
The spath3 Package: Documentation
Andrew Stacey

loopspace@mathforge.org

v2.4 from 2021/02/21

Contents
1 Introduction 1

2 TikZ Keys 2
2.1 Saving and Using Soft Paths . 2
2.2 Transformation Routines . 4
2.3 Intersection Routines . 4
2.4 Working with Components . 5
2.5 Shortening Paths . 7
2.6 Exporting Paths . 7
2.7 Knots . 8
2.8 Coordinates . 8

3 Examples 9

1 Introduction
The spath3 package was originally designed as a low-level package for manipulating the
soft paths defined by PGF/TikZ. Soft paths form one stage of the stack of translations be-
tween what the author writes in the tikzpicture environments in their LATEX document
and what is eventually written to the output file. Most of the complicated processing has
been done by the time a soft path is constructed, but it is still very definitely a TEX object
and there has not, for example, been any consideration as to what the eventual output
file format is (such as PDF, DVI, or SVG). So it is very amenable to being modified at
this stage and this package provides a set of routines for doing so.

The original purpose was to provide a common core on which other packages would
be built. Indeed, the packages calligraphy, knots, and penrose all use this package.
However, over time I’ve found myself wanting to use the routines of this package at a
higher level and so have designed some user-level interfaces. This document documents
those.

To clarify some terminology used in this document (and more generally, this pack-
age), I regard paths as being composed of segments and components. A segment is a
minimal drawing piece. Thus it might be a straight line or a Bézier curve. A component
is a minimal connected section of the path. So every component starts with a move
command and continues until the next move command. For ease of implementation (and

1

loopspace@mathforge.org

to enable a copperplate pen in the calligraphy package!), an isolated move is considered
as a component.

There are no doubt bugs in this package, and useful things that I haven’t imple-
mented. If you have found one of either of these, please let me know! The best way is to
open an issue at the code repository on github, at https://github.com/loopspace/spath3.

2 TikZ Keys

\usetikzlibrary{spath3}

The spath3 TikZ library defines a set of keys that can be issued to muck about with
soft paths. These are all defined in the spath family, so all the following keys should be
prefixed by spath/, or the key spath/.cd needs to be used beforehand (but note that
as yet I haven’t implemented sending unknown keys back to the main tikz directory).

The keys try to gracefully fail if the path doesn’t exist or is empty. The intention is
that the document should still compile with a warning in the log file (and on the console
output). If this doesn’t happen, please report it.

2.1 Saving and Using Soft Paths

save=〈name〉
save global=〈name〉

Saves the current path with name 〈name〉. This delays until the path is fully con-
structed so can be issued in the options to the main command.

Soft paths constructed this way are local to the group in which the path command
is issued. The global version saves the path globally which is useful when the original
path is inside a scope or even another tikzpicture.

The soft path is actually stored in a macro constructed from the name. There are
a couple of reasons for using a name rather than a macro directly. One is so that it is
compatible with the intersections library – by default both this package and that save
their paths in the same underlying macro. The other is to provide a way to link a soft
path with a set of TikZ styles (this is particularly useful when splitting the path into
components).

save
save␣global

clone={〈target〉}{〈source〉}
clone globally={〈target〉}{〈source〉}

Clones one soft path into another. In the second, the clone is global (the original
need not be).

clone
clone␣globally

2

https://github.com/loopspace/spath3

use=〈name〉
use={〈name, options〉}

This uses a previously saved soft path at the current juncture in the path declaration.
If before the path has begun, it is the initial part of the new path. If during the path
construction then it is stuck in at the current place. Note that any keys that affect the
soft path directly should be applied before this one.

The path can be modified first by using the second form – note that as far as the
use key is concerned, the whole thing is a single argument. The options is a comma
separated list and can include:

• reverse reverses the inserted path first.

• weld, no weld determines whether to weld the inserted path to the current path.
Welding means that the move to at the start of the inserted path is removed. Note
that this doesn’t move the inserted path so this will usually modify the first segment
of the inserted path, possibly in unexpected ways.

• move, no move determines whether the inserted path is translated so that it starts
where the current path ends.

• transform={〈transformations〉} applies the specified transformations to the in-
serted path. See the transform key in Section 2.2

• Any other key is taken as the name of the path (so it doesn’t have to be specified
first) with the last one winning.

