
spectralsequences

Hood Chatham
hood@mit.edu

Version 1.3.0
2022/2/20

The spectralsequences package is a specialized tool built on top of PGF/TikZ
for drawing spectral sequence charts. It provides a powerful, concise syntax for
specifying the data of a spectral sequence, and then allows the user to print
various pages of a spectral sequence, automatically choosing which subset of the
classes, di�erentials, structure lines, and extensions to display on each page. It
also handles most of the details of the layout. At the same time, spectralse-
quences is extremely �exible. It is closely integrated with TikZ to ensure that
users can take advantage of as much as possible of its expressive power. It is
possible to turn o� most of the automated layout features and draw replace-
ments using TikZ commands. spectralsequences also has a carefully designed
error reporting system intended to ensure that it is as clear as possible what is
going wrong.

Many thanks to the authors of TikZ for producing such a wonderful package
with such thorough documentation. I would have needed to spend a lot more
time reading the TikZ code if the documentation weren't so excellent. I took
ideas or code or both from tikzcd (part of the code for turning quotes into class
or edge labels), pgfplots (axes labels), and sseq (the grid types, the stack). I
lifted a fair amount of code from TEXstack exchange. Thanks to Eva Belmont for
tons of helpful suggestions, bug reports, and productive conversations. Talking
to her has helped to clarify many design concepts for the package. Thanks to
Eric Peterson for being a very early adopter and reporting many bugs. Also
thanks to all my friends, family, and acquaintances listened to me talk about
LATEX programming even though they probably found it dreadfully boring.

mailto:<hood@mit.edu>%20Hood%20Chatham?subject=[spectralsequences%20package]

Contents

1 Introduction 3

1.1 Installation . 3

1.2 Memory Constraints . 3

1.3 A warning about fragile macros . 4

2 Package Options and Environments 4

3 The Main Commands 4

4 Options for the main commands 10

4.1 Universal options . 10

4.2 Options for \class . 13

4.3 Options for \d, \structline, and \extension . 18

4.4 Options for \circleclass . 20

4.5 Options for TikZ primitives . 21

5 Miscellaneous Commands 24

5.1 Settings . 24

5.2 Code reuse commands . 25

5.3 Families . 29

5.4 Utilities . 30

5.5 Coordinate parsers and related . 31

5.6 The class stack . 33

6 Styles 35

6.1 Style-like options . 38

7 Global Options 40

7.1 Global coordinate transformations . 46

7.2 Plot options and axes style . 46

7.3 Layout . 50

1 Introduction

The spectralsequences package consists of two main environments � the {sseqdata} environment, which
speci�es the data for a named spectral sequence, and the {sseqpage} environment, which prints a single
page of a spectral sequence. The \printpage command is also available as a synonym for a {sseqpage}

environment with an empty body.

Here is a basic example:

0 1 2 3

0

1

2

0 1 2 3

0

1

2

\begin{sseqdata}[name = basic, xscale = 0.6,

cohomological Serre grading]

\class(0,0)

\class(0,2)

\class(3,0)

\class(3,2)

\d3(0,2)

\end{sseqdata}

\printpage[name = basic, page = 3] \quad

\printpage[name = basic, page = 4]

\begin{sseqdata}[name = basic, cohomological Serre grading] starts the declaration of the data of
a spectral sequence named basic with cohomological Serre grading � that is, the page r di�erentials go
r to the right and down r− 1. Then we specify four classes and one page 3 di�erential, and we ask
spectralsequences to print the third and fourth pages of the spectral sequence. Note that on the fourth
page, the source and target of the di�erential have disappeared.

1.1 Installation

In both MiKTEX and TEX Live installation should be automatic � your TEX distribution should automatically
install the package the �rst time you include \usepackage{spectralsequences} in a document and compile
it. However, in 2016, TEX Live made an incompatible change to their database, so no new packages will run
on versions of TEX Live from before 2016. This includes spectralsequences. If you have an old version of
TEX Live, you can either perform a manual install, or, better, you should install an up to date version of
TEX Live. If you want to do a manual install, see this TEXstack exchange post for instructions.

1.2 Memory Constraints

In a default TEX install, PDFLATEX has small static memory caps that prevent it from using more than about
60 megabytes of total ram. However, spectralsequences and PGF/TikZ use a large amount of memory. For
this reason, using PDFLATEX with a default install, you cannot draw more than about 2500 classes across
all of your diagrams (fewer if you include di�erentials, structure lines, and other features). There are a few
solutions to this.

The easiest solution is to run LuaLATEX. LuaLATEX dynamically allocates memory and so is unlikely to run
out of it. Using LuaLATEX on my computer, I can compile a document that draws two copies of a diagram
with 20,000 classes in it (so a total of 40,000 classes). This takes about 50 seconds and 250 megabytes of
ram. I expect any real-world use case will compile �ne on a modern computer using LuaLATEX. This option
has the advantage that any modern TEX install comes with a copy of LuaLATEX, and that LuaLATEX is the
designated successor to PDFLATEX. It has the disadvantage that there are some incompatibilities between
LuaLATEX and PDFLATEX so if your document depends on PDFLATEX-speci�c features, it might be a pain
to switch to LuaLATEX.

Another option is to increase the static memory caps for PDFLATEX. See this TEXstack exchange post for
instructions on how to do this.

3

https://tex.stackexchange.com/a/73017
https://tex.stackexchange.com/a/26213

1.3 A warning about fragile macros

All the data in a spectralsequences environment is stored and used later. As a result, most of the spec-

tralsequences commands currently cannot tolerate fragile macros. Unfortunately, it is impossible for spec-
tralsequences to warn you about this situation � if you use a fragile command in a place that it doesn't
belong, the result will be an incomprehensible error message. If you are getting nonsense error messages,
this might be why. The solution is to convert fragile macros into robust ones. Common examples of fragile
macros include \widehat and \underline. My suggested solution to this is to add the following code to
your preamble for each fragile macro (example given for \mathbb):

\let\oldwidehat\widehat

\protected\def\widehat{\oldwidehat}

2 Package Options and Environments

Draft Mode

The drawings that spectralsequences produces can be quite slow, especially if they are large. Draft
mode skips drawing the content of the spectral sequence, but still takes up exactly the same amount
of space in the document, so that you can deal with formatting issues. To active draft mode, load the
package by saying \usepackage[draft]{spectralsequences}.

\begin{sseqdata}[⟨options⟩]
⟨environment contents⟩

\end{sseqdata}

The {sseqdata} environment is for storing a spectral sequence to be printed later. This environment is
intended for circumstances where you want to print multiple pages of the same spectral sequence. When
using the {sseqdata} environment, you must use the name option to tell spectralsequences where to
store the spectral sequence so that you can access it later.

\begin{sseqpage}[⟨options⟩]
⟨environment contents⟩

\end{sseqpage}

This environment is used for printing a page of existing spectral sequence that was already speci�ed using
the {sseqdata} environment. The body of the environment adds local changes � classes, di�erentials,
structure lines, extensions, and arbitrary TikZ options that are by default only printed on this particular
page. The {sseqpage} environment can also be used to print a stand-alone page of a spectral sequence
� that is, if you only want to print a single page of the spectral sequence, you can skip using the
{sseqdata} environment.

\printpage[⟨options⟩]
This command prints a single page of an existing spectral sequence as-is. This is equivalent to a
{sseqpage} environment with an empty body.

3 The Main Commands

\class[⟨options⟩](⟨x ⟩,⟨y⟩)
This places a class at (x,y) where x and y are integers. If multiple classes occur at the same position,
spectralsequences will automatically arrange them in a pre-speci�ed pattern. This pattern may be
altered using theclass pattern option.

