38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

i /\/\/\/ Massimo A. Redaelli

! m.redaelli@gmail.com

A A A Stefan Lindner

stefan.lindner@fau.de

A A A Stefan Erhardt

stefan.erhardt@fau.de

/\/\/\/ Romano Giannetti

romano.giannetti@gmail.com

CircuiTikZ
version 1.3.6 (2021/05,09)

Massimo A. Redaelli (m.redaelli@gmail.com)
Stefan Lindner (stefan.lindner@fau.de)
Stefan Erhardt (stefan.erhardt@fau.de)

Romano Giannetti (romano.giannetti@gmail.com)

May 9, 2021

mailto:m.redaelli@gmail.com
mailto:stefan.lindner@fau.de
mailto:stefan.erhardt@fau.de
mailto:romano.giannetti@gmail.com
mailto:m.redaelli@gmail.com
mailto:stefan.lindner@fau.de
mailto:stefan.erhardt@fau.de
mailto:romano.giannetti@gmail.com

Contents

1 Introduction

1.1 About
1.2 License o o o e e e
1.3 Loading the package L e
1.4 Installing a new version of the package.
1.5 Requirements
1.6 Incompatible packageso
1.7 Known bugs and limitation 0o
1.8 Scale factors inaccuracies Lo
1.9 Incompabilities between version L L Lo o
1.10 Feedback e
1.11 Package options
Tutorials

2.1 Getting started with CircuiTikZ: a current shunt
2.2 A more complex tutorial: circuits, Romano style.
2.3 Tutorial: a logic circuit Lo

The components: usage

3.1 Path-style components L L L
3.1.1 Anchors e
3.1.2 Border anchors
3.1.3 Relative coordinates L
3.1.4 Customization

3.1.4.1 Components Size
3.1.4.2 Thickness of the lines
3.1.4.3 Shape of the components
3.1.5 Descriptions L

3.2 Node-style components L L
3.2.1 Mirroring and flippingo
3.2.2 Anchors
3.2.3 Descriptions L

3.3 Styling circuits and components oL oL
3.3.1 Relativesize e
3.3.2 Fillcolor e
3.3.3 Line thickness e
3.3.4 Stylefiles
3.3.5 Style files: how to write them

3.4 Subcircuits e e e
3.4.1 Subcircuit definition
3.4.2 Using the subcircuit Lo

3.4.2.1 Scaling, flipping and rotating subcircuits
3.4.3 Parameters in subcircuits Lo

© © © 00 0 0o N N NV

—_ =
—_ =

15
15
18
23

4 The components: list 42

4.1

4.2

4.3

44

4.5

4.6

Grounds and supply voltages 42
4.1.1 Grounds 42

4.1.1.1 Grounds anchors oL 42

4.1.1.2 Grounds customization L. 43
4.1.2 Power supplies 43

4.1.2.1 Power supply anchors L. 43

4.1.2.2 Power supplies customization 43
Resistive bipoles 44
4.2.1 Potentiometers: wiper positiono oL 46
4.2.2 Generic sensors anchors Lo 46
4.2.3 Resistive components customization 000 47

4.2.3.1 Geometry. 47

4.2.3.2 Thickness. 47

4.2.3.3 AITOWS. 47
Capacitors and inductors: dynamical bipoles 48
4.3.1 Capacitors 48
4.3.2 Capacitive sensors anchors. e 49
4.3.3 Capacitors customizations 49
4.3.4 Inductors 49
4.3.5 Inductors customizations Lo 50

4.3.5.1 Chokes 51
4.3.6 Inductors anchors 51

4.3.6.1 Taps. 51

4.3.6.2 Coreanchors.. 51
Diodes and such 52
4.4.1 'Tripole-like diodes L 54
4.4.2 Thyristors anchors and customization 57
4.4.3 Diode customizations 57
Sources and generators Lo 58
4.5.1 Batteries 58
4.5.2 Stationary sources 58
4.5.3 Sinusoidal sources 59
4.5.4 Controlled sources 60
4.5.5 Noise sourceso e 61
4.5.6 Special sources 62
4.5.7 DCSources o i 63
4.5.8 Sources customizations o 63
Instruments oL 64
4.6.1 Instruments customizations Lo oL 65

4.6.1.1 Oscilloscope waveform. 65

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.6.2 Rotation-invariant elements Lo 0oL 66
4.6.3 Instruments as node elements Lo 67
4.6.4 Measuring voltage and currents, multiple ways 67
Mechanical Analogy 69
4.7.1 Mechanical elements customizations 70
Miscellaneous bipoles 70
4.8.1 Miscellanous element customization 72
Multiple wires (buses) 72
Crossings o v v i e e e 72
ATTOWS . . . L e 73
4111 Arrows sizeo 74
Terminal shapes 74
4.12.1 BNC connector/terminal Lo Lo 75
Block diagram components oL 75
4.13.1 Blocks anchors 79
4.13.2 Blocks customization 80
4.13.2.1 Multiports 81
4.13.2.2 Labels and custom two-port boxes 81
4.13.2.3 Boxoption e 81
4.13.2.4 Dash optional parts L. 81
Transistors oL 82
4.14.1 Standard bipolar transistorso 82
4.14.2 Multi-terminal bipolar transistors L. 83
4.14.3 Field-effect transistors 83
4.14.4 Transistor texts (labels) 86
4.14.5 Transistors customization L oL 87
4.14.5.1 Size.o 87
4.14.5.2 ArTOows. 87
4.14.5.3 Circles. 88
4.14.5.4 Body diodes and similar things. 88
4.14.5.5 Schottky transistors. oL oL oL oL 89
4.14.5.6 Ferroelectric transistors 89
4.14.5.7 IGBT outer base. 90
4.14.5.8 UJT transistors. 90
4.14.5.9 Base/Gate terminal. oL 91
4.14.5.10 Bulk terminals. 91
4.14.5.11 Simplified symbols for depletion-mode MOSFETs 92
4.14.5.12 Gate/Base gap coloring. 93
4.14.6 Multiple terminal transistors customization 94
4.14.7 Transistor circle customizationo L. 94
4.14.7.1 Position and size.o 94

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.14.7.2 Line and color. e e 95

4.14.8 Transistors anchors L L 95
4.14.9 Transistor paths L 99
Electronic Tubes e 99
4.15.1 Tubes customization L L 101
4.15.2 Other tubes-like components L. 103

4.15.2.1 Dynode customization. oo 104
RF components L 104
4.16.1 RF elements customization 106
4.16.2 Microstrip customization Lo L oo 106
Electro-Mechanical Devices 106
4.17.1 Electro-Mechanical Devices anchors 107
Double bipoles (transformers) Lo o 107
4.18.1 Double dipoles anchors. 108
4.18.2 Double dipoles customization 0oL 109
4.18.3 Styling transformer’s coils independently 110
Amplifiers L 112
4.19.1 Amplifiers anchorso 113
4.19.2 Amplifiers customization Lo 115

4.19.2.1 European-style amplifier customization 117
4.19.3 Designing your own amplifier 0oL 118
Switches and buttons Lo 118
4.20.1 Traditional switches 119
4.20.2 Cuteswitches L 120

4.20.2.1 Cute switches anchors 0oL 121

4.20.2.2 Cute switches customization 121
4.20.3 Rotary switches L 122

4.20.3.1 Rotary switch anchors o0 123

4.20.3.2 Rotary switch customization 124
4.20.4 Switch arrows L L L 125

4.20.4.1 Rotary switch arrows. 0oL 125
Logic gates L 125
4.21.1 American Logic gates L Lo 126
4.21.2 IEEE logic gates e 127
4.21.3 European Logic gates oo 128
4.21.4 Path-style logic ports 129
4.21.5 American ports usage oo e e 130

4.21.5.1 American logic port customization 130

4.21.5.2 American logic port anchors 132
4.21.6 IEEE logic gates usage. oo 133

4.21.6.1 Stacking and aligning IEEE standard gates. 135

4.21.6.2 IEEE standard ports customization 136

4.21.6.3 IEEE standard ports anchors 137

4.21.6.4 Transmission gate symbols. 0oL 137

4.21.7 European logic port usage L o 138
4.21.7.1 European logic port customization 138

4.21.7.2 European logic port anchors, 138

4.22 Flip-flops o e 139
4.22.1 Custom flip-flops 141
4.22.2 Flipflops anchors 141
4.22.3 Flip-flops customization L o 142

4.23 Multiplexer and de-multiplexer 143
4.23.1 Mux-Demux: design your own shape 145
4.23.2 Mux-Demux customization 0oL 146
4.23.3 Mux-Demux anchors L Lo 146

4.24 Chips (integrated circuits) Lo 147
4.24.1 DIP and QFP chips customization 147
4.24.2 Chipsanchors e 148
4.24.3 Chips rotation 149
4.24.4 Chip special usageo 149

4.25 Seven segment displays L L 150
4.25.1 Seven segments anchors L Lo 150
4.25.2 Seven segments customization o000 oL 151
Labels, voltages and currents 152
5.1 Labels and Annotations 152
5.1.1 Label and annotation position. oo 152
5.1.1.1 Adjust label and annotation position. 153

5.1.2 Special symbols in labels and annotations. 153
5.1.3 Labels and annotation orientation. 154
5.1.4 Stacked (two lines) labels. L oo 155

5.2 Currents and voltages L 156
5.2.1 Common properties of voltages and currents 159

5.3 Currents 160
5.4 Flows o 162
5.5 Voltages L 163
5.5.1 Europeanstyle 163
5.5.2 Straight European style L. 164
5.5.3 American styleo 165
5.54 Raised American style oL 166
5.5.5 Voltage position 166
5.5.6 American voltages customization oL 168

5.6 Changing the style of labels, voltages, and other text ornaments. 168

5.7 Accessing labels text nodes L L 169
5.8 Advanced voltages, currents and flows oL 0oL 170
5.8.1 Activating the anchors Lo oL 171

5.8.2 Auxiliary information oo 172

5.8.3 Fixed voltage arrows: an example of advanced voltage usage 173

5.9 Integration with siunitx L e 174

6 Using bipoles in circuits 176
6.1 Nodes (also called poles) 176
6.1.1 Transparent poles 178

6.2 Mirroring and Inverting L oL o 178
6.3 Putting them together Lo 179
6.4 Line joins between Path Components 179

7 Colors 180
7.1 Shape colors i e 180
7.2 Fill colors e 182
7.2.1 Background colors different from white o000 183

8 FAQ: Frequently asked questions 185
8.1 Using named nodes in circuits oL oo 185
8.2 Using dashed (or colored) wires in circuits L. 186
8.3 Errors when externalizing pictures 000 187
8.4 Labels, voltages and currents woes oL 187
8.5 Global scaling and rotating L L 188
8.6 Tunable components L e 188

9 Defining new components 189
9.1 Suggested setupo 189
9.2 Path-style component oL 190
9.3 Node-style component 193
9.3.1 Finishing your work oL 193

10 Examples 194
10.1 Ared diode o L 194
10.2 Using the (experimental) siunitx syntax 195
10.3 Photodiodes L 196
10.4 A Sallen-Key cello o 196
10.5 Mixing circuits and graphs. Lo o 197
10.6 RF circuit oL e 198
10.7 A styled low noise input stage 199
10.8 An example with the compatibility option. 200
10.9 3-phases block schematic Lo 201

11 Changelog and Release Notes 202
Index of the components 213

1 Introduction

Lorenzo and Mirella, 57 years ago, started a trip
that eventually lead to a lot of things — among
them, CircuiTikZ v1.0.

In loving memory — R.G., 2020-02-04

1.1 About

CircuiTikZ was initiated by Massimo Redaelli in 2007, who was working as a research assistant
at the Polytechnic University of Milan, Italy, and needed a tool for creating exercises and exams.
After he left University in 2010 the development of CircuiTikZ slowed down, since IXTEX is mainly
established in the academic world. In 2015 Stefan Lindner and Stefan Erhardt, both working as
research assistants at the University of Erlangen-Niirnberg, Germany, joined the team and now
maintain the project together with the initial author. In 2018 Romano Giannetti, full professor of
Electronics at Comillas Pontifical University of Madrid, joined the team.

The use of CircuiTikZ is, of course, not limited to academic teaching. The package gets widely
used by engineers for typesetting electronic circuits for articles and publications all over the world.

1.2 License

Copyright © 2007-2021 by Massimo Redaelli, 2013-2021 by Stefan Erhardt, 2015-2021 by Stefan
Lindner, and 2018-2021 by Romano Giannetti. This package is author-maintained. Permission
is granted to copy, distribute and/or modify this software under the terms of the ITEX Project
Public License, version 1.3.1, or the GNU Public License. This software is provided ‘as is’, without
warranty of any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose.

1.3 Loading the package

IATEX ConTEXt?

\usepackage{circuitikz} \usemodule[circuitikz]

TikZ will be automatically loaded; additionally, the TikZ libraries calc, arrows.meta, bending,
and fpu are loaded (the last one is used only on demand).

CircuiTikZ commands are just TikZ commands, so a minimum usage example would be:

Ry
—N\N—

LConTEXt support was added mostly thanks to Mojca Miklavec and Aditya Mahajan.

1\tikz \draw (0,0) to[R=R_1] (2,0);

1.4 Installing a new version of the package.

The stable version of the package should come with your IATEX distribution. Downloading the
files from CTAN and installing them locally is, unfortunately, a distribution-dependent task and
sometime not so trivial. If you search for local texmf tree and the name of your distribution
on https://tex.stackexchange.com/ you will find a lot of hints.

Anyway, the easiest way of using whichever version of CircuiTikZ is to point to the github
page https://circuitikz.github.io/circuitikz/ of the project, and download the version
you want. You will download a simple (biggish) file, called circuitikzgit.sty.

Now you can just put this file in your local texmf tree, if you have one, or simply adding it into
the same directory where your main file resides, and then use

\usepackagel[...options...]{circuitikzgit}

instead of circuitikz. This is also advantageous for “future resilience”; the authors try hard not
to break backward compatibility with new versions, but sometimes, things happen.

1.5 Requirements

e tikz, version > 3;
o xstring, not older than 2009/03/13;

e siunitx, if using siunitx option.

1.6 Incompatible packages

TikZ’s own circuit library, which was based on CircuiTikZ, (re?)defines several styles used by
this library. In order to have them work together you can use the compatibility package option,
which basically prefixes the names of all CircuiTikZ to[] styles with an asterisk.

So, if loaded with said option, one must write (0,0) to[*R] (2,0) and, for transistors on a path,
(0,0) to[*Tnmos] (2,0), and so on (but (0,0) node[nmos] {}). See example at page 200.

Anyway, the compatibility code is a best effort task and only very lightly tested — the authors
advice is to choose one or the other, without mixing them.

Another thing to take into account is that any TikZ figure (and CircuiTikZ ones qualify) will
have problems if you use the babel package with a language that changes active characters (most
of them). The solution is normally to add the line \usetikzlibrary{babel} in your preamble,
after loading TikZ or CircuiTikZ. This will normally solve the problem; some language also re-
quires using \deactivatequoting or the option shorthands=off for babel. Please check the
documentation of TikZ or this question on TEX stackexchange site.

Finally, the TikZ library bending is loaded by the package, and its effects (the bending of the
arrows on curved paths) will affect also the rest of your drawings.

https://tex.stackexchange.com/
https://circuitikz.github.io/circuitikz/
https://tex.stackexchange.com/questions/166772/problem-with-babel-and-tikz-using-draw

1.7 Known bugs and limitation

CircuiTikZ will not work correctly with global (in the main circuitikz environment, or in
scope environments) negative scale parameters (scale, xscale or yscale), unless transform
shape is also used, and even in this cases the behavior is not guaranteed. Neither it will work
with angle-changing scaling (when xscale is different form yscale) and with the global rotate
parameter.