One thing should be noted about transformations. By the time a soft path is built,
all available transformations have been applied. This means that when re-inserting a
soft path back into a high level command (such as \draw), the effect of existing transfor-
mations might produce some confusing effects. When restoring a path then the library
tries to set up various internals of TikZ correctly, but there may be some things I’ve
overlooked or not accounted for particularly with regard to existing transformations; if
you spot anything working oddly then please report it to me.

In particular, restoring a path should sets things right for positioning nodes along
the path. Using the pos=D key on a node positions that node at a particular point on the
path. Exactly how the parameter is interpreted is the same as for the spath coordinate
system described in Section 2.8.

use

These are all aliases to various versions of use (they originally existed as separate
code before I united them all as variants of use). The equivalences are:

• restore and insert are aliases for use.

• append sets the move and weld keys.

• append no move just sets the weld key.

• reverse sets the reverse key.

restore
restore␣reverse␣␣insert
insert␣reverse
append
append␣reverse
append␣no␣move
append␣reverse␣no␣move

3

to={〈name〉}

This defines a to path from a soft path, so it inserts the soft path into the current
path to span the gap between the start and end. The path is transformed by rotation,
translation, and uniform scaling so that it exactly spans the gap required by the to
syntax. (If the start and end point of the soft path are very close together then it won’t
span the gap.)

to

2.2 Transformation Routines
The following keys all apply some sort of transformation to the soft path. They do not
render the path, but simply adjust it. The global versions apply their transformation
globally, otherwise it is local to the current group (or scope).

reverse=〈name〉
reverse globally=〈name〉

Reverses the soft path in place. If you want to use the original path and its reversal
in the same path (for example, for constructing a region to fill) then use the clone key
to copy it first.

reverse
reverse␣global

translate={〈name〉}{〈x-dimen〉}{〈y-dimen〉}
translate globally={〈name〉}{〈x-dimen〉}{〈y-dimen〉}

Translates the soft path by the given dimensions.

translate
translate␣global

transform={〈name〉}{〈transformations〉}
transform globally={〈name〉}{〈transformations〉}

This applies the transformation to the soft path. The transformation is processed
by TikZ so should consist of TikZ-level transformations such as shift={(2,2)}.

transform
transform␣global

span={〈name〉}{〈start point〉}{〈end point〉}
span globally={〈name〉}{〈start point〉}{〈end point〉}

This transforms the named path so that it goes from the start point to the end point.
As with the to path construction and the splice method, this won’t work if the path
ends very close to where it starts.

span
span␣global

2.3 Intersection Routines
To use these features you need to use the intersections library. Note that there is
currently an issue with the intersections routine when trying to intersect two parallel (or
near parallel) lines. One workaround is to replace one of the lines by a Bézier curve along
the same path. The best such replacement is to put the control points at one third and
two thirds between the start and end.

split at self intersections=〈path〉
split globally at self intersections=〈path〉

split␣at␣self␣intersections
split␣globally␣at␣self␣intersections

This inserts breaks into the named soft path at the points where it intersects itself.
The breaks are not gaps, to achieve that use the shortening routines after this, rather
they are a change of component. Think of it as if you took the pen off the page at that
point and then put it straight back down again.

4

split at intersections with={〈first〉}{〈second〉}
split globally at intersections with={〈first〉}{〈second〉}

split␣at␣intersections␣with
split␣globally␣at␣intersections␣with

This inserts breaks into the first path where it intersects with the second. The second
path is not changed.

split at intersections={〈first〉}{〈second〉}
split globally at intersections={〈first〉}{〈second〉}

split␣at␣intersections
split␣globally␣at␣intersections

This inserts breaks into a pair of paths at their mutual intersections.

replace lines=〈path〉
replace lines globally=〈path〉

The PGF intersection routines have difficulties with parallel, or near parallel, lines.
One way to counter this is to replace all line segments by “curves”. This is done so that
the parametrisation of the curve matches that of the line segment that it is replacing.

replace␣lines
replace␣lines␣globally

2.4 Working with Components

get components of={〈path〉}{〈macro〉}
get components of globally={〈path〉}{〈macro〉}
\getComponentOf{〈macro〉}{〈number〉}

This splits the path into a list of its components, which are stored in the macro. The
macro can be used in a \foreach.

