " "

karnaughmap " " "

askmaps " "

karnaugh-map "* "

kvmap " "

cartonaugh "* "

tikz-karnaugh " " " "

* List of indices (cell position) instead list of values.

The only package that supports both input orders or formats is tikz-karnaugh. With tikz-karnaugh

you can typeset big (up to twelve variables or 4096 cells) good looking maps with Gray code labels (American
style) or bars (simpli�ed labels). Using a companion free java software (JQM, see Section 8), you can do it
automatically, including highlighting the solution.

1.3 Inputting the truth table

To create a Karnaugh map, the �rst thing you have to do is to load TikZ. For this, type \usepackage{tikz}
in the preamble of your document. Then, if the package is somewhere TEX can �nd it, load
the library with the command \usetikzlibrary{karnaugh}. If it is not, you can use something
like \input tikzlibrarykarnaugh.code. You may need to provide the full or relative path to �le
tikzlibrarykarnaugh.code.tex. User of online services like overleaf (https://www.overleaf.com/) will
need to check to version and, if it is not updated, will also need to upload the �le tikzlibrarykarnaugh.code.tex
to same folder.

Now, consider the logic function f(a, b, c, d) of Section 1.1. If you need to typeset a Karnaugh map for
f(a, b, c, d), it is likely that this function would be given in one of two ways: 1) a truth table; 2) a Karnaugh
map (from a book, for example). Returning to Section 1.1, the most important data are the values that
function assumes. This can be represented in a chart like:

1 1

1 0

01

10

0 1

1 0

01

10

Other relevant information is the set of input variables and their relation with rows and columns of the
map: a, c, b and d, observe the order. So, the example of Section 1.1 can easily be put into a Karnaugh map
by using the \karnaughmaptab macro in a TikZ environment (\begin{tikzpicture}) or inline command
(\tikz) as:

3

https://www.overleaf.com/

f(a,b,c,d)

a

c

b

d

1 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

\tikz[karnaugh]{

\karnaughmaptab{4}{f(a,b,c,d)}{acbd}{%

1110

1001

1001

0110

}{}

}

Inline command \tikz receives a list of options and one mandatory parameter, the macro
\karnaughmaptab itself. The \karnaughmaptab macro has �ve mandatory parameters:

1. the number of variables in the map, 4 in this example;

2. an identi�er for the function, f(a,b,c,d) in this example;

3. a list of variable identi�ers for the variables, acbd in this example (order is important);

4. the list of values of f(a, b, c, d) as they appear in the map5; and

5. a possibly empty set of TikZ commands that will be drawn before the function values so the values
will appear on top of them.

The variable identi�ers in the third parameter are ordered such that the variables associated with rows
appear before the variables associated with columns and the most signi�cant variable for the Gray code
outside the map appear �rst. In other words, list the variables on left side of the map from most to least
signi�cant and then list the variables on top of the map also from most to least signi�cant.

The �fth parameter remains empty in this example, it will be discussed further on.
Suppose now, instead of a Karnaugh map, you have a logic function f(a, b, c, d) with the following truth

table:

5Spaces and newlines are not important and can be added for the sake of readability. If, however, you need to skip one cell,
insert a pair of curly brackets, {}. It is usually a good idea to replace all zeros (or ones if you desire a zero map) by pairs of
curly brackets. Karnaugh map is a graphical method and overloading the map with useless information can undermine the user
ability to �nd the solution.

4

Index a b c d f

0 0 0 0 0 1

1 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 0

4 0 1 0 0 0

5 0 1 0 1 1

6 0 1 1 0 1

7 0 1 1 1 0

8 1 0 0 0 0

9 1 0 0 1 1

10 1 0 1 0 1

11 1 0 1 1 0

12 1 1 0 0 0

13 1 1 0 1 1

14 1 1 1 0 1

15 1 1 1 1 0

Rewriting the function values in the correct order as they should appear in the map is time consuming
and error-prone. So, why not let LATEX take care of the details for you? This logic function can be put into a
Karnaugh map by using the \karnaughmap macro in a TikZ environment (\begin{tikzpicture}) or inline
command (\tikz) as:

f(a,b,c,d)

a

b

c

d

1
0

1
1

1
2

0
3

0
4

1
5

1
6

0
7

0
8

1
9

1
10

0
11

0
12

1
13

1
14

0
15

\tikz[karnaugh, enable indices]{

\karnaughmap{4}{f(a,b,c,d)}{abcd}{%

1110 0110 0110 0110

}{}

}

Note that, this time, the order in which parameters #3 and #4 are typed in is di�erent from the previous
example. Parameter #3 is the list of input variables in the most to least signi�cant bit as in truth table.
Parameter #4 is just the last columns of truth table. The indices (little red number inside a cell) are enabled
so one can relate each cell on the map to its position in the truth table. In other word, the index in the cell
corresponds to the index in truth table.

The \karnaughmap macro, just like \karnaughmaptab, has �ve mandatory parameters:

1. the number of variables in the map;

2. an identi�er for the function;

3. a list of variable identi�ers for the variables, abcd (compare with the last example);

4. the list of values of f for each line in the truth table; and

5. a possibly empty set of TikZ commands that will be drawn before the function values so the values
will appear on top of them.

5

The variable identi�ers in the third parameter are ordered from highest to lowest signi�cance (the same
way as in the truth table, with a having a signi�cance of 23 = 8 and d having a signi�cance of 20 = 1). The
list of values of f was read from lowest to highest index. The �fth parameter remains empty in this example,
it will be discussed further on.

The indices in the upper left corner of each cell corresponds to the indices in the truth table. The indices
can easily be calculated from the variable value in the truth table, e.g., the index for row 11 is given by:

23 a+ 22 b+ 21 c+ 20 d = 8 a+ 4 b+ 2 c+ 1 d = 8 + 2 + 1 = 11.

The macros that read the variables list and the list of logic values (i.e., parameters #3 and #4) work
recursively. This is why variables a and c are assigned to Karnaugh map rows and b and d to columns. If
you desire a di�erent variable arrangement, you will not only need to change parameter #3, but also #4
accordingly. This can be troublesome; see Section 8 for a java software that can help in this matter.

Each entry has to be one character long and spaces are allowed6, otherwise � like a variable identi�er
enclosed in $s � you have to put it into curly brackets:

f(a, b, c, d)

a

b

c

d

0 1

1 0

01

10

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh]

\karnaughmap{4}{$f(a,b,c,d)$}{{a}{b}{c}{d}}%

{0110 0110 0110 0110}{}

\end{tikzpicture}

Observe that the labels are all in math mode in this example. Also, a TikZ environment was used so
\karnaughmap macro is not into curly brackets which is mandatory when using \tikz because \karnaughmap
creates several path commands. Moreover, the indices were omitted by removing enable indices from the
options list.