4

\begin{sseqpage}[no axes, ymirror, yscale = 0.8]

\class(0,0)

\class(1,0) \class(1,0)

\class(0,1) \class(0,1) \class(0,1)

\class(1,1) \class(1,1) \class(1,1) \class(1,1)

\class(0,2) \class(0,2) \class(0,2) \class(0,2) \class(0,2)

\class(1,2) \class(1,2) \class(1,2) \class(1,2) \class(1,2) \class(1,2)

\end{sseqpage}

The e�ect of the \class command is to print a TikZ node on a range of pages. Any option that would
work for a TikZ \node command will also work in the same way for the \class, \replaceclass, and
\classoptions commands.

If a class is the source or the target of a di�erential on a certain page, then the page of the class is set
to that page, and the class is only rendered on pages up to that number:

0 1

0

1

2

3

0 1

0

1

2

3

\begin{sseqdata}[name = class example,

Adams grading,

yscale = 0.53]

\class(1,0)

\class(0,2)

\class(0,3)

\d2(1,0)

\end{sseqdata}

\printpage[name = class example, page = 2]

\quad

\printpage[name = class example, page = 3]

See the class options section for a list of the sort of options available for classes.

\replaceclass[⟨options⟩](⟨x ⟩,⟨y⟩,⟨n⟩)
\replaceclass[⟨options⟩](⟨classname⟩)
\replacesource[⟨options⟩]
\replacetarget[⟨options⟩]

After a class is the source or target of a di�erential, it disappears on the next page. However, some
di�erentials are not injective or not surjective. Using the command \replaceclass causes a new symbol
to appear on the page after a class supported or accepted a di�erential (or both). If there are multiple
classes at the coordinate (x,y) you may specify which using an integer or a tag n. By default, this
command will a�ect the �rst class placed in that position. You can also provide the class:name of a
class. The variants \replacesource and \replacetarget replace the source and target respectively of
the most recent di�erential.

0 1

0

1

2

3 Z

Z

Z

·2·2

0 1

0

1

2

3 Z/2

Z

0 1

0

1

2

3

2Z

5

\begin{sseqdata}[name = replace class example, Adams grading, classes = {draw = none }]

\class["\mathbb{Z}"](0,3)

\class["\mathbb{Z}"](1,1)

\class["\mathbb{Z}"](1,0)

\d["\cdot 2"]2(1,1)

\replacetarget["\mathbb{Z}/2"] %\replaceclass["\mathbb{Z}/2"](0,3)

\d[-�]3(1,0)

\replacesource["2\mathbb{Z}"] % \replaceclass["2\mathbb{Z}"](1,0)

\end{sseqdata}

\printpage[name = replace class example, page = 2] \qquad

\printpage[name = replace class example, page = 3] \qquad

\printpage[name = replace class example, page = 4]

Note that this will not restore any structure lines coming into or o� of the class. If you want to restore
all structlines on the class use \replacestructlines. If you want to selectively replace some of the
structure lines, you must use \structline again (or use the structline:page option).

\replacestructlines(⟨source coordinate⟩)
This command replaces all structlines touching a class that has been replaced using \replaceclass,
\replacesource, or \replacetarget.

0 1

0

1

2

\begin{sseqdata}[name=replacestructlines]

\class(0,1)

\class(0,2)

\structline

\class(1,0)

\d2(1,0)(0,2)

\replacetarget\replacestructlines

\end{sseqdata}

\printpage[name=replacestructlines, page=3]

\classoptions[⟨options⟩](⟨x ⟩,⟨y⟩,⟨n⟩)
\classoptions[⟨options⟩](⟨classname⟩)
\classoptions[⟨options⟩]

This adds options to an existing class. This can be used in a {sseqpage} environment to modify the
appearance of a class for just one drawing of the spectral sequence, for instance to highlight it for
discussion purposes.

If there are multiple classes at the coordinate (x,y) you may specify which using an integer or a tag

n. By default, this command will a�ect the �rst class placed in that position. You can also provide the
class:name of a class. If no coordinate is indicated at all, then \lastclass is used.

0 1 2

0

1

The red class is the problem

\begin{sseqdata}[name = class options example,

classes = fill]

\class(2,1)

\foreach \x in {0,...,2} \foreach \y in {0,1} {

\class(\x,\y)

}

\end{sseqdata}

\begin{sseqpage}[name = class options example,

right clip padding = 0.6cm]

\classoptions[red](2,1,2) % Only is red on this page!

\node[background] at (0.3,-2.2)

{\textup{The red class is the problem}};

\end{sseqpage}

Another reason to use this is to give a label to one instance of a class that shows up in a loop or a
command de�ned using \NewSseqGroup:

6

0 1 2 3

0

1

2

3

4

2 η

\NewSseqGroup\mygroup {} {

\class(0,0)

\class(0,1)

\class(0,2)

\class(1,1)

\class(2,2)

\structline(0,0)(0,1)

\structline(0,1)(0,2)

\structline(0,0)(1,1)

\structline(1,1)(2,2)

}

\begin{sseqpage}[classes = fill, class labels = { left = 0.3em }]

\mygroup(0,0)

\mygroup(1,2)

\classoptions["2"](0,1)

\classoptions["\eta"](1,1)

\end{sseqpage}

See the class options section for a list of the sort of options available for classes.

\d[⟨options⟩]⟨page⟩
\d[⟨options⟩]⟨page⟩(⟨x ⟩,⟨y⟩,⟨source n⟩,⟨target n⟩)
\d[⟨options⟩]⟨page⟩(⟨source name⟩,⟨target n⟩)
\d[⟨options⟩]⟨page⟩(⟨source coordinate⟩)(⟨target coordinate⟩)

Calling \d\meta{page}(⟨x ⟩,⟨y⟩) creates a di�erential starting at (⟨x ⟩,⟨y⟩) of length determined by
the speci�ed page. In order to use the \d command like this, you must �rst specify the degree of
the di�erentials as an option to the {sseqdata} or {sseqpage} environment. The degree indicates
how far to the right and how far up a page r di�erential will go as a function of r. If there is a page
r di�erential, on page r+ 1, the source, target, and any structure lines connected to the source and
target of the di�erential disappear. If no class is speci�ed, the default is to use \lastclass.

If there are multiple nodes in the source or target, you may specify which one the di�erential should go
to using an index or tag for ⟨source n⟩ or ⟨target n⟩. It is also possible to provide the name of the source
coordinate and an optional target, or to separately provide the source and target coordinate, either as
names or as (⟨x ⟩,⟨y⟩,⟨n⟩). Using \d with explicit source and target coordinates works even if you did
not provide a degree to the spectral sequence. If you did provide a degree, then spectralsequences

will check whether the di�erence between the source and target is appropriate for a di�erential of a given
page, and if not it will throw an error. If this is undesirable, you can use the lax degree option.

0 1

0

1

2

0 1

0

1

2

\begin{sseqdata}[name = d example, degree = {-1}{#1},

struct lines = blue, yscale = 1.3]

\class(0,2)

\class(1,2)

\class(1,1)

\class(1,0)

\structline(1,2)(0,2)

\structline(1,2)(1,1)

\structline(1,1)(1,0)

\d2(1,0)

\end{sseqdata}

\printpage[name = d example, page = 2] \quad

\printpage[name = d example, page = 3]

If there are multiple nodes in the source or target coordinate, then there is a funny syntax for indicating
which one should be the source and target:

\d\meta{page}\pars{\meta{x},\meta{y}\opt{,\sourcen,\targetn}}

7

0 1 2 3

0

1

2

\begin{sseqpage}[Adams grading, yscale = 0.8]

\class(1,0) \class(1,0)

\class(0,2) \class(0,2)

\d2(1,0,1,2)

\class(2,0) \class(2,0)

\class(1,2)

\d2(2,0,2)

\class(3,0)

\class(2,2) \class(2,2)

\d2(3,0�2)

\end{sseqpage}

Negative indices will count from the most recent class in the coordinate (so the most recent is -1,
the second most recent is -2, etc). You can also use a tag, which works better if the situation is
complicated.