The macro consists of a comma separated list of names of the components (the actual
names used are of the form anonymous_N). To access an individual component, use the
command \getComponentOf. This can be used directly in place of a path name in any
other key, such as use, (it is just the LATEX3 command \clist_item:Nn).

Note that these are copies of the components of the original path. Changing a
component doesn’t update the original path.

get␣components␣of
get␣components␣of␣globally
\getComponentOf

render components=〈path〉

This renders the components of a given path as separate TikZ commands, so that
each can be separately styled. It applies the following styles (in this order):

1. every spath component

2. spath component 〈number〉

3. spath component=〈number〉

4. every 〈path〉 component

5. 〈path〉 component 〈number〉

6. 〈path〉 component=〈number〉

render␣components

5

insert gaps after components={〈path〉}{〈gap〉}{〈components〉}
insert gaps after components={〈path〉}{〈gap〉}
insert gaps globally after components={〈path〉}{〈gap〉}{〈components〉}
insert gaps globally after components={〈path〉}{〈gap〉}

insert␣gaps␣after␣components
insert␣gaps␣globally␣after␣components

This inserts a gap between components of a path by shortening the end of the
specified component and start of the next one. The list of components is passed through
a \foreach loop so that syntax like 2,4,...,16 can be used. If the list of components
is not given the gaps are inserted between all components.

join components={〈path〉}{〈components〉}
join components globally={〈path〉}{〈components〉}

This removes the move between each of the given components and the previous one.
The list of components is processed by \foreach. If the component is the first one then
it is joined to the last component.

join␣components
join␣components␣globally

join components with={〈path〉}{〈splice path〉}
join components with={〈path〉}{〈splice path〉}{〈list〉}
join components upright with={〈path〉}{〈splice path〉}
join components upright with={〈path〉}{〈splice path〉}{〈list〉}
join components globally with={〈path〉}{〈splice path〉}
join components globally with={〈path〉}{〈splice path〉}{〈list〉}
join components globally upright with={〈path〉}{〈splice path〉}
join components globally upright with={〈path〉}{〈splice
path〉}{〈list〉}

join␣components␣with
join␣components␣globally␣with
join␣components␣upright␣with
join␣components␣globally␣upright␣with

This inserts the splice path in the gaps between components of path specified by
a comma separated list. The splice is inserted between each specified component and the
next one. If the {〈list〉} is not given (or is empty) then the splice is inserted between
every component except that a spot weld is performed first to join any components where
the end of one is the start of the next. The spot weld is only performed if the list of
components is empty.

This does not close the resulting path, even if the last component is specified in the
list, for that see the key close with.

Note that because there is an optional third argument to this key, the second argu-
ment must always be enclosed in braces unless it is a single token.

The upright versions do a little test to see if the gap is oriented upside-down and if
so then they insert the reflection of the splice path.

spot weld=〈path〉
spot weld globally=〈path〉

This removes the move between any two components of the path where the end point
of one component is the same as the initial point of the next (the tolerance on error here
is 0.01pt).

spot␣weld
spot␣weld␣globally

remove empty components=〈path〉
remove empty components globally=〈path〉

remove␣empty␣components
remove␣empty␣components␣globally

This removes empty components of the path (which consist of simply a move).

6

remove components={〈path〉}{〈list〉}
remove components globally={〈path〉}{〈list〉}

This removes the listed components of the path. As with other list routines, the list
is parsed via foreach first.

remove␣components
remove␣components␣globally

close={〈path〉}
close globally={〈path〉}
close with={〈path〉}{〈splice path〉}
close globally with={〈path〉}{〈splice path〉}

These all close the last component of the given path. The first two will insert a line
segment if the initial and final points of the component are not sufficiently close. The
latter two allow you to specify another path to insert.

close
close␣globally
close␣with
close␣globally␣with

splice={〈initial path〉}{〈splice path〉}{〈final path〉}
splice globally={〈initial path〉}{〈splice path〉}{〈final path〉}

This splices the middle path into the gap between the initial and final paths. The
middle path is transformed to fit (don’t try this with a path whose starting and ending
points are close together) and the paths are joined so that the last component of the
initial path and the first component of the splice path become a single component, and
similarly at the other end.

