
M4 Macros for Electric Circuit Diagrams in LATEX Documents

Dwight Aplevich

Version 9.2

Contents

1 Introduction . 1

2 Using the macros 2

2.1 Quick start 2
2.1.1 Using m4 3
2.1.2 Processing with dpic and

PSTricks or Tikz PGF . . . 3
2.1.3 Processing with gpic 3
2.1.4 Simplifications 4

2.2 Including the libraries 5

3 Pic essentials . 5

3.1 Manuals 6
3.2 The linear objects: line, arrow,

spline, arc 6
3.3 Positions 6
3.4 The planar objects: box, circle,

ellipse, and text 7
3.5 Compound objects 8
3.6 Other language facilities 8

4 Two-terminal circuit elements 8

4.1 Circuit and element basics 9
4.2 The two-terminal elements 10
4.3 Branch-current arrows 13
4.4 Labels 14

5 Placing two-terminal elements 14

5.1 Series and parallel circuits 15

6 Composite circuit elements 17

6.1 Semiconductors 23

7 Corners . 26

8 Looping . 26

9 Logic gates . 27

10 Element and diagram scaling 31

10.1 Circuit scaling 31

10.2 Pic scaling 31

11 Writing macros 32

12 Interaction with LATEX 36

13 PSTricks and other tricks 38

13.1 Tikz with pic 39

14 Web documents, pdf, and alterna-

tive output formats 39

15 Developer’s notes 40

16 Bugs . 41

17 List of macros . 44

References . 65

1 Introduction

It appears that people who are unable to execute pretty pictures with pen and paper
find it gratifying to try with a computer [9].

This manual describes a method for drawing electric circuits and other diagrams in LATEX
and web documents. The diagrams are defined in the simple pic drawing language [7] augmented
with m4 macros [8], and are processed by m4 and a pic processor to convert them to Tikz PGF,
PSTricks, other LATEX-compatible code, or SVG. In its basic form, the method has the advantages
and disadvantages of TEX itself, since it is macro-based and non-WYSIWYG, with ordinary text
input. The book from which the above quotation is taken correctly points out that the payoff can
be in quality of diagrams at the price of the time spent in learning how to draw them.

A collection of basic components, most based on IEEE standards [6], and conventions for their
internal structure are described. Macros such as these are only a starting point, since it is often
convenient to customize elements or to package combinations of them for particular drawings.

1

2 Using the macros

This section describes the basic process of adding circuit diagrams to LATEX documents to produce
postscript or pdf files. On some operating systems, project management software with graphical
interfaces can automate the process, but the steps can also be performed by a script, makefile, or by
hand for simple documents as described in Section 2.1.

The diagram source file is preprocessed as illustrated in Figure 1. A configuration file is read by
m4, followed by the diagram source. The result is passed through a pic interpreter to produce .tex

output that can be inserted into a .tex document using the \input command.

.m4
diagram

.m4
macros

m4
pic

interpreter

.tex
files

LATEX
or

PDFlatex

.dvi
or

.pdf

Figure 1: Inclusion of figures and macros in the LATEX document.

The interpreter output contains Tikz PGF [15] commands, PSTricks [16] commands, basic LATEX
graphics, tpic specials, or other formats, depending on the chosen options. These variations are
described in Section 14.

There are two principal choices of pic interpreter. One is dpic, described later in this document.
A partial alternative is GNU gpic -t (sometimes simply named pic) [10] together with a printer driver
that understands tpic specials, typically dvips [13]. The dpic processor extends the pic language in
small but important ways; consequently, some of the macros and examples in this distribution work
fully only with dpic. Pic processors contain basic macro facilities, so some of the concepts applied
here do not require m4.

2.1 Quick start

The contents of file quick.m4 and resulting diagram are shown in Figure 2 to illustrate the language
and the production of basic labeled circuits.

.PS # Pic input begins with .PS

cct_init # Read in macro definitions and set defaults

elen = 0.75 # Variables are allowed; default units are inches

Origin: Here # Position names are capitalized

source(up_ elen); llabel(-,v_s,+)

resistor(right_ elen); rlabel(,R,)

dot

{ # Save the current position and direction

capacitor(down_ to (Here,Origin)) #(Here,Origin) = (Here.x,Origin.y)

rlabel(+,v,-); llabel(,C,)

dot

} # Restore position and direction

line right_ elen*2/3

inductor(down_ Here.y-Origin.y); rlabel(,L,); b_current(i)

line to Origin

.PE # Pic input ends

−

vs

+ R
+

v
−

C L

i

Figure 2: The file quick.m4 and resulting diagram. There are several ways of drawing the same picture;
for example, nodes (such as Origin) can be defined and circuit branches drawn between them; or
absolute coordinates can be used (e.g., source(up_ from (0,0) to (0,0.75))). Element sizes
and styles can be varied as described in later sections.

2

2.1.1 Using m4

The command

m4 filename . . .

causes m4 to search for the named files in the current directory and directories specified by
environmental variable M4PATH. Set M4PATH to the full name (i.e., the path) of the directory
containing libcct.m4 and the other circuit library .m4 files; otherwise invoke m4 as m4 -I installdir
where installdir is the path to the directory containing the library files. Now there are at least two
basic possibilities as follows, but be sure to read Section 2.1.4 for simplified use.