Correcting this will need a big rewrite of the path routines, and although the authors are thinking
about solving it, don’t hold your breath; it will need changing a lot of interwoven code (labels,
voltages, currents and so on). Contributions and help would be highly appreciated.

This same issue create a lot of problem of compatibility between CircuiTikZ and the new pic TikZ
feature, so basically don’t put components into pics.

1.8 Scale factors inaccuracies

Sometimes, when using fractional scaling factors and big values for the coordinates, the basic layer
inaccuracies from TEX can bite you, producing results like the following one:

1\begin{circuitikz}[scale=1.2, transform shape,
2]
v 3 \draw (60,1) to [battery2, v_=V_{cc}, name=B] ++(0,2);
ce 4 \node [draw,red,circle,inner sep=4pt] at(B.left) {};
5 \node [draw,red,circle,inner sep=4pt] at(B.right) {};
6 \end{circuitikz}

A general solution for this problem is difficult to find; probably the best approach is to use a
scalebox command to scale the circuit instead of relying on internal scaling.

Nevertheless, Schrodinger’s cat found a solution which has been ported to CircuiTikZ: you can
use the key use fpu reciprocal which will patch a standard low-level math routine with a more
precise one.

1\begin{circuitikz}[scale=1.2, transform shape,
2 use fpu reciprocal,
T-DZC 3]
4\draw (60,1) to [battery2, v_=V_{cc}] ++(0,2);
s \end{circuitikz}

The use fpu reciprocal key seems to have no side effects, but given that it is patching an
internal interface of TikZ it can break any time, so it is advisable to use it only if and when
needed.

1.9 Incompabilities between version

Here, we will provide a list of incompabilitys between different version of CircuiTikZ. We will try
to hold this list short, but sometimes it is easier to break with old syntax than including a lot of
switches and compatibility layers. In general, changes that would invalidate a circuit (changes of
polarity of components and so on) are almost always protected by a flag; the same is not true for
purely aesthetic changes. If unsure, you can check the version at your local installation using the
macro \pgfcircversion{}.

https://tex.stackexchange.com/a/529159/38080

e Version 1.3.6 fixes several problems with the stacked labels; the most important change is
that now the bracing of arguments is respected as in version 1.3.0 for the other labels. The
special treatment in stacked labels (and only in stacked labels!) for the (still experimental?)
siunitx compact syntax <...> has been removed: it was completely buggy before, and
silently ignored, now will throw an error.

e Version 1.3.3 fixes the direction of the arrows in tunable elements; before this version,
they were more or less random, now the arrow goes from bottom left to top right. You
have the option to go back to the old behavior with \ctikzset{bipoles/fix tunable
direction=false}. As a compensation for the fuss, now the arrows are configurable. To
learn more, see the FAQ: 8.6.

e Version 1.3.1 removes the warning if you do not specify a voltage direction.
o Version 1.3.0 fixes the buggy stripping of braces from labels and annotations (see 5.1.2.

o After 1.2.7 a big code reorganization (which had the collateral effect of fixing some bug) has
been made; no changes should be visible, but a fallback point at 1.2.7 has been added.

e You must upgrade to v1.2.7 or newer if you use a TikZ 3.1.8 or 3.1.8a (but better upgrade
both packages to the current version). You can check the TikZ version installed using the
macro \pgfversion.

e After v1.2.1: Important: the routine that implements the to[...] component positioning
has been rewritten. That should enhance the line joins in paths, and it’s safer, but it can
potentially change some old behavior.

One of the changes is that the previous routine did the wrong thing if you used (node)
to[...] (you should use an anchor or a coordinate, not a node there — like (node.anchor)

tol[...]).

The other one was that in the structure ... to[...] nodelpos=something] (coord) the
value of pos was completely wrong (even if you don’t use pos explicitly, remember it’s
pos=0.5 by default).

Additionally, the old code disrupted the TikZ path-fill mechanism, so that you could get
away with using the £ill option on paths and having just the components filled, not the
path. That was incorrect, although sometime it was handy (sorry).

See the FAQ at section 8.1 for more information.

o After v1.2.0: voltage arrows, symbols and label positions are calculated with a rewritten
routine. There should be little change, unless you touched internal values...

e After v1.1.3: from version 1.1.0 to version 1.1.2, the inverted Schmitt buffer in IEEE style
ports was called inv schmitt (with an additional space). The correct name is invschmitt
port (the same as the legacy american port).

o After v1.1.2: the position of american voltages for the open bipoles changed (you can revert
to the old behavior, see section 5.5.5).

e After v0.9.7: the position of the text of transistor nodes has changed; see section 4.14.4.

e After v0.9.4: added the concept of styling of circuits. It should be backward compatible, but
it’s a big change, so be ready to use the 0.9.3 snapshot (see below for details).

o After v0.9.0: the parameters tripoles/american or port/aaa, ...bbb,...cccand ...ddd
are no longer used and are silently ignored; the same stands for the similarly named param-
eters in nor, xor, and xnor ports.

2and, really, not advised...

10

o After v0.9.0: voltage and current directions/signs (plus and minus signs in case of american
voltages and arrows in case of european voltages) have been rationalized with a couple
of new options (see details in section 5.2). The default case is still the same as v0.8.3, to
avoid potentially wrong circuits, but you would be better off with one of the new voltage
directions (EFvoltages or RPvoltages) for newer circuits.

o Since v0.8.2: voltage and current label directions (v<= / i<=) do NOT change the orientation
of the drawn source shape anymore. Use the invert option to rotate the shape of the source.
Furthermore, from this version on, the current label (i=) at current sources can be used
independent of the regular label (1=).

e Since v0.7: The label behavior at mirrored bipoles has changed, this fixes the voltage drawing,
but perhaps you have to adjust your label positions.

e Since v0.5.1: The parts pfet, pigfete, pigfetebulk, and pigfetd are now mirrored by
default. Please adjust your yscale-option to correct this.

e Since v0.5: New voltage counting direction, there exists an option to use the old behavior.
If you have older projects that show compatibility problems, you have two options:

e you can use an older version locally using the git-version and picking the correct commit
from the repository (branch gh-pages) or the main GitHub site directly;

o if you are using WTEX, the distribution has embedded several important old versions: 0.4,
0.6,0.7,0.8.3,0.9.3,0.9.6,1.0,1.1.2 and 1.2.7. To switch to use them, you simply
change your \usepackage invocation like

1 \usepackage[]{circuitikz-0.8.3} /% or circuitikz-0.4, 0.6...

You have to take care of the options that may have changed between versions;
o if you are using ConTgXt, only versions 0.8.3, 0.9.3, 0.9.6, 1.0, 1.1.2 and 1.2.7 are
packaged; if can use it with

1 \usemodule [circuitikz-0.8.3]

1.10 Feedback

The easiest way to contact the authors is via the official Github repository: https://github.com/
circuitikz/circuitikz/issues. For general help question, a lot of nice people is quite active on
https://tex.stackexchange.com/questions/tagged/circuitikz — be sure to read the help
pages for the site and ask!

1.11 Package options

Circuit people are very opinionated about their symbols. In order to meet the individual gusto
you can set a bunch of package options.

There are arguably way too much options in CircuiTikZ, as you can see in the following list. Since
version 1.0, it is recommended to just use the basic ones — voltage directions (you should specify
one of them), siunitx, the global style (american or european) and use styles (see 3.3) for the
remaining options.

The standard options are set by historical reason, and reflect the preferences of the author that
introduced them. For example you get this:

11

https://github.com/circuitikz/circuitikz/issues
https://github.com/circuitikz/circuitikz/issues
https://tex.stackexchange.com/questions/tagged/circuitikz

84V

1 \begin{circuitikz}

\draw (0,0) to[R=2<\ohm>, i=?, v=84<\volt>] (2,0) --
(2,2) tol[V<=84<\volt>] (0,2)
-- (0,0);

5 \end{circuitikz}

Feel free to load the package with your own cultural options:

IXTEX

ConTEXt

\usepackage [american] {circuitikz} \usemodule[circuitikz] [american]

+

0 1 \begin{circuitikz}

84V

\draw (0,0) to[R=2<\ohm>, i=7, v=84<\volt>] (2,0) --
(2,2) to[V<=84<\volt>] (0,2)
-- (0,0);

5 \end{circuitikz}

However, most of the global package options are not available in ConTEXt; in that case you can
always use the appropriate \tikzset{} or \ctikzset{} command after loading the package.

Here is the list of all the options:

europeanvoltages:
straightvoltages:
americanvoltages:
europeancurrents:

americancurrents:

europeanresistors:
americanresistors:
europeaninductors:

americaninductors:

uses arrows to define voltages, and uses european-style voltage sources;
uses arrows to define voltages, and and uses straight voltage arrows;
uses — and + to define voltages, and uses american-style voltage sources;
uses european-style current sources;
uses american-style current sources;
uses rectangular empty shape for resistors, as per european standards;
uses zig-zag shape for resistors, as per american standards;
uses rectangular filled shape for inductors, as per european standards;

uses “4-bumps” shape for inductors, as per american standards;

cuteinductors: uses my personal favorite, “pig-tailed” shape for inductors;

americanports: uses triangular logic ports, as per american standards;

europeanports: uses rectangular logic ports, as per european standards;

americangfsurgearrester: uses round gas filled surge arresters, as per american standards;

europeangfsurgearrester: uses rectangular gas filled surge arresters, as per european

standards;

12

european: equivalent to europeancurrents, europeanvoltages, europeanresistors,
europeaninductors, europeanports, europeangfsurgearrester;

american: equivalent to americancurrents, americanvoltages, americanresistors,
americaninductors, americanports, americangfsurgearrester;

siunitx: integrates with SIunitx package. If labels, currents or voltages are of the form
#1<#2> then what is shown is actually \SI{#1}{#2};

nosiunitx: labels are not interpreted as above;

fulldiode: the various diodes are drawn and filled by default, i.e. when using styles such
as diode, D, sD, ..Other diode styles can always be forced with e.g. Do, D-, ...

strokediode: the various diodes are drawn and stroke by default, i.e. when using styles
such as diode, D, sD, ..Other diode styles can always be forced with e.g. Do, D, ...

emptydiode: the various diodes are drawn but not filled by default, i.e. when using styles
such as D, sD, ...Other diode styles can always be forced with e.g. Do, D-, ..

arrowmos: pmos and nmos have arrows analogous to those of pnp and npn transistors;

noarrowmos: pmos and nmos do not have arrows analogous to those of pnp and npn tran-
sistors;

fetbodydiode: draw the body diode of a FET;

nofetbodydiode: do not draw the body diode of a FET;

fetsolderdot: draw solderdot at bulk-source junction of some transistors;
nofetsolderdot: do not draw solderdot at bulk-source junction of some transistors;
emptypmoscircle: the circle at the gate of a pmos transistor gets not filled;

lazymos: draws lazy nmos and pmos transistors. Chip designers with huge circuits prefer
this notation;

legacytransistorstext: the text of transistor nodes is typeset near the collector;

nolegacytransistorstext or centertransistorstext: the text of transistor nodes is type-
set near the center of the component;

straightlabels: labels on bipoles are always printed straight up, i.e. with horizontal base-
line;

rotatelabels: labels on bipoles are always printed aligned along the bipole;

smartlabels: labels on bipoles are rotated along the bipoles, unless the rotation is very
close to multiples of 90°;

compatibility: makes it possibile to load CircuiTikZ and TikZ circuit library together.

Voltage directions: until v0.8.3, there was an error in the coherence between american and
european voltages styles (see section 5.2) for the batteries. This has been fixed, but to
guarantee backward compatibility and to avoid nasty surprises, the fix is available with new
options:

— oldvoltagedirection: Use old way of voltage direction having a difference between
european and american direction, with wrong default labelling for batteries;

13

— nooldvoltagedirection: The standard from 0.5 onward, utilize the (German?) stan-
dard of voltage arrows in the direction of electric fields (without fixing batteries);

— RPvoltages (meaning Rising Potential voltages): the arrow is in direction of rising
potential, like in oldvoltagedirection, but batteries and current sources are fixed to
follow the passive/active standard;

— EFvoltages (meaning Electric Field voltages): the arrow is in direction of the electric
field, like in nooldvoltagedirection, but batteries are fixed;

If none of these option are given, the package will default to nooldvoltagedirection. The
behavior is also selectable circuit by circuit with the voltage dir style.

« betterproportions®: nicer proportions of transistors in comparision to resistors;

The old options in the singular (like american voltage) are still available for compatibility, but
are discouraged.

Loading the package with no options is equivalent to the following options: [nofetsolderdot,
europeancurrents, europeanvoltages, americanports, americanresistors,
cuteinductors, europeangfsurgearrester, nosiunitx, noarrowmos, smartlabels,
nocompatibility, centertransistorstext].

In ConTEXt the options are similarly specified: current= european|american, voltage=
european|american, resistor= american|european, inductor= cute|american|european,
logic= american|european, siunitx= truel|false, arrowmos= false|true.

3May change in the future!

14

2 Tutorials

Before even starting with CircuiTikZ you should be sure to have understood the basics of TikZ.
It is higlhly recommended that you read and go through at least the following parts of the TikZ
manual:

o “Tutorial: A Picture for Karl’s Students” (around page 30);
o “Specifying Coordinates” (around page 131)
o “Nodes and their shapes” (around page 220)

..but obviously a good knowledge of TikZ will help you a lot. Remember, a circuit drawn with
CircuiTikZ is nothing more than a tikzpicture with an (albeit powerful and extended) set of
shapes and commodity macros.

Said that, to draw a circuit, you have to load the CircuiTikZ package; this can be done with

1 \usepackage [siunitx, RPvoltages]{circuitikz}

somewhere in your document preamble. It will load automatically the needed packages if not
already done before.

2.1 Getting started with CircuiTikZ: a current shunt

Let’s say we want to prepare a circuit to teach how a current shunt works; the idea is to draw a
current generator, a couple of resistors in parallel, and the indication of currents and voltages for
the discussion.

A circuit in CircuiTikZ is drawn into a circuitikz environment (which is really an alias for
tikzpicture). In this first example we will use absolute coordinates. The electrical components
can be divided in two main categories: the one that are bipoles and are placed along a path (also
known as to-style component, for their usage), and components that are nodes and can have any
number of poles or connections.

Let’s start with the first type of component, and build a basic mesh:

1\begin{circuitikz}[]

2 \draw (0,0) to[isource] (0,3) -- (2,3)
3 to[R] (2,0) -- (0,0);

s\end{circuitikz}

The symbol for the current source can surprise somebody; this is actually the european-style
symbol, and the type of symbol chosen reflects the default options of the package (see section 1.11).
Let’s change the style for now (the author of the tutorial, Romano, is European — but he has
always used American-style circuits, so..); and while we’re at it, let’s add the other branch and
some labels.

1\begin{circuitikz}[american]
2 \draw (0,0) tol[isource, 1=I_0] (0,3) -- (2,3)

Iy CD R, Rs 3 to[R=R_1]1 (2,0) -- (0,0);
4

\draw (2,3) -- (4,3) to[R=$R_2%]
(4,0) -- (2,0);
6 \end{circuitikz}

15

You can use a single path or multiple paths when drawing your circuit, it’s just a question of style
(but be aware that closing paths perfectly could be non-trivial, see section 6.4), and you can use
standard TikZ lines (--, |- or similar) for the wires. Nonetheless, sometime using the CircuiTikZ
specific short component for the wires can be useful, because then we can add labels and poles
at them, like for example in the following circuit, where we add a current (with the key i=...,
see section 5.3) and a connection dot (with the special shortcut —* which adds a circ node at the
end of the connection, see sections 4.12 and 6.1).