splice
splice␣global

2.5 Shortening Paths

shorten at start={〈path〉}{〈length〉}
shorten at end={〈path〉}{〈length〉}
shorten at both ends={〈path〉}{〈length〉}
shorten globally at start={〈path〉}{〈length〉}
shorten globally at end={〈path〉}{〈length〉}
shorten globally at both ends={〈path〉}{〈length〉}

shorten␣at␣end
shorten␣at␣start
shorten␣at␣both␣ends
shorten␣globally␣at␣end
shorten␣globally␣at␣start
shorten␣globally␣at␣both␣ends

This shortens a path by the given amount from the specified end. The shortening is
done so that it guarantees that it lies along the original path, but therefore the length is
not completely guaranteed to be accurate. This is particularly true for Bézier paths and
if there is a very short segment at the end.

It uses the derivative at the end to work out how much to shorten by. If wanting to
shorten by a large amount it is better to shorten by a small amount a number of times.

2.6 Exporting Paths
There are two keys to export a path.

save to aux=〈path〉

This will save the path to the auxfile so that it is available again on the next run
through.

save␣to␣aux

export to svg=〈path〉

Saves the path to the file path.svg as an SVG document.
export␣to␣svg

7

2.7 Knots

knot=〈path〉〈gap〉〈components〉
global knot=〈path〉〈gap〉〈components〉

This style combines various of the above to make it simpler to draw knots and links.
It expands to:
knot/.style n args={3}{
spath/.cd,
split at self intersections=#1,
insert gaps after components={#1}{#2}{#3},
maybe spot weld=#1,
render components=#1

}

(The global version makes the path manipulating commands work globally.)
This splits a path at the points where it self-intersects and then inserts gaps be-

tween specified components. The key maybe spot weld does a spot weld depending
on whether or not the key draft mode is set to true or false. The point here is that
when designing the knot it is useful to not weld together components since that changes
the component count. But once the gaps are inserted in the desired places, welding the
remaining components produces a nicer diagram.

The components can be styled using the keys as described in render components.

knot
global␣knot
draft␣mode

2.8 Coordinates
Soft paths are not natural TikZ objects and so when replaced back into a TikZ path
construction then they don’t fully interact with other TikZ things, like placing nodes at
points on the path (though I’ve done my best to make that work). To make things a little
easier there is defined a coordinate system which identifies a point at a certain location
along a soft path and keys which apply a transformation.

(spath cs:{〈name〉} {〈parameter〉})

The location specification is a little technical. It is specified as a number from 0 to
1, but the parameter works as follows. Let n be the number of segments on the path
(these are the individual drawing elements that make up the path). The interval from
k−1

n to k
n is assigned to the kth segment of the path. Then for a parameter in that

interval, the location uses the natural parametrisation of that segment. For a straight
line, it is simply the proportional position along but for a Bézier curve then it uses the
Bézier parametrisation.

The space is vital, so if the name is contained in a macro then a space has to be
inserted somehow. One option is to wrap the macro in braces, as seen in the examples
in the next section.

spath␣cs

8

transform to={〈path〉}{〈parameter〉}
upright transform to={〈path〉}{〈parameter〉}

These keys (which are in the spath family) set the transformation so that the origin
is at the specified point of the curve (as described above) and the x–axis is tangential to
the curve. The transformation is orthogonal in that it is achieved by a rotation and a
translation.

The first key aligns the axes so that the x–axis is in the forward direction of the path
as that path was constructed. The second key aligns the axes so that the y–axis points
up the page. The intention with the second key is that it is similar to what happens with
the sloped key when a node is placed on a curve.

transform␣to
upright␣transform␣to

3 Examples
1. Saving and re-using.

\begin{tikzpicture}
\path[spath/save=rpath] (0,0) to[out=30,in=150] (1,1);
\foreach \k in {1,...,9} {
\fill[green] (spath cs:rpath 0.\k) circle[radius=3pt];
\node[above left] at (spath cs:rpath 0.\k) {\(0.\k\)};