2.1.2 Processing with dpic and PSTricks or Tikz PGF

If you are using dpic with PSTricks, put \usepackage{pstricks} in the main LATEX source file
header and type the following commands or put them into a script:

m4 pstricks.m4 quick.m4 > quick.pic

dpic -p quick.pic > quick.tex

To produce Tikz PGF code, the LATEX header should contain \usepackage{tikz}. The commands
are modified to read pgf.m4 and invoke the -g option of dpic as follows:

m4 pgf.m4 quick.m4 > quick.pic

dpic -g quick.pic > quick.tex

A configuration file (pstricks.m4 and pgf.m4 in the above examples) is always the first file to
be given to m4. Put the following or its equivalent in the document body:

\begin{figure}[hbt]

\centering

\input quick

\caption{Customized caption for the figure.}

\label{Symbolic_label}

\end{figure}

Then for PSTricks, the commands “latex file; dvips file” produce file.ps, which can be printed or
viewed using gsview, for example. For Tikz PGF, Invoking PDFlatex on the source produces .pdf

output directly. The essential line is \input quick whether or not the figure environment is used.
The effect of the m4 command above is shown in Figure 3. Configuration files pstricks.m4 or

pgf.m4 cause library libgen.m4 to be read, thereby defining the macro cct_init. The diagram
source file is then read and the circuit-element macros in libcct.m4 are defined during expansion
of cct_init.

.pic
m4 Configuration file

pstricks.m4 libgen.m4

· · ·

define(‘cct_init’,...)
· · ·

Diagram source quick.m4

.PS
cct_init
· · ·

libcct.m4

· · ·

define(‘resistor’,...)
· · ·

Figure 3: The command m4 pstricks.m4 quick.m4 > quick.pic.

2.1.3 Processing with gpic

If your printer driver understands tpic specials and you are using gpic (on some systems the gpic
command is pic), the commands are

3

m4 gpic.m4 quick.m4 > quick.pic

gpic -t quick.pic > quick.tex

and the figure inclusion statements are as shown:

\begin{figure}[hbt]

\input quick

\centerline{\box\graph}

\caption{Customized caption for the figure.}

\label{Symbolic_label}

\end{figure}

2.1.4 Simplifications

M4 must read a configuration file before any other files, either before reading the diagram source file
or at the beginning of it. There are several ways to control the process, as follows:

1. The macros can be processed by LATEX-specific project software and by graphic applications
such as Pycirkuit [11]. Alternatively when many files are to be processed, a facility such as
Unix “make,” which is also available in PC and Mac versions, can be employed to automate
the required commands. On systems without such facilities, a scripting language can be used.

2. The m4 commands illustrated above can be shortened to

m4 quick.m4 > quick.pic

by inserting include(pstricks.m4) (assuming PSTricks processing) immediately after the
.PS line, the effect of which is shown in Figure 4. However, if you then want to use Tikz PGF,
the line must be changed to include(pgf.m4).

.pic
m4

Diagram source
.PS
include(pstricks.m4)

cct_init
· · ·

Configuration file

pstricks.m4 libgen.m4

· · ·

define(‘cct_init’,...)
· · ·

libcct.m4

· · ·

define(‘resistor’,...)
· · ·

Figure 4: The command m4 quick.m4 > quick.pic, with include(pstricks.m4) preceding cct_init.

3. In the absence of a need to examine the file quick.pic, the commands for producing the .tex

file can be reduced (provided the above inclusions have been made) to

m4 quick.m4 | dpic -p > quick.tex

4. It may be desirable to invoke m4 and dpic automatically from the document file as shown:

\documentclass{article}

\usepackage{tikz}

\newcommand\mtotex[2]{\immediate\write18{m4 #2.m4 | dpic -#1 > #2.tex}}%

\begin{document}

\mtotex{g}{FileA} % Generate FileA.tex

\input{FileA.tex} \par

\mtotex{g}{FileB} % Generate FileB.tex

\input{FileB.tex}

\end{document}

The first argument of \mtotex is a p for pstricks or g for pgf. Sources FileA.m4 and FileB.m4

must contain any required include statements, and the main document should be processed

4

using the latex or pdflatex option -shell-escape. If the M4PATH environment variable is not
set then insert -I installdir after m4 in the command definition, where installdir is the absolute
path to the installation directory. This method processes the picture source each time LATEX is
run, so for large documents containing many diagrams, the \mtotex lines could be commented
out after debugging the corresponding graphic. A derivative of this method that allows the
insertion of pic code into a Tikz picture is described in Section 13.1.

5. You can put several diagrams into a single source file. Make each diagram the body of a LATEX
macro, as shown:

\newcommand{\diaA}{%

.PS

drawing commands
.PE

\box\graph }% \box\graph not required for dpic

\newcommand{\diaB}{%

.PS

drawing commands
.PE

\box\graph }% \box\graph not required for dpic

Produce a .tex file using \mtotex or m4 and dpic or gpic, insert the .tex into the LATEX
source, and invoke the macros \diaA and \diaB at the appropriate places.