0 1

0

1

2

\begin{sseqpage}[Adams grading, yscale = 0.65]

\class(1,0)

\class(0,2) \class(0,2)

\d[blue]2(1,0,-1,-1)

\class(1,0)

\class(0,2)

\d[orange]2(1,0,-1,-1)

\class(1,0)

\d[red]2(1,0,-1,-2)

\end{sseqpage}

\doptions[⟨options⟩]⟨page⟩(⟨x ⟩,⟨y⟩,⟨source n⟩,⟨target n⟩)
\doptions[⟨options⟩]⟨page⟩(⟨source name⟩,⟨target n⟩)
\doptions[⟨options⟩]⟨page⟩(⟨source coordinate⟩)(⟨target coordinate⟩)

This command adds options to an existing di�erential, just like \classoptions except for di�erentials.
Its syntax is identical to that of \d.

\kill⟨page⟩[⟨coord⟩]
This command sets the indicated coordinate to die on the indicated page, but does not establish a target
for the di�erential. This is useful if you want to draw your own di�erential using tikz (see \getdtarget)
or if you are not drawing the class on the other side of the di�erential for clutter reasons. As usual, if
no coordinate is provided, the default argument is \lastclass.

\structline[⟨options⟩](⟨source coordinate⟩)(⟨target coordinate⟩)
The \structline command creates a structure line from ⟨source coordinate⟩ to ⟨target coordinate⟩.
The source and target coordinates are either of the form (⟨x ⟩,⟨y⟩,⟨n⟩) or (⟨class name⟩). If there are
multiple classes at (x, y), then ⟨n⟩ speci�es which of the classes at (x, y) the structure line starts and
ends at � if n is positive, then it counts from the �rst class in that position, if n is negative, it counts
backwards from the most recent. You can also use a tag for n. If the ⟨target coordinate⟩ is omitted,
then \lastclass is used, so that \structline(\sourcecoord) connects the most recent class to the
speci�ed coordinate. If both coordinates are omitted, then \lastclass and \lastclass1 are used, and
so \structline with no arguments at all will connect the two most recent classes.

If the source or target of a structure line is hit by a di�erential, then on subsequent pages, the structure
line disappears.

If the source or target has had multiple generations (i.e., they got hit and you used \replaceclass),
then the \structline will only appear starting on the �rst page where the current generation of both
the source and target are present. If this is undesirable, you can use the structline:page option or
the to change it. Also, the structline will disppear the �rst time after this the source or target has a
di�erential, but this can be changed with the \replacestructlines command.

8

\DeclareSseqGroup\tower {} {

\class(0,0)

\foreach \y in {1,...,5} {

\class(0,\y)

\structline

}

\class(0,2)

\structline(0,1,-1)

\structline(0,3,-1)

}

\begin{sseqdata}[name = structline example,

classes = { circle, fill },

Adams grading, no axes,

yscale = 1.28]

\class(1,1) \class(1,2)

\class(2,3) \class(2,3) \class(2,5)

\tower[classes = blue](0,0)

\tower[struct lines = dashed,orange](1,0)

\tower[struct lines = red](2,0)

\d2(1,1,2)

\end{sseqdata}

\printpage[name = structline example, page = 2] \quad

\printpage[name = structline example, page = 3]

\structlineoptions[⟨options⟩](⟨source coordinate⟩)(⟨target coordinate⟩)
This command adds options to an existing structure line, just like \classoptions except for structure
lines. Its syntax is identical to \structline.

\extension[⟨options⟩](⟨source coordinate⟩)(⟨target coordinate⟩)
The \extension command has an identical syntax to the \structline command and most of the same
options. Instead of adding a structline, it adds an extension. The extensions are only shown on page ∞
or page ranges ending at ∞.

\begin{sseqdata}[name = extension example,

classes = { circle, fill },

Adams grading, no axes,

yscale = 1.28]

\class(0,0) \class(0,1)

\extension

\end{sseqdata}

\printpage[name = extension example, page = 2] \quad

\printpage[name = extension example, page = \infty]

\extensionoptions[⟨options⟩](⟨source coordinate⟩)(⟨target coordinate⟩)
This command adds options to an existing extension. Its syntax is identical to \extension.

\circleclasses[⟨options⟩](⟨source coordinate⟩)(⟨target coordinate⟩)
This command is a lot like \structline except that it puts a circle around the classes instead of connect-
ing them with a line. It might take a certain amount of �ddling with options to get \circleclasses to
produce good results. There is no \circleclassesoptions command because it doesn't seem necessary.

\draw

\path

\node

\clip

Any code that would work in a {tikzpicture} environment will also work unchanged in a {sseqdata}

or {sseqpage} environment, with a few minor di�erences. This is a very �exible way to add arbitrary
background or foreground features to the spectral sequence:

9

0 1 2

0

1

2

Consider this

di�erential

0 1 2

0

1

2

This is

the source

This is

the target

0 1 2

0

1

2

Now it's gone!

\begin{sseqdata}[name = tikz example, Adams grading, math nodes = false,

tikz primitives = { blue, font = \tiny, <- }, circle classes = tikz primitive style,

x range = {0}{2}, x axis extend end = 2em]

\class(0,0)

\class(1,0)

\class(0,2)

\d2(1,0)

\end{sseqdata}

%

\begin{sseqpage}[name = tikz example]

\circleclasses[name path = myellipse, inner sep = 3pt, ellipse ratio = 1.6] (1,0) (0,2)

\path[name path = myline] (1.3,1.25) -- (0.6,1);

\draw[name intersections = { of = myellipse and myline }]

(intersection-1) to (1.3,1.25) node[right, text width = 1.6cm] {Consider this differential};

\end{sseqpage} \qquad

%

\begin{sseqpage}[name = tikz example]

\draw[xshift = 1] (0,0) to (0.6,0.2) node[right, text width = 1.1cm] {This is the source};

\draw[yshift = 2] (0,0) to (0.6,0.2) node[right, text width = 1.1cm] {This is the target};

\end{sseqpage} \qquad

%

\begin{sseqpage}[page = 3, name = tikz example]

\circleclasses[inner sep = 3pt, ellipse ratio = 1.6] (1,0)(0,2)

\node[right, font = \tiny] at (1.2,1.2) {Now it's gone!};

\end{sseqpage}

4 Options for the main commands

4.1 Universal options

The following options work with all of the drawing commands in this package, including \class, \d, and
\structline, \extension, their friends \replaceclass, \classoptions, \doptions, \structlineoptions,
\extensionoptionsand \replacestructlines, as well as with TikZ primitives.

xshift = ⟨integer⟩
yshift = ⟨integer⟩

Shifts by integer values are the only coordinate changes that are allowed to be applied to \class,
\d, \structline, \extension their relatives, or to a {scope} environment that contains any of these
commands. These shift commands help with reusing code. For instance:

0 1 2 3

0

1

2

\begin{sseqpage}[cohomological Serre grading, yscale = 0.45]

\foreach \x in {0,1} \foreach \y in {0,1} {

\begin{scope}[xshift = \x, yshift = \y]

\class(2,0)

\class(0,1)

\d2(0,1)

\end{scope}

}

\end{sseqpage}

This code segment is very useful so spectralsequences has the command \NewSseqGroup which to
make code like this more convenient. The following code produces the same output as above:

10

\NewSseqGroup\examplegroup {} {

\class(2,0)

\class(0,1)

\d2(0,1)

}

\begin{sseqpage}

\examplegroup(0,0)

\examplegroup(0,1)

\examplegroup(1,0)

\examplegroup(1,1)

\end{sseqpage}

A word of warning: the behavior of xshift in spectralsequences is incompatible with the normal
behavior of xshift in TikZ. For some reason, sayingxshift = 1 in TikZ does not shift the coordinate
(0,0) to the coordinate (1,0) � instead it shifts by 1pt. In spectralsequences , sayingxshift = 1

moves the coordinate (0,0) to the coordinate (1,0). This includes TikZ primitives: saying\draw[
xshift = 1] (0,0) -- (1,0); inside a {sseqdata} or {sseqpage} environment is the same as saying
\draw(1,0) -- (2,0); despite the fact that this is not the case in the {tikzpicture} environment.