}
\fill[green] (2,2) circle[radius=3pt];
\draw[blue, spath/transform={rpath}{shift={(2,2)}},

spath/use=rpath] node[right] {transform};
\draw[orange] (3,0) [spath/use={rpath, move}] node[right] {moving};
\draw[red] (3,-1) -- +(0,2) [spath/append=rpath] node[above]

{append};
\draw[spath/use=rpath] node[right] {use};
\end{tikzpicture}

0.10.20.30.40.50.60.70.80.9

transform

moving

append

use

2. Reversing.

9

\begin{tikzpicture}
\path[spath/save=apath] (0,0) to[out=0,in=180] (2,1)

to[out=0,in=180] (4,0);
\filldraw[
green,
draw=black,
ultra thick,
spath/use=apath

] -- ++(0,-4) [spath/use={apath, reverse, move, weld}] -- cycle;
\end{tikzpicture}

3. Transformations.

\begin{tikzpicture}
\draw[spath/save=tpath] (0,0) rectangle +(1,1);
\draw[rotate=45, xscale=2, yscale=3, ultra thick, red] (0,0)

rectangle +(1,1);
\draw[
spath/transform={tpath}{rotate=45, xscale=2, yscale=3},
spath/use={tpath}];

\end{tikzpicture}

10

\begin{tikzpicture}
\draw[spath/save=oval] (0,0) to[out=0,in=0] (0,2)

to[out=180,in=180] (0,0);
\foreach \k in {0,...,9} {
\node[transform shape, spath/transform to={oval}{0.\k}] {k};

}
\begin{scope}[xshift = 3cm]
\draw[spath/save=soval] (0,0) to[out=0,in=0] (0,2)

to[out=180,in=180] (0,0);
\foreach \k in {0,...,9} {
\node[transform shape, spath/upright transform to={soval}{0.\k}]

{k};
}
\end{scope}
\end{tikzpicture}

k k
k

k
k

kk
k

k
k

k k
k

k
kkk

k

k
k

\begin{tikzpicture}
\path[draw=orange,ultra thick,spath/save=a] (3,2) -- ++(1,1)

to[out=90,in=-90] ++(3,0);

\tikzset{
spath/span={a}{(4,5)}{(7,1)}

}

\fill
(4,5) circle[radius=3pt]
(7,1) circle[radius=3pt]
;

\draw[spath/use=a];
\end{tikzpicture}

11

4. To paths.

\begin{tikzpicture}
\path[draw=orange,ultra thick,spath/save=a] (3,2) -- ++(1,1)

to[out=90,in=-90] ++(3,0);

\draw (0,0) -- +(1,1) to[spath/to={a}] node[pos=.6,auto] {node}
++(2,-1) -- +(3,1);

\end{tikzpicture}

node

5. Node placement.

\begin{tikzpicture}
\path[spath/save=curve] (0,0) to[out=0,in=180] +(1,1);

\draw (0,0) -- (2,0) [spath/append=curve] node[pos=.5,auto,sloped]
{node} -- +(2,0);

\end{tikzpicture}

no
de

6. Shortening.

12

\begin{tikzpicture}
\path[spath/save=apath] (0,0) foreach \k in {1,...,4} { -- ++(1,0)

+(0,0)};
\draw[
ultra thick,
red,
spath/.cd,
shorten at end={apath}{7pt},
shorten at start={apath}{9pt},
translate={apath}{0pt}{1pt},
use=apath,

];
\draw (0,0) circle[radius=9pt] [spath/use=apath] circle[radius=7pt];
\end{tikzpicture}

\begin{tikzpicture}
\path[spath/save=apath] (0,0) foreach \k in {1,...,4} {

to[out=0,in=180] ++(1,0) +(0,0)};
\draw[
ultra thick,
red,
spath/.cd,
shorten at end={apath}{7pt},
shorten at start={apath}{9pt},
translate={apath}{0pt}{1pt},
use=apath,

];
\draw (0,0) circle[radius=9pt] [spath/use=apath] circle[radius=7pt];
\end{tikzpicture}

13

\begin{tikzpicture}
\draw[spath/save=npath] (0,0) foreach \k in {1,...,4} { -- ++(1,0)

+(0,0)};
\draw[green] (0,0) -- +(0,-3pt) foreach \k in {1,...,4} { --

+(0,-3pt) ++(1,0)} -- +(0,-3pt);