If you prefer Gray coded labels, referred herein as American style, just type American style in the
option list:

00 01 11 10

00

01

11

10

a, c

b, d
f(a, b, c, d)

0 1

1 0

01

10

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh, American style]

\karnaughmap{4}{$f(a,b,c,d)$}{{a}{b}{c}{d}}%

{0110 0110 0110 0110}{}

\end{tikzpicture}

See Section 6 for more details on American styled maps.

1.4 Comparison between \karnaughmaptab and \karnaughmap

Before we go any further in the details, it is important to understand the di�erence between the two input
modes: truth table and table formatted Karnaugh map. If the input data is given in a linear format where
the binary code associated with the input variables imposes the natural order in which the output function
is written, \karnaughmap must be used to create a Karnaugh map in the appropriated fashion. Moreover,
the input variables list also has to be written from the more to least signi�cant bit that imposes that order.
If, however, you already have a Karnaugh map and want to typeset it, it is usually much easier to type
the output values in the order they appear in the Karnaugh map just like it was a simple table using

6White spaces are really usable to make the string more readable leading to fast veri�cation.

6

\karnaughmaptab. The weaky analogy between tabular environment gives the tab at the end of the macro
name. Moreover, the input variables list has to be written in the order they appear on the given map.

Let's see how it works calling both macros with the same parameters. Instead of zeros, ones, white
spaces and don't-cares, let's use a string of hexadecimal numbers from 0 to F, so we can track where the
symbols go in the map. The indices are enabled, so you can see the values go in the correct position, just
the notion of "correct" changes from map to map according to the macro used. Bellow, on the left we have
\karnaughmaptab and the right \karnaughmap.

\karnaughmaptab

f(a, b, c, d)

a

b

c

d

0
0

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

A
10

B
11

C
12

E
13

D
14

F
15

\karnaughmap

f(a, b, c, d)

a

b

c

d

0
0

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

A
10

B
11

C
12

E
13

D
14

F
15

Both macros were called with {4}{$f(a,b,c,d)$}{{a}{b}{c}{d}}{0123 4567 89AB CEDF}{},
but the result is di�erent because each macro treats its arguments in a di�erent way. \karnaughmaptab

uses the same order the values are given, just put the value in the correct cell automatically changing the
row when needed. The input variables also follow in the given order: �rst the variable at left side then at
the top of the map. \karnaughmap on the other hand does something much more sophisticated. It sorts
the values such that they fall in the correct cell fallowing the given linear order. It also places the input
variables in the correct position according to the same order. Now, for four variables, there are 24 ways to
assign the variables to a map. \karnaughmap takes the last given input variable and assigns it to the least
signi�cant bit associated to the columns. The second last is assigned to the least signi�cant bit associated
to the rows. The next from the right to left is again assigned to column, and that goes on until the �rst
given input variable is assigned. The corresponding cell placement is done by a recursive macro. If you are
not satis�ed with the default assignment you can use a java software to customize the map any way you
like (see Section 8).

2 Karnaugh Map Library

TikZ Library karnaugh

\usepgflibrary{karnaugh} % LATEX and plain TEX and pure pgf

\usepgflibrary[karnaugh] % ConTEXt and pure pgf

\usetikzlibrary{karnaugh} % LATEX and plain TEX when using Tik Z

\usetikzlibrary[karnaugh] % ConTEXt when using Tik Z

This library provides TEX macros to typeset Karnaugh maps. This library de�nes the following key:

/tikz/karnaugh (no value)

This key should be passed as an option to a picture or a scope that contains a map, i.e., that calls
\karnaughmap or \karnaughmapvert macros. It will do some internal setups.

\karnaughmap{⟨num var⟩}{⟨function⟩}{⟨var list⟩}{⟨contents⟩}{⟨decoration⟩}
This macro creates a Karnaugh map of ⟨num var⟩ variables for variable ⟨function⟩ as a function
of the variables listed in ⟨var list⟩ for the values given in ⟨content⟩ and applying the speci�ed
⟨decoration⟩. Any but the �rst parameter can be empty.

\karnaughmaptab{⟨num var⟩}{⟨function⟩}{⟨var list⟩}{⟨contents⟩}{⟨decoration⟩}
Similar to \karnaughmap, but the order in which the ⟨var list⟩ and ⟨content⟩ are given correspond
to the map it creates.

\karnaughmapvert{⟨num var⟩}{⟨function⟩}{⟨var list⟩}{⟨contents⟩}{⟨decoration⟩}

7

Similar to \karnaughmap, but map will be transposed (like in matrix transposition). See Section 7
for more details.

\karnaughmaptabvert{⟨num var⟩}{⟨function⟩}{⟨var list⟩}{⟨contents⟩}{⟨decoration⟩}
Similar to \karnaughmaptab, but map will be transposed (like in matrix transposition).

\pgfmathdectoGray{⟨macro⟩}{⟨number⟩}
De�nes ⟨macro⟩ as the result of converting ⟨number⟩ from base 10 to Gray coded binary. The idea is
to provide a new macro compatible with other base conversion macros described in Section 95.4 Base
Conversion of reference [2].

1001 \pgfmathdectoGray\mynumber{14}\mynumber

\kmdectobin{⟨number⟩}
Converts ⟨number⟩ from base 10 to binary with the number of digits equal to \kmvarno, the number
of variables in the map.

001001 \kmvarno=6\relax\kmdectobin{9}

\kmdectoKG{⟨number⟩}
Converts ⟨number⟩ (usually the cell index) to a binary code that resembles Gray code deinterleaving
the variables with the number of digits equal to \kmvarno, the number of variables in the map. See
kmcell/.style for an example of application.

010001 \kmvarno=6\relax\kmdectoKG{9}

\kmdectoKGdec{⟨number⟩}
Converts ⟨number⟩ (usually the cell index) to a decimal number equivalent to the binary code that
resembles Gray code deinterleaving the variables. It uses \kmxsize to compute the correct amount.
This macro is meant for tests purposes, but it can help advanced users to understand how a map
is assembled. See Section 8 for an example of use.

11 \kmxsize=4\relax\kmdectoKGdec{13}

/tikz/every karnaugh (style, initially empty)

The style automatically applied to every Karnaugh map. It can be globally set using \tikzset

and this can be important to standardizing your maps along the document.

\kmindexcounter

A TEX counter for cell index. See kmcell/.style for an example of application.

\kmunitlength={⟨length⟩}
This length sets the size of an individual cell in the map. It can be set by karnaugh cell size.
It is used to keep dimensions proportional.

/tikz/karnaugh cell size=⟨dimension⟩ (no default, initially 8mm)

Sets the cell size and, consequently, all other dimensions that depends on the cell size. It sets the
length \kmunitlength which is used internally but can also be used by the user when needed.
Because karnaugh uses \kmunitlength to set a lot of things, it is a good idea to set the cell size
�rst.

f(a, b, c)

a

b

c

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh cell size=1.3em, karnaugh]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

8

Care should be taken because not all dimensions depend on the cell size, for example, the arrow
tip width of variable bars does not, so the arrow tip may touch the map if kmbar sep is not set to
a suitable value.

