
TikZ 3D Tools

tallmarmot

v1.0

1 Manual
TikZ Library 3dtools

\usetikzlibrary{3dtools} % LATEX only

This library provides additional tools to create 3d–like pictures.

TikZ has the 3d and tpp libraries which deal with the projections of three–
dimensional drawings. This library provides some means to manipulate the coor-
dinates. It supports linear combinations of vectors, vector and scalar products.
Note: Hopefully this library is only temporary and its contents will be absorbed
in slightly extended versions of the 3d and calc libraries.

1.1 Coordinate computations
The 3dtools library has some options and styles for coordinate computations.

/tikz/3d parse (no value)
Parses and expression and inserts the result in form of a coordinate.

/tikz/3d coordinate (no value)
Allow one to define a 3d coordinate from other coordinates.

Both keys support both symbolic and explicit coordinates.

A

B

C

D

E

\begin{tikzpicture}
\path (1,2,3) coordinate (A)
(2,3,-1) coordinate (B)
(-1,-2,1) coordinate (C)
[3d parse={0.25*(1,2,3)x(B)}]
coordinate(D)
[3d parse={0.25*(C)x(B)}]
coordinate(E);

\path foreach \X in {A,...,E}
{(\X) node[fill,inner sep=1pt,
label=above:\X]{}};

\end{tikzpicture}

1

Notice that, as of now, only the syntax \path (1,2,3) coordinate (A);
works, i.e. \coordinate (A) at (1,2,3); does not work, but leads to error mes-
sages.

A

B

C

D

E

\begin{tikzpicture}
\path (1,2,3) coordinate (A)
(2,3,-1) coordinate (B)
(-1,-2,1) coordinate (C)
[3d coordinate={(D)=0.25*(1,2,3)x(B)},
3d coordinate={(E)=0.25*(C)x(B)},
3d coordinate={(F)=(A)-(B)}];

\path foreach \X in {A,...,E}
{(\X) node[fill,inner sep=1pt,
label=above:\X]{}};

\end{tikzpicture}

The actual parsings are done by the function \pgfmathtdparse that allows
one to parse 3d expressions. The supported vector operations are + (addition +),
- (subtraction −), * (multiplication of the vector by a scalar), x (vector product
×) and o (scalar product).

\pgfmathtdparse{〈x 〉}
Parses 3d expressions.

In order to pretty-print the result one may want to use \pgfmathprintvector,
and use the math function TD for parsing.

\pgfmathprintvector{〈x 〉}
Pretty-prints vectors.

0.2 ~A− 0.3 ~B + 0.6 ~C = (−1,−1.7, 1.5) \pgfmathparse{TD("0.2*(A)
-0.3*(B)+0.6*(C)")}%
$0.2\,\vec A-0.3\,\vec B+0.6\,\vec C
=(\pgfmathprintvector\pgfmathresult)$

The alert reader may wonder why this works, i.e. how would TikZ “know” what
the coordinates A, B and C are. It works because the coordinates in TikZ are
global, so they get remembered from the above example.

Warning. The expressions that are used in the coordinates will only be evalu-
ated when they are retrieved. So, if you use, say, random numbers, you will get
each time a different result.

2

~R = (0.53, 0.25, 0.7)

~R = (0.87, 0.38, 0.48)

\begin{tikzpicture}
\path[overlay] (rnd,rnd,rnd)
coordinate (R);
\node at (0,1)
{\pgfmathparse{TD("(R)")}%
$\vec R=(\pgfmathprintvector\pgfmathresult)$};

\node at (0,0)
{\pgfmathparse{TD("(R)")}%
$\vec R=(\pgfmathprintvector\pgfmathresult)$};

\end{tikzpicture}

(1, 0, 0)T × (0, 1, 0)T = (0, 0, 1)T \pgfmathparse{TD("(1,0,0)x(0,1,0)")}%
$(1,0,0)^T\times(0,1,0)^T=
(\pgfmathprintvector\pgfmathresult)^T$

~A · ~B = 5 \pgfmathparse{TD("(A)o(B)")}%
$\vec A\cdot \vec B=
\pgfmathprintnumber\pgfmathresult$

Notice that, as of now, the only purpose of brackets (...) is to delimit vectors.
Further, the addition + and subtraction - have a higher precedence than vector
products x and scalar products o. That is, (A)+(B)o(C) gets interpreted as (~A+
~B) · ~C, and (A)+(B)x(C) as (~A+ ~B)× ~C.

(~A+ ~B) · ~C = −11 \pgfmathparse{TD("(A)+(B)o(C)")}%
$(\vec A+\vec B)\cdot\vec C=
\pgfmathprintnumber\pgfmathresult$

(~A+ ~B)× ~C = (9,−5,−1) \pgfmathparse{TD("(A)+(B)x(C)")}%
$(\vec A+\vec B)\times\vec C=
(\pgfmathprintvector\pgfmathresult)$

Moreover, any expression can only have either one o or one x, or none of these.
Expressions with more of these can be accidentally right.