\tikzset{
spath/.cd,
insert gaps after components={npath}{10pt}{1,3},
get components of={npath}\components,

}

\tikzset{
path 1/.style={

red,
},

}

\foreach[count=\k] \cpt in \components {
\path[

draw,
path \k/.try,
spath/.cd,
translate=\cpt{0pt}{\k pt},
use=\cpt,

] +(0,3pt) -- +(0,-3pt);
\node[text=red] at (spath cs:{\cpt} .5) {\(\k\)};

}
\end{tikzpicture}

1 2 3 4 5

7. Intersections.
One of the main motivations for implementing the intersection routines was to
provide a different way of drawing knots and links and similar diagrams.

(a) Define the two paths for the braid (usually these will be defined with \path).

\begin{tikzpicture}[
use Hobby shortcut,

]
\draw[spath/save global=pathA] (0,0) to[out=0,in=180] ++(2,1)

to[out=0,in=180] ++(2,-1) to[out=0,in=180] ++(2,1)
to[out=0,in=180] ++(2,-1);

\draw[spath/save global=pathB] (0,1) to[out=0,in=180] ++(2,-1)
to[out=0,in=180] ++(2,1) to[out=0,in=180] ++(2,-1)
to[out=0,in=180] ++(2,1);

\end{tikzpicture}

14

(b) Split the paths at their mutual intersections and render them with a count of
the components.

\begin{tikzpicture}
\tikzset{
spath/.cd,
split at intersections={pathA}{pathB},
get components of={pathA}\pathAcomponents,
get components of={pathB}\pathBcomponents,

}

\foreach[count=\k] \cpt in \pathAcomponents {
\draw[spath/use=\cpt,-Circle];
\node[fill=white, fill opacity=.5, circle, text opacity=1] at

(spath cs:{\cpt} .5) {\(\k\)};
}

\foreach[count=\k] \cpt in \pathBcomponents {
\draw[spath/use=\cpt,-Circle];
\node[fill=white, fill opacity=.5, circle, text opacity=1] at

(spath cs:{\cpt} .5) {\(\k\)};
}
\end{tikzpicture}

1

2

3

4

5

1

2

3

4

5

(c) Now we insert gaps after certain components in each path and then render
the components. To show that the gaps are genuine, we use a patterned
background. Although the paths were defined globally, the splitting in the
previous example was local so we need to repeat it in this one.

15

\begin{tikzpicture}
\tikzset{
spath/.cd,
split at intersections={pathA}{pathB},
insert gaps after components={pathA}{5pt}{1,3},
join components={pathA}{3,5},
get components of={pathA}\pathAcomponents,
insert gaps after components={pathB}{5pt}{2,4},
join components={pathB}{2,4},
get components of={pathB}\pathBcomponents,

}

\fill[red!50!white] (-.5,-.5) rectangle (8.5,1.5);
\fill[pattern=bricks, pattern color=white] (-.5,-.5) rectangle

(8.5,1.5);

\foreach[count=\k] \cpt in \pathAcomponents {
\draw[blue, line width=2pt,spath/use=\cpt];
\node[fill=cyan, fill opacity=.5, circle, text opacity=1] at

(spath cs:{\cpt} .3) {\(\k\)};
}

\foreach[count=\k] \cpt in \pathBcomponents {
\draw[green, line width=2pt,spath/use=\cpt];
\node[fill=green!50, fill opacity=.5, circle, text opacity=1]

at (spath cs:{\cpt} .3) {\(\k\)};
}
\end{tikzpicture}

1

2 3
1

2 3

8. This example is notable because many of the intersection points are where segments
of the path end, showing that the algorithm works well even in this circumstance.

(a) Here’s the original path.