Colors

These come from the LATEX color package via TikZ, so see the color package documentation for more
information.

\begin{sseqpage}[classes = {fill,inner sep = 0.4em},

no axes, scale = 1.3]

\class[red](0,0)

\class[blue](1,0)

\class[green](2,0)

\class[cyan](0,1)

\class[magenta](1,1)

\class[yellow](2,1)

\class[blue!50!red](0,2) % a 50-50 blend of blue and red

\class[green!30!yellow](1,2) % 30% green, 70% yellow

\class[blue!50!black](2,2)

\end{sseqpage}

"⟨text⟩"⟨options⟩
Specify a label for a class, a di�erential, or a structure line. This uses the TikZ quotes syntax. If
the label text includes an equal sign or comma, you need to enclose the entire label in braces, e.g.,
\class["{x =y}"](0,0). The options include anything you might pass as an option to a TikZ node,
including arbitrary coordinate transforms, colors, opacity options, shapes, �ll, draw, etc. The behavior
is a little di�erent depending on whether you use it on a class or on a di�erential or structure line.

For a class, the ⟨text⟩ is placed in the position inside the node by default � in e�ect, the ⟨text⟩
becomes the label text of the node (so saying \class["label text"](0,0) causes a similar e�ect to
saying\node at (0,0) {label text};). There are other position options such asleft, above left,
etc which cause the label text to be placed in a separate node positioned appropriately. If the placement
is above, left, etc, then any option that you may pass to a TikZ node will also work for the label, including
general coordinate transformations. If the placement is �inside�, then the only relevant ⟨options⟩ are
those that alter the appearance of text, such as opacity and color.

a a a

b

b

a \begin{sseqpage}[classes = { minimum width = width("a") + 0.5em }, no axes]

\class["a"](0,0)

\class["a", red](1,0)

\class["a" black, red](2,0)

\class["b" above](0,1)

\class["b" { below right, yshift = 0.1cm }](1,1)

\class["a" { above right = {1em} }](2,1)

\end{sseqpage}

You can adjust the default behavior of class labels using the labels style option or its relatives
class labels, inner class labels orouter class labels. Note that it is also possible to give
a label to a \node this way, although the behavior is slightly di�erent. In particular, the label defaults

11

http://mirror.ctan.org/macros/latex/required/graphics/color.pdf

to the above position instead of going in the \node text by default. Also, this won't respect the various
label style options like labels, etc.

a \begin{sseqpage}[no axes]

\class(0,0)

\class(2,0)

\node[circle, fill, "a"] at (1,0) {};

\end{sseqpage}

pin = ⟨style⟩
The pin key makes spectralsequences draw a line connecting the label to the relevant class, which
can provide necessary clari�cation in dense diagrams. The pin key itself can take options which
adjust the way that the line is drawn:

0

0

1

xy

\begin{sseqpage}

\class(0,0)

\class["xy" { above, xshift = -4pt, pin = red }](0,0)

\class(0,0)

\class(0,1)

\structline

\end{sseqpage}

The label normally goes on the right side of the edge. The special option ' makes it go in the opposite
position from the default. I imitated the label handling in the tikzcd package, so if you use tikzcd, this
should be familiar.

0 1

0

1

2

aa bb

·2·2

\begin{sseqpage}[Adams grading, yscale = 0.63]

\class(0,0)

\class(0,1)

\class(0,2)

\structline["a"' blue](0,0)(0,1)

\class(1,0)

\class(1,1)

\structline["b"](1,0)(1,1)

\d["\cdot 2" { pos = 0.7, yshift = -5pt }] 2 (1,0)

\end{sseqpage}

You can use the style options labels, edge labels, differential labels, struct line labels,
and extension labels to adjust the styling of edge labels. For instance, if you would prefer for
the labels to default to the left hand side of the edge rather than the right hand side, you could say
edge labels = {auto = left}. You can also use quotes to label edges drawn with TikZ primitives:

hi

\begin{sseqpage}[yscale = 0.58, no axes]

\class(0,0)

\class(1,1)

\draw (1,0) to["hi"'{ pos = 0.7, yshift = -0.5em }] (0,1);

\end{sseqpage}

description

The description key, stolen from tikzcd, places the label on top of the edge. In order to make
this option work correctly, if the background coolor is not the default white, you must inform
spectralsequences about this using the key background color = ⟨color⟩. In this document, the
background color is called graphicbackground.

aa a′
b

a′
b

cc

\begin{sseqpage}[no axes, background color = graphicbackground]

\foreach \x in {0,1,2} \foreach \y in {0,1} {

\class(\x,\y)

}

\structline["a" red](0,0)(0,1)

\structline["a'"'blue,"b"{yshift = 1em}](1,0)(1,1)

\structline["c" description](2,0)(2,1)

\end{sseqpage}

12

4.2 Options for \class

Because the main job of the \class command is to print a TikZ \node on the appropriate pages of the
spectral sequence, most options that would work for a TikZ node also work for the commands \class,
\replaceclass, and \classoptions. Here are a few that you might care about:

A TikZ shape

If you give the name of a TikZ shape, the class node will be of that shape. The standard TikZ shapes
are circle and rectangle. spectralsequences de�nes two new shapes:

circlen = ⟨n⟩
This draws n concentric circles. It's intended for indicating a Z/pn summand. For large values of
n the result isn't all that appealing.

\begin{sseqpage}[no axes]

\class[circlen = 2](0,0)

\class[circlen = 2,fill](1,0)

\class[circlen = 3](0,1)

\class[circlen = 4](1,1)

\end{sseqpage}

newellipse

ellipse ratio = ⟨ratio⟩
This shape is used for \circleclasses. It's a variant on the ellipse shape that gives more control
over the ellipse's aspect ratio.

There are many more TikZ shapes in the shapes library, which you can load using the command
\usetikzlibrary{shapes}. The following are some examples:

\begin{sseqpage}[no axes, classes = { inner sep = 0.4em },

class placement transform = { scale = 1.8 },

yscale = 1.63]

\class(0,0)

\class[isosceles triangle](2,0)

\class[rectangle](1,0)

\class[diamond](0,1)

\class[semicircle](1,1)

\class[regular polygon, regular polygon sides = 5](2,2)

\class[regular polygon, regular polygon sides = 6](2,2)

\class[regular polygon, regular polygon sides = 7](2,2)

\class[regular polygon, regular polygon sides = 8](2,2)

\end{sseqpage}

See the TikZ manual for more information.

minimum width = ⟨dimension⟩
minimum height = ⟨dimension⟩
minimum size = ⟨dimension⟩
inner sep = ⟨dimension⟩
outer sep = ⟨dimension⟩

These options control the size of a node. This is typically useful to make the size of nodes consistent
independent of the size of their label text. For instance:

ab

a

ab

a

\begin{sseqdata}[name = minimum width example, no axes, yscale = 0.8]

\class["ab"](0,0)

\class["a"](0,1)

\class(0,2)

\end{sseqdata}

\printpage[name = minimum width example]

\printpage[name = minimum width example,

change classes = { blue, minimum width = width("ab") + 0.5em }]

13

http://math.mit.edu/~hood/pgfmanual_v3.0.1a.pdf#section.49

name = ⟨node name⟩
The \class command makes a TikZ node on appropriate pages. You can refer to this node using TikZ
commands by using its coordinates. Using the class:name option, you can give the node a name, which
you can use to refer to the class. Using names creates more readable code. The show name option can
be used to display the names of classes. You can modify the names of classes systematically using the
options class name prefix, class name postfix, and class name handler.