Iy

1\begin{circuitikz} [american]

2 \draw (0,0) tol[isource, 1=$I_0%$] (0,3)

3 to[short, -*, i=$I1_0%$] (2,3)

4 to[R=R_1, i=i_1] (2,0) -- (0,0);
I CD R, Ry, | s \draw (2,3) -- (4,3)

6 to[R=$R_2%, i=$i_28%]

7 (4,0) tolshort, -*] (2,0);

s \end{circuitikz}

One of the problems with this circuit is that we would like to have the current labels in a different
position, such as for example on the upper side of the resistors, so that Kirchoff’s Current Law at
the node is better shown to students. No problem; as you can see in section 5.2 you can use the
position specifiers <>~ _ after the key i:

1\begin{circuitikz} [american]

2 \draw (0,0) to[isource, 1=I_0] (0,3)
3 to[short, -*, i=$I_0%$] (2,3)

4 to[R=R_1, i>_=$i_1$1 (2,0) -- (0,0);
5 \draw (2,3) -- (4,3)

6 to[R=R_2, i>_=$%i_2%]

7 (4,0) tol[short, -*] (2,0);

s \end{circuitikz}

Finally, we would like to add voltages indication for carrying out the current formulas; as the
default position of the voltage signs seems a bit cramped to me, I am adding the voltage shift
parameter to make a bit more space for it...

Iy 1\begin{circuitikz}[american, voltage shift=0.5]
\draw (0,0)

to[isource, 1=I_0, v=vV_0] (0,3)
to[short, —-*, i=I_0] (2,3)

2

+ ’il ig 3
4
5 to[R=R_1, i>_=i_1] (2,0) -- (0,0);

Io CD Vo I Ry 6 \draw (2,3) -- (4,3)
7 to[R=R_2, i>_=%i_2%]

_ 8 (4,0) tol[short, -*] (2,0);

9

\end{circuitikz}

Et voild!. Remember that this is still I¥TEX, which means that you have done a description of
your circuit, which is, in a lot of way, independent of the visualization of it. If you ever have to
adapt the circuit to, say, a journal that force European style and flows instead of currents, you
just change a couple of things and you have what seems a completely different diagram:

16

1\begin{circuitikz}[european, voltage shift=0.5]
\draw (0,0)
to[isourceC, 1=I_0, v=$V_03%$] (0,3)
to[short, —-*, f=$I_0%$] (2,3)
to[R=R_1, £>_=i_1] (2,0) -- (0,0);
\draw (2,3) -- (4,3)
to[R=$R_28, £>_=3%i_2$]
(4,0) tol[short, -*] (2,0);

\end{circuitikz}

s
®
%
=
=
&

And finally, this is still TikZ, so that you can freely mix other graphics element to the circuit.

1\begin{circuitikz} [american, voltage shift=0.5]

Iy \draw (0,0)
— KCL to[isource, 1=I_0, v=V_0] (0,3)
“ . ‘ to[short, -*, f=$I1_0%$] (2,3)
+ g s * s to[R=R_1, f>_=$i_1%$] (2,0) -- (0,0);

\draw (2,3) -- (4,3)

to[R=R_2, £>_=3%i_28]

(4,0) tol[short, -*] (2,0);

\draw([red, thick] (1.5,2.5) rectangle (4.5,3.5)

© W N o o oA W N

1y CD Vo Ry Ry

10 node [pos=0.5, above]{KCL};
11 \end{circuitikz}

17

2.2 A more complex tutorial: circuits, Romano style.

The idea is to draw a two-stage amplifier for a lesson, or exercise, on the different qualities of BJT
and MOSFET transistors.

Please Notice that this section uses the “new” position for transistors labels, enabled since version
0.9.7. You should refer to older manuals to see how to do the same with older versions; basically
the transistor’s names where put with an additional node{} command.

Also notice that this is a more “personal” tutorial, showing a way to draw circuits that is, in the
author’s opinion, highly reusable and easy to do. The idea is using relative coordinates and named
nodes as much as possible, so that changes in the circuit are easily done by changing just a few
numbers that select relative positions and using symmetries. Crucially, this kind of spproach make
each block reusable in other diagrams bu just changing one coordinate.

First of all, let’s define a handy function to show the position of nodes:

1 \def\normalcoord(#1){coordinate (#1)}

2\def\showcoord (#1){coordinate (#1) nodel[circle, red, draw, inner sep=Ipt,
3 pin={[red, overlay, inner sep=0.5pt, font=\tiny, pin distance=0.1lcm,
4 pin edge={red, overlay}]45:#1}] (#1-node){}}

5 \1let\coord=\normalcoord

6 \let\coord=\showcoord

The idea is that you can use \coord() instead of coordinate() in paths, and that will draw sort
of markers showing them. For example:

1\begin{circuitikz} [american,]
2 \draw (0,0) node[npn] (Q){};
tfentes \path (Q.center) \coord(center)
y 4 (Q.B) \coord(B) (Q.C) \coord(C)
E s (Q.E) \coord(E);

6 \end{circuitikz}

After the circuit is drawn, simply commenting out the second \let command will hide all the
markers.

So let’s start with the first stage transistor; given that my preferred way of drawing a MOSFET
is with arrows, I'll start with the command \ctikzset{tripoles/mos style/arrows}:

1\begin{circuitikz} [american,]

2\ctikzset{tripoles/mos style/arrows}

4' Q1 3\def\killdepth#1{{\raisebox{Opt} [\height] [Opt]{#1}}}
a\path (0,0) -- (2,0); 7 bounding boz

s \draw (0,0) node[nmos] (Q1){\killdepth{Q1}};

6 \end{circuitikz}

I had to do draw an invisible line to take into account the text for Q1 — the text is not taken
into account in calculating the bounding box. This is because the “geographical” anchors (north,
north west, ..) are defined for the symbol only. In a complex circuit, this is rarely a problem.

Another thing I like to modify with respect to the standard is the position of the arrows in transis-
tors, which are normally in the middle the symbol. Using the following setting (see section 4.14.5)
will move the arrows to the start or end of the corresponding pin.

1\ctikzset{transistors/arrow pos=end}
The tricky thing about \killdepth{} macro is finicky details. Without the \killdepth macro,
the labels of different transistor will be adjusted so that the vertical center of the box is at the

center anchor, and as an effect, labels with descenders (like Q) will have a different baseline than
labels without. You can see this here (it’s really subtle):

18

1\begin{circuitikz}[american,]

ml 2\draw (0,0) node[nmos] (Q1){ql} ++(2,0)

3 node [nmos] (M1) {m1};

s\draw [red] (Ql.center) ++(0,-0.7ex) -- ++(3,0);
s\draw (0,-2)node[nmos] (Q1){\killdepth{qi}} ++(2,0)
6 mnode[nmos] (M1){\killdepth{m1}};

mil 7\draw [red] (Ql.center) ++(0,-0.7ex) -- ++(3,0);

s \end{circuitikz}

%

3L 3L
JL T

We will start connecting the first transistor with the power supply with a couple of resistors. Notice
that I am naming the nodes GND, VCC and VEE, so that I can use the coordinates to have all the
supply rails at the same vertical position (more on this later).

Vee =10V
VCC
Rp 1 \begin{circuitikz} [american,]
10kQ > \draw (0,0) node[nmos,](Q1){\killdepth{Q1}};
3 \draw (Q1.8) to[R, 127=R_S and \SI{5}{k\ohm}]
4 ++(0,-3) node[vee] (VEE) {$V_{EE}=\SI{-10}{V}$};

5 \draw (Q1.D) to[R, 12_=R_D and \SI{10}{k\ohm}]
6 ++(0,3) node[vcc] (VCC) {$V_{CCI=\SI{10}{V}$};
4[:@ + \draw (Q1.8) tolshort] ++(2,0) to[C=C_1]
8 ++(0,-1.5) node[ground] (GND){};
9 / show the named coordinates!

10 \path (GND) \coord(GND)
Ch
RS GND
5kQ

11 (VCC) \coord(VCC)
12 (VEE) \coord(VEE);
13 \end{circuitikz}

Veg =—-10V

After that, let’s add the input part. I will use a named node here, to refer to it to add the input
source. Notice how the ground node is positioned: the coordinate (in |- GND) is the point with
the horizontal coordinate of (in) and the vertical one of (GND), lining it up with the ground of
the capacitor C; (you can think it as “the point on the vertical of in and the horizontal of GND”).

19

Vee =10V

1\begin{circuitikz}[american, scale=0.7, transform

shape]
R 2\draw (0,0) node[nmos,] (Q1){\killdepth{Q1}};
EE]JLQ s\draw (Q1.S) to[R, 12°=R_S and \SI{5}{k\ohm}]

4 ++(0,-3) node[vee] (VEE){$V_{EE}=\SI{-10}{V}$};
s\draw (Q1.D) to[R, 12_=R_D and \SI{10}{k\ohm}]
6 ++(0,3) nodel[vcc] (VCC){$V_{CCI=\SI{10}{V}$};
Q1 7\draw (Q1.S) tol[short] ++(2,0) to[C=$C_1%]

8 ++(0,-1.5) node[ground] (GND){};

o\draw (Q1.G) tol[short] ++(-1,0)

G 10 \coord (in) to[R, 127=R_G and \SI{1}{M\ohm}]
fo _]:_ 11 (in |- GND) nodel[ground]l{};
? = 12\draw (in) to[C, 1_=C_2,*-o]
13 ++(-1.5,0) nodel[left] (vil){$v_i=v_{il1}$};
14 \end{circuitikz}
Veg = —-10V

Notice that the only absolute coordinate here is the first one, (0,0); so the elements are connected
with relative movements and can be moved by just changing one number (for example, changing
the to[C=C_1] ++(0,-1.5) will move all the grounds down).

This is the final circuit, with the nodes still marked:

1/ this is for the blue brackets under the circuit

2\tikzset{blockdef/.style={/

3 {Straight Barb[harpoon, reversed, right, length=0.2cm]}-{Straight Barb[harpoon,
reversed, left, length=0.2cm]},

4 blue,

51}

6 \def\killdepth#1{{\raisebox{Opt} [\height] [Opt]{#1}}}

7\def\coord (#1){coordinate (#1)}

s \def\coord (#1){coordinate (#1) nodel[circle, red, draw, inner sep=1pt,pin={[red, overlay,

inner sep=0.5pt, font=\tiny, pin distance=0.1lcm, pin edge={red, overlay
,}145:#1}] (#1-node) {}}

9 \begin{circuitikz}[american,]

10 \draw (0,0) node[nmos,](Q1){\killdepth{Q1l}};

1 \draw (Q1.8) to[R, 127=R_S and \SI{5}{k\ohm}] ++(0,-3) nodel[vee] (VEE){$V_{EE}=\SI
{-103{V}$}; /define VEE level

12 \draw (Q1.8) tol[short] ++(2,0) to[C=C_1] ++(0,-1.5) node[ground] (GND){};

13 \draw (Q1.G) to[short] ++(-1,0) \coord (in) to[R, 12"=R_G and \SI{1}{M\ohm}] (in |-
GND) node [ground]{};

14 \draw (in) to[C, 1_=C_2,*-0o] ++(-1.5,0) node[left] (vil){$v_i=v_{i1}$};

15 \draw (Q1.D) to[R, 12_=R_D and \SI{10}{k\ohm}] ++(0,3) node[vcc] (VCC){$V_{CC}=\SI

{103{V}$};
16 \draw (Q1.D) to[short, -o] ++(1,0) nodel[right] (vo1l){v_{o1}};
17 Z
18 \path (vol) -- ++(2,0) \coord(bjt);
19 VA

20 \draw (bjt) nodelnpn, anchor=B](Q2){\killdepth{Q2}};

21 \draw (Q2.B) to[short, -o] ++(-0.5,0) node[left] (vi2){v_{12}};

22 \draw (Q2.E) to[R,12"=R_E and \SI{9.3}{k\ohm}] (Q2.E |- VEE) nodel[veel{};

23 \draw (Q2.E) to[short, -o] ++(1,0) nodelright] (vo2){v_{02}3};

24 \draw (Q2.C) to[short] (Q2.C |- VCC) nodel[vcc]{};

25 VA

26 \path (vo2) ++(1.5,0) \coord(load);

27 \draw (load) to[C=C_3] ++(1,0) \coord(tmp) to[R=R_L] (tmp |- GND) node[ground
1{};

20

28 \draw [densely dashed] (vo2) -- (load);

29 Z

30 \draw [densely dashed] (vol) -- (vi2);

31 VA

32 \draw [blockdef] (vil|-VEE) ++(0,-2) \coord(tmp)

33 -- node[midway, fill=whitel{bloque 1} (voll- tmp);
34 \draw [blockdef] (vi2|-VEE) ++(0,-2) \coord(tmp)
35 -- node[midway, fill=white]{bloque 2} (vo2|- tmp);

36
37 \end{circuitikz}

Vee =10V
Rp
10kQ
bj
Co ——oUol --- V12 < Q2 Cs
V; = V51 Q—{ " K Ql Vpg —— === ez{d /lmp
R
o | L R
1M C, .
Rs 9.3kQ
5kQ
Veg =-10V
5; bloque 1] ——~ D}L bloque 2 —

You can see that after having found the place where we want to put the BJT transistor (line 18),
we use the option anchor=B so that the base anchor will be put at the coordinate bjt.

Finally, if you like a more compact drawing, you can add the options (for example):

1\begin{circuitikz} [american, scale=0.8] 7 this will scale only the coordinates
2 \ctikzset{resistors/scale=0.7, capacitors/scale=0.6}

3 .
4+\end{circuitikz}

and you will obtain the following diagram with the exact same code (I just removed the second
\coord definition to hide the coordinates markings).

21

v = Uﬂo—'

Vee =10V

Rg
1MQ C
Rs
5kQ
Ve = —-10V

Rp
10kQ

Lo

N~ bloque] ———

ool --- U12©—KQ2

—— bloque 2 —~

22

2.3 Tutorial: a logic circuit

Let’s suppose we want to reproduce the cir-
cuit on the right*, maybe as part of a more
complex one.

Looking at the circuit to draw, I see that
there is a basic block: the flip-flop with the
added three-port circuit to its left, marked
with the red dashed rectangle. The main
distance to respect here is that we want the
two ANDs in line with the flip-flop inputs,
so I'll start with the flip-flop and then add
the rest of the block.

The shapes are very similar to the IEEE
logic gates (see section 4.21.2); after a first
check, the standard size of the port is a bit
too big with respect to the flip-flop, so I scale
them down a bit.

1 \ctikzset{

2 logic ports=ieee,
3 logic ports/scale=0.7,
4}

e ______ SR-FF _
ao | _} s Qf
—cp |
| lb—ﬁ —1
| R —
S ,—,,4, ,,,,,,,,,, ;i, - ?, J
SR-FF
a1 [- / S QI
o CP
- \ —
R -
), °
ENABLE CP RESET

I want a reusable block, so I will start from a coordinate and then use only relative, defining

coordinates along the way.

The first thing is to define a suitable flip-flop. The standard SR (see

4.22) is almost what we need, but not exactly the same. So let’s

define a new one:

1\tikzset{sr-ff/.style={flipflop, flipflop def={
2 t1=S, t2=CP, t3=R, t4={\ctikztextnot{Q}},

3 t6=Q, nd=1}},
4}

s Q-

— CP

—R Q*
?

Now we can add the “and” gates. For example, we can add the gates to the right like this:

SR-FF 1\begin{circuitikz}[]
—] 2 \draw (0,0) nodel[sr-ff] (FF){} (FF.bup)
g} S Q- 3 node [above] {SR-FF};
4 \draw (FF.pin 1) -- ++(-1,0) node[and port,

— CP 5 anchor=out] (AND1) {}
N 6 (FF.pin 3) -- ++(-1,0) node[and port,
%} R QI 7 anchor=out] (AND2){};

o s\end{circuitikz}

You can notice a pair of things here: first of all, the use of the anchor=out in the port, to tell
TikZ that we want the node moved so that the out anchor is the reference one. The second one is
that we have repeated the absolute shift (the ++(-1, 0)) twice. This is a bad practice; it is much
better to have the “free” parameters of a schematic just stated once, so that we can change them

in just one point.