2.2 Including the libraries

The configuration files for dpic are as follows, depending on the output format (see Section 14):
pstricks.m4, pgf.m4, mfpic.m4, mpost.m4, postscript.m4, psfrag.m4, svg.m4, gpic.m4,

or xfig.m4. The file psfrag.m4 simply defines the macro psfrag_ and then reads postscript.m4.
For gpic, the configuration file is gpic.m4. The usual case for producing circuit diagrams is to read
pstricks.m4 or pgf.m4 first when dpic is the postprocessor or to set one of these as the default
configuration file.

At the top of each diagram source, put one or more initialization commands; that is,
cct_init, log_init, sfg_init, darrow_init, threeD_init

or, for diagrams not requiring specialized macros, gen_init. As shown in Figures 3 and 4, each
initialization command reads in the appropriate macro library if it hasn’t already been read; for
example, cct_init tests whether libcct.m4 has been read and includes it if necessary.

A few of the distributed example files contain other experimental macros that can be pasted into
diagram source files; see Flow.m4 or Buttons.m4, for example.

The libraries contain hints and explanations that might help in debugging or if you wish to
modify any of the macros. Macros are generally named using the obvious circuit element names
so that programming becomes something of an extension of the pic language. Some macro names
end in an underscore to reduce the chance of name clashes. These can be invoked in the diagram
source but there is no long-term guarantee that their names and functionality will remain unchanged.
Finally, macros intended only for internal use begin with the characters m4.

3 Pic essentials

Pic source is a sequence of lines in a file. The first line of a diagram begins with .PS with optional
following arguments, and the last line is normally .PE. Lines outside of these pass through the pic
processor unchanged.

The visible objects can be divided conveniently into two classes, the linear objects line, arrow,

spline, arc, and the planar objects box, circle, ellipse.

The object move is linear but draws nothing. A compound object, or block, is planar and
consists of a pair of square brackets enclosing other objects, as described in Section 3.5. Objects can
be placed using absolute coordinates or relative to other objects.

5

Pic allows the definition of real-valued variables, which are alphameric names beginning with
lower-case letters, and computations using them. Objects or locations on the diagram can be given
symbolic names beginning with an upper-case letter.

3.1 Manuals

The classic pic manual [7] is still a good introduction to pic, but a more complete manual [12] can be
found in the GNU groff package, and both are available on the web [7, 12]. Reading either will give
you competence with pic in an hour or two. Explicit mention of *roff string and font constructs in
these manuals should be replaced by their equivalents in the LATEX context. A man-page language
summary is appended to the dpic manual [1].

A web search will yield good discussions of “little languages”; for pic in particular, see Chapter 9
of [2]. Chapter 1 of reference [4] also contains a brief discussion of this and other languages.

3.2 The linear objects: line, arrow, spline, arc

A line can be drawn as follows:
line from position to position

where position is defined below or
line direction distance

where direction is one of up, down, left, right. When used with the m4 macros described here,
it is preferable to add an underscore: up_, down_, left_, right_. The distance is a number or
expression and the units are inches, but the assignment

scale = 25.4

has the effect of changing the units to millimetres, as described in Section 10.
Lines can also be drawn to any distance in any direction. The example,
line up_ 3/sqrt(2) right_ 3/sqrt(2) dashed

draws a line 3 units long from the current location, at a 45◦ angle above horizontal. Lines (and
other objects) can be specified as dotted, dashed, or invisible, as above.

The construction
line from A to B chop x

truncates the line at each end by x (which may be negative) or, if x is omitted, by the current circle
radius, which is convenient when A and B are circular graph nodes, for example. Otherwise

line from A to B chop x chop y

truncates the line by x at the start and y at the end.
Any of the above means of specifying line (or arrow) direction and length will be called a linespec.
Lines can be concatenated. For example, to draw a triangle:
line up_ sqrt(3) right_ 1 then down_ sqrt(3) right_ 1 then left_ 2

3.3 Positions

A position can be defined by a coordinate pair, e.g. 3,2.5, more generally using parentheses by
(expression, expression), as a sum or difference as position + (expression, expression), or by the
construction (position, position), the latter taking the x-coordinate from the first position and
the y-coordinate from the second. A position can be given a symbolic name beginning with an
upper-case letter, e.g. Top: (0.5,4.5). Such a definition does not affect the calculated figure
boundaries. The current position Here is always defined and is equal to (0, 0) at the beginning of a
diagram or block. The coordinates of a position are accessible, e.g. Top.x and Top.y can be used in
expressions. The center, start, and end of linear objects (and the defined points of other objects as
described below) are predefined positions, as shown in the following example, which also illustrates
how to refer to a previously drawn element if it has not been given a name:

line from last line.start to 2nd last arrow.end then to 3rd line.center

Objects can be named (using a name commencing with an upper-case letter), for example:
Bus23: line up right

after which, positions associated with the object can be referenced using the name; for example:

6

arc cw from Bus23.start to Bus23.end with .center at Bus23.center

An arc is drawn by specifying its rotation, starting point, end point, and center, but sensible
defaults are assumed if any of these are omitted. Note that

arc cw from Bus23.start to Bus23.end

does not define the arc uniquely; there are two arcs that satisfy this specification. This distribution
includes the m4 macros

arcr(position, radius, start radians, end radians, modifiers, ht)
arcd(position, radius, start degrees, end degrees, modifiers, ht)
arca(chord linespec, ccw|cw, radius, modifiers)

to draw uniquely defined arcs. If the fifth argument of arcr or arcd contains -> or <- then a
midpoint arrowhead of height specified by arg6 is added. For example,

arcd((1,-1),,0,-90,<- outlined "red") dotted

draws a red dotted arc with midpoint arrowhead, centre at (1, −1), and default radius. The example
arca(from (1,1) to (2,2),,1,->)

draws an acute angled arc with arrowhead on the chord defined by the first argument.
The linear objects can be given arrowheads at the start, end, or both ends, for example:
line dashed <- right 0.5

arc <-> height 0.06 width 0.03 ccw from Here to Here+(0.5,0) \

with .center at Here+(0.25,0)

spline -> right 0.5 then down 0.2 left 0.3 then right 0.4

The arrowheads on the arc above have had their shape adjusted using the height and width

parameters.

3.4 The planar objects: box, circle, ellipse, and text

Planar objects are drawn by specifying the width, height, and position, thus:
A: box ht 0.6 wid 0.8 at (1,1)

after which, in this example, the position A.center is defined, and can be referenced simply as A.
The compass points A.n, A.s, A.e, A.w, A.ne, A.se, A.sw, A.nw are automatically defined, as
are the dimensions A.height and A.width. Planar objects can also be placed by specifying the
location of a defined point; for example, two touching circles can be drawn as shown:

circle radius 0.2

circle diameter (last circle.width * 1.2) with .sw at last circle.ne

The planar objects can be filled with gray or colour. For example, either
box dashed fill_(number) or box dashed outlined "color" shaded "color"

produces a dashed box. The first case has a gray fill determined by number, with 0 corresponding
to black and 1 to white; the second case allows color outline and fill, the color strings depending
on the postprocessor. Postprocessor-compatible RGB color strings are produced by the macro
rgbstring(red fraction, green fraction, blue fraction); to produce an orange fill for example:

... shaded rgbstring(1, 0.645, 0)

Basic colours for lines and fills are provided by gpic and dpic, but more elaborate line and fill
styles or other effects can be incorporated, depending on the postprocessor, using

command "string"

where string is one or more postprocessor command lines.
Arbitrary text strings, typically meant to be typeset by LATEX, are delimited by double-quote

characters and occur in two ways. The first way is illustrated by
"\large Resonances of $C_{20}H_{42}$" wid x ht y at position

which writes the typeset result, like a box, at position and tells pic its size. The default size assumed
by pic is given by parameters textwid and textht if it is not specified as above. The exact typeset
size of formatted text can be obtained as described in Section 12. The second occurrence associates
one or more strings with an object, e.g., the following writes two words, one above the other, at the
centre of an ellipse:

ellipse "\bf Stop" "\bf here"

The C-like pic function sprintf("format string",numerical arguments) is equivalent to a string.

7

3.5 Compound objects

A compound object is a group of statements enclosed in square brackets. Such an object is placed
by default as if it were a box, but it can also be placed by specifying the final position of a defined
point. A defined point is the center or compass corner of the bounding box of the compound object
or one of its internal objects. Consider the last line of the code fragment shown:

Ands: [right_

And1: AND_gate

And2: AND_gate at And1 - (0,And1.ht*3/2)

. . .
] with .And2.In1 at position

The two gate macros evaluate to compound objects containing Out, In1, and other locations. The
final positions of all objects inside the square brackets are determined in the last line by specifying
the position of In1 of gate And2.

3.6 Other language facilities

All objects have default sizes, directions, and other characteristics, so part of the specification of an
object can sometimes be profitably omitted.

Another possibility for defining positions is
expression between position and position

which means
1st position + expression × (2nd position − 1st position)

and which can be abbreviated as
expression < position , position >

Care has to be used in processing the latter construction with m4, since the comma may have to be
put within quotes, ‘,’ to distinguish it from the m4 argument separator.

Positions can be calculated using expressions containing variables. The scope of a position is the
current block. Thus, for example,

theta = atan2(B.y-A.y,B.x-A.x)

line to Here+(3*cos(theta),3*sin(theta)).

Expressions are the usual algebraic combinations of primary quantities: constants, environmental
parameters such as scale, variables, horizontal or vertical coordinates of terms such as position.x

or position.y, dimensions of pic objects, e.g. last circle.rad. The elementary algebraic operators
are +, -, *, /, %, =, +=, -=, *=, /=, and %=, similar to the C language.

The logical operators ==, !=, <=, >=, >, and < apply to expressions and strings. A modest
selection of numerical functions is also provided: the single-argument functions sin, cos, log,

exp, sqrt, int, where log and exp are base-10, the two-argument functions atan2, max, min,

and the random-number generator rand(). Other functions are also provided using macros.
A pic manual should be consulted for details, more examples, and other facilities, such as the

branching facility
if expression then { anything } else { anything },

the looping facility
for variable = expression to expression by expression do { anything },

operating-system commands, pic macros, and external file inclusion.