/tikz/American style=⟨boolean⟩ (default true, initially false)

Boolean switch that changes the map layout to American style. The initial value is false meaning
that the simpli�ed labels (bars with a variable identi�er on it) will be drawn unless they are
explicitly replaced by American style (Gray coded labels). See Section 6 for details.

00 01 11 10

0

1

b

a, c
f(a, b, c)

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh, American style]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/disable bars=⟨boolean⟩ (default true, initially false)

Boolean switch that disables the typesetting of all bars and the function identi�er. The original
intention was to allow for manually crafted American style maps, but since version 1.3 this map
style is fully supported so this switch lost its purpose. The initial value is false meaning that the
bars will be typeset unless they are explicitly disabled.

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,disable bars]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

Note that $f(a,b,c)$ and {a}{b}{c} are not used and could be empty in the example
above.

/tikz/kmbar (style, initially |-|)
The style used for the top and side bars related to the variables and denoting the rows and columns
for which the respective variable is 1. The initial value is |-| meaning they all will be represented
as a line with T shaped tips.

f(a, b, c)

a

b

c

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

kmbar/.style={blue,<->}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

See Chapter 16 Arrows of reference [2] for more arrow options and proper control over arrow ap-
pearance. For instance, if you want to draw a bar that ends exactly aligned with the lines inside the
map, you can change the style to |-|,shorten >=-0.2pt,shorten <=-0.2pt , assuming you are
using the default thickness thin which implies line width=0.4pt (refer to Section 15.3.1 Graphic
Parameters: Line Width, Line Cap, and Line Join of reference [2] for TikZ line width). Otherwise,
the very end of the line tip will be aligned with the middle of the internal lines, but someone should
have to be very careful to notice a di�erence of 0.2pt. Compare the two examples below where
ultra thick is used for emphasis.

9

f(a, b, c)

a

b

c

0 1

1 0

01

10

% sloppy alignment

\begin{tikzpicture}[karnaugh, ultra thick,

kmbar/.style={blue,|-|}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

f(a, b, c)

a

b

c

0 1

1 0

01

10

% exact alignment

\begin{tikzpicture}[karnaugh, ultra thick,

kmbar/.style={blue,

|-|,

shorten >=-0.8pt,

shorten <=-0.8pt}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/kmbar label (style, initially empty)

The style used for the variable identi�ers on the bars. For American styled maps, it means the
style for typesetting the lists of variables associated with columns and rows.

f(a, b, c)

a

b

c

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

kmbar label/.style={blue,font=\Large}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/kmbar sep=⟨width⟩ (no default, initially 0.2\kmunitlength)

The distance between the bar closer to the map and the map itself. It depends mainly on the line
tip used in kmbar/.style and the thickness of the map set by kmbox/.style.

f(a, b, c)

a

b

c

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

kmbar sep=1\kmunitlength]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/kmbar top sep=⟨width⟩ (no default, initially 1\kmunitlength)

The distance between two bars on top of map. It depends mainly on the font height used in
kmbar label/.style.

f(a, b, c)

a

b

c

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

kmbar top sep=2\kmunitlength]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

10

/tikz/kmbar left sep=⟨width⟩ (no default, initially 1\kmunitlength)

The distance between two bars at the left side of map. It depends mainly on the variable identi�er
width and the font size used in kmbar label/.style.

f(a, b, c, d)

a

b

c

d

0 1

1 0

01

10

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

kmbar left sep=2\kmunitlength]

\karnaughmap{4}{$f(a,b,c,d)$}{{a}{b}{c}{d}}%

{0110 0110 0110 0110}{}

\end{tikzpicture}

/tikz/enable indices=⟨boolean⟩ (default true, initially false)

Boolean switch that enables the typesetting of all indices. The index corresponds to the row number
in the truth table respective to the cell. The style kmindex/.style can modify how the indices are
presented and the lengths kmindex posx and kmindex posy where they are placed. Base-10 is the
default base for indices, but there are two Boolean switches, binary index and Gray index, to
change the encoding. The initial value is false meaning that the indices will not be typeset unless
they are explicitly enabled.

f(a, b, c)

a

b

c

0
0

1
1

1
2

0
3

0
4

1
5

1
6

0
7

\begin{tikzpicture}[karnaugh,

enable indices]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/kmindex (style, initially red,font=\tiny)

The style used for cell index if enable (see also enable indices).

f(a, b, c)

a

b

c

0
0

1
1

1
2

0
3

0
4

1
5

1
6

0
7

\begin{tikzpicture}[karnaugh,

enable indices,

kmindex/.style={blue,

font=\scriptsize\itshape}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/kmindex posx=⟨dimension⟩ (no default, initially 0.2\kmunitlength)

The horizontal distance from the cell left side to the index centre.

f(a, b, c)

a

b

c

0
0

1
1

1
2

0
3

0
4

1
5

1
6

0
7

\begin{tikzpicture}[karnaugh,

enable indices,

kmindex posx=.8\kmunitlength]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

11

/tikz/kmindex posy=⟨dimension⟩ (no default, initially 0.8\kmunitlength)

The vertical distance from the cell bottom to the index centre.

f(a, b, c)

a

b

c

0
0

1
1

1
2

0
3

0
4

1
5

1
6

0
7

\begin{tikzpicture}[karnaugh,

enable indices,

kmindex posy=.2\kmunitlength]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/kmindex pos={⟨x coordinate⟩}{⟨y coordinate⟩}
Sets kmindex posx and kmindex posy to x and y coordinates measured in \kmunitlength from
the cell bottom left corner.

f(a, b, c)

a

b

c

0
0

1
1

1
2

0
3

0
4

1
5

1
6

0
7

\begin{tikzpicture}[karnaugh,

enable indices,

kmindex pos={0.8}{0.2}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/binary index=⟨boolean⟩ (default true, initially false)

Boolean switch that sets the index presentation to binary code. It is convenient to also set the
index coordinates. In the following example, the signi�cance order is a, b and c, meaning, a is the
most signi�cant bit and c is the least signi�cant bit. Therefore, the left most bit of the indices is
one only in the two left columns below a bar, the middle bit is one in the bottom row as b bar
extends and the right most bit is one in the central columns below c bar.

f(a, b, c)

a

b

c

0
000

1
001

1
010

0
011

0
100

1
101

1
110

0
111

\begin{tikzpicture}[karnaugh,

enable indices,

binary index,

kmindex pos={0.5}{0.8}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/Gray index=⟨boolean⟩ (default true, initially false)

Boolean switch that sets the index presentation to binary code corresponding to the aggregate
value of the variables for one cell and not the index of the truth table row respective to the
cell. The di�erence between Gray index and binary index is that the latter is a binary coded
representation of the cell position in the truth table and, because the recursive algorithm that
builds the map scrambles (interleaves) the variables, it looks random at �rst sight. The former,
descrambles (deinterleaves) the variables so it would look like a string of zeros and ones associated
with row variables followed by one associated with columns in the order they are shown along the
map and not in macro parameter #3. It looks like Gray code, that's where its name came from, but
in fact it is not. Therefore, Gray index is pretty much useless to locate the corresponding row in
the truth table. However, it can be used to visualize the state of variables more easily than binary
code. A secondary index can be set, see kmcell/.style for an example of how it can be done.
Normally, enabling binary or Gray coded indices requires that the index position be adjusted. The
initial value of this switch is false meaning that the indices will be typeset accordingly to another
code, decimal or binary, depending on binary index switch.