Named classes are immune to coordinate transformations. For example, in the following code, xshift
does not apply to the nodes speci�ed by (id) and (eta) but does apply to the coordinate speci�ed by
(1,1):

0 1 2

0

1

1

η \begin{sseqpage}[classes = { show name=above }]

\class[name = 1](0,0)

\class[name = \eta](1,1)

\class(2,1)

\structline[xshift = 1] (1) (\eta)

\structline[xshift = 1,blue] (1) (1,1)

\end{sseqpage}

show name = ⟨label options⟩
This option is like saying "class name"\marg{label options} if the class has a name, and does noth-
ing if the class has no name. If the class has multiple names, only the most recent is used. This is particu-
larly useful with class styles, . For instance, by saying this page classes = { show name = above }

you can display names of all of the sources and targets of di�erentials on each page.

0 1

0

1

2

3

a

x

0 1

0

1

2

3
b

2x

\begin{sseqdata}[

name = show name example,

this page classes = { show name = { above right, pin } }

]

\class[name = a](0,2)

\class[name = b](0,3)

\class[name = x](1,0)

\d2(x)(a)

\replacesource[name=2x]

\d3(x)(b)

\end{sseqdata}

\printpage[name = show name example, page = 2]

\printpage[name = show name example, page = 3]

tag = ⟨tag⟩
This key adds a tag to the current class. Tags are used for identifying which of multiple classes in the
same position you are referring to. They are useful when you have groups of related classes and want a
family of di�erentials connecting them. For instance:

14

0 1 2 3 4 5

0

1

2

3

4

5

\DeclareSseqGroup\tower {} {

\class(0,0)

\foreach \i in {1,...,11} {

\class(0,\i)

\structline(0,\i-1,-1)(0,\i,-1)

}

}

\NewSseqGroup\hvee {} {

\tower(0,0)

\foreach \i in {1,...,11} {

\class(\i,\i)

\structline(\i-1,\i-1,-1)(\i,\i,-1)

}

}

\begin{sseqpage}[degree = {-1}{1}, yscale = 1.1,

x range = {0}{5}, y range = {0}{5}]

\tower(3,0)

\hvee[tag = id](0,0)

\hvee[tag = h21](4,2)

\foreach \n in {0,...,5} {

\d2(4+\n,2+\n,h21,id)

}

\end{sseqpage}

We want each di�erential to go from the h21 vee to the id vee, independent of which classes are in the
same position of the two vees. The easy way to accomplish this is by giving tags to each of the two vees.

insert = ⟨integer⟩
If there are multiple classes in the same position, this option allows you to insert classes later into earlier
positions. This is intended to help you put logically related classes next to each other. If the integer is
positive, it inserts the class in the speci�ed position, and if the integer is negative, it counts backwards
from the end. Providing 0 is the same as omitting the option entirely. Values larger in absolute value
than the total number of classes are truncated. Consider:

0

0

1

2

3

4

0

0

1

2

3

4

0

0

1

2

3

4

0

0

1

2

3

4

0

0

1

2

3

4

15

\DeclareSseqGroup \tower {} {

\class(0,0)

\DoUntilOutOfBounds {

\class(\lastx,\lasty+1)

\structline

}

}

\begin{sseqdata}[name = insert-example, y range = {0}{4}, class pattern = linear]

\tower(0,2)

\tower(0,3)

\tower(0,1)

\end{sseqdata}

\qquad

\begin{sseqpage}[name = insert-example]

\tower[red, classes = { insert = 1 }](0,0)

\end{sseqpage}

\qquad

\begin{sseqpage}[name = insert-example]

\tower[red, classes = { insert = 2 }](0,0)

\end{sseqpage}

\qquad

\begin{sseqpage}[name = insert-example]

\tower[red, classes = { insert = 3 }](0,0)

\end{sseqpage}

\qquad

\begin{sseqpage}[name = insert-example]

\tower[red, classes = { insert = -2 }](0,0)

\end{sseqpage}

\qquad

\begin{sseqpage}[name = insert-example]

\tower[red, classes = { insert = -3 }](0,0)

\end{sseqpage}

offset = {(⟨x o�set⟩,⟨y o�set⟩)}
By default, a class uses the o�set speci�ed by class pattern. Occasionally this is undesirable. In this
case, you can specify the o�set for a particular class by hand. For example if the sum of two classes is
hit by a di�erential, it looks better for the class replacing them to be centered:

0 1

0

1

2

0 1

0

1

2

0 1

0

1

2

\begin{sseqdata}[name = offset example,

xscale = 0.7,

Adams grading,

class placement transform = {scale = 1.8}]

\class(0,1)

\class(0,2)\class(0,2)

\draw(0,1)--(0,2);

\class(1,0)

\d2(1,0�1)

\replacetarget

\d2(1,0�2)

\end{sseqdata}

\printpage[name = offset example, page=2]

\printpage[name = offset example, page=3]

\begin{sseqpage}[name = offset example, page=3]

\classoptions[offset = {(0,0)}](0,2)

\end{sseqpage}

tooltip = ⟨text⟩
This key generates a �tooltip� over the given class. That is, if you hover your mouse over it, a little
window will popup with the tooltip text. This is particularly useful to give the coordinates or names of
classes in large charts where it may be hard to tell from looking at the picture what position the class
is in, or there may not be room to supply names to classes.

The tooltip is made using the \pdftooltip command from the pdfcomment package. The pdfcomment
package generates two extra auxiliary �les, so it is not included by default. In order to use the
tooltip option, you have to use the tooltips package option (e.g., load spectralsequences with

16

\usepackage[tooltips]{spectralsequences}). This cannot handle math, but it will print math ex-
pressions into TEX input form. Not all pdf viewers will display the tooltip correctly. If this concerns
you, the command \sseqtooltip is used to produce the tooltip, and you can rede�ne it as any other
command that takes \sseqtooltip{⟨text⟩}{⟨tooltip text⟩} and produces a tooltip. For instance, on this
stack exchange post, there is code that supposedly produces tooltips that work with Evince. I have
not tested whether it works by itself or whether it works with my package, but you could. You could
potentially �gure out how to get math to work in tooltips too � if you �nd a satisfactory method, please
let me know.

Here's an example:

0 1

0

1

\begin{sseqpage}[classes = {tooltip = {(\xcoord,\ycoord)}}]

\class(0,0)

\class(0,1)

\class(1,0)

\class(1,1)

\end{sseqpage}

There's another example at the beginning of the section on the class stack.

page = ⟨page⟩--⟨page max ⟩
generation = ⟨generation⟩--⟨generation max ⟩

These options only work in \classoptions. The page option gives a range of pages for which the
options apply to. If only one page is speci�ed, it is the minimum page and the option applies to all
larger pages.