4 Two-terminal circuit elements

There is a fundamental difference between the two-terminal elements, each of which is drawn along
an invisible straight-line segment, and other elements, which are compound objects mentioned in
Section 3.5. The two-terminal element macros follow a set of conventions described in this section,
and other elements will be described in Section 6.

8

4.1 Circuit and element basics

A list of the library macros and their arguments is in Section 17. The arguments have default values,
so that only those that differ from defaults need be specified.

Figure 5, which shows a resistor, also serves as an example of pic commands. The first part of
the source file for this figure is on the left:

.PS

cct_init

linewid = 2.0

linethick_(2.0)

R1: resistor
last []R1.start R1.endR1.centre

elen_
dimen_

Figure 5: Resistor named R1, showing the size parameters, enclosing block, and predefined positions.

The lines of Figure 5 and the remaining source lines of the file are explained below:

• The first line invokes the macro cct_init that loads the library libcct.m4 and initializes
local variables needed by some circuit-element macros.

• The sizes of circuit elements are proportional to the pic environmental variable linewid, so
redefining this variable changes element sizes. The element body is drawn in proportion to
dimen_, a macro that evaluates to linewid unless redefined, and the default element length
is elen_, which evaluates to dimen_*3/2 unless redefined. Setting linewid to 2.0 as in the
example means that the default element length becomes 3.0 in. For resistors, the default length
of the body is dimen_/2, and the width is dimen_/6. All of these values can be customized.
Element scaling and the use of SI units is discussed further in Section 10.

• The macro linethick_ sets the default thickness of subsequent lines (to 2.0 pt in the example).
Macro arguments are written within parentheses following the macro name, with no space
between the name and the opening parenthesis. Lines can be broken before macro arguments
because m4 and dpic ignore white space immediately preceding arguments. Otherwise, a long
line can be continued to the next by putting a backslash as the rightmost character.

• The two-terminal element macros expand to sequences of drawing commands that begin with
‘line invis linespec’, where linespec is the first argument of the macro if it is non-blank,
otherwise the line is drawn a distance elen_ in the current direction, which is to the right
by default. The invisible line is first drawn, then the element is drawn on top of it. The
element—rather, the initial invisible line—can be given a name, R1 in the example, so that
positions R1.start, R1.centre, and R1.end are automatically defined as shown.

• The element body is overlaid by a block, which can be used to place labels around the element.
The block corresponds to an invisible rectangle with horizontal top and bottom lines, regardless
of the direction in which the element is drawn. A dotted box has been drawn in the diagram
to show the block boundaries.

• The last sub-element, identical to the first in two-terminal elements, is an invisible line that
can be referenced later to place labels or other elements. If you create your own macros, you
might choose simplicity over generality, and include only visible lines.

To produce Figure 5, the following embellishments were added after the previously shown source:

thinlines_

box dotted wid last [].wid ht last [].ht at last []

move to 0.85 between last [].sw and last [].se

spline <- down arrowht*2 right arrowht/2 then right 0.15; "\tt last []" ljust

arrow <- down 0.3 from R1.start chop 0.05; "\tt R1.start" below

9

arrow <- down 0.3 from R1.end chop 0.05; "\tt R1.end" below

arrow <- down last [].c.y-last arrow.end.y from R1.c; "\tt R1.centre" below

dimension_(from R1.start to R1.end,0.45,\tt elen_,0.4)

dimension_(right_ dimen_ from R1.c-(dimen_/2,0),0.3,\tt dimen_,0.5)

.PE

• The line thickness is set to the default thin value of 0.4 pt, and the box displaying the element
body block is drawn. Notice how the width and height can be specified, and the box centre
positioned at the centre of the block.

• The next paragraph draws two objects, a spline with an arrowhead, and a string left justified
at the end of the spline. Other string-positioning modifiers than ljust are rjust, above,

and below.

• The last paragraph invokes a macro for dimensioning diagrams.

4.2 The two-terminal elements

The two-terminal elements are shown in Figures 6 to 8 and Figures 10 to 12. Several elements are
included more than once to illustrate some of their arguments, which are listed in Section 17.

resistor resistor(,,Q) resistor(,,E)
≡ ebox

resistor(,,ES) resistor(,,H) ebox(,,,0.5)

resistor(,,V) thermocouple ebox(,0.5,0.3)

inductor inductor(,W) inductor(,L)

inductor(,,,M) inductor(,W,6,P) G ttmotor(,G)

capacitor capacitor(,C) capacitor(,C+)

capacitor(,P) capacitor(,E) capacitor(,K)

capacitor(,M) capacitor(,N) xtal

memristor heater tline

gap
gap(,,A) arrowline

lamp reed reed(,,,fill_(0.9),CR)

pvcell

Figure 6: Basic two-terminal elements, showing some variations.

The first macro argument specifies the invisible line segment along which the element is drawn.
If the argument is blank, the element is drawn from the current position in the current drawing
direction along a default length. The other arguments produce variants of the default elements.
Thus, for example,

resistor(up_ 1.25,7)

draws a resistor 1.25 units long up from the current position, with 7 vertices per side. The macro
up_ evaluates to up but also resets the current directional parameters to point up.