You can of course use a macro, like \newcommand{\andshift}{(-1,0)} but it is much more

elegant to do something like this:

41t seems a quite popular one on tex.stackexchange...

23

https://tex.stackexchange.com/q/545317/38080

SR-FF 1 \begin{circuitikz}[]

—) S Q \draw (0,0) nodel[sr-£ff] (FF){} (FF.bup)

2
3 node [above] {SR-FF};
4
CPp 5 anchor=out] (AND1) {}
6
7
8

\draw (FF.pin 1) -- ++(-1,0) nodel[and port,
o (FF.pin 3) -- (FF.pin 3 -| AND1.out)
R QI node[and port, anchor=out] (AND2){};

o \end{circuitikz}

In this snippet, the coordinate (FF.pin 3 -| AND1.out) is the TikZ way to say “the point which
is horizontally straight from FF.pin 3 and vertically form AND1.out”. That way one can change
the number -1 to move both AND ports nearer or farther away.

Now we can add the not port. Since version 1.1.3 you can use a path-style not port, so you can
just say: this:

1\begin{circuitikz}[scale=0.8, transform shape]
SR-FF 2\draw (0,0) nodel[sr-ff] (FF){} (FF.bup)
node [above] {SR-FF} (FF.pin 1) -- ++(-1,0)
node [and port, anchor=out] (AND1){}
(FF.pin 3) -- (FF.pin 3 -| AND1.out)
node[and port, anchor=out] (AND2){}
(AND1.in 1) tol[short, -*] ++(-1,0) coordinate(in)
to[inline not] (in |- AND2.in 2) -- (AND2.in 2);
\end{circuitikz}

D
[

© ® N o o« oA~ W

In earlier version, you should have found the center point between the two terminal, position the
“not” shape and ten connect it, like for example (this code must stay into the \draw command):

% let's position the NOT in the center

7 this is using the calc tikz library

($(in)'0.5!(in |- AND2.in 2)$) node[not port, rotate=-90] (NOT){}
% and conmnect it

(in) -- (NOT.in) (NOT.out) |- (AND2.in 2)

o R W N R

Now we have the basic block; we have to use it twice, so one of the possible way to do it is to
prepare a command. We will change the names of the nodes and the coordinates to be different
for any “call” of the block (another option is to use a pic; but this is more straightforward).

1 \newcommand*{\myblock}[1]1{% Add #1- to the node and coord names

2 node[sr-ff] (#1-FF){} (#1-FF.bup) node[above] {SR-FF}

3 (#1-FF.pin 1) -- ++(-1,0) node[and port, anchor=out] (#1-AND1){}
4 (#1-FF.pin 3) -- (#1-FF.pin 3 -| #1-AND1.out)

5 node [and port, anchor=out] (#1-AND2){}

6 (#1-AND1.in 1) tol[short, -*] ++(-1,0) coordinate(#1-in)

7 to[inline not] (#1-in |- #1-AND2.in 2) -- (#1-AND2.in 2);

8

24

So now we can draw two of our blocks:

1 \draw (0,0) \myblock{A};
2 \draw (0,-4) \myblock{B};

Part of the anchors and coordinates that we
have accessible are marked in red in the dia-
gram at the side.

Now we have to just connect the relevant
parts and add the labels. The names of the
inputs are quite easy:

1 \draw (A-in) -- ++(-0.5, 0) nodel[
below]{$a_0%$};

2 \draw (B-in) -- ++(-0.5, 0) nodel[
below]{a_1};

And finally:

o N o oA W N e

Will create the final diagram:
SR-FF
S Q-

ao

I

CP

a1

0 U U

ENABLE CP RESET

SR-FF

A-FF.pin

CP

1\4{

[FF.down

SR-FF

B-AND2.in 1 °

i

SB—FF.pig
CP

FE.down

\draw (A-AND1.in 2) to[short, -*] (A-AND2.in 1)
to[short, -*] (B-AND1.in 2) tol[short, -*] (B-AND2.in 1)
-- ++(0, -2) coordinate(down) node[below] {ENABLE};
\draw (A-FF.pin 2) to[short, -*] (B-FF.pin 2)
-- (B-FF.pin 2 |- down) node[below]{CP};
\draw (B-FF.down) to[short, -*] ++(0,-0.3) coordinate(dd);
\draw (A-FF.down) -- ++(0,-.5) -- ++(1.5,0)
-- (dd |- down) node[below] {RESET};

|- (dd)

3 The components: usage

Components in CircuiTikZ come in two forms: path-style, to be used in to path specifications,
and node-style, which will be instantiated by a node specification.

3.1 Path-style components

The path-style components are used as shown below:

1 \begin{circuitikz}
2 \draw (0,0) to[#1=#2, #options] (2,0);
3 \end{circuitikz}

where #1 is the name of the component, #2 is an (optional) label, and options are optional labels,
annotations, style specifier that will be explained in the rest of the manual.

Transistors and some other node-style components can also be placed using the syntax for bipoles.
See section 4.14.9.

Most path-style components can be used as a node-style components; to access them, you add
a shape to the main name of component (for example, diodeshape). Such a “node name” is
specified in the description of each component.

3.1.1 Anchors

Normally, path-style components do not need anchors, although they have them just in case you
need them. You have the basic “geographical” anchors (bipoles are defined horizontally and then
rotated as needed):

e
. north west north north east
left, right ~_ — n
west east Q
center . ol D en ‘
south west south south east W/

In the case of bipoles, also shortened geographical anchors exists. In the description, it will be
shown when a bipole has additional anchors. To use the anchors, just give a name to the bipole
element.

1\begin{circuitikz}

W 2 \draw (0,0) to[potentiometer, name=P, mirror] ++(0,2);
3 \draw (P.wiper) to[L] ++(2,0);
s4\end{circuitikz}

Alternatively, that you can use the shape form, and then use the left and right anchors to do
your connections.

1\begin{circuitikz}
T 2 \draw (0,0) node[potentiometershape, rotate=-90] (P){};
3 \draw (P.wiper) to[L] ++(2,0);
14\end{circuitikz}

26

3.1.2 Border anchors

Bipoles have also installed generic border anchors — that means, anchors that start at an angle.
For complexity reason, these are for most of the components simply a generic enclosing rectangle.
They interact in a non-trivial way with the mirror and invert keys, so it’s best not to use them
directly.

¢
50 120 60

2
120 9 60 120 % 60
//<"” 15Q, 30 1""\

150 / 30 15Q \ ‘
\ /

180 —0 180 /\/\/\/ 0 180 { 180

216 gyﬁfl\c o g Tefilior Y

\S\ %50 ZIUfl}l/l iﬁ{ie”” o1 5330 e .
300 ysonrae 2lcapacit|

240 1. 300 240
270 270 24 p
240 570 300 240 301

You can notice that the border anchors are a bit spaced out (this is useful because those anchors
are used to position labels and annotations). You can override this if you need to reach exactly the
border (whatever could that mean depends on the component) by using the key bipoles/border
margin, which is a number that states how much the enclosing border is stretched out (default
value is 1.1). For example, setting \ctikzset{bipoles/border margin=1} will make the border
anchor coincide with the geographical shape:

g
120

90 120 % 60 120
15Q ‘

60
//3“ 150 30 “‘“\

180 0 180 0 180 0 180 % 0
zm/{e/{ls &\330 210fu¥1diade’? 21(4 ourse 330 P A N
240 1 300 *lcapagitivesensso

270 :
! 240 97 300 240 Lt 300 A

The above diagram has been obtained with the code:

1 \def\showbordersfornode#1{/
2\begin{circuitikz}[baseline, scale=0.8, transform shape]
3 \node [#1shape, name=bip] at(0,0) {};

4 \foreach \a in {0,30,...,359} \draw[red] (bip.\a) -- ++(\a:0.7)
5 node [font=\tiny, fill=white, inner sep=0.5pt]{\a};

6 \node [font=\ttfamily\small, black, below] at (bip.-90)

7 {\detokenize\expandafter{#11}};

s\end{circuitikz}}

o\ctikzset{bipoles/border margin=1}

10 \showbordersfornode{generic} \showbordersfornode{resistor}
11 \showbordersfornode{fulldiode} \showbordersfornode{vsource}
12 \showbordersfornode{capacitivesens}

3.1.3 Relative coordinates

As noticed by user septatrix, although relative coordinates after a component work as expected
when using ++(x,y)-style coordinates, that is not true for the +(x,y)-style coordinates (which
are supposed to set a temporary relative coordinate and then going back to the starting point).

This behavior, although not optimal, was standard in to operation in plain TikZ before version
3.1.8; it was changed by Henri Menke in later versions. Notice that the change revealed a problem
in CircuiTikZ that should hopefully fixed in v1.2.7.

You can see from the example below (notice the blue curve using a spline line). If all the vertical
lines are at the left, the manual has been compiled with a new CircuiTikZ and TikZ. Otherwise,
the red and/or blue curve will have the vertical line at the right (which in principle is wrong).

In the last (green) example, you can see a workaround using local path and the key current
point is local that will work for older (and do not create problem in newer) versions.

27

https://github.com/circuitikz/circuitikz/issues/460

Plotted using TikZ version 3.1.8b and CircuiTikZ version 1.3.6.

™

1Plotted using Ti\emph{k}Z version \pgfversion{} and CircuiTi\emph{k}Z version \
pgfcircversion{}.

2

3 \begin{tikzpicture}

4+ \draw[color=red] (0,0) to[R] +(2,0) +(0,0) -- ++(0,-1);

5 \end{tikzpicture}

6 \qquad

7\begin{tikzpicture}

8 \draw[color=blue] (0,0) to[out=30, in=120] +(2,0) +(0,0) -- ++(0,-1);
o \end{tikzpicture}

10 \qquad

11 \begin{tikzpicture}

12 \draw[color=purple] (0,0) to[] +(2,0) +(0,0) —-- ++(0,-1);

13 \end{tikzpicture}

14 \qquad

15 \begin{tikzpicture}

16 \draw [color=green!50!black] (0,0)

17 {[current point is locall] to[R] +(2,0)} +(0,0) -- ++(0,-1);
1s \end{tikzpicture}

3.1.4 Customization

Pretty much all CircuiTikZ relies heavily on pgfkeys for value handling and configuration. Indeed,
at the beginning of circuitikz.sty and in the file pfgcirc.define.tex a series of key definitions
can be found that modify all the graphical characteristics of the package.

All can be varied using the \ctikzset command, anywhere in the code.

Note that the details of the parameters that are not described in the manual can change in the
future, so be ready to use a fixed version of the package (the ones with the specific number, like
circuitikz-0.9.3) if you dig into them.

3.1.4.1 Components size Perhaps the most important parameter is bipoles/length (default
1.4cm), which can be interpreted as the length of a resistor (including reasonable connections):
all other lengths are relative to this value. For instance:

28

100

B

1\ctikzset{bipoles/length=1.4cm}
2\begin{circuitikz}[scale=1.2]\draw
3 (0,0) nodel[anchor=east] {B}
to[short, o-*] (1,0)
to[R=20<\ohm>, *-x] (1,2)
to[R=10<\ohm>, v=v_x] (3,2) -- (4,2)
to[cI=$\frac{\si{\siemens}}{5} v_x$, *-x] (4,0) -- (3,0)
to[R=5<\ohm>, *-*] (3,2)
(3,0) -- (1,0)
o (1,2) tolshort, -o] (0,2) nodel[anchor=east]{A}
11 ;\end{circuitikz}

4
5
6
7
8
9

[

100
A A
Vg
2OQ§ 5Q§ AN
S
B

1\ctikzset{bipoles/length=.8cm}
2\begin{circuitikz}[scale=1.2] \draw

3 (0,0) nodel[anchor=east] {B}

4 to[short, o-*] (1,0)

5 to[R=20<\ohm>, *-x] (1,2)

6 to[R=10<\ohm>, v=v_x] (3,2) -- (4,2)

7 tol[cI=$\frac{\si{\siemens}}{5} v_x$, *-x] (4,0) -- (3,0)
3 to[R=5<\ohm>, *-x] (3,2)

9 (3,0) -- (1,0)

10 (1,2) tol[short, -o] (0,2) nodel[anchor=east]{A}
11 ;\end{circuitikz}

The changes on bipoles/length should, however, be globally applied to every path, because they
affect every element — including the poles. So you can have artifacts like these:

Q—/\/\/V—Q 1\begin{circuitikz}[
2 bigR/.style={R, bipoles/length=3cm}
3]
4 \draw (0,3) to [bigR, o-o] ++(4,0);
5 \draw (0,1.5) to [bigR, o-o] ++(4,0)
6 to[R, o-o] ++(2,0); % will fail here

7 \draw (0,0) to [R, o-o] ++(4,0);
s \end{circuitikz}

29

Several groups of components, on the other hand, have a special scale parameter that can be used
safely in this case (starting with 0.9.4 — more groups of components will be added going forward);
the key to use will be explained in the specific description of the components. For example, in the
case of resistors you have resistors/scale available:

0““‘/\\//\\//\\/*““0 1\begin{circuitikz}[

bigR/.style={R, resistors/scale=1.8}
]

2

3

4 \draw (0,3) to [bigR, o-o] ++(4,0);
°""‘/\\//\\//\\/f““{*‘j\/“vﬂwf‘o 5 \draw (0,1.5) to [bigR, o-o] ++(4,0)

6

7

8

to[R, o-o] ++(2,0); % ok now
\draw (0,0) to [R, o-o] ++(4,0);
\end{circuitikz}

3.1.4.2 Thickness of the lines (globally)

The best way to alter the thickness of components is using styling, see section 3.3.3. Alternatively,
you can use “legacy” classes like bipole, tripoles and so on — for example changing the param-
eter bipoles/thickness (default 2). The number is relative to the thickness of the normal lines
leading to the component.

1F

1 \ctikzset{bipoles/thickness=1}

2 \tikz \draw (0,0) to[C=1<\farad>] (2,0); \par
1F 3 \ctikzset{bipoles/thickness=4}

4 \tikz \draw (0,0) to[C=1<\farad>] (2,0);

3.1.4.3 Shape of the components (on a per-component-class basis)

The shape of the components are adjustable with a lot of parameters; in this manual we will
comment the main ones, but you can look into the source files specified above to find more.

10
—NNVN—| : \tikz \draw (0,0) to[R=1<\ohm>] (2,0); \par
10Q 2 \ctikzset{bipoles/resistor/height=.6}

A A A 3 \tikz \draw (0,0) to[R=1<\ohm>] (2,0);

It is recommended to use the styling parameters to change the shapes; they are not so fine grained
(for example, you can change the width of resistor, not the height at the moment), but they are
more stable and coherent across your circuit.

3.1.5 Descriptions

The typical entry in the component list will be like this:

resistor: resistor, american style, type: path-style ,
W nodename: resistorshape.Aliases: R, american

resistor. Class: resistors.

30

wiper PR: potentiometer, american style, type: path-style ,
r nodename: potentiometershape.Aliases: pR, american

V.V V potentiometer. Class: resistors.

where you have all the needed information about the bipole, with also no-standard anchors. If
the component can be filled it will be specified in the description. In addition, as an example, the
component shown will be filled with the option fill=cyan!30!white:

ammeter: Ammeter, type: path-style, fillable ,
nodename: ammetershape. Class: instruments.

The Class of the component (see section 3.3) is printed at the end of the description.