12

00 01 11 10

0

1

b

a, c
f(a, b, c)

0
000

1
001

1
100

0
101

0
010

1
011

1
110

0
111

\begin{tikzpicture}[karnaugh,

American style,

enable indices,

Gray index,

kmindex pos={0.5}{0.8}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/kmsep line (style, initially empty)

The style applied to the line that separates the list of variables assigned to columns from the list
of variables assigned to rows in an American styled map.

00 01 11 10

0

1

b

a, c
f(a, b, c)

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

American style,

kmsep line/.style={thick,draw=blue}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/kmsep line length=⟨dimension⟩ (no default, initially 1\kmunitlength)

The length divided by
√
2 of the line that separates the list of variables assigned to columns from

the list of variables assigned to rows in an American styled map. Actually, this key sets the vertical
and horizontal distances from the top left of the map to the end of the line. The initial value of
1 \kmunitlength means that the line has a total length of

√
2 \kmunitlength.

00 01 11 10

0

1

b

a, c
f(a, b, c)

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

American style,

kmsep line/.style={thick,draw=red},

kmsep line length=0.5\kmunitlength]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/kmcell (style, initially empty)

The style used for cell contents.

f(a, b, c)

a

b

c

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

kmcell/.style={blue,font=\Large}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

Some interesting applications of kmcell/.style involves the cell index given by
\the\kmindexcounter. You can name every cell for future use or place a label within the
cell index just like enable indices does. In the following example, kmcell/.style is used to
place a label within each cell with the decimal value of the cell index and enable indices is for
the binary value. Moreover, the cell content is also a number that corresponds to the cell index
(manually placed) just to show the correlation, namely, the cell index corresponds to the cell
position it the parameter #4.

13

f(a, b, c)

a

b

c

0
0

000

1
1

001

2
2

010

3
3

011

4
4

100

5
5

101

6
6

110

7
7

111

\begin{tikzpicture}[karnaugh,

enable indices,

binary index,

kmindex pos={0.5}{0.8},

kmcell/.style={green!60!black,

label={[font=\scriptsize,blue,

label distance=-0.3\kmunitlength]

below left:\the\kmindexcounter}}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0123 4567}{}

\end{tikzpicture}

So, let's compare the binary index, internally generated by \kmdectobin, with pseudo index gen-
erated by \kmdectoKG when Gray index is set:

f(a, b, c)

a

b

c

0
000

000

1
001

001

2
100

010

3
101

011

4
010

100

5
011

101

6
110

110

7
111

111

\begin{tikzpicture}[karnaugh,

enable indices,

binary index,

kmindex pos={0.5}{0.8},

kmcell/.style={green!60!black,

label={[font=\tiny,blue,

label distance=-0.2\kmunitlength]

below:\kmdectoKG{\kmindexcounter}}}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0123 4567}{}

\end{tikzpicture}

The binary index at the top in red is the representation of the cell position in binary so it contains
the values of abc. Pseudo Gray code at the bottom in blue is the deinterleaved values of the cell
position placing b in the leftmost position, in other worlds, it is just bac. This code is convenient
to represent the code obtained placing the variables side by side as they appear in the left and top
of the map. Curious readers are invited to relate the values indicated by the variable bars with the
red and blue codes.

/tikz/kmlabel top (style, initially above,blue,font=\footnotesize\ttfamily)

The style used for Gray coded labels at the top of American styled maps. Variable \x

can be used to express the column position from 0 to \kmxsize−1. The distance from
the map can be controlled through /tikz/yshift=⟨dimension⟩, /pgf/inner sep=⟨dimension⟩,
/pgf/inner ysep=⟨dimension⟩, /pgf/minimum width=⟨dimension⟩ or above=⟨dimension⟩, for in-
stance. Naturally, yshift, inner ysep and above depend on the rotation and might need to be
replaced by something else like xshift, inner xsep or right, as in the example below.

0
0

0

0
1

1

1
1

2

1
0

3

0

1

b

a, c
f(a, b, c)

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

American style,

kmlabel top/.style={red,font=\small,

rotate=90,right=4pt,

draw=cyan,very thin,

label={[green!60!black,

label distance=1em]right:\x}}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}%

{0110 0110}{}

\end{tikzpicture}

/tikz/kmlabel left (style, initially left,blue,font=\footnotesize\ttfamily)

The style used for Gray coded labels at the left side of American styled maps. Variable
\y can be used to express the row position from 0 to \kmysize−1. The distance from
the map can be controlled through /tikz/xshift=⟨dimension⟩, /pgf/inner sep=⟨dimension⟩,
/pgf/inner xsep=⟨dimension⟩, /pgf/minimum width=⟨dimension⟩ or left=⟨dimension⟩.

00 01 11 10

00

11

b

a, c
f(a, b, c)

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

American style,

kmlabel left/.style={red,font=\small,

left=4pt,draw=cyan,very thin,

label={[green!60!black]left:\y}}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}%

{0110 0110}{}

\end{tikzpicture}

14

/tikz/kmvar (style, initially empty)

The style used for the variable name (function) of the map.

f(a, b, c)

a

b

c

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

kmvar/.style={blue,font=\Large}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/kmbox (style, initially empty)

The style used for the box surrounding the map.

f(a, b, c)

a

b

c

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

kmbox/.style={blue,very thick}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

/tikz/kmlines (style, initially empty)

The style used for the lines separating adjacent rows and columns inside the map.

f(a, b, c)

a

b

c

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

kmlines/.style={blue,very thick}]

\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

You can add options to the graphics by setting the every karnaugh/.style which is automatically
applied.

3 Adjusting the map size

Possibly the most important feature that you can change is the size of the diagrams and it is done by
changing the size of the cells within the map, simply by typing:

15

f

a

b

c

d

0 1

1 0

01

10

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh cell size=14mm,

karnaugh]

\karnaughmap{4}{f}{abcd}{0110 0110 0110 0110}{}

\end{tikzpicture}

You can set the cell size using karnaugh cell size locally or globally using
\tikzset{karnaugh cell size=14mm} or modifying the length \kmunitlength. The setting of the
\kmunitlength remains active until you change it again7. Just remember that, if you need to de�ne the
coordinate multiple (x or y) in terms of \kmunitlength, you must set karnaugh cell size before setting
x or y.