Figure 9 contains radiation-effect arrows for embellishing two-terminal and other macros. The
arrow stems are named A1, A2, and each pair is drawn in a [] block, with the names Head and
Tail defined to aid placement near another device. The second argument specifies absolute angle in
degrees (default 135 degrees). The arrows are drawn relative to the diode direction by the LE option
in Figure 8. For absolute arrow directions, one can define a wrapper (see Section 11) for the diode

macro to draw arrows at 45 degrees, for example:
define(‘myLED’,‘diode(‘$1’); em_arrows(N,45) with .Tail at last [].ne’)

10

source

source(,I)

source(,i)

− + source(,V)

source(,v)

source(,SC)

source(,AC)

source(,X)

source(,F)

source(,G)

source(,Q)

source(,,0.4)

source(,P)

source(,U)

source(,H)

source(,R)

source(,S)

source(,SCr)

source(,T)

source(,L)

source(,B)

nullator
norator

source(,N)

mA source(,"mA")

consource

consource(,I)

consource(,i)

source(,SE)

− + consource(,V)

consource(,v)

battery

battery(,3,R)

Figure 7: Sources and source-like elements.

diode

diode(,S)

diode(,V)

diode(,v)

diode(,w)

diode(,B)

diode(,G)

diode(,K)

diode(,ZK)

diode(,CR)

diode(,L)

diode(,F)

diode(,Sh)

diode(,D)

diode(,Z,RE)

diode(,T)

diode(,P)

diode(,LE)
diode(,LER)

Figure 8: The macro diode(linespec,B|CR|D|L|LE[R]|P[R]|S|T|V|v|w|Z|chars,[R][E]). Appending
K to the second argument draws an open arrowhead.

Head

Tail

A1

A2

em_arrows(N)

em_arrows(ND,45) . . .(I) . . .(ID) . . .(E) . . .(ED)

Figure 9: Radiation arrows: em_arrows(type, angle, length)

fuse fuse(,D) fuse(,B) fuse(,C) fuse(,S) fuse(,HB)

(,HC,0.5,0.3) cbreaker cbreaker(,R) . . .(,,D) . . .(,,T) . . .(,,TS)

Figure 10: Variations of the macros fuse(linespec, A|dA|B|C|D|E|S|HB|HC, wid, ht) and
cbreaker(linespec,L|R,D|T|TS).

Most of the two-terminal elements are oriented; that is, they have a defined direction or polarity.
Several element macros include an argument that reverses polarity, but there is also a more general
mechanism, as follows.

The first argument of the macro
reversed(‘macro name’,macro arguments)

11

amp

amp(,0.3)

delay

delay(,0.2)

integrator

integrator(,0.3)

Figure 11: Amplifier, delay, and integrator.

lswitch („O) („C) („DA) („dDO) („uDC)

(„K) („KD) („KOD) („KCD) bswitch („C)

dswitch(,,)

W B

(„WdBK)

dB K

(„WBmdDK) („WBKTr) („WdBL) („WBCo)

(„WBKCo) („WBCb) („WBDI) („WBSd) („WBFDI) („WBFSd)

(„WBTh) („WBKC) („WBM) („WBCO) („WBMP) („WBoKCP)

(„WBCY) („WBCZ) („WBCE) („WBRH) („WBRdH) („WBRHH)

(„WBMMR) („WBMM) („WBMR) („WBEL) („WBLE) („WBoKEL)

Figure 12: The switch(linespec,L|R,chars,L|B|D) macro is a wrapper for the macros
lswitch(linespec,[L|R],[O|C][D][K][A]), bswitch(linespec,[L|R],[O|C]), and the many-
optioned dswitch(linespec,R,W[ud]B[K] chars) shown. The switch is drawn in the current drawing
direction. A second-argument R produces a mirror image with respect to the drawing direction.

is the name of a two-terminal element in quotes, followed by the element arguments. The element is
drawn with reversed direction. Thus,

diode(right_ 0.4); reversed(‘diode’,right_ 0.4)

draws two diodes to the right, but the second one points left.
Similarly, the macro
resized(factor,‘macro name’,macro arguments)

can be used to resize the body of an element by temporarily multiplying the dimen_ macro by factor.
More general resizing should be done by redefining dimen_ as described in Section 10.1. These two
macros can be nested; the following scales the above example by 1.8, for example

resized(1.8,‘diode’,right_ 0.4); resized(1.8,‘reversed’,‘diode’,right_ 0.4)

Figure 13 shows some two-terminal elements with arrows or lines overlaid to indicate variability
using the macro

variable(‘element’,type,angle,length),
where type is one of A, P, L, N, with C or S optionally appended to indicate continuous or stepwise
variation. Alternatively, this macro can be invoked similarly to the label macros in Section 4.4 by
specifying an empty first argument; thus, the following line draws the resistor in Figure 13:

resistor(down_ dimen_); variable(,uN)

12

C S

A

P

L

N

Figure 13: Illustrating variable(‘element’,[A|P|L|[u]N][C|S],angle,length). For example,
variable(‘capacitor(down_ dimen_)’) draws the leftmost capacitor shown above, and
variable(‘resistor(down_ dimen_)’,uN) draws the resistor. The default angle is 45◦, regardless
of the direction of the element. The array on the right shows the effect of the second argument.