3.2 Node-style components

Node-style components (monopoles, multipoles) can be drawn at a specified point with this syntax,
where #1 is the name of the component:

1\begin{circuitikz}
2 \draw (0,0) nodel[#1,#2] (#3) {#4};
3\end{circuitikz}

Explanation of the parameters:

#1: component name® (mandatory)

#2: list of comma separated options (optional)

#3: name of an anchor (optional)

#4: text written to the text anchor of the component (optional)

Most path-style components can be used as a node-style components; to access them, you add
a shape to the main name of component (for example, diodeshape). Such a “node name” is
specified in the description of each component.

Notice: Nodes must have curly brackets at the end, even when empty. An optional anchor
(#3) can be defined within round brackets to be addressed again later on. And please don’t
forget the semicolon to terminate the \draw command.

Also notice: If using the \tikzexternalize feature, as of Tikz 2.1 all pictures must end
with \end{tikzpicture}. Thus you cannot use the circuitikz environment.

Which is ok: just use the environment tikzpicture: everything will work there just fine.

5For using bipoles as nodes, the name of the node is #1shape.

31

3.2.1 Mirroring and flipping

Mirroring and flipping of node components is obtained by using the TikZ keys xscale and yscale.
Notice that this parameters affect also text labels, so they need to be un-scaled by hand.

N _OAl SAO_ B 1\begin{circuitikz}[scale=0.7, transform shape]
i + \draw (0,3) node[op amp]{0A1};
\draw (3,3) nodel[op amp, xscale=-1]{0A2};

\draw (0,0) node[op amp]{0A3};

2
3
4
5 \draw (3,0) node[op amp, xscale=-1]1{%
i -+ 6 \scalebox{-1}[1]1{0A4}};
+0A3 OA4+ 7\end{circuitikz}

To simplify this task, CircuiTikZ when used in ITEX has three helper macros — \ctikzflipx{},
\ctikzflipy{}, and \ctikzflipxy{}, that can be used to “un-rotate” the text of nodes drawn
with, respectively, xscale=-1, yscale=-1, and scale=-1 (which is equivalent to xscale=-1,
yscale=-1). In other formats they are undefined; contributions to fill the gap are welcome.

OAlL OA2 1 \begin{circuitikz}[scale=0.7, transform shapel
-1z I 2 \draw (0,3) nodel[op amp]{0A1};

3 \draw (3,3) nodel[op amp, xscale=-1]{\ctikzflipx{0A2}};
4 \draw (0,0) nodel[op amp, yscale=-1]{\ctikzflipy{0A3}};

—+ T 5 \draw (3,0) node[op amp, scale=-1]{\ctikzflipxy{0A4}};
OA3 OA4 6 \end{circuitikz}

3.2.2 Anchors

Node components anchors are variable across the various kind of components, so they will described
better after each category is presented in the manual.

3.2.3 Descriptions

The typical entry in the component list will be like this:

{ Cute spdt down with arrow, type: node (node[cute spdt
down arrow]{}). Class: switches.
C
B NPN, TYPE: NODE (node[npn]{}). Class: transistors.
E

All the shapes defined by CircuiTikZ. These are all pgf nodes, so they are usable in both pgf
and TikZ. If the component can be filled it will be specified in the description. In addition, as an
example, the component shown will be filled with the option fill=cyan!30!white:

32

t
o Plain amplifier, type: node, fillable (node [plain amp]{}).

Class: amplifiers.

Sometime, components will expose internal (sub-)shapes that can be accessed with the syntax
<node name>-<internal node name> (a dash is separating the node name and the internal node
name); that will be shown in the description as a blue “anchor”:

N-out 1.n
u;g ! out 1 Rotary switch, type: node (node [rotaryswitch] (N){}).
inh’%mid Class: switches.

Ce%t@rfN-out 4.w

The Class of the component (see section 3.3) is printed at the end of the description.

3.3 Styling circuits and components

You can change the visual appearance of a circuit by using a circuit style different from the default.
For styling the circuit, the concept of class of a component is key: almost every component has a
class, and a style change will affect all the components of that class.

Let’s see the effect over a simple circuit®.

1 \begin{circuitikz} [american, cute inductors]

\node [op amp] (A1) {\texttt{0A1}};

\draw (Al.-) tol[short] ++(0,1) coordinate(tmp) to[R, 1_=R] (tmp -| Al.out) tol[short] (Al.out);
\draw (tmp) to[short] ++(0,1) coordinate(tmp) to[C=C] (tmp -| Al.out) to[short] (Al.out);

\draw (Al1.+) to [battery2, invert] ++(0,-2.5) nodel[ground] (GND){};

\draw (A1.-) to [L=L] ++(-2,0) coordinate(tmp) tol[sV, 1=v_s, fill=yellow] (tmp |-GND) node[ground]{};
\draw (Al.out) to[R=R_s] ++(2,0) coordinate(bb) to[I, 1_=I_B, invert] ++(0,2) node[vcc] (VCC){};
\draw (bb) to[D, 1=D, *-] ++(0,-2) coordinate(bbl) to[R=R_m] ++(0,-2) nodel[veel (VEE){};

9 \draw (bb) --++(1,0) nodel[npn, anchor=B](Q1){Q1};

10 \draw (bb1l) --++(1,0) nodel[pnp, anchor=B](Q2){Q2};

11 \draw (Q1.E) -- (Q2.E) ($(Q1.E)!0.5!'(Q2.E)$) to [short, *-o, name=S] ++(2.5,0)

12 node [right]{v_{o_Q}};

13 \draw (S.s) tol[european resistor, 1=Z_L, *-] (S.s|-GND) node[ground]{};

14 \draw (Q1.C) -- (Q1.C|-VCC) node[vcc]{\SI{5}{V}};

15 \draw (Q2.C) -- (Q2.C|-VEE) node[vee]l{\SI{-5}{V}};

16 \end{circuitikz}

0 N o U AW N

This code, with the default parameters, will render like the following image.

6This is a just an example, the circuit is not intended to be functional.

33

®vs

I Uio

3.3.1 Relative size

Component size can be changed globally (see section 3.1.4.1), or you can change their relative size
by scaling a family of components by setting the key class/scale; for example, you can change
the size of all the diodes in your circuit by setting diodes/scale to something different from the
default 1.0.

Remember that if you use a global scale (be sure to read section 1.7!) you change the coordinate
only, so using scale=0.8 in the environment options you have:

-5V

If you want to scale all the circuit, you have to use also transform shape:

34

Using relative sizes as described in section 3.1.4.1 enables your style for the circuit. For example,
setting:

1 \ctikzset{resistors/scale=0.8, / smaller R

2 capacitors/scale=0.7, / even smaller C
3 diodes/scale=0.6, / small diodes

4 transistors/scale=1.3} % bigger BJTs

Will result in a (much more readable in Romano’s opinion) circuit:

C
11 5V
I
—"\V\VN—
R
00—
L Q1
T Vio
I Q2 ZL
-5V

Warning: relative scaling is meant to work for a reasonable range of stretching and shortening,
so try to keep your scale parameter in the 0.5 to 2.0 range (more or less). Bigger or smaller value
can result in awkward shapes.

3.3.2 Fill color

You can also set a default fill color for the components. You can use the keys class/fill (which
defaults to none, no fill, i.e. transparent component) for all fillable components in the library.

If you add to the previous styles the following commands:

35

1\ctikzset{

2 amplifiers/fill=cyan,
3 sources/fill=green,

4 diodes/fill=red,

5 resistors/fill=violet,
6}

you will have the following circuit (note that the first generator is ezplicitly set to be yellow, so if
will not be colored green!):

C

I 5V
I
—VW—
R
Q1
Vog
@2 Wz
-5V

Please use this option with caution. Although two-color circuits can be nice, using more than that
can become rapidly unbearable. Old textbooks used the two-color style quite extensively, filling
with a kind of light blue like blue!30!white “closed” components, but that was largely to hinder
black-and-white photocopying...

3.3.3 Line thickness

You can change the line thickness for any class of component in an independent way. The default
standard thickness of components is defined on a loose “legacy” category (like bipoles, tripoles
and so on, see section 3.1.4.2); to override that you set the key class/thickness to any number.
The default is none, which means that the old way of selecting thickness is used.

For example, amplifiers have the legacy class of tripoles, as well as transistors and tubes. By
default they are drawn with thickness 2 (relative to the base linewidth). To change them to be
thicker, you can for example add to the previous style

1 \ctikzset{amplifier/thickness=4}

36

Vog

Zr,

Caveat: not every component has a “class”, so you have to play with the available ones (it’s
specified in the component description) and with the absolute values to have the circuit following
your taste. A bit of experimentation will create a kind of style options that you could use in all
your documents.

3.3.4 Style files

When using styles, it is possible to use style files (see section 3.3.5), that then you can load with
the command \ctikzloadstyle. For example, in the distribution you have a number of style files:
legacy, romano, example. When you load a style name name, you will have available a style called
name circuit style that you can apply to your circuits. The last style loaded is not enacted —
you have to explicitly do it if you want the style used by default, by putting for example in the
preamble:

\ctikzloadstyle{romano}
\tikzset{romano circuit style}

Please notice that the style is at TikZ level, not CircuiTikZ— that let’s you use it in the top option
of the circuit, like:

\begin{circuitikz}[legacy circuit style,
*]

\end{circuitikz}
If you just want to use one style, you can load and activate it in one command with

\ctikzsetstyle{romano}

The example style file will simply make the amplifiers filled with light blue:

1 \begin{circuitikz}

2 \draw (0,0) nodel[op amp]{0A1};
s\end{circuitikz}
4\ctikzloadstyle{example}

5 \begin{circuitikz} [example circuit style]
6 \draw (0,0) nodel[op amp]{0A1};
7\end{circuitikz}

37

The styles legacy is a style that set (most) of the style parameters to the default, and romano is
a style used by one of the authors; you can use these styles as is or you can use them to learn to
how to write new file style following the instructions in section 3.3.5. In the next diagrams, the
left hand one is using the romano circuit style and the rigth hand one the legacy style.

Vogq

5V -5V

3.3.5 Style files: how to write them

The best option is to start from ctikzstyle-legacy.tex and edit your style file from it. Then
you just put it in your input path and that’s all. If you want, you can contribute your style file to
the project.

Basically, to write the style example, you edit a file named ctikzstyle-romano.tex with will
define and enact TikZ style with name example circuit style; basically it has to be something
along this:

1/ ezample style for circuits

2/ Do not use LaTeX commands +f you want it to be compatible with ConTeXt
3/ Do not add spurious spaces

1+\tikzset{example circuit style/.style={%

5 \circuitikzbasekey/.cd,

6 amplifiers/fill=blue!20!white,

7},% end .style

s}/ end \tikzset

97

10 \endinput

N J

This kind of style will add to the existing style. If you want to have a style that substitute the
current style, you should do like this:

1\ctikzloadstyle{legacy}/ start from a know state
2\tikzset{romano circuit style/.style={/

legacy circuit style, 7 load the legacy style
\circuitikzbasekey/.cd,/

/% Resistors

resistors/scale=0.8,

]

[...
i3,

J

foc\]o:m»w

If you want to add a setting to your style file that has been recently added to the package (for
example, the thyristor compact shapes added in 1.3.5), but you want that your style file is still
compatible with older versions of CircuiTikZ, you can use the .try statement:

38

/4 Diodes

diodes/scale=0.6,
diodes/thickness=1.0,
thyristor style/.try=compact,

3.4 Subcircuits

Starting from version 1.3.5, there is an experimental’ support for generating sub-circuits, or
circuits blocks. The creation and use of subcircuits is somewhat limited, to keep them simple and
easy to define and maintain.

A subcircuit is basically a path (and just one path!) of generic TikZ instructions, with a series
of accessible coordinates that behave more or less like anchors in the “real” shapes. The basic
limitation is that a subcircuit can be moved, replicated and placed around but it can’t be easily
personalized. Even if scaling and rotation is in principle possible, it is not easily done. Nevertheless,
they can be quite useful to build complex components and reusable blocks.

3.4.1 Subcircuit definition

To define a block you use the \ctikzsubcircuitdef macro; this macro has 3 arguments:

e the first argument is the name of the subcircuit, and it must form a valid TeX command
name when prepended with a backslash: so just letters (no spaces, nor numbers, nor symbols
like underscores etc.);

o the second one is a comma-separated list of anchors names; here you can use whatever you
can use for naming a coordinate or a node (so it’s much more relaxed that the first one);

e finally, the commands that will draw the circuit. You must suppose you are in a \draw
command, with the start coordinate already set-up. You can (and should) use #1 as the
name of the current node, and you must define the coordinates of all the anchors listed
before as coordinate (#-anchorname). You should not finish the path here and use only
relative coordinates or named ones .

Let’s see that with an example:

1\ctikzsubcircuitdef{optovishay}{in 1, out 1, in 2, out 2, center}{/

2 /% reference anchor is -center
3 coordinate (#1-center)

4 (#1-center) +(-1.2,-1) rectangle +(1.2,1)

5 (#1-center) ++(-1.2,0.8) coordinate (#1-in 1)
6 (#1-center) ++(-1.2,-0.8) coordinate (#1-in 2)
7 (#1-center) ++(1.2,0.8) coordinate (#1-out 1)
8 (#1-center) ++(1.2,-0.8) coordinate (#1-out 2)
9 (#1-center) ++(0,1) coordinate (#1-up)

10 (#1-in 1) -- ++(0.5,0) coordinate (#1-tmp)

11 to[leD*, diodes/scale=0.6, led arrows from cathode]
12 (#1-tmp|- #1-in 2) -- (#1-in 2)

13 (#1-out 1) -- ++(-0.5,0) coordinate (#1-tmp)

14 to[pD*, diodes/scale=0.4, mirror] ++(0,-0.5)

15 edge [densely dashed] ++(0,-0.533) ++(0,-0.566)

"That means that in future releases the interface can change; use it at your risk and if you need it to continue
working as-is, please use the GitHub project page and download and save the circuitikzgit.sty file for future-proof
use!

39

https://circuitikz.github.io/circuitikz/

16 to[pD*, diodes/scale=0.4,mirror] (#1-tmp|- #l-out 2) -- (#1l-out 2)
17 7 leave the position of the path at the center
18 (#1-center)

19}

Our element is a symbol for an optocoupler; in this case is the symbol used for once cell of the
double Vishay vo1263 device.

The name of the subcircuit is optovishay — notice we can use only letters here, upper or lowercase,
and nothing more. Then we have a series of anchor names; here we can use letters, numbers, spaces
and some symbol — but avoid the dot (.) and the hyphen (-). Additionally, the anchor named
subckt@reference is reserved and shouldn’t be used. If you use spaces, be on the safe side and
never use two or more consecutive spaces.

After that, you have to draw your subcircuit as if you where into a \draw command, starting
from a generic point. In this case, we decide to draw the circuit around this generic point so
that it will result to be the center of the block; so as a first thing, we “mark” the position of the
center anchor, with coordinate (#1-center). The #1 will be substituted with the specific name
of the subcircuit’s instance later — so if you then call one instance of the optocoupler opto1, that
coordinate will be called optol-center.

We continue by defining all our anchors (there is no need to do that at the start, but it’s handy
because then you can use them). You must define all the anchors!

Important: all the coordinates used must be either relative, or named in the form #1-something;
absolute coordinate will not work when instantiating the block. The block is thought to be used
inside a path specification, so the idea is not to end the path — that means that changing line
styles or colors is at best difficult. You can still use edges, though (see 8.2).

After that, we draw our circuit; in this case a LED and a couple of smaller photodiodes will do.
We also define a coordinate -up (you can define more coordinates, in addition to the anchors, or
name elements with name=#1-something for later access) for adding text.

3.4.2 Using the subcircuit

To use the subcircuit, an additional step is needed. Somewhere you have to activate it. This
is needed to calculate the relative positions of anchors using the current set of style parame-
ters. The normal place is to activate it just before usage; to do that you use the command
\ctikzsubcircuitactivate with the name of the subcircuit. That will define a new command,
\nameofthesubcircuit that you can use then in your paths.