4 Marking simpli�cations

The already mentioned �fth parameter can be used if you want to draw something inside the Karnaugh map.
For example, this is useful if you want to show how you simpli�ed a logic function highlighting the prime
implicants:

f(a, b, c, d)

a

b

c

d

0 1

1 0

01

10

0 1

1 0

01

10

\begin{tikzpicture}[karnaugh,

thick,

grp/.style n args={3}{#1,fill=#1!30,

minimum width=#2\kmunitlength,

minimum height=#3\kmunitlength,

rounded corners=0.2\kmunitlength,

fill opacity=0.6,

rectangle,draw}]

\karnaughmap{4}{$f(a,b,c,d)$}{{a}{b}{c}{d}}%

{0110 0110 0110 0110}%

{

\node[grp={blue}{0.9}{1.9}](n000) at (0.5,2.0) {};

\node[grp={blue}{0.9}{1.9}](n001) at (3.5,2.0) {};

\draw[blue] (n000.north) to [bend left=25] (n001.north)

(n000.south) to [bend right=25] (n001.south);

\node[grp={red}{1.9}{0.9}](n100) at (2.0,3.5) {};

\node[grp={red}{1.9}{0.9}](n110) at (2.0,0.5) {};

\draw[red] (n100.west) to [bend right=25] (n110.west)

(n100.east) to [bend left=25] (n110.east);

}

\end{tikzpicture}

and the corresponding expression is:
f(a, b, c, d) = c d̄+ c̄ d

where colours were used to relate the subexpression with the prime implicant highlighted on the map.
Instead of LATEX's graphics macros, as in the original package, you can use TikZ for this purpose. In

this example, a new style grp was de�ned in order to draw semi-transparent rectangles with a speci�ed
colour, width and height (both given in \kmunitlength). The Karnaugh map has its datum at the lower
left point exactly. The centre point coordinates of those rectangles are speci�ed using the at command.

7Or, of course, until you leave the group in which you rede�ned the value.

16

The length of a single cell within the Karnaugh map is equal to \kmunitlength. Thus, the x and y

units are set to 1\kmunitlength by the tikzpicture environment option karnaugh so the coordinates
can be written without the unit and the rectangles will fall in the precise position even if one changes
the map size by changing the \kmunitlength. Just remember that if \kmunitlength is set, using perhaps
karnaugh cell size, after the option karnaugh you will need to set x and y manually. Thus, it is preferable
to set \kmunitlength before option karnaugh. As a good design practice, always place karnaugh cell size

�rst and then write karnaugh in the option list when you need a custom size.
Highlighting the solution can be an arduous and error-prone task. See Section 8 for JQM, a java free

software that can generate Karnaugh maps with the implicants automatically highlighted and the simpli�ed
equation colour coded accordingly to the highlights. You will still need tikz-karnaugh package to render
the map. By the way, the highlights seem in this section and the next two sections were generated using
JQM.

5 Complete example

In this and in the next sections, examples of how individual variables and cell contents can be format are
presented. The syntax relies on square brackets ([]) to enclose TikZ features that change the appearance
and add more graphs to an individual variable or cell content. Let us see a more interesting and colourful
example:

17

\begin{tikzpicture}[karnaugh cell size=2.5em, karnaugh,

thick,

grp/.style n args={3}{#1,fill=#1!30,

minimum width=#2\kmunitlength,

minimum height=#3\kmunitlength,

rounded corners=0.2\kmunitlength,

fill opacity=0.6,

rectangle,draw},

kmbar/.style={blue,<->,double=white,semithick},

kmbar left sep=1.2\kmunitlength,

kmbar sep=0.4\kmunitlength,

kmbar label/.style={red!70!black,font=\large},

kmindex/.style={orange,font=\tiny},

enable indices,

kmcell/.style={cyan!80!black},

kmbox/.style={brown,thick},

kmlines/.style={brown,thin},

kmvar/.style={green!70!black,font=\huge},

lbl/.style={left,align=right,text width=1.5\kmunitlength}]

\karnaughmap{6}{z_{0}}{%

{x_{5}}{x_{2}}{x_{4}}{x_{1}}%

{[yellow!70!black,name=Nv,|-|,double=red,very thick,

label={[font=\tiny,green!50!black]above:var.},

text=blue!60!red]x_{3}}%

{x_{0}}}%

{�1{}1{}1{}-11-1{}1{}1-{}1{}{}1-1-{}1-{}-1-1%

{[red,name=Nc,label={[name=Nl,orange!90!black,

label distance=1\kmunitlength]left:Special},

circle,inner sep=2pt,draw=green!70!blue]1}%

�{}1{}-11{}-{}1�1{}1{}{}111-{}1{}�1}%

{

\node[grp={blue}{1.9}{0.9}](n000) at (1.0,7.5) {};

\node[grp={blue}{1.9}{0.9}](n002) at (7.0,7.5) {};

\node[grp={blue}{1.9}{1.9}](n010) at (1.0,4.0) {};

\node[grp={blue}{1.9}{1.9}](n012) at (7.0,4.0) {};

\node[grp={blue}{1.9}{0.9}](n030) at (1.0,0.5) {};

\node[grp={blue}{1.9}{0.9}](n032) at (7.0,0.5) {};

\draw[blue] (n000.east) to [bend left=25] (n002.west)

(n010.east) to [bend left=25] (n012.west)

(n030.east) to [bend right=25] (n032.west)

(n000.south) to [bend right=25] (n010.north)

(n002.south) to [bend left=25] (n012.north)

(n010.south) to [bend right=25] (n030.north)

(n012.south) to [bend left=25] (n032.north);

\node[grp={red}{0.8}{7.8}](n100) at (0.5,4.0) {};

\node[grp={red}{0.8}{7.8}](n101) at (3.5,4.0) {};

\draw[red] (n100.north) to [bend left=25] (n101.north)

(n100.south) to [bend right=25] (n101.south);

\node[grp={orange}{1.9}{1.9}](n200) at (5.0,6.0) {};

\node[grp={orange}{1.9}{1.9}](n220) at (5.0,2.0) {};

\draw[orange] (n200.west) to [bend right=25] (n220.west)

(n200.east) to [bend left=25] (n220.east);

\node[grp={teal}{1.8}{1.8}](n300) at (6.0,6.0) {};

\node[grp={teal}{1.8}{1.8}](n320) at (6.0,2.0) {};

\draw[teal] (n300.west) to [bend right=25] (n320.west)

(n300.east) to [bend left=25] (n320.east);

}

\draw[<-] (Nv) � +(-1,1) node[lbl]{variable on its bar};

\draw[<-] (Nc) � +(-1,-1) node[lbl]{special cell};

\draw[<-] (Nl.120) � +(-1.1,3.5) node[lbl]{label for special cell};

\end{tikzpicture}

The corresponding Karnaugh map looks like this:

18

z0

x5

x2

x4

x1

x3

var.

x3

var.

x0 x0

-
0

-
1

1
2 3

1
45

1
67

-
8

1
9

1
10

-
11

1
1213

1
1415

1
16

-
17

18

1
19

20 21

1
22

-
23

1
24

-
25

26

1
27

-
28 29

-
30

1
31

-
32

1
33

1Special
34

-
35

-
3637

1
3839

-
40

1
41

1
42 43

-
4445

1
46

-
47

-
48

1
49

50

1
51

52 53

1
54

1
55

1
56

-
57

58

1
59

60

-
61

-
62

1
63

variable
on its
bar

special
cell

label
for spe-
cial cell

end the logic expression8 is
z = x̄3 x̄1 + x̄2 x̄0 + x3 x2 x1 + x3 x2 x0.