4.3 Branch-current arrows

Arrowheads and labels can be added to conductors using basic pic statements. For example, the
following line adds a labeled arrowhead at a distance alpha along a horizontal line that has just
been drawn. Many variations of this are possible:

arrow right arrowht from last line.start+(alpha,0) "i_1" above

Macros have been defined to simplify labelling two-terminal elements, as shown in Figure 14.
The macro

b_current(label, above_|below_, In|O[ut], Start|E[nd], frac)

draws an arrow from the start of the last-drawn two-terminal element frac of the way toward the
body.

i

b_current(i)
i

. . .(i,below_)

i

. . .(i,,O)
i

. . .(i,below_,O)

i

b_current(i,,,E)
i

. . .(i,below_,,E)

i

. . .(i,,O,E,0.2)
i

. . .(i,below_,O,E)

i

larrow(i)

i
rarrow(i)

i

larrow(i,<-)
i

rarrow(i,<-)

Figure 14: Illustrating b_current, larrow, and rarrow. The drawing direction is to the right.

If the fourth argument is End, the arrow is drawn from the end toward the body. If the third
element is Out, the arrow is drawn outward from the body. The first argument is the desired label,
of which the default position is the macro above_, which evaluates to above if the current direction
is right or to ljust, below, rjust if the current direction is respectively down, left, up. The label
is assumed to be in math mode unless it begins with sprintf or a double quote, in which case it
is copied literally. A non-blank second argument specifies the relative position of the label with
respect to the arrow, for example below_, which places the label below with respect to the current
direction. Absolute positions, for example below or ljust, also can be specified.

For those who prefer a separate arrow to indicate the reference direction for current, the macros
larrow(label, ->|<-,dist) and rarrow(label, ->|<-,dist) are provided. The label is placed
outside the arrow as shown in Figure 14. The first argument is assumed to be in math mode unless
it begins with sprintf or a double quote, in which case the argument is copied literally. The third
argument specifies the separation from the element.

13

4.4 Labels

Special macros for labeling two-terminal elements are included:
llabel(arg1,arg2,arg3)

clabel(arg1,arg2,arg3)

rlabel(arg1,arg2,arg3)

dlabel(long,lat,arg1,arg2,arg3,[X][A|B][L|R])

The first macro places the three arguments, which are treated as math-mode strings, on the
left side of the element block with respect to the current direction: up, down, left, right. The
second places the arguments along the centre, and the third along the right side. A simple circuit
example with labels is shown in Figure 15. The macro dlabel performs these functions for an
obliquely drawn element, placing the three macro arguments at vec_(-long,lat), vec_(0,lat),

and vec_(long,lat) respectively relative to the centre of the element. In the fourth argument, an
X aligns the labels with respect to the line joining the two terminals rather than the element body,
and A, B, L, R use absolute above, below, left, or right alignment respectively for the labels.
Labels beginning with sprintf or a double quote are copied literally rather than assumed to be in
math mode.

Arbitrary LATEX including \includegraphics, for example, can also be placed on a diagram
using

"LATEX text" wid width ht height at position

.PS

‘Loop.m4’

cct_init

define(‘dimen_’,0.75)

loopwid = 1; loopht = 0.75

source(up_ loopht); llabel(-,v_s,+)

resistor(right_ loopwid); llabel(,R,); b_current(i)

inductor(down_ loopht,W); rlabel(,L,)

capacitor(left_ loopwid,C); llabel(+,v_C,-); rlabel(,C,)

.PE

−

vs

+

Ri

L

+
vC

−

C

Figure 15: A loop containing labeled elements, with its source code.

5 Placing two-terminal elements

The length and position of a two-terminal element are defined by a straight-line segment and,
possibly, a direction, so four numbers are required to place the element as in the following example:

resistor(from (1,1) to (2,1)).
However, pic has a very useful concept of the current point (explicitly named Here); thus,

resistor(to (2,1))

is equivalent to
resistor(from Here to (2,1)).

Any defined position can be used; for example, if C1 and L2 are names of previously defined
two-terminal elements, then, for example, the following places the resistor:

resistor(from L2.end to C1.start)

A line segment starting at the current position can also be defined using a direction and length.
To draw a resistor up d units from the current position, for example:

resistor(up_ d)

Pic stores the current drawing direction, the latter unfortunately limited to up, down, left,

right, which is assumed when necessary. The circuit macros need to know the current direction, so
whenever up, down, left, right are used they should be written respectively as the macros up_,

down_, left_, right_ as in the above example.
To allow drawing circuit objects in other than the standard four directions, a transformation

matrix is applied at the macro level to generate the required pic code. Potentially, the matrix can
be used for other transformations. The macro

14

setdir_(direction, default direction)

is preferred when setting drawing direction. The direction arguments are of the form
R[ight] | L[eft] | U[p] | D[own] | degrees,

but the macros Point_(degrees), point_(radians), and rpoint_(relative linespec) are employed
in many macros to re-define the entries of the matrix (named m4a_, m4b_, m4c_, and m4d_) for
the required rotation. The macro eleminit_ in the two-terminal elements invokes rpoint_ with a
specified or default linespec to establish element length and direction.