So to check your subcircuit while defining it you can use this simple snippet:
1\ctikzsubcircuitactivate{optovishay}

2 \begin{tikzpicture}
\draw (0,0) \optovishay{onel}{};

o1 02
3
!v* %f 4 \node [above] at (one-up) {01};
/3 ! /3 ! 5 \draw[color=blue] (one-out 1) -- ++(1,0)
6 \optovishay{two}{in 1};
"{ %£ 7 \node [above] at (two-up) {02};
8

\end{tikzpicture}

3.4.2.1 Scaling, flipping and rotating subcircuits To scale and rotate a subcircuit you
have to include it into a scope with the appropriate scale and rotation commands. Notice that,
as in general in CircuiTikZ, global scales that affect rotation works only if transform shape is
issued (see 1.7); nesting transform shape normally works, but it has been really lightly tested.

40

https://www.vishay.com/docs/84639/vo1263aa.pdf

1\ctikzsubcircuitactivate{optovishay}
2\begin{tikzpicture}[scale=0.8, transform shape]
3 \draw (0,0) \optovishay{three}{};
\draw (three-out 1) -- ++(0.5,0) coordinate(here);
\begin{scope}[xscale=-1,rotate=-45,transform shapel
\draw (here) \optovishay{four}{out 1};

4
5
¥ | .
i 1 7 \end{scope}
1{ 8 \draw[blue] (three-out 2) -| (four-out 2);
9

\end{tikzpicture}

3.4.3 Parameters in subcircuits

There are no additional parameters definable for subcircuit shapes; this is a bit of a pity, because
sometime they could be useful, especially for labels of objects. Given the need to use transform
shape to translate and rotate them, though, it is better not to add invariant-direction things (like
text) into the subcircuit, unless you are sure you will just translate them. One possibility is to
use additional macros and anchors for positioning, like in the following example.

Suppose you have defined

\ctikzsubcircuitdef{divider}{in, out}{/
coordinate (#1-in) to[R, 1=~, name=#1-rh, -*] ++(2,0)
coordinate (#1-tmp) to[R, l=~, name=#1-rl] ++(0,-2)
node [tlground] {} (#1-tmp) --++(0.5,0) coordinate(#1-out)

[

}

then you can additionally define:

\newcommand{\mydiv} [4]{
\divider{#1}{#2} (#1-rh.n) node[above]l {#3}
(#1-rl.n) nodel[right]{#4} (#1-out)

S

}

And finally do:

Ry Rs
1\ctikzsubcircuitactivate{divider}
2\begin{tikzpicture}

3 \draw (0,0) \mydiv{a}{in}{R_1}{R_2};

Ry Ry 4 \draw (a-out) -- \mydiv{b}{in}{R_3}{R_4};
5 \end{tikzpicture}

41

4 The components: list

4.1 Grounds and supply voltages
4.1.1 Grounds

For the grounds, the center anchor is put on the connecting point of the symbol, so that you can
use them directly in a path specification.

ente
comer Ground, type: node (node [ground]{}). Class: grounds.
contor Tailless ground, type: node (node[tlground]{}). Class:
- grounds.
L Reference ground, type: node (node [rground]{}). Class:
grounds.
%7 Signal ground, type: node, fillable (node [sground]{}).
Class: grounds.

Thicker tailless reference ground, type: node
(node [tground]{}). Class: grounds.

Noiseless ground, type: node (node [nground]{}). Class:
grounds.

Protective ground, type: node, fillable
(node [pground]{}). Class: grounds.

Chassis ground®, type: node (node [cground]{}). Class:
grounds.

European style ground, type: node (node [eground]{}).
Class: grounds.

European style ground, version 27, type: node
(node [eground2]{}). Class: grounds.

Ty

4.1.1.1 Grounds anchors Anchors for grounds are a bit strange, given that they have the
center spot at the same location than north and all the ground will develop “going down”:

north
north west north east ol
0 i left ~ right
-
~ o o center
west—o o——east
e} [o] —
~ // - ™~
—~ ~
south west south east

south

8These last three were contributed by Luigi «Liverpool»
9These last two were contributed by @fotesan

42

4.1.1.2 Grounds customization You can change the scale of these components (all the
ground symbols together) by setting the key grounds/scale (default 1.0).

4.1.2 Power supplies

VCC/VDD, type: node (nodel[vccl{}). Class: power
4\ supplies.
\L VEE/VSS, type: node (node [veel{}). Class: power
supplies.

The power supplies are normally drawn with the arrows shown in the list above.

4.1.2.1 Power supply anchors They are similar to grounds anchors, and the geographical
anchors are correct only for the default arrow.

north west north n()/rth east
west east left‘j tright
center\
south west south east
south

4.1.2.2 Power supplies customization You can change the scale of the power supplies by
setting the key power supplies/scale (default 1.0).

Given that the power supply symbols are basically arrows, you can change them using all the
options of the arrows.meta package (see the TikZ manual for details) by changing the keys
monopoles/vcc/arrow and monopoles/vee/arrow (the default for both is legacy, which will use
the old code for drawing them). Note that the anchors are at the start of the connecting lines,
and that geographical anchors are just approximation if you change the arrow symbol!

1\begin{circuitikz}
VvCC 2 \def\coord (#1){\showcoord (#1)<0:0.3>}
/L \draw (0,0)
vee J/—VCC node [vcc] (vec) {VCC} \coord(vcc) ++(2,0)
node [vee] (vee) {VEE} \coord(vee);
VEE \ctikzset{monopoles/vcc/arrow={Stealth[red, width=6pt,
vVCC length=9pt]1}}
7 \ctikzset{monopoles/vee/arrow={Latex[blue] }}
chc vee 8 \draw (0,-2)
iﬁ 9 node [vcc] (vec) {VCC} \coord(vcc) ++(2,0)

VEE 10 node [vee] (vee) {VEE} \coord(vee);
11 \end{circuitikz}

[N S

However, arrows in TikZ are in the same class with the line thickness, so they do not scale with
neither the class power supplies scale nor the global scale parameter (you should use transform
canvas={scale..} for this).

If you want that the arrows behave like the legacy symbols (which are shapes), only in the arrow
definitions, you can use the special length parameter \scaledwidth'® in the arrow definition,
which correspond to the width of the legacy vcc or vee. Compare the effects on the following
circuit.

10Thanks to @Schrédinger’s cat on TEX stackexchange site

43

https://tex.stackexchange.com/a/506249/38080

L]
2V
I

10V

+

—-10V

Vo

10V

1\ctikzset{/

2

3

4}

monopoles/vcc/arrow={Triangle [width=0.8*\scaledwidth, length=\scaledwidth]},
monopoles/vee/arrow={Triangle [width=6pt, length=8pt]l},

s \begin{circuitikz}[baseline=(vo.center)]

12 \end{circuitikz} \qquad

\node
\draw
\draw
\draw
\draw

1{};
\draw (Al.out) to[short, -o] ++(0.5,0) node[above] (vo){v_o};

[ocirc] (TW) at (0,0) {};
(TW.east) -- ++(1,0) node[midway, abovel{v_i} node[op amp, anchor=-](A1){};
(Al.up) -- ++(0, 0.3) node[vcc]{\SI{+10}{V}};

(A1l.down) -- ++(0,-0.3) nodel[vee]l{\SI{-10}{V}};
(A1.+) -- ++(-0.5,0) to[battery2, invert, 1_=\SI{2}{V}] ++(0,-1) node[ground

13 \begin{circuitikz}[baseline=(vo.center), scale=0.6, transform shape]

14

15

\node
\draw
\draw
\draw
\draw

1{3;
\draw (Al.out) to[short, -o] ++(0.5,0) node[above] (vo){v_o};
20 \end{circuitikz}

4.2 Resistive bipoles

[ocirc] (TW) at (0,0) {};
(TW.east) -- ++(1,0) node[midway, abovel{v_i} nodel[op amp, anchor=-](A1){};
(Al.up) -- ++(0, 0.3) node[vec]{\SI{+10}{V}};

(A1l.down) -- ++(0,-0.3) nodel[vee]l{\SI{-10}{V}};
(A1.+) -- ++(-0.5,0) to[battery2, invert, 1_=\SI{2}{V}] ++(0,-1) node[ground

short: Short circuit, type: path-style , nodename:
shortshape. Class: default.

open: Open circuit, type: path-style , nodename:
openshape. Class: default.

generic: Generic (symmetric) bipole, type:
path-style, fillable , nodename: genericshape.
Class: resistors.

xgeneric: Crossed generic (symmetric) bipole, type:
path-style, fillable , nodename: xgenericshape.
Class: resistors.

tgeneric: Tunable generic bipole, type: path-style,
fillable , nodename: tgenericshape. Class:
resistors.

44

ageneric: Generic asymmetric bipole, type:
path-style, fillable , nodename: agenericshape.
Class: resistors.

memristor: Memristor, type: path-style, fillable ,
—@ nodename: memristorshape.Aliases: Mr. Class:

resistors.

If americanresistors option is active (or the style [american resistors] is used; this is the
default for the package), the resistors are displayed as follows:

R: Resistor, type: path-style , nodename:
resistorshape. Aliases: american resistor. Class:
resistors.

vR: Variable resistor, type: path-style , nodename:
vresistorshape. Aliases: variable american resistor.
Class: resistors.

ok

rwipcr pR: Potentiometer, type: path-style , nodename:
potentiometershape. Aliases: american potentiometer.
Class: resistors.

sR: Resisitive sensor, type: path-style , nodename:
resistivesensshape. Aliases: american resisitive
—label sensor. Class: resistors.

ok

If instead europeanresistors option is active (or the style [european resistors] is used), the
resistors, variable resistors and potentiometers are displayed as follows:

R: Resistor, type: path-style, fillable , nodename:
genericshape. Aliases: european resistor. Class:
resistors.

vR: Variable resistor, type: path-style, fillable ,
nodename: tgenericshape.Aliases: variable european
resistor. Class: resistors.

B

pR: Potentiometer, type: path-style, fillable ,
nodename: genericpotentiometershape.Aliases:

wiper

i

european potentiometer. Class: resistors.

sR: Resistive sensor, type: path-style, fillable ,
nodename: thermistorshape.Aliases: european
resistive sensor. Class: resistors.

q
]

bel

Other miscellaneous resistor-like devices:

varistor: Varistor, type: path-style, fillable ,
nodename: varistorshape. Class: resistors.

phR: Photoresistor, type: path-style, fillable ,
nodename: photoresistorshape.Aliases:
photoresistor. Class: resistors.

g

45

thR: Thermistor, type: path-style, fillable ,
nodename: thermistorshape.Aliases: thermistor.
Class: resistors.

thRp: PTC thermistor, type: path-style, fillable ,
nodename: thermistorptcshape.Aliases: thermistor
oM ptc. Class: resistors.

v

thRn: NTC thermistor, type: path-style, fillable ,
nodename: thermistorntcshape.Aliases: thermistor
ntc. Class: resistors.

J

YAV

4.2.1 Potentiometers: wiper position

Since version 0.9.5, you can control the position of the wiper in potentiometers using the key
wiper pos, which is a number in the range [0, 1]. The default middle position is wiper pos=0.5.

1\begin{circuitikz} [american]

2 \ctikzset{resistors/width=1.5, resistors/zigs=9}
3 \draw (0,0) to[pR, name=A] ++(0,-4);
<~ B 4 \draw (1.5,0) to[pR, wiper pos=0.3, name=B] ++(0,-4);
- A 5 \ctikzset{european resistors}

6 \draw (3,0) to[pR, wiper pos=0.8, name=C] ++(0,-4);
C 7 \foreach \i in {A, B, C}

8 \node [right] at (\i.wiper) {\i};

o \end{circuitikz}

4.2.2 Generic sensors anchors

Generic sensors have an extra anchor named label to help position the type of dependence, if
needed:

R
{}éﬁ?NVh 1\begin{circuitikz}

2 \draw (0,2) to[sR, 1=R, name=mySR] ++(3,0);
I 3 \node [font=\tiny, right] at(mySR.label) {-t\si{\degreel}};
4 \draw (0,0) to[sL, 1=L, name=mySL] ++(3,0);
W 5 \node [draw, circle, inner sep=2pt] at(mySL.label) {};
6 \draw (0,-2) to[sC, 1=C, name=mySC] ++(3,0);
7 \node [font=\tiny, below right, inner sep=Opt] at(mySC.label)
{+H\si{\/}};
¢ s\end{circuitikz}

+H%

The anchor is positioned just on the corner of the segmented line crossing the component.

46

4.2.3 Resistive components customization

4.2.3.1 Geometry. You can change the scale of these components (all the resistive bipoles
together) by setting the key resistors/scale (default 1.0). Similarly, you can change the widths
by setting resistors/width (default 0.8).

You can change the width of these components (all the resistive bipoles together) by setting the
key resistors/width to something different from the default 0.8.

For the american style resistors, you can change the number of “zig-zags” by setting the key
resistors/zigs (default value 3).

1\begin{circuitikz}[

2 longpot/.style = {pR, resistors/scale=0.75,
3 resistors/width=1.6, resistors/zigs=61}]

4 \draw (0,1.5) to[R, 1=R] ++(4,0);

5 \draw (0,0) to[longpot, 1=P] ++(4,0);

6 \ctikzset{resistors/scale=1.5}

7 \draw (0,-1.5) to[R, 1=R] ++(4,0);

s \end{circuitikz}

R
P
\/
— AWM
R
4.2.3.2 Thickness. The line thickness of the resistive components is governed by the class
thickness; you can change it assigning a value to the key resistors/thickness (default none,

that means bipoles/thickness is used, and that defaults to 2.0; the value is relative to the base
line thickness).

We can call modifiers the elements that are added to the basic shape to express some characteristics
of the component; for example the arrows for the variable resistors or the bar for the sensors.
Normally the thickness of this elements is the same as the one chosen for the component!!. You
can change their thickness with the class key modifier thickness which is relative to the main
component thickness.

1\begin{circuitikz}[american]
2 \draw (0,2) to[vR] ++(2,0) to[sR] ++(2,0);
3 \ctikzset{resistors/thickness=4}
J\N\,—W 4 \draw (0,1) to[vR] ++(2,0) to[sR] ++(2,0);
5 \ctikzset{resistors/modifier thickness=0.5}
A 9;” j ;:R 6 \draw (0,0) to[vR] ++(2,0) to[sR] ++(2,0);
7

\end{circuitikz}
4.2.3.3 Arrows. You can change the arrow tips used in tunable resistors (vR, tgeneric) with
the key tunable end arrow and in potentiometers with the key wiper end arrow (by default
the key is the word “default” to obtain the default arrow, which is latexslim for both). Also
you can change the start arrow with the corresponding tunable start arrow or wiper start
arrow (the default value “default” is equivalent to {} for both, which means no arrow).

You can change that globally or locally, as ever. The tip specification is the one you can find in
the TikZ manual (“Arrow Tip Specifications”).

1 Due to a bug in versions before 1.3.4, that didn’t happen for thermistors

47

1 \begin{circuitikz} [american]
2 % globally all the potentiometrs
3 \ctikzset{wiper end arrow={Kite[open]1}}
4 \draw (0,0) to[tgeneric] ++(2,0)
5 % set locally on this wariable resistor
6 to[vR, tunable end arrow={Stealth[red]},
7 tunable start arrow={Bar}, invert] ++(0,-2)
8 to[pR] ++(-2,0);
$ 9 \end{circuitikz}

4.3 Capacitors and inductors: dynamical bipoles

4.3.1 Capacitors

capacitor: Capacitor, type: path-style , nodename:

capacitorshape. Aliases: C. Class: capacitors.

curved capacitor: Curved (polarized) capacitor, type:
%H path-style , nodename: ccapacitorshape.Aliases:

cC. Class: capacitors.