1 2 4 \begin{sseqdata}[name = page_example, no axes,

title = \page, title style = {yshift = -0.5cm}]

\class(0,0)

\classoptions[page = 2 -- 3, fill, blue](0,0)

\end{sseqdata}

\printpage[name = page_example, page = 1] \qquad

\printpage[name = page_example, page = 2] \qquad

\printpage[name = page_example, page = 4]

A �generation� of a class is the interval from one call of \class or \replaceclass to the page on which
it next supports or is hit by a di�erential. By default the \classoptions command adds options only to
the most recent generation of the class in a {sseqdata} environment, or on the generation appropriate
to the current page in a {sseqpage} environment. Using the generation option allows you to provide
a single generation or range of generations of the class that the options should apply to. The �rst
generation is generation 0, and the most recent generation is generation -1. Larger negative values
count backwards.

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

17

https://tex.stackexchange.com/a/164186/23866
https://tex.stackexchange.com/a/164186/23866

\begin{sseqdata}[name = page_example2, Adams grading, xscale = 0.6, yscale = 0.5]

\class(0,2)\class(1,0)

\d2(1,0)

\replacesource

\class(0,3)

\d3(1,0)

\replacesource

\classoptions[fill, red](1,0) % (a) applies to most recent (last) generation.

\end{sseqdata}

\printpage[name = page_example2, page = 1] % generation 0 of (1,0), not styled

\quad

\begin{sseqpage}[name = page_example2, page = 1, keep changes]

\classoptions[fill, blue](1,0) % (b) applies to the generation present on page 1, that is, generation 0.

\end{sseqpage} \quad

% generation 0 of (1,0), so class is blue from (b)

\printpage[name = page_example2, page = 2] \quad

% generation 1 of (1,0), class is not styled

\printpage[name = page_example2, page = 3] \quad

% generation 2 of (1,0), class is red from (a)

\printpage[name = page_example2, page = 4]

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

\begin{sseqdata}[name = page_example2, Adams grading, update existing]

% (c) applies to all generations, overwrites (b) and (a):

\classoptions[fill, red, generation = 0 � -1](1,0)

\end{sseqdata}

\printpage[name = page_example2, page = 1]% generation 0 of (1,0), so class is red

\quad

\begin{sseqpage}[name = page_example2, page = 1, keep changes]

\classoptions[fill, blue](1,0) % (d) applies to the generation present on page 1, that is, generation 0.

\end{sseqpage} \quad

% generation 0 of (1,0), class is blue from (d)

\printpage[name = page_example2, page = 2] \quad

% generation 1 of (1,0), class is red from (c)

\printpage[name = page_example2, page = 3]

\quad

\printpage[name = page_example2, page = 4] % generation 2 of (1,0), class is red from (c)

\xcoord

\ycoord

These commands represent the x and y coordinate of the current class when used in class options. The
only use I have for them is in the tooltip option, but maybe there is some other purpose for them.

4.3 Options for \d, \structline, and \extension

Because the main job of the \d, \structline, and \extension commands is to print an edge on the
appropriate pages of the spectral sequence, most TikZ options that you could apply to a TikZ �to� operator
(as in\draw (x1,y1) to (x2,y2);) can be applied to \d, \structline, and \extension. Some such
options are as follows:

18

source anchor = ⟨anchor⟩
target anchor = ⟨anchor⟩

Because you can't use the normal TikZ mechanism for specifying the source and target anchors, spec-
tralsequences has these two keys for \d, \structline, and \extension:

\begin{sseqpage}[no axes, yscale = 1.24]

\foreach \x in {0,1} \foreach \y in {0,1} {

\class(\x,\y)

}

\structline(0,0)(0,1)

\structline[source anchor = north west, target anchor = -30](1,0)(1,1)

\end{sseqpage}

shorten > = ⟨distance⟩
shorten < = ⟨distance⟩

These behave exactly like the corresponding options from TikZ , shortening the end and beginning of
the edge respectively. Note that you can lengthen the edge by shortening by a negative amount.

Dash patterns:

See the TikZ manual for a complete explanation of the dash pattern related options. Some examples:

aa aa

\begin{sseqpage}[no axes, yscale = 1.6]

\foreach \x in {0,1,2} \foreach \y in {0,1} {

\class(\x,\y)

}

\structline[densely dotted](0,0)(0,1)

\structline[dashed, red, "a"](1,0)(1,1)

\structline[dash dot, red, "a" black](2,0)(2,1)

\end{sseqpage}

bend left = ⟨angle⟩
bend right = ⟨angle⟩
in = ⟨anchor⟩
out = ⟨anchor⟩

\begin{sseqpage}[no axes,yscale = 1.6]

\foreach \x in {0,1,2} \foreach \y in {0,1} {

\class(\x,\y)

}

\structline[bend left = 20](0,0)(0,1)

\structline[bend right = 20](1,0)(1,1)

\structline[in = 20, out = north](2,0)(2,1)

\end{sseqpage}

page = ⟨page⟩--⟨page max ⟩
This key is only for \structline and \structlineoptions. By default, the \structline command
only adds a structure line starting on the page where the most recent generation of the source or target
is born:

19

http://math.mit.edu/~hood/pgfmanual_v3.0.1a.pdf#subsubsection.15.3.2

3

0 1

0

1

2

3

4

4

0 1

0

1

2

3

4

\begin{sseqdata}[name = structpage example,

title = \page, yscale = 0.53]

\class(0,2)

\class(0,4)

\class(1,0)

\class(1,1)

\d2(1,0)(0,2) \replacesource

\d3(1,1)(0,4) \replacesource

\structline(1,0)(1,1)

\end{sseqdata}

\printpage[name = structpage example,page = 3]

\qquad

\printpage[name = structpage example,page = 4]

By specifying a page number, you can adjust which page the \structline starts on:

1

0 1

0

1

2

3

4

2

0 1

0

1

2

3

4

3

0 1

0

1

2

3

4

4

0 1

0

1

2

3

4

\begin{sseqdata}[name = structpage example2, title = \page, yscale = 0.5]

\class(0,2)

\class(0,4)

\class(1,0)

\class(1,1)

\d2(1,0)(0,2) \replacesource

\d3(1,1)(0,4) \replacesource

\structline[page = 2](1,0)(1,1)

\end{sseqdata}

\printpage[name = structpage example2, page = 1]

\qquad

\printpage[name = structpage example2, page = 2]

\qquad

\printpage[name = structpage example2, page = 3]

\qquad

\printpage[name = structpage example2, page = 4]

Similarly, for \structlineoptions you can specify a minimum page on which to apply the options, or
a range of pages.

4.4 Options for \circleclass

fit = ⟨coordinates or nodes⟩
The \circleclasses command uses the TikZ �tting library. Sometimes it's desirable to make the re-
sulting node �t extra things, for example a label. It doesn't necessarily end up looking great though.

20

http://math.mit.edu/~hood/pgfmanual_v3.0.1a.pdf#section.52

0 1

0

1

2

x
x

x
x

\begin{sseqpage}[Adams grading, axes gap = 0.7cm]

\class(0,2)

\class(1,0)

% Fit in the label x and also a symmetric invisible label to maintain symmetry

\d["x"{name = x}, "x"'{name = x', opacity = 0}]2(1,0)

\circleclasses[fit = (x)(x'), rounded rectangle](1,0)(0,2)

\end{sseqpage}

rounded rectangle

You can put a shape as an option and it will change the shape of the node drawn by \circleclasses.
Any shape will do, but I think that an ellipse or rounded rectangle are the only particularly ap-
pealing options.

ellipse ratio = ⟨ratio⟩ (initially 1.2)

By default, the shape drawn by \circleclasses is a �newelipse� which is a custom de�ned shape that
respects the option elipse ratio which roughly controls how long and skinny versus short and fat the
ellipse is. If you �nd that the ellipse is too long, try a larger value of this option, and conversely if it's
too fat try a smaller value. If no value is satisfactory, try out the rounded rectangle shape. (This is
stolen from the following stack exchange answer: https://tex.stackexchange.com/a/24621.)

class style

permanent cycle style

transient cycle style

this page class style

differential style

struct line style

extension style

See the corresponding entry in the TikZ primitives section.

page = ⟨page⟩--⟨page max ⟩
By default, the ellipse will be drawn on the same set of pages that a structure line between the two
classes would be drawn on. This speci�es a range of pages for the ellipse to be drawn. Note that unlike
with structure lines, you can instruct \circleclasses to draw the shape even on pages where one or
both of the classes that it is �tting are dead.