You may notice that the zeros were omitted (replaced by {} in the list). Also, the cell 34 is special
because {[red,name=Nc, label={[name=Nl,orange!90!black, label distance=1\kmunitlength]left:

Special}, circle, inner sep=2pt, draw=green!70!blue]1}. You can put almost anything inside a
cell using curly brackets and you can customize the cell style using square brackets. The format is:
{[opt]string} where opt is an optional set of styles (among other TikZ parameters) which will be passed
as the last option of TikZ command \node and string will be written inside the cell by that command.
To use this syntax, it is imperative that the very �rst character after the opening curly brackets ({) be the
opening square brackets ([). Matching pairs of square brackets are allowed inside the optional sequence
provided that they are protected inside a pair of curly brackets. In this case, the proper content of cell 34
is just the number 1 near the end, all the rest is the style applied to this single 1, therefore coded between
square brackets. The style uses TikZ syntax in order to change colour, font size, add a label, add �gure,
add decoration and name it for future reference. In this case, two nodes are named Nc and Nl for future
reference. Near the TikZ environment end, those names are used to place arrows pointing to the nodes with
a description. The \draw command that draws those arrows cannot be placed inside the �fth argument of
macro \karnaughmap because the �fth argument is typeset before the cell's contents (the fourth argument),
therefore no name would be created at the time the �fth argument is typeset.

The variables identi�ers (the third argument) can also be formatted individually using style,
but note that the custom style will be applied to both the bar line and the node for the
variable identi�er. If a bar gets segmented, just like x3 bar, the named node will be the
top most if the bar is vertical or the right most if the bar is horizontal. The x3 bar is
di�erent from the other bars because [yellow!70!black,name=Nv,|-|,double=red, very thick,

label={[font=\tiny,green!50!black]above:var.}, text=blue!60!red] changes its appearance. The
node name Nv is also not available at the time the �fth argument is typeset. So, any command that makes
use of it will need to be placed after the end of macro \karnaughmap.

The distance between bars on the left side was set to 1.2\kmunitlength to prevent overlapping between
x3 (the label) and x4 bar and x4 and x5 bar, but the distance between the bars on top was left unchanged.
The distance between the map and the bars closest to it was set to 0.4\kmunitlength to prevent overlapping
between the bar tip () and the map itself.

8This is not of any importance here, but I couldn't hold myself back. By the way, if you are curious, there are another two
minimal solutions.

19

The indices can be computed by

32x5 + 8x4 + 2x3 + 16x2 + 4x1 + 1x0

which is a bit bizarre. The truth table values ought to be arranged according to this index order. This
bizarreness is the price we pay to have the variables placed in positions which are more intuitive. See
Section 8 for a java software that can help on this matter.

6 American style

Support for American styled map was included in version 1.3 and improved in version 1.4. Although the
default style is what Karnaugh calls �simpli�ed labels� [1], it is su�cient to enable the American style

to obtain a map that resembles the maps found in many books on Digital Electronics and Digital System
Design. You can use \tikzset to set this and other styles globally, for instance:

\tikzset{every karnaugh/.style={

American style,

kmindex/.style={orange,font=\tiny},

enable indices,

Gray index,

kmindex pos={0.5}{0.8},

kmsep line/.style={blue,double=white,semithick}}

}

enables the American style and, consequently, disables bars; sets the style for indices; enables index in
each cell; sets the index to in Gray code; sets the index position and sets the style for the line that separates
row from column variables lists.

The example of the last section, just deleting some useless code, renders as:

000 001 011 010 110 111 101 100

000

001

011

010

110

111

101

100

x5, x4, x3

x2, x1, x0

z0

-
000000

-
000001

1
001000 001001

1
000010000011

1
001010001011

-
010000

1
010001

1
011000

-
011001

1
010010010011

1
011010011011

1
000100

-
000101

001100

1
001101

000110 000111

1
001110

-
001111

1
010100

-
010101

011100

1
011101

-
010110 010111

-
011110

1
011111

-
100000

1
100001

1Special
101000

-
101001

-
100010100011

1
101010101011

-
110000

1
110001

1
111000 111001

-
110010110011

1
111010

-
111011

-
100100

1
100101

101100

1
101101

100110 100111

1
101110

1
101111

1
110100

-
110101

111100

1
111101

110110

-
110111

-
111110

1
111111

special
cell

label
for spe-
cial cell

One possible problem is that, depending on the number of variables, one would need to reduce the labels
on top of the map to an unreasonable size to prevent them from overlapping, or to enlarger the cell size to
make them �t. The same is true for indices inside the cells.

If, instead of Gray index, you use binary index you would notice they are quite di�erent. This is
because binary indices re�ect the position of the cell as it was taken from a row of a linear truth table. Since
the algorithm that builds the map distributes the variables among the rows and columns of the map in a
non-trivial way, the indices depend on the cell position and its relation to the variable input order. Gray
coded indices are �x. The decimal indices can still be computed by

32x5 + 8x4 + 2x3 + 16x2 + 4x1 + 1x0.

If you are struggling with the variable position and the sequence in which variables and values should
appear in order to result in the map you want, see Section 8 for a java software that can help.

20

7 Vertical mode

For an odd number of variables, the Karnaugh map is rectangular and macros karnaughmap and
karnaughmaptab will typeset it twice as wide as it is high (not taking into account the bars or other features
outside the grid). Like this single variable map:

f(a) a

1
0

0
1

\tikz[karnaugh,enable indices]{

\karnaughmap{1}{$f(a)$}{{a}}{10}{}

}

This layout is good for presentations because the projection area is usually wider than higher. Paper
sheets, on the other hand, are usually higher than wider, so for a big map you may need something like9:

f(a)

a

1
0

0
1

\tikz[karnaugh,enable indices]{

\karnaughmapvert{1}{$f(a)$}{{a}}{10}{}

}

This is called, for lack of a better name, vertical mode10 and it is done by the \karnaughmapvert and
\karnaughmaptabvert macros. Note that \karnaughmapvert and \karnaughmaptabvert macros arrange
the variables in a di�erent order. Compare the two square (four variables) maps below in the normal (on
the left) and vertical mode (on the right) paying attention to the indices and variable identi�ers.

Normal (horizontal) mode

f(a, b, c, d)

a

b

c

d

0
0

1
1

0
2

1
3

1
4

0
5

1
6

1
7

1
8

0
9

1
10

1
11

1
12

1
13

0
14

1
15

Vertical mode

f(a, b, c, d)

a

b

c

d

0
0

1
1

0
2

1
3

1
4

0
5

1
6

1
7

1
8

0
9

1
10

1
11

1
12

1
13

0
14

1
15

The indices are calculated in the same way, but their position inside the map is di�erent because the
variables positions are di�erent. It is like one map is mirrored and then rotated 90o (mirrored horizontally
and rotated clockwise or mirrored vertically and rotated anticlockwise.) Exactly like matrix transposition.