N ecapacitor: Electrolytic capacitor, type: path-style,
]Ii fillable , nodename: ecapacitorshape.Aliases:
eC,elko. Class: capacitors.

v variable capacitor: Variable capacitor, type:
path-style , nodename: vcapacitorshape.Aliases:
vC. Class: capacitors.

capacitive sensor: Capacitive sensor, type:
path-style , nodename:

—Llabel capacitivesensshape. Aliases: sC. Class: capacitors.
piezoelectric: Piezoelectric Element, type:
—”:H— path-style, fillable , nodename:
piezoelectricshape. Aliases: PZ. Class: capacitors.

curve left

center . 3 : 12 . _
Kink left C¢ feC: Ferroelectric capacitor-, type: path-style,

d fillable , nodename: ferrocapshape.Aliases:
ferrocap. Class: capacitors.

kink right

curve right

Ferroelectric capacitors are fillable because that could be used to show the state of the hysteresis
of the component.

4 1 \begin{tikzpicture}[]

2 \ctikzset{capacitors/.cd,

3 thickness=4, modifier thickness=0.5}

\draw (0,0) to[feC, 1=C_1, v=vi] ++(3,0)

51 tol[feC, 1=C_2, fill=green, name=C2] ++(0,-2);

<;Zf

vl Ca 6 \node [font=\tiny, above right, inner sep=1pt]
7 at(C2.kink left) {S_18};
s\end{tikzpicture}

25uggested by Mayeul Cantan

48

https://github.com/circuitikz/circuitikz/issues/515

There is also the (deprecated!® — its polarity is not coherent with the rest of the components)
polar capacitor:

polar capacitor: Polar capacitor, type: path-style ,
% }7 nodename: pcapacitorshape.Aliases: pC. Class:

capacitors.

4.3.2 Capacitive sensors anchors

For capacitive sensors, see section 4.2.2.

4.3.3 Capacitors customizations

You can change the scale of the capacitors by setting the key capacitors/scale to something
different from the default 1.0. For thickness, you can use the same keys (applied to the capacitors
class) as for resistors in 4.2.3.2.

Variable capacitors arrow tips follow the settings of resistors, see section 4.2.3.3.

4.3.4 Inductors

If the cuteinductors option is active (default behaviour), or the style [cute inductors] is used,
the inductors are displayed as follows:

midtap L: Inductor, type: path-style , nodename:
cuteinductorshape. Aliases: cute inductor. Class:
inductors.
core west core east vL: Variable inductor, type: path-style , nodename:
o o

vcuteinductorshape. Aliases: variable cute inductor.
Class: inductors.

sL: Inductive sensor, type: path-style , nodename:
% scuteinductorshape. Aliases: cute inductive sensor.

label (Class: inductors.

If the americaninductors option is active (or the style [american inductors] is used), the
inductors are displayed as follows:

midtap L: Inductor, type: path-style , nodename:
americaninductorshape. Aliases: american inductor.
Class: inductors.

core west core east VL: Variable inductor, type: path-style , nodename:
o vamericaninductorshape. Aliases: variable american
inductor. Class: inductors.

sL: Inductive sensor, type: path-style , nodename:
m samericaninductorshape. Aliases: american inductive
abe

sensor. Class: inductors.

13Thanks to Anshul Singhv for noticing.

49

https://tex.stackexchange.com/questions/509594/polar-capacitor-orientation-in-circuitikz-seems-wrong

Finally, if the europeaninductors option is active (or the style [european inductors] is used),
the inductors are displayed as follows:

midtap L: Inductor, type: path-style , nodename:

‘ fullgenericshape. Aliases: european inductor. Class:
inductors.

core west core east yL: Variable inductor, type: path-style , nodename:

tfullgenericshape. Aliases: variable european

inductor. Class: inductors.
sL: Inductive sensor, type: path-style , nodename:

! sfullgenericshape.Aliases: european inductive

label sensor. Class: inductors.

For historical reasons, chokes comes only in the cute. You can use the core west and core east
anchors (see 4.3.6.2) to build your own core lines for the other inductors.

— cute choke: Choke, type: path-style , nodename:
0000 cutechokeshape. Class: inductors.

4.3.5 Inductors customizations

You can change the scale of the inductors by setting the key inductors/scale to something
different from the default 1.0. For thickness, you can use the same keys (applied to the inductors
class) as for resistors in 4.2.3.2.

Variable inductors arrow tips follow the settings of resistors, see section 4.2.3.3.

You can change the width of these components (all the inductors together, unless you use style
or scoping) by setting the key inductors/width to something different from the default, which is
0.8 for american and european inductors, and 0.6 for cute inductors.

Moreover, you can change the number of “coils” drawn by setting the key inductors/coils
(default value 5 for cute inductors and 4 for american ones). Notice that the minimum number
of coils is 1 for american inductors, and 2 for cute ones.

1\begin{circuitikz}[
longl/.style = {cute inductor, inductors/scale=0.75,
inductors/width=1.6, inductors/coils=9}]
\draw (0,1.5) to[L, 1=L] ++(4,0);

L
3000 .
3
L 4
 SEEEETI 5 \draw (0,0) to[longL, 1=L] ++(4,0);
6
7
L s
_ YYY L

\ctikzset{inductors/scale=1.5, inductor=american}
\draw (0,-1.5) to[L, 1=L] ++(4,0);
\end{circuitikz}

a0

4.3.5.1 Chokes can have single and double lines, and can have the line thickness adjusted
(the value is relative to the thickness of the inductor). In general, you should use the anchors
(see 4.3.6.2) to add core lines to inductors.

5500\ 1\begin{circuitikz}[american]
2 \draw (0,0) tol[cute choke] ++(3,0);
m— 3 \draw (0,-1) to[cute choke, twolineschoke] ++(3,0);
4
5 \ctikzset{bipoles/cutechoke/cthick=2, twolineschoke}
7 \draw (0,-2) tol[cute choke] ++(3,0);
8 \draw (0,-3) to[cute choke, onelinechoke] ++(3,0);
75000 o\end{circuitikz}

4.3.6 Inductors anchors

For inductive sensors, see section 4.2.2.

4.3.6.1 Taps. Inductors have an additional anchor, called midtap, that connects to the center
of the coil “wire”. Notice that this anchor could be on one side or the other of the component,
depending on the number of loops of the element; if you need a fixed position, you can use the
geographical anchors.

1\begin{circuitikz}[
2 loops/.style={circuitikz/inductors/coils=#1}]

3\ctikzset{cute inductors}

M 4+\draw (0,2) to[L, loops=5, name=A] ++(2,0)

sto[L, loops=6, name=B] ++(2,0);

6 \ctikzset{american inductors}

7\draw (0,0) to[L, loops=5, name=C] ++(2,0)

sto[L, loops=6, name=D] ++(2,0);

—YYYN____ YWY o\foreach \i in {A, B, C, D}
10 \nodel[circle, fill=red, inner sep=1pt] at (\i.midtap){};
11 \end{circuitikz}

4.3.6.2 Core anchors. Inductors have additional anchors to add core lines (for historical
reasons, there is a cute choke component also, but to use inductors in the chosen style you better
use these anchors). The anchors are called core west and core east and they are positioned
at a distance that you can tweak with the \ctikzset key bipoles/inductors/core distance
(default 2pt).

1 \begin{circuitikz}[]
_L__ 2 \ctikzset{american}
— Y 3 \draw (0,3) to[L=L, name=myL] ++(2,0);
4 \draw[thick] (myL.core west) -- (myL.core east);
I 5 \ctikzset{cute inductors}
***** 6 \draw (0,1.5) to[L=L, name=myL] ++(2,0);
— /00— 7 \draw[densely dashed] (myL.core west) -- (myL.core east);
s \ctikzset{european, bipoles/inductors/core distance=4pt}
L 9 \draw (0,0) to[L=L, name=myL, label distance=2pt] ++(2,0);
r— 10 \draw[thick, double] (myL.core west) -- (myL.core east);
I 11 \end{circuitikz}

Notice that the core lines will not change the position of labels. You have to move them by hand
if needed (or position them on the other side); see 5.1.1.1.

ol

4.4 Diodes and such

There are three basic styles for diodes: empty (fillable in color), full (completely filled with the
draw color) and stroke (empty, but with a line across them).

You can switch between the styles setting the key diode (for example \ctikzset{diode=full}
or empty or stroke, or with the styles full diodes, empty diodes and stroke diodes.

To use the default element, simply use the name shown for the empty diodes without the final “o0”
— that is D, sD, and so on. The names shown in the following tables will draw the specified diode
independently on the style chosen (that is, 1eD* is always a full LED diode).

The package options fulldiode, strokediode, and emptydiode (and the styles [full
diodes], [stroke diodes], and [empty diodes]) define which shape will be used by ab-
breviated commands such that D, sD, zD, zzD, tD, pD, leD, VC, Ty,Tr (no stroke symbol
available!).

empty diode: Empty diode, type: path-style,
fillable , nodename: emptydiodeshape.Aliases: Do.
Class: diodes.

empty Schottky diode: Empty Schottky diode, type:
path-style, fillable , nodename:
emptysdiodeshape. Aliases: sDo. Class: diodes.

- empty Zener diode: Empty Zener diode, type:
path-style, fillable , nodename:
emptyzdiodeshape. Aliases: zDo. Class: diodes.

N empty ZZener diode: Empty ZZener diode, type:
path-style, fillable , nodename:
N emptyzzdiodeshape. Aliases: zzDo. Class: diodes.

- empty tunnel diode: Empty tunnel diode, type:
path-style, fillable , nodename:
- emptytdiodeshape. Aliases: tDo. Class: diodes.

// empty photodiode: Empty photodiode, type:
path-style, fillable , nodename:
emptypdiodeshape. Aliases: pDo. Class: diodes.

// empty led: Empty led, type: path-style, fillable ,
nodename: emptylediodeshape.Aliases: leDo. Class:
diodes.

empty varcap: Empty varcap, type: path-style,

4D7 fillable , nodename: emptyvarcapshape.Aliases:
VCo. Class: diodes.

empty bidirectionaldiode: Empty bidirectionaldiode,
type: path-style, fillable , nodename:
emptybidirectionaldiodeshape. Aliases: biDo. Class:
diodes.

92

full diode: Full diode, type: path-style ,
nodename: fulldiodeshape.Aliases: D*. Class: diodes.

- full Schottky diode: Full Schottky diode, type:
path-style , nodename: fullsdiodeshape.Aliases:
sDx. Class: diodes.

full Zener diode: Full Zener diode, type: path-style
, nodename: fullzdiodeshape.Aliases: zD*. Class:
diodes.

full ZZener diode: Full ZZener diode, type:
— path-style , nodename: fullzzdiodeshape.Aliases:
N zzD*. Class: diodes.

full tunnel diode: Full tunnel diode, type:
— path-style , nodename: fulltdiodeshape.Aliases:
tD#*. Class: diodes.

v/vv|v/y

full photodiode: Full photodiode, type: path-style ,
nodename: fullpdiodeshape.Aliases: pD*. Class:
diodes.

v

full led: Full led, type: path-style , nodename:
fulllediodeshape.Aliases: 1eD*. Class: diodes.

full varcap: Full varcap, type: path-style ,
nodename: fullvarcapshape.Aliases: VCx. Class:
diodes.

vV

full bidirectionaldiode: Full bidirectionaldiode,
type: path-style , nodename:
fullbidirectionaldiodeshape. Aliases: biD#*. Class:
diodes.

va

These shapes have no exact node-style counterpart, because the stroke line is built upon the empty
variants:

stroke diode: Stroke diode, type: path-style,
fillable , nodename: emptydiodeshape.Aliases: D-.
Class: diodes.

stroke Schottky diode: Stroke Schottky diode, type:
path-style, fillable , nodename:
emptysdiodeshape. Aliases: sD-. Class: diodes.

C

- stroke Zener diode: Stroke Zener diode, type:
path-style, fillable , nodename:
emptyzdiodeshape. Aliases: zD-. Class: diodes.

N stroke ZZener diode: Stroke ZZener diode, type:
path-style, fillable , nodename:
N emptyzzdiodeshape. Aliases: zzD-. Class: diodes.

33

stroke tunnel diode: Stroke tunnel diode, type:
path-style, fillable , nodename:
emptytdiodeshape. Aliases: tD-. Class: diodes.

stroke photodiode: Stroke photodiode, type:
path-style, fillable , nodename:
emptypdiodeshape. Aliases: pD-. Class: diodes.

stroke led: Stroke led, type: path-style, fillable
, nodename: emptylediodeshape.Aliases: 1eD-. Class:
diodes.

e

stroke varcap: Stroke varcap, type: path-style,
fillable , nodename: emptyvarcapshape.Aliases:
VC-. Class: diodes.

4.4.1 Tripole-like diodes

The following tripoles are entered with the usual command, of the form to[Tr, ..].

following list you can see the traditional, or legacy, shape of the Thyristors-type devices.

full diode: Full diode, type: path-style ,
nodename: fulldiodeshape.Aliases: D*. Class: diodes.

o

stroke diode: Stroke diode, type: path-style,
fillable , nodename: emptydiodeshape.Aliases: D-.
Class: diodes.

G

*

anode athode

triac: Standard triac (shape depends on package option),
type: path-style, fillable , nodename:
emptytriacshape.Aliases: Tr. Class: diodes.

gate

empty triac: Empty triac, type: path-style,
fillable , nodename: emptytriacshape.Aliases: Tro.
Class: diodes.

|

full triac: Full triac, type: path-style , nodename:
fulltriacshape.Aliases: Tr*. Class: diodes.

gate
a

%

anode cathode

thyristor: Standard thyristor (shape depends on
package option), type: path-style, fillable ,
nodename: emptythyristorshape.Aliases: Ty. Class:
diodes.

3

empty thyristor: Empty thyristor, type: path-style,
fillable , nodename: emptythyristorshape.Aliases:
Tyo. Class: diodes.

o4

In the

full thyristor: Full thyristor, type: path-style ,
nodename: fullthyristorshape.Aliases: Ty*. Class:
diodes.

v v

stroke thyristor: Stroke thyristor, type: path-style,
fillable , nodename: emptythyristorshape.Aliases:
Ty-. Class: diodes.

gate

7

anode cathode

put: Standard Programmable Unipolar
Transistor'4(shape depends on package option), type:
path-style, fillable , nodename:
emptyputshape. Aliases: PUT. Class: diodes.

empty put: Empty PUT, type: path-style, fillable
, nodename: emptyputshape.Aliases: PUTo. Class:
diodes.

full put: Full PUT, type: path-style , nodename:
fullputshape. Aliases: PUT*. Class: diodes.

v ¥ |v

stroke put: Stroke PUT, type: path-style,
fillable , nodename: emptyputshape.Aliases: PUT-.
Class: diodes.

ga te
G

anode cathode

gto: Standard GTO (shape depends on package option),
type: path-style, fillable , nodename:
emptygtoshape. Aliases: GT0. Class: diodes.

empty gto: Empty GTO, type: path-style, fillable
, nodename: emptygtoshape.Aliases: GT0o. Class:
diodes.

full gto: Full GTO, type: path-style , nodename:
fullgtoshape.Aliases: GTO*. Class: diodes.

v v ¥

stroke gto: Stroke GTO, type: path-style,
fillable , nodename: emptygtoshape.Aliases: GTO-.
Class: diodes.

gate

anode cathode

gtobar: Standard GTO with bar-type gate (shape
depends on package option), type: path-style,
fillable , nodename: emptygtobarshape.Aliases:
GTODb. Class: diodes.

7

empty gtobar: Empty GTO, bar-type, type:
path-style, fillable , nodename:
emptygtobarshape. Aliases: GTObo. Class: diodes.

14This components, and the GTO family, has been suggested by GitHub user JetherReis.

%)

https://github.com/circuitikz/circuitikz/issues/522

J

full gtobar: Full GTO, bar-type, type: path-style ,
nodename: fullgtobarshape.Aliases: GTOb*. Class:
diodes.