4.5 Options for TikZ primitives

background

This key instructs spectralsequences to put the current TikZ primitive in the background. The way
that the spectral sequence is printed is as follows:

� The title, axes, axes ticks, and axes labels are printed (the appropriate steps are skipped when
the no title, no axes, no ticks, or no labels keys are used or if no title or axes labels are
provided).

� The TikZ background paths are printed.

� The clipping is inserted (unless the no clip key is used).

� All foreground elements (classes, di�erentials, structure lines, and normal TikZ paths) are printed.

In particular, this means that foreground TikZ paths can be clipped by the standard clipping, but
background paths that are outside of the clipping expand the size of the TikZ picture.

21

https://tex.stackexchange.com/a/24621

not clipped

clipped

\begin{sseqpage}[no ticks, yscale = 0.9, math nodes = false]

\class(0,0)

\class(1,1)

\begin{scope}[background]

\draw(0.1,0.1)--(1.1,1.1);

\end{scope}

\node[background] at (0.5,-1) {not clipped};

\node at (0.5,-0.4) {clipped};

\end{sseqpage}

Here is an example where TikZ labels with the background key are used to add labels and a grid. Note
that this styling is easier to make using the title, x label, y label, and grid options.

0 1 2 3

0

1

2

Page 2

H∗(B)

H
∗ (
F
)

0 1 2 3

0

1

2

Page 3

H∗(B)

H
∗ (
F
)

\begin{sseqdata}[name = tikz background example, cohomological Serre grading, classes = fill]

\begin{scope}[background]

\node at (\xmax/2,\ymax+1.2) {\textup{Page \page}};

\node at (\xmax/2,-1.7) {H^*(B)};

\node[rotate = 90] at (-1.5,\ymax/2) {H^*(F)};

\draw[step = 1cm, gray, very thin] (\xmin-0.5,\ymin-0.5) grid (\xmax+0.4,\ymax+0.5);

\end{scope}

\class(0,0)

\class(3,0)

\class(0,2)

\class(3,2)

\d3(0,2)

\end{sseqdata}

\printpage[name = tikz background example, page = 2]

\printpage[name = tikz background example, page = 3]

For this particular use case, it's probably better to use title, x label, and y label:

Page 2

H∗(B)

H
∗ (
F
)

0 1 2 3

0

1

2

Page 3

H∗(B)

H
∗ (
F
)

0 1 2 3

0

1

2

22

\begin{sseqdata}[name = tikz background example2, cohomological Serre grading, classes = fill,

grid = go, title = { Page \page }, x label = { $H^*(B)$ }, y label = { $H^*(F)$ }]

\class(0,0)

\class(3,0)

\class(0,2)

\class(3,2)

\d3(0,2)

\end{sseqdata}

\printpage[name = tikz background example2, page = 2]

\printpage[name = tikz background example2, page = 3]

But if you need more �exible labeling, you'll likely want to use tikz primitives with background. See
example_KF3.tex for an instance where this key is useful.

One useful tip is that you can ensure consistent bounding boxes between di�erent diagrams using

\path[background] (smallest x, smallest y) -- (largest x, largest y);:

not aligned

0 1 2

0

1

2

Hi0 1 2

0

1

2

aligned

0 1 2

0

1

2

Hi0 1 2

0

1

2

\begin{sseqdata}[name = boundingboxex, x range = {0}{2}, y range = {0}{2}, scale = 0.5]

\end{sseqdata}

\printpage[name = boundingboxex, title = not aligned]

\quad

\printpage[name = boundingboxex, x label = Hi]

\qquad

\begin{sseqpage}[name = boundingboxex, keep changes, title = aligned]

\path[background] (\xmin,\ymin-4) -- (\xmax,\ymax+2);

\end{sseqpage}

\quad

\printpage[name = boundingboxex, x label = Hi, title = {}]

page constraint = ⟨predicate⟩
page constraint or = ⟨predicate⟩

This places a constraint on the pages in which the TikZ primitive is printed. This predicate should look
something like (\page <= 4) && (\page >= 3). The predicate is anded together with any previous
predicates, so that you can use this as an option for a {scope} and again for the individual TikZ
primitive.

\isalive(⟨coordinate⟩)
\isalive{(⟨coordinate 1 ⟩)· · ·(⟨coordinate n⟩)}

This command can only be used with page constraint. Saying

page constraint = {\pars{\meta{x},\meta{y}\opt{,}\oarg{index}}}}}

will print the TikZ primitive only on pages where the speci�ed class is alive. Saying

page constraint = {\isalive(\meta{coordinate 1}) · · · (\meta{coordinate n})}

is equivalent to

page constraint = {\isalive\pararg{coordinate 1} && · · · && \isalive\pararg{coordinate n}}

Writing

23

\draw[page constraint = {\isalive(1,0)(2,2)}](1,0)--(2,2);

is the same as \structline(1,0)(2,2), except that you can't later use \structlineoptions on
it (and it won't have the struct lines style applied).

class style

permanent cycle style

transient cycle style

this page class style

differential style

struct line style

extension style

These classes apply the styling of the corresponding element to your TikZ commands.

\begin{sseqpage}[differentials = blue, yscale = 0.65, no axes]

\class(0,2)

\class(1,0)

% This will be styled as if it were a differential

\draw[differential style] (1,0) -- (0,2);

\end{sseqpage}

See \getdtarget for a more natural example.

5 Miscellaneous Commands

5.1 Settings

\sseqset{⟨keys⟩}
The \sseqset command is for adjusting the global options for all spectral sequences in the cur-
rent scope, or for applying options to the rest of the current spectral sequence. For instance, if
most of the spectral sequences in the current document are going to be Adams graded, you can
say\sseqset{Adams grading} and all future spectral sequences in the current scope will have Adams
grading (unless you specify a di�erent grading explicitly). As another example, \sseqset{no axes}

will suppress axes from spectral sequences in the current scope. Note that defaults only apply to
new {sseqdata} environments or to unnamed {sseqpage} environments; they won't apply to existing
spectral sequences.

You can also use \sseqset to create styles to be used in spectral sequences.

.global sseq style = ⟨keys⟩

.global sseq append style = ⟨keys⟩

.sseq style = ⟨keys⟩

.sseq append style = ⟨keys⟩
These handlers create reusable styles to be used in spectral sequences. If this style is a set of
global options, then use the .global sseq style handler, whereas if it is supposed to be applied
to individual features (classes, di�erentials, structure lines, circle classes, and tikz primitives) then
use the .sseq style handler.