16

\begin{tikzpicture}
\draw[spath/save global=spiral] (5,0) -- (2.5,0) -- ++(0,-.25)

-- ++(-2.5,0)
arc[radius=2.25cm,start angle=180,end angle=90]
arc[radius=2cm,start angle=90, delta angle=-180]
arc[radius=1.75cm,start angle=-90, delta angle=-180]
arc[radius=1.5cm,start angle=90, delta angle=-180]
arc[radius=1.25cm,start angle=-90, delta angle=-180]
arc[radius=1cm,start angle=90, delta angle=-180]
arc[radius=.75cm,start angle=-90, delta angle=-180]
arc[radius=.5cm,start angle=90, delta angle=-180]
;
\end{tikzpicture}

(b) This renders labels on each component after splitting.

\begin{tikzpicture}
\tikzset{
spath/.cd,
split at self intersections=spiral,
get components of={spiral}\pathcomponents,

}

\foreach[count=\k] \cpt in \pathcomponents {
\draw[spath/use=\cpt,-|];
\node[fill=white, fill opacity=.5, circle, text opacity=1] at

(spath cs:{\cpt} .5) {\(\k\)};
}
\end{tikzpicture}

1234567

8

9

10

11

12

13

14

15

17

(c) Finally, we put the gaps in where we want them.

\begin{tikzpicture}
\tikzset{
spath/.cd,
split at self intersections=spiral,
insert gaps after components={spiral}{10pt}{1,3,5,7,10,11,14},
spot weld=spiral,
get components of={spiral}\pathcomponents,

}

\foreach[count=\k] \cpt in \pathcomponents {
\draw[blue, line width=2pt,spath/use=\cpt];

}
\end{tikzpicture}

9. Here’s a trefoil knot, demonstrating the knot style that simplifies creating knots.

\begin{tikzpicture}[
use Hobby shortcut,
every trefoil component/.style={ultra thick, draw, red},
trefoil component 1/.style={blue},

]
\path[spath/save=trefoil] ([closed]90:2) foreach \k in {1,...,3} {

.. (-30+\k*240:.5) .. (90+\k*240:2) } (90:2);
\tikzset{spath/knot={trefoil}{8pt}{1,3,5}}
\end{tikzpicture}

10. Here’s how to mark intersections of paths with “bridges”.

18

\begin{tikzpicture}
\coordinate (a) at (-1,0.5);
\coordinate (b) at (8,0.5);
\coordinate (c) at (3,-0.5);
\path[spath/save=sine]
(-1.57,-1)
cos ++(1.57,1)
sin ++(1.57,1)
cos ++(1.57,-1)
sin ++(1.57,-1)
cos ++(1.57,1)
sin ++(1.57,1);
\path[spath/save=over] (a) -- (c) |- (b);

\path[spath/save=arc] (0,0) arc[radius=1cm, start angle=180, delta
angle=-180];

\tikzset{
spath/split at intersections with={over}{sine},
spath/insert gaps after components={over}{8pt},
spath/join components upright with={over}{arc},
spath/split at intersections with={sine}{over},
spath/insert gaps after components={sine}{4pt},

}

\draw[spath/use=sine];
\draw[spath/use=over];
\end{tikzpicture}

11. If there are lots of paths like the previous example, here’s a convenient style to put
them together.

19

\tikzset{
bridging path/.initial=arc,
bridging span/.initial=8pt,
bridging gap/.initial=4pt,
bridge/.style 2 args={

spath/split at intersections with={#1}{#2},
spath/insert gaps after
components={#1}{\pgfkeysvalueof{/tikz/bridging span}},
spath/join components upright
with={#1}{\pgfkeysvalueof{/tikz/bridging path}},
spath/split at intersections with={#2}{#1},
spath/insert gaps after
components={#2}{\pgfkeysvalueof{/tikz/bridging gap}},

}
}

% If used in the preamble, this needs surrounding in
\AtBeginDocument

%\AtBeginDocument{
\tikz[overlay] \path[spath/save=arc] (0,0) arc[radius=1cm, start

angle=180, delta angle=-180];
%}
\begin{tikzpicture}
\path[spath/save=over] (0,0) -| ++(1,1) -| ++(-1,1) -| ++(1,1) -|

++(-1,1);
\path[spath/save=under] (.5,-.5) -- ++(0,4);
\tikzset{bridge={over}{under}}
\draw[spath/use=over];
\draw[spath/use=under];
\end{tikzpicture}

20

	Contents
	1 Introduction
	2 TikZ Keys
	2.1 Saving and Using Soft Paths
	2.2 Transformation Routines
	2.3 Intersection Routines
	2.4 Working with Components
	2.5 Shortening Paths
	2.6 Exporting Paths
	2.7 Knots
	2.8 Coordinates

	3 Examples