1.2 Orthonormal projections
This library can be used together with the tikz-3dplot package. It also has its
own means to install orthonormal projections. Orthonormal projections emerge
from subjecting 3-dimensional vectors to orthogonal transformations and project-
ing them to 2 dimensions. They are not to be confused with the perspective
projections, which are more realistic and supported by the tpp library. Orthonor-
mal projections may be thought of a limit of perspective projections at large
distances, where large means that the distance of the observer is much larger than
the dimensions of the objects that get depicted.

/tikz/3d/install view (no value)
Installs a 3d orthonormal projection.

The initial projection is such that x is right an y is up, as if we had no third
direction.

3

x

y

z

\begin{tikzpicture}[3d/install view]
\draw[-stealth] (0,0,0) -- (1,0,0)
node[pos=1.2] {x};

\draw[-stealth] (0,0,0) -- (0,1,0)
node[pos=1.2] {y};

\draw[-stealth] (0,0,0) -- (0,0,1)
node[pos=1.2] {z};

\end{tikzpicture}

The 3d-like picture emerge by rotating the view. The conventions for the
parametrization of the orthogonal rotations in terms of three rotation angles φ, ψ
and θ are

O(φ, ψ, θ) =

 sφ cψ sψ −sφ cθ − cφ sψ sθ
cφ cθ − sφ sψ sθ cψ sθ sφ sθ − cφ cθ sψ
−sφ sψ cθ − cφ sθ cψ cθ cψ cθ

 .

Here, cφ := cosφ, sφ := sinφ and so on.

/tikz/3d/phi (initially 0)
3d rotation angle.

/tikz/3d/psi (initially 0)
3d rotation angle.

/tikz/3d/theta (initially 0)
3d rotation angle.

The rotation angles can be used to define the view. The conventions are chosen
in such a way that they resemble those of the tikz-3dplot package, which gets
widely used.

x
y

z \begin{tikzpicture}[3d/install view={phi=110,psi=0,theta=70}]
\draw[-stealth] (0,0,0) -- (1,0,0)
node[pos=1.2] {x};

\draw[-stealth] (0,0,0) -- (0,1,0)
node[pos=1.2] {y};

\draw[-stealth] (0,0,0) -- (0,0,1)
node[pos=1.2] {z};

\end{tikzpicture}

x
y

z \begin{tikzpicture}[3d/install view={phi=110,psi=0,theta=70}]
\draw[-stealth] (0,0,0) -- (1,0,0)
node[pos=1.2] {x};

\draw[-stealth] (0,0,0) -- (0,1,0)
node[pos=1.2] {y};

\draw[-stealth] (0,0,0) -- (0,0,1)
node[pos=1.2] {z};

\end{tikzpicture}

1.3 Predefined pics
/tikz/pics/3d circle through 3 points=〈options〉 (no default, initially

empty)
Draws a circle through 3 points in 3 dimensions. If the three coordinates are
close to linearly dependent, the circle will not be drawn.

4

/tikz/3d circle through 3 points/A (initially (1,0,0))
First coordinate. Can be either symbolic or explicit. Symbolic coordinates
need to be defined via \path (x,y,z) coordinate (name);.

/tikz/3d circle through 3 points/B (initially (0,1,0))
Second coordinate, like above.

/tikz/3d circle through 3 points/C (initially (0,0,1))
Third coordinate, like above.

/tikz/3d circle through 3 points/center name (initially M)
Name of the center coordinate that will be derived.

/tikz/3d circle through 3 points/auxiliary coordinate prefix
(initially tmp)
In TikZthe coordinates are global. The code for the circle is more compre-
hensible if named coordinates are introduced. Their names will begin with
this prefix. Changing the prefix will allow users to avoid overwritin existing
coordinates.

A

B

C

M

\begin{tikzpicture}[3d/install view={phi=30,psi=0,theta=70}]
\foreach \X in {A,B,C}
{\pgfmathsetmacro{\myx}{3*(rnd-1/2)}
\pgfmathsetmacro{\myy}{3*(rnd-1/2)}
\pgfmathsetmacro{\myz}{3*(rnd-1/2)}
\path (\myx,\myy,\myz) coordinate (\X);}
\path pic{3d circle through 3 points={%
A={(A)},B={(B)},C={(C)}}};
\foreach \X in {A,B,C,M}
{\fill (\X) circle[radius=1.5pt]
node[above]{\X};}

\end{tikzpicture}

To do:

• transform to plane given by three non-degenerate coordinates

• transform to plane given by normal and one point

• maybe layering/visibility

1.4 3D–like decorations
/tikz/decorations/3d complete coil (no value)

3d–like coil where the front is thicker than the back.

5

/tikz/decorations/3d coil closed (no value)
Indicates that the coil is closed.

\begin{tikzpicture}
\draw[decoration={3d coil color=red,aspect=0.35, segment length=3.1mm,
amplitude=3mm,3d complete coil},
decorate] (0,1) -- (0,6);
\draw[decoration={3d coil color=blue,3d coil opacity=0.9,aspect=0.5,
segment length={2*pi*3cm/50}, amplitude=5mm,3d complete coil,
3d coil closed},
decorate] (5,3.5) circle[radius=3cm];
\end{tikzpicture}

6

	Manual
	Coordinate computations
	Orthonormal projections
	Predefined pics
	3D–like decorations