24

Page 0

0 1 2 3 4

0

1

2

\sseqset{

mysseq/.global sseq style = {

Adams grading, title = Page \page,

x range = {0}{4}, y range = {0}{2},

xscale = 0.5, yscale = 1.35

},

htwostruct/.sseq style = { gray, thin }

}

\begin{sseqpage}[mysseq]

\class(0,0) \class(0,1) \class(0,2) \class(0,3)

\class(3,1) \class(3,2) \class(3,3)

\structline(0,0)(0,1) \structline(0,1)(0,2)

\structline(0,2)(0,3)

\structline(3,1)(3,2) \structline(3,2)(3,3)

\structline[htwostruct](0,0)(3,1)

\structline[htwostruct](0,1)(3,2)

\structline[htwostruct](0,2)(3,3)

\end{sseqpage}

\SseqErrorToWarning⟨error-name⟩
Turns the error with the given name into a warning. An error message will start by saying
spectralsequences error: "error-name". This is the name you need to put into this command.

\begin{quiet}

⟨environment contents⟩
\end{quiet}

This environment quiets error messages that occur inside of it. spectralsequences is pretty good at
error recovery, and so most of commands will fail gracefully and do nothing if their preconditions aren't
met. If there are any parsing errors in the body of the {quiet} environment, prepare to see low level
internal error messages. You might also run into bugs in spectralsequences � the error recovery code
hasn't been that carefully tested. If you do get low level error messages, remember to comment out the
{quiet} environment before trying to debug.

This is particularly useful for code reuse commands. Sometimes there is a source of long di�erentials that
only applies to classes that haven't already supported shorter di�erentials. Sometimes there should be
a structure line if a certain class exists, but it might not exist. In these cases, the {quiet} environment
will help you out. See also \DrawIfValidDifferential, which is a variant of \d that behaves as if it
were inside a {quiet} environment.

5.2 Code reuse commands

\foreach

This command is from TikZ and works in pretty much the same way in spectralsequences, though
with slightly better variants. The \foreach command is very �exible and has a lot of variants. The
basic usage is\foreach \x in {\meta{xmin},...,\meta{xmax}} \marg{loop body} which will exe-
cute \meta{loop body} with \x set to each value between ⟨xmin⟩ and ⟨xmax ⟩ inclusive. If you want a
step greater than 1, try

\foreach \x in {\meta{xmin},\meta{xmin}+\meta{xstep},...,\meta{xmax}}\marg{loop body}.

If you need to do multiple loops with a common body, you can just stack the \foreach commands:

25

0 2 4 6

0

1

2

3

\begin{sseqpage}[xscale = 0.5, x tick step = 2]

\foreach \x in {0,2,...,6}

\foreach \y in {0,...,3}{

\class(\x,\y)

}

\end{sseqpage}

You can also loop through tuples, for instance:

0 1

0

1
a b

c d

\begin{sseqpage}[xscale = 0.5]

\foreach \x/\y/\label in {0/1/a,1/1/b,0/0/c,1/0/d}{

\class["\label" above](\x,\y)

}

\end{sseqpage}

See the last example for normalize monomial for a better example of this usage.

There are tons of other things you can do with \foreach, though I haven't yet found need for them in
combination with spectralsequences. See the TikZ manual for more details.

\Do{⟨iterations⟩}⟨loop body⟩
\DoUntilOutOfBounds⟨loop body⟩
\DoUntilOutOfBoundsThenNMore{⟨extra iterations⟩}⟨loop body⟩
\iteration

The one use case that \foreach doesn't cover all that well is if you want the loop to always re-
peat until the features you are drawing go o� the page. This is what \DoUntilOutOfBounds and
\DoUntilOutOfBoundsThenNMore are for. These help ensure that if you change the range of your chart,
in�nite families will automatically be drawn correctly without the need to adjust a bunch of loop bounds.
The purpose of \DoUntilOutOfBoundsThenNMore is for towers that are receiving a di�erential. If your
spectral sequence is Adams graded, and a tower is receiving a dr di�erential from another tower, you
should use \DoUntilOutOfBoundsThenNMore{r}:

0 2 4 6 8 10

0

1

2

3

4

5

6

\begin{sseqpage}[

Adams grading, classes = fill,

x range = {0}{10}, y range = {0}{6},

x tick step = 2,

xscale = 0.3,yscale = 0.7,

run off differentials = {->}

]

\class(0,0)

\DoUntilOutOfBoundsThenNMore{3}{

\class(\lastx+1,\lasty+1)

\structline

}

\class(4,0)

\d3

\DoUntilOutOfBounds{

\class(\lastx+1,\lasty+1)

\structline

\d3

}

\end{sseqpage}

You can also nest \DoUntilOutOfBounds reasonably:

26

http://math.mit.edu/~hood/pgfmanual_v3.0.1a.pdf#section.64

0 2 4 6

0

2

4

6

\begin{sseqpage}[

x range = {0}{6}, y range = {0}{6},

tick step = 2,

scale = 0.6

]

\class(0,0)

\DoUntilOutOfBounds{

\class(\lastx+1,\lasty+1)

\structline

\DoUntilOutOfBounds{

\class(\lastx,\lasty+1)

\structline

}

}

\end{sseqpage}

One important di�erence between \foreach and the \Do family of commands is that \Do has no e�ect
on the stack. This is in order to ensure that they nest properly.

Note that if you are using these commands and you are planning to draw several pictures of the chart
with restricted range, you need to specify a range for the {sseqdata} that contains all of the ranges
of pages that you want to draw. If you then want to set a smaller default range, specify the smaller
range the �rst time you use {sseqpage} or \printpage to draw the spectral sequence, and include the
keep changes key.

The \Do command is less general than \foreach; the purpose is to provide a syntax for stack-based
looping that is similar to \DoUntilOutOfBounds but with a �xed range. So \Do{n}\marg{loop body}

repeats ⟨loop body⟩ n times. The assumption is that the loop body draws something relative to the
position of the \lastclass.

If you need to know how many iterations one of these three commands has gone through, this is stored
in the variable \iteration.

\NewSseqCommand\⟨command⟩{⟨argspec⟩}{⟨body⟩}
\DeclareSseqCommand\⟨command⟩{⟨argspec⟩}{⟨body⟩}

The xparse package provides these very powerful commands for de�ning macros. They are used internally
to the spectralsequences package to de�ne \class, \d, etc. To help you create variants of these
commands, I will record here the argument speci�cations for each of them. See the xparse manual for a
better explanation and more information.

To make a command like \class, you can use the argument speci�cation O{}r(). The argument type
O{⟨default⟩} stands for a bracket delimited optional argument with default value ⟨default⟩. In this case,
we've speci�ed the default to be empty. r() stands for a �required� argument delimited by (and). In
the command de�nition, access the optional argument with #1 and the coordinate with #2.

#1 = {key = value}; #2 = {x,y}

#1 = {}; #2 = {1,2,3}

\DeclareDocumentCommand\demo{ O{} r() }

{ \#1 = \textcolor{purple}{\{#1\}};

\#2 = \textcolor{purple}{\{#2\}} }

\hbox{\demo[key = value](x,y)}

\bigskip

\hbox{\demo(1,2,3)}

If you want to separate out the coordinates into di�erent arguments, you can use O{}u(u,u). The
argument type u stands for �until� and scans up until the next instance of the given character. So
in this case, #1 is of argument type O which is an option list, #2 corresponds to the u(which is a
throw-away argument, then #3 corresponds to u, and contains the x coordinate, and #4 corresponds
to u) and contains the y coordinate. Note however that this will not match balanced parenthetical
expressions.

27

http://mirror.ctan.org/macros/latex2e/contrib/l3packages/xparse.pdf

	Introduction
	Installation
	Memory Constraints
	A warning about fragile macros

	Package Options and Environments
	The Main Commands
	Options for the main commands
	Universal options
	Options for \class
	Options for \d, \structline, and \extension
	Options for \circleclass
	Options for TikZ primitives

	Miscellaneous Commands
	Settings
	Code reuse commands
	Families
	Utilities
	Coordinate parsers and related
	The class stack

	Styles
	Style-like options

	Global Options
	Global coordinate transformations
	Plot options and axes style
	Layout