One interesting application of vertical mode is when you want to keep consistency in variable identi�er
position among maps with odd and even number of variables. For example, if you want the most signi�cant
variable a appearing on top of the maps you can use normal (horizontal) mode for maps of odd number of
variables and vertical mode for even amounts, like this:

Normal (horizontal) mode

f(a, b, c)

a

b

c

0
0

1
1

0
2

1
3

1
4

0
5

1
6

1
7

Vertical mode

g(a, b, c, d)

a

b

c

d

0
0

1
1

0
2

1
3

1
4

0
5

1
6

1
7

1
8

0
9

1
10

1
11

1
12

1
13

0
14

1
15

9Or you can use landscape.
10Not to be confused with TEX vertical mode.

21

A more general approach is to use the java software described in Section 8 to create maps with arbitrary
variables positioning. Suppose that you desire the most signi�cant variable a to appear at the left side of
a three variables map. You can do the opposite of what was done in the last example, but you will end up
with a vertical map of three variables and maybe it is not what you want. Using the software described in
Section 8 allows a to be placed at the left in a normal (horizontal) mode map. This will change the indices
because it reorders the truth tablet such that a will no longer be the most signi�cant variable, but without
changing the logic function.

8 Java Quine McCluskey � JQM

Java Quine McCluskey (JQM) implements the Quine McCluskey algorithm with Petrick's Method (or the
method of prime implicants) for minimization of Boolean functions. It is available on https://sourceforge.
net/projects/jqm-java-quine-mccluskey/. Up to sixteen functions of sixteen variables can be minimized.
A graphical interface is provided for entering and editing the truth table that can be saved and loaded.

One very useful feature of JQM is that you can reorder the variables on the map to suite your particular
application instead of relying exclusively on the macro to scatter your variables around.

You can also input a map in text mode and obtain the TikZ code for creating the corresponding map,
and the correspondence would be self-evident. For instance, a function f (a, b, c, d, e) can be written in a
text �le like:

.k

a,b,c,d,e,,f

0000 0010

0111 1000

0000 00-0

0-00 0-00

where - means don't care and f , the output variable, is separated from the input variables by two commas.
It would be rendered as:

f

c

a

d

b

e e

0 0

0 1

00

11

0 -

0 0

00

00

01

00

0 0

1 0

00

0-

0 -

0 0

\tikzset{

grp/.style n args={3}{

draw=#1,fill=#1!30,

minimum width=#2\kmunitlength,

minimum height=#3\kmunitlength,

rounded corners=0.2\kmunitlength,

fill opacity=0.6,

rectangle}

}

\begin{tikzpicture}[karnaugh,thick]

\karnaughmap{5}{f}{{c}{a}{d}{b}{e}}%

{000100110-00000001000010000-0-00}%

{

\node[grp={blue}{1.9}{0.9}] at (2.0,2.5) {};

\node[grp={red}{1.9}{0.9}] at (4.0,2.5) {};

\node[grp={orange}{0.9}{0.9}] at (6.5,3.5) {};

}

\end{tikzpicture}

Note that the original text �le represents the obtained Karnaugh map very faithfully, but the command
that creates the map above, in particular parameters #3 and #4, has no evident relation with the original
text or the generated map. This, again, is due to the recursive algorithm that scrambles the variables.

Observe the sequence order of variables a, b, c, d and e in the text �le and in the map: there is a
clear correspondence. However, the sequence order has to be modi�ed in parameter #3 to compensate for
scrambling produced by the algorithm and this make the manual encoding of parameter #4 complicated.
For a small map, meaning a small number of variables, it would not be too di�cult to manually sort the
parameters in order to obtain the desire result, but it would be simply too problematic for a bigger map.
That's where JQM comes in. You can manipulate the map assigning the position of the variables in any
order and the software automatically sorts the truth table accordingly. The order in which the variables will
appear in the �nal expression is also independent on the order they appear in the map.

If, however, the export option 'Table mode (new algorithm)' is activate in JQM (it is new in version 1.3.4)
the result would be very similar to the input �le. This is because the new macro \karnaughmaptab is designed
to keep the parity between the Karnaugh map and macro parameters, see below:

22

https://sourceforge.net/projects/jqm-java-quine-mccluskey/
https://sourceforge.net/projects/jqm-java-quine-mccluskey/

f

a

b

c

d

e e

0 0 0 0 0 0 1 0

0 1 1 1 1 0 0 0

0 0 0 0 0 0 - 0

0 - 0 0 0 - 0 0

\tikzset{

grp/.style n args={3}{

draw=#1,fill=#1!30,

minimum width=#2\kmunitlength,

minimum height=#3\kmunitlength,

rounded corners=0.2\kmunitlength,

fill opacity=0.6,

rectangle}

}

\begin{tikzpicture}[karnaugh,thick]

\karnaughmaptab{5}{f}{{a}{b}{c}{d}{e}}%

{0000001001111000000000-00-000-00}%

{

\node[grp={blue}{1.9}{0.9}] at (2.0,2.5) {};

\node[grp={red}{1.9}{0.9}] at (4.0,2.5) {};

\node[grp={orange}{0.9}{0.9}] at (6.5,3.5) {};

}

\end{tikzpicture}

Another popular way of inputting the truth table is to provide a list of indices for which the output is
one or don't care. Alternatively, it can be zero and don't care. Consider the example shown in Table XIV of
reference [3]. Given the binary variables x4, x3, x2 and x1 where x4 is the most signi�cant, it is desired to
input the decimal equivalents of the binary numbers formed by the entries (called indices herein) that lead
the output to one (or zero) and some combinations of input conditions for which the output is not speci�ed
(don't care or d-entries). In this example, the decimal inputs that lead to ones are 5, 6 and 13 and the
d-entries are 9, 14. In the notation used by McCluskey [3]:

T =
∑

(5, 6, 13) + d (9, 14) where 9 and 14 are the d-terms.