-

v v

stroke gtobar: Stroke GTO, bar type, type:
path-style, fillable , nodename:
emptygtobarshape. Aliases: GTOb-. Class: diodes.

gate
o

x

%gﬁ\

anode cathode

agtobar: Standard GTO with bar-type gate on anode
(shape depends on package option), type: path-style,
fillable , nodename: emptyagtobarshape.Aliases:
aGT0Ob. Class: diodes.

empty agtobar: Empty GTO, bar-type on anode, type:
path-style, fillable , nodename:
emptyagtobarshape. Aliases: aGTObo. Class: diodes.

full agtobar: Full GTO, bar-type on anode, type:
path-style , nodename: fullagtobarshape.Aliases:
aGTOb*. Class: diodes.

vy v

stroke agtobar: Stroke GTO, bar-type on anode, type:
path-style, fillable , nodename:
emptyagtobarshape. Aliases: aGTOb-. Class: diodes.

For basically stylistical reasons, there is a different, more compact, shape available for them,
activated with the key thyristor style=compact (the default is legacy). All the devices above

are present, we will show here just the automatic version for shortness.

triac: Standard triac (shape depends on package option),
type: path-style, fillable , nodename:
emptytriacshape. Aliases: Tr. Class: diodes.

anode cathode

thyristor: Standard thyristor (shape depends on
package option), type: path-style, fillable ,
nodename: emptythyristorshape.Aliases: Ty. Class:
diodes.

gate

2

anode cathode

put: Standard Programmable Unipolar Transistor (shape
depends on package option), type: path-style,
fillable , nodename: emptyputshape.Aliases: PUT.
Class: diodes.

gate

G

¥,

anode cathode

gto: Standard gto (shape depends on package option),
type: path-style, fillable , nodename:
emptygtoshape. Aliases: GTO. Class: diodes.

gate

G

¥,

anode cathode

gtobar: Standard GTO with a bar symbol on the gate
(shape depends on package option), type: path-style,
fillable , nodename: emptygtobarshape.Aliases:
GTODb. Class: diodes.

o6

gate

agtobar: Standard GTO with bar-type gate on anode
G (shape depends on package option), type: path-style,
fillable , nodename: emptyagtobarshape.Aliases:
aGTOb. Class: diodes.

anode cathode

4.4.2 Thyristors anchors and customization

When inserting a thrystor, a triac or a potentiometer, one needs to refer to the third node-gate
(gate or G) for the former two; wiper (wiper or W) for the latter one. This is done by giving a
name to the bipole:

1\begin{circuitikz} \draw

2 (0,0) to[Tr, n=TRI] (2,0)

3 to[pR, n=P0T] (4,0);

4+ \draw[dashed] (TRI.G) -| (POT.wiper)
5 ;\end{circuitikz}

As commented above, you can change the shape of these devices (globally or locally) setting the key
thyristor style=compact (the default is legacy). Additionally, normally the plain GTO symbols
come without the arrows, but you can add them using a syntax similar to the one explained in
section 4.2.3.3 using the arrow group gto gate.

1 \begin{circuitikz}[]
2 \ctikzset{thyristor style=compact}
3 \draw (0,0) to[GTO=G_1] ++(0,-3);

G1 Go Go 4 \ctikzset{gto gate end arrow=latexslim}
5 \draw (2,0) to[GTO*=G_2, mirror] ++(0,-3);
6 \draw (4,0) to[GTOb-=G_2, mirror] ++(0,-3);
7 \end{circuitikz}

Notice that you can set both gto gate end arrow and gto gate start arrow — choosing just
one of the two you can decide the “rotation” direction of the symbol. There is little space though,
so don’t overdo it.

4.4.3 Diode customizations

You can change the scale of the diodes by setting the key diodes/scale to something different
from the default 1.0. In Romano’s opinion, diodes are somewhat big with the default style of the
package, so a setting like \ctikzset{diode/scale=0.6} is recommended.

D
1\begin{circuitikz}

2 \draw (0,1) to[D, 1=D] ++(2,0)
3 node [npn, anchor=B]{};

4+ \ctikzset{diodes/scale=0.63}

5 \draw (0,-1) to[D, 1=D] ++(2,0)
6 node [npn, anchor=B]{};
7\end{circuitikz}

o7

You can change the direction of the LEDs and photodiodes’ arrows by using the binary keys led
arrows from cathode and pd arrows to cathode (the default are led arrows from anode and
pd arrows to anode), as you can see in the following example.

1 \begin{circuitikz}

2 \ctikzset{led arrows from anode} 7/ default

3 \ctikzset{pd arrows to anode} / default

4 \ctikzset{full diodes}

5 \draw (0,0) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
6

7

8

9

/Y 74

*

| // 4
|

\ctikzset{stroke diodes}
\draw (0,-1) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
\ctikzset{empty diodes}
\draw (0,-2) to[leD] ++(1.5,0) to[pD] ++(1.5,0);

11 \ctikzset{led arrows from cathode}
\\ \\ 12 \ctikzset{pd arrows to cathode}
—’4’* 13 \ctikzset{full diodes}
\ \ 14 \draw (0,-4) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
| \ \ 15 \ctikzset{stroke diodes}
| 16 \draw (0,-5) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
\\ \\ 17 \ctikzset{empty diodes}
>* s \draw (0,-6) to[leD] ++(1.5,0) tolpD] ++(1.5,0);
19 \end{circuitikz}

4.5 Sources and generators

Notice that source and generators are divided in three classes that can be styled independently:
traditional battery symbols (class batteries), independent generators (class sources) and de-
pendent generators (class csources). This is because they are often treated differently, and so
you can choose to, for example, fill the dependent sources but not the independent ones.

4.5.1 Batteries

| battery: Battery, type: path-style , nodename:
batteryshape. Class: batteries.

batteryl: Single battery cell, type: path-style ,
nodename: batterylshape. Class: batteries.

I battery2: Single battery cell, type: path-style ,
nodename: battery2shape. Class: batteries.

4.5.2 Stationary sources

european voltage source: Voltage source (european
—@— style), type: path-style, fillable , nodename:

vsourceshape. Aliases: vsource. Class: sources.

a8

cute european voltage source: Voltage source (cute
european style), type: path-style, fillable ,
nodename: vsourceCshape.Aliases: vsourceC, ceV.
Class: sources.

american voltage source: Voltage source (american
style), type: path-style, fillable , nodename:
vsourceAMshape. Aliases: vsourceAM. Class: sources.

european current source: Current source (european
style), type: path-style, fillable , nodename:
isourceshape. Aliases: isource. Class: sources.

cute european current source: Current source (cute
european style), type: path-style, fillable ,
nodename: isourceCshape.Aliases: isourceC, cel.
Class: sources.

american current source: Current source (american
style), type: path-style, fillable , nodename:
isourceAMshape. Aliases: isourceAM. Class: sources.

20000

If (default behaviour) europeancurrents option is active (or the style [european currents]
is used), the shorthands current source, isource, and I are equivalent to european
current source. Otherwise, if americancurrents option is active (or the style [american
currents] is used) they are equivalent to american current source.

Similarly, if (default behaviour) europeanvoltages option is active (or the style [european
voltages] is used), the shorthands voltage source, vsource, and V are equivalent to
european voltage source. Otherwise, if americanvoltages option is active (or the style
[american voltages] is used) they are equivalent to american voltage source.

4.5.3 Sinusoidal sources

These two are basically the same symbol; to distinguish among them, you have to add a label,
which will be a voltage or a current.

sinusoidal voltage source: Sinusoidal voltage source,
type: path-style, fillable , nodename:
vsourcesinshape. Aliases: vsourcesin, sV. Class:
sources.

sinusoidal current source: Sinusoidal current source,
type: path-style, fillable , nodename:
isourcesinshape. Aliases: isourcesin, sI. Class:
sources.

e

|
+

1\begin{circuitikz} [american]

2 \draw (0,1) tol[sV=V] ++(3,0);
3 \draw (0,0) to[sI=I] ++(3,0);
s\end{circuitikz}

o

99

4.5.4 Controlled sources

european controlled voltage source: Controlled
voltage source (european style), type: path-style,
fillable , nodename: cvsourceshape.Aliases:
cvsource. Class: csources.

cute european controlled voltage source: Voltage
source (cute european style), type: path-style,
fillable , nodename: cvsourceCshape.Aliases:
cvsourceC, cceV. Class: csources.

american controlled voltage source: Controlled
voltage source (american style), type: path-style,
fillable , nodename: cvsourceAMshape.Aliases:
cvsourceAM. Class: csources.

european controlled current source: Controlled
current source (european style), type: path-style,
fillable , nodename: cisourceshape.Aliases:
cisource. Class: csources.

cute european controlled current source: Current
source (cute european style), type: path-style,
fillable , nodename: cisourceCshape.Aliases:
cisourceC, ccel. Class: csources.

american controlled current source: Controlled
current source (american style), type: path-style,
fillable , nodename: cisourceAMshape.Aliases:
cisourceAM. Class: csources.

empty controlled source: Empty controlled source,
type: path-style, fillable , nodename:
ecsourceshape. Aliases: ecsource. Class: csources.

dhdhdidididi.

If (default behaviour) europeancurrents option is active (or the style [european currents]
is used), the shorthands controlled current source, cisource, and cI are equivalent to
european controlled current source. Otherwise, if americancurrents option is active
(or the style [american currents] is used) they are equivalent to american controlled
current source.

Similarly, if (default behaviour) europeanvoltages option is active (or the style [european
voltages] is used), the shorthands controlled voltage source, cvsource, and cV are
equivalent to european controlled voltage source. Otherwise, if americanvoltages op-
tion is active (or the style [american voltages] is used) they are equivalent to american
controlled voltage source.

The following two behave like the corresponding independent sources, see section 4.5.3.

60

controlled sinusoidal voltage source: Controlled
sinusoidal voltage source, type: path-style, fillable
, nodename: cvsourcesinshape.Aliases: controlled
vsourcesin, cvsourcesin, csV. Class: csources.

controlled sinusoidal current source: Controlled
{% sinusoidal current source, type: path-style, fillable

, nodename: cisourcesinshape.Aliases: controlled

isourcesin, cisourcesin, csI. Class: csources.

4.5.5 Noise sources

In this case, the “direction” of the source is undefined. Noise sources are filled in gray by default,
but if you choose the dashed style, they become fillable.

noise current source: Sinusoidal current source, type:
path-style , nodename: isourceNshape.Aliases:

noise voltage source: Sinusoidal voltage source, type:
—@— path-style , nodename: vsourceNshape.Aliases:
vsourceN, nV. Class: sources.

isourceN, nI. Class: sources.

You can change the fill color with the key circuitikz/bipoles/noise sources/fillcolor:

1\begin{circuitikz}

2 \draw(0,0) to [nV, 1=e_n] ++(2,0);
—@— —@— 3 \draw(0,-2) to [nI, 1=i_n] ++(2,0);

4 \begin{scope}[circuitikz/bipoles/noise sources/
fillcolor=red!50]

. . 5 \draw(3,0) to [nV, 1=e_n] ++(2,0);
n n o \draw(3,-2) to [nI, 1=i_n] ++(2,0);

4®7 4@7 7 \end{scope}
s\end{circuitikz}

If you prefer a patterned noise generator (similar to the one you draw by hand) you can use the
fake color dashed:

1\begin{circuitikz}
2 \draw(0,0) to [nV, 1=e_n] ++(2,0);
3 \draw(0,-2) to [nI, 1=i_n] ++(2,0);

4 \begin{scope} [circuitikz/bipoles/noise sources/
fillcolor=dashed]

5 \draw(3,0) to [nV, 1=e_n] ++(2,0);

6 \draw(3,-2) to [nI, 1=i_n] ++(2,0);

7 \end{scope}
s \end{circuitikz}

-©-

Notice that if you choose the dashed style, the noise sources are fillable:

61

1\begin{circuitikz}

2 \ctikzset{bipoles/noise sources/fillcolor=dashed}
3 \draw(0,0) to [nV, 1=e_n] ++(2,0);

4 \draw(0,-2) to [nI, 1=i_n] ++(2,0);

5 \begin{scope}

6 \draw(3,0) to [nV, 1=e_n, fill=yellow!50!red]

++(2,0);
7 \draw(3,-2) to [nI, 1=i_n, fill=blue!50!white
1 ++(2,0);
8 \end{scope}
o\end{circuitikz}

- o

4.5.6 Special sources

square voltage source: Square voltage source, type:
path-style, fillable , nodename:
vsourcesquareshape . Aliases: vsourcesquare, sqV.
Class: sources.

vsourcetri: Triangle voltage source, type: path-style,
fillable , nodename: vsourcetrishape.Aliases: tV.
Class: sources.

esource: Empty voltage source, type: path-style,
fillable , nodename: esourceshape. Class: sources.

pvsource: Photovoltaic-voltage source, type:
path-style, fillable , nodename: pvsourceshape.
Class: sources.

poo e

pvmodule: Photovoltaic module source'®, type:
path-style, fillable , nodename: pvmoduleshape.
Class: sources.

|
T

ioosource: Double Zero style current source, type:
path-style, fillable , nodename: oosourceshape.
Class: sources.

voosource: Double Zero style voltage source, type:
path-style, fillable , nodename: oosourceshape.
Class: sources.

oosourcetrans: transformer source, type: path-style,
fillable , nodename: oosourcetransshape. Class:

088

sources.
SeC3 (e
prim1 | 525(%1 . T
I " ight ooosource: transformer with three windings, type:
Ol ;;rtl path-style, fillable , nodename: ooosourceshape.
e . Class: sources.
prim?2 | tert2

The transformershapes vector group options can be specified for the primary (prim=< value >),
the secondary (sec=< value >) and tertiary (tert=< wvalue >) three-phase vector groups: delta,
wye and zig.

15 Added by André Alves in v1.3.5

62

1\begin{circuitikz}

2 \draw (0,0) to[oosourcetrans,prim=zig,sec=delta,o-] ++(2,0)
3 to[oosourcetrans, prim=delta, sec=wye,-o] ++(0,-2)
4 to[ooosource, prim=wye,sec=zig,tert=deltal] (0,0);

s \end{circuitikz}

4.5.7 DC sources

dcvsource: DC voltage source, type: path-style,
—®7 fillable , nodename: dcvsourceshape. Class:

sources.

dcisource: DC current source, type: path-style,
4<—>>7 fillable , nodename: dcisourceshape. Class:

sources.

The size of the broken part of the DC current source is configurable by changing the value of
bipoles/dcisource/angle (default 80); values must be between 0 (no circle at all, probably not
useful) and 90 (full circle, again not useful).

1\begin{circuitikz}
—
\draw (0,0) tol[dcvsource] ++(2,0)
to [dcisource, fill=yellow] ++(2,0) ;
ROSSC .

\ctikzset{bipoles/dcisource/angle=45}
4.5.8 Sources customizations

to [dcisource, fill=yellow] ++(2,0) ;

2
3
4
5 \draw (0,-2) tol[dcvsource] ++(2,0)
6
7\end{circuitikz}

You can change the scale of the batteries by setting the key batteries/scale, for the controlled
(dependent) sources with csources/scale, and for all the other independent sources and genera-
tors with sources/scale, to something different from the default 1.0.

The symbols drawn into the american voltage source!® can be changed by using the \ctikzset
keys bipoles/vsourceam/inner plus and bipoles/vsourceam/inner minus (by default they
are $+$ and $-$ respectively, in the current font), and move them nearer of farther away by
twiddling bipoles/vsourceam/margin (default 0.7, less means nearer).

Moreover, you can move the two symbols nearer of farther away by twiddling bipoles/vsourceam/margin
(default 0.7, less means nearer).

You can do the same with the american controlled voltage sources, s