The input �le should contain:

.l

x_4,x_3,x_2,x_1,,T

s, 5, 6, 13, d, 9, 14

where the �rst line has the command .l (lower case L) to indicate list mode. In the second line there is a list
of input variables (sequence order is ultimately important here) and the output variable T , again, separated
from the input variables by two commas. The third line has a list of indices that lead the output to one
starting with the letter s (should be z for a list of zeros), then the letter d which indicates the beginning of
the d-entries, and �nally the d-entries. From this text �le we obtain:

T

x4

x2

x3

x1

0

0

1

1

4

2

1
5

3

2

4

3

5

1
6

6

7

7

8

8

-
9

9

12

10

1
13

11

10

12

11

13

-
14

14

15

15

\tikzset{

grp/.style n args={3}{

draw=#1,fill=#1!30,

minimum width=#2\kmunitlength,

minimum height=#3\kmunitlength,

rounded corners=0.2\kmunitlength,

fill opacity=0.6,

rectangle}

}

\begin{tikzpicture}[karnaugh,x=1\kmunitlength,

y=1\kmunitlength,thick,

enable indices,

kmcell/.style={

minimum height=1.5em,

label={[font=\tiny,blue,

label distance=-0.3\kmunitlength]

below right:\kmdectoKGdec{\kmindexcounter}}}]

\karnaughmap{4}{T}{{x_{4}}{x_{2}}{x_{3}}{x_{1}}}%

{{}{}{}1{}{}1{}{}-{}1{}{}-{}}%

{

\node[grp={blue}{0.9}{1.9}] at (3.5,2.0) {};

\node[grp={red}{0.9}{1.9}] at (1.5,2.0) {};

}

\end{tikzpicture}

where the indices were enabled and a secondary index was inserted in every cell. This secondary index, shown
in blue, uses the macro \kmdectoKGdec to convert the decimal index given by \kmindexcounter to a pseudo

23

index that is equal to the decimal equivalents of the binary numbers formed by the entries (x4, x3, x2, x1).
This is not the index used to assemble the map which is shown in red, is equal to \kmindexcounter and
is the decimal equivalate to (x4, x2, x3, x1). JQM rearranged parameters #3 and #4 such that, as in the
previous example, the map is typeset accordingly to the speci�cation given in the input text �le. To force the
macro \karnaughmap to behave as expected, JQM swapped variable x2 and x3 and resequenced parameter
#4. This is done automatically and the user does not have to worried with the details. As expected, the
result shows x4 and x3 assigned to the rows (at the left-hand side of the map) and x2 and x1 assigned to
the columns (on the top of the map).

8.1 JQM options to export to LATEX �le

When exporting a LATEX �le from JQM, bear in mind that if a minimized truth table is exported, the
corresponding map, or maps for multiple outputs or multiple solutions, will has the solution highlighted.
Conversely, non-minimized truth tables will not present the solution although they can be exported.

There are several options that impacts on the �.tex� �le produced. Frist of all, you can either produced
a complete document or just an insert to be included in a master document. Next you see options regard-
ing Boolean expressions, truth table and ladder diagram (PLC program). Interested readers can �nd the
description in JQM ReadMe �le.

Karnaugh maps options starts given the possibility of creating maps with both zeros and ones. The
default behaviour is to replace zeros (in a ones map, sum of products, disjunctive normal form, or OR of
ANDs) or ones (in a zeros map, product of sums, conjunctive normal form or AND of ORs) by empty cells.
The intention is to keep the map as clean as possible. By checking the box, both zeros and ones will appear
on the map.

Next option gives the possibility of generating the Boolean expression. Moreover, this expression is colour
coded: each implicant is generated in the corresponding colour of the highlight on the map.

Then you have the choice between truth table mode (which uses \karnaughmap) and table formatted
Karnaugh map (which uses \karnaughmaptab). The preselect option favours \karnaughmaptab. Although
the macro used is di�erent, the generated map is the same because JQM arranges the data send to the macro
accordingly. Thus, if you like to see in your �.tex� �le how map will look like, use the table mode. If you
prefer to see the truth table uncheck the box.

Vertical mode, see Section 7, is supported. In this mode, the map will look like it has been transposed.
The variables associated with rows will be associated with columns vice-versa. A rectangular map (with an
old number of variables) will look twice as high as it is wide in this mode and that is why it is called vertical

mode. For a square map (with an even number of variables), the same e�ect can be obtained reordering the
input variables11.

You can generate tests (exams) using package examdesign. This package can be used to create di�erent
tests versions of the exam preventing cheating. The support included in JQM for examdesign allow the
generation of answer sheet with solution and exam (obviously, without solution).

Finally, we have a button that opens a new window for selecting the order in which the variables will
appear on the map. There are tree preestablished orders, but user is free to move the variables around
assorting them in any order. Note that the input variable order, which can be change in the main window,
a�ects the variables position in both Boolean expression and Karnaugh map. Thus, it is always a good idea
to verify the desired order before exporting.

Users are encouraged to experiment with those options and see which ones �t some particular need.

8.2 JQM main features

� Up to 16 input variables.

� Up to 16 functions (output variables).

� Petrick's Method used to �nd solutions covered by non-essential prime implicant.

� Comfortable graphical interface allows variable renaming and column reorder.

� Truth table can be saved in CSV �le for external editing or reuse. Then it can be loaded again. Also,
one can generate the truth table using other software and �import� (open) for edition and minimization.

11There is a tiny di�erence that appears when implicants are segmented in several parts particularly in big maps. In this
case, some lines that connect those parts are vertical instead of horizontal.

24

� Besides using the graphical interface, truth table can be written in a text �le then load in the software.
Several formats are available including: list decimal representing implicants and don't care, Karnaugh
map and CSV with wildcards.

� Results can be expressed in several formats like: conventional Boolean expression, LATEX, Structured
Text (ST) and Ladder Diagram (LD).

� Results can be exported to HTML �le and open in an internet browser.

� Because this software aims PLC programming, solutions are independent (non-simultaneous). It would
not be too di�cult to modify the algorithm to support simultaneous solution.

� Generates Karnaugh maps in HTML and LATEX.

� Not only solves the problem, but also shows how the solution was obtained.

� To use the software just download the zip �le, unzip it and double click on �JQM-QuineMcCluskey.jar�.
Please see ReadMe.txt, or LeiaMe.txt if you prefer Portuguese, for more details and examples.

9 Final remarks

To e�ectively typeset good looking Karnaugh maps you may need to know more about TikZ and this material
is beyond the scope of this text, but you can refer to [2].

In case you �nd a bug, or if you have comments or suggestions, please send me an e-mail.
The maximum size map I could produce was a Karnaugh map with twelve variables; with bigger maps I

only exceeded TEX's main memory. This is due to the huge amount of TikZ nodes necessary to create the
map. Quite likely you will exceed TEX's capacity with even smaller maps if they occur in large documents.

References

[1] Karnaugh, Maurice. The map method for synthesis of combinational logic circuits, Transactions of the
American Institute of Electrical Engineers, Part I: Communication and Electronics 72(5), 593�599, 1953.

[2] Tantau, Till. The TikZ and PGF Packages : Manual for version 3.1.9a-34-ga0d9cada, https://github.
com/pgf-tikz/pgf, 2021.

[3] McCluskey, Jr., Edward Joseph. Minimization of Boolean functions, The Bell System Technical Journal

35(6), 1417�1444, 1956.

25

https://github.com/pgf-tikz/pgf
https://github.com/pgf-tikz/pgf

	Introduction
	Introductory example
	Comparison with other packages
	Inputting the truth table
	Comparison between `karnaughmaptab and `karnaughmap

	Karnaugh Map Library
	Adjusting the map size
	Marking simplifications
	Complete example
	American style
	Vertical mode
	Java Quine McCluskey – JQM
	JQM options to export to LaTeX file
	JQM main features

	Final remarks