As shown in Figure 16, “Point_(-30); resistor” draws a resistor along a line with slope of -30
degrees, and “rpoint_(to Z)” sets the current direction cosines to point from the current location
to location Z. Macro vec_(x,y) evaluates to the position (x,y) rotated as defined by the argument
of the previous setdir_, Point_, point_ or rpoint_ command. The principal device used to
define relative locations in the circuit macros is rvec_(x,y), which evaluates to position Here +

vec_(x,y). Thus, line to rvec_(x,0) draws a line of length x in the current direction.
Figure 16 illustrates that some hand placement of labels using dlabel may be useful when

elements are drawn obliquely. The figure also illustrates that any commas within m4 arguments
must be treated specially because the arguments are separated by commas. Argument commas are
protected either by parentheses as in inductor(from Cr to Cr+vec_(elen_,0)), or by multiple
single quotes as in “,”, as necessary. Commas also may be avoided by writing 0.5 between L and

T instead of 0.5<L,T>.

.PS

‘Oblique.m4’

cct_init

Ct:dot; Point_(-60); capacitor(,C); dlabel(0.12,0.12,,,C_3)

Cr:dot; left_; capacitor(,C); dlabel(0.12,0.12,C_2,,)

Cl:dot; down_; capacitor(from Ct to Cl,C); dlabel(0.12,-0.12,,,C_1)

T:dot(at Ct+(0,elen_))

inductor(from T to Ct); dlabel(0.12,-0.1,,,L_1)

Point_(-30); inductor(from Cr to Cr+vec_(elen_,0))

dlabel(0,-0.07,,L_3,)

R:dot

L:dot(at Cl-(R.x-Cr.x,Cr.y-R.y))

inductor(from L to Cl); dlabel(0,-0.12,,L_2,)

right_; resistor(from L to R); rlabel(,R_2,)

resistor(from T to R); dlabel(0,0.15,,R_3,) ; b_current(y,ljust)

line from L to 0.2<L,T>

source(to 0.5 between L and T); dlabel(sourcerad_+0.07,0.1,-,,+)

dlabel(0,sourcerad_+0.07,,u,)

resistor(to 0.8 between L and T); dlabel(0,0.15,,R_1,)

line to T

.PE

C3

C2

C1

L1

L3L2

R2

R3

y

−

+
u

R1

Figure 16: Illustrating elements drawn at oblique angles.

5.1 Series and parallel circuits

To draw elements in series, each element can be placed by specifying its line segment as described
previously, but the pic language makes some geometries particularly simple. Thus,

setdir_(Right)

resistor; llabel(,R); capacitor; llabel(,C); inductor; llabel(,L)

draws three elements in series as shown in the top line of Figure 17. However, the default length
elen_ appears too long for some diagrams. It can be redefined temporarily (to dimen_, say), by
enclosing the above line in the pair

pushdef(‘elen_’,dimen_) resistor. . . popdef(‘elen_’)

15

R C L

R C L

R C L

Figure 17: Three ways of drawing basic elements in series.

with the result shown in the middle row of the figure.
Alternatively, the length of each element can be tuned individually; for example, the capacitor in

the above example can be shortened as shown, producing the bottom line of Figure 17:
resistor; llabel(,R)

capacitor(right_ dimen_/4); llabel(,C)

inductor; llabel(,L)

If a macro that takes care of common cases automatically is to be preferred, you can use the
macro series_(elementspec, elementspec, . . .). This macro draws elements of length dimen_ from
the current position in the current drawing direction, enclosed in a [] block. The internal names
Start, End, and C (for centre) are defined, along with any element labels. An elementspec is of
the form [Label:] element; [attributes], where an attribute is zero or more of llabel(. . .),

rlabel(. . .), or b_current(. . .).
Drawing elements in parallel requires a little more effort but, for example, three elements can be

drawn in parallel using the code snippet shown, producing the left circuit in Figure 18:

define(‘elen_’,dimen_)

L: inductor(right_ 2*elen_,W); llabel(+,L,-)

R1: resistor(right elen_ from L.start+(0,-dimen_)); llabel(,R1)

R2: resistor; llabel(,R2)

C: capacitor(right 2*elen_ from R1.start+(0,-dimen_)); llabel(,C)

line from L.start to C.start

line from L.end to C.end

+ L −

R1 R2

C

Start End

parallel_(‘L:inductor(,W); llabel(+,L,-)’,

series_(‘R1:resistor; llabel(,R1)’, ‘R2:resistor; llabel(,R2)’),

‘C:capacitor; llabel(,C)’)

R1

R2

L

C

+

V

−

Start

End

setdir_(Down)

parallel_(

series_(‘R1:resistor; rlabel(,R_1)’,

parallel_(

series_(‘resistor; rlabel(,R_2)’,

‘inductor(,W); rlabel(,L)’),
‘capacitor(,C); rlabel(,C)’),

line down dimen_/2),

‘Sep=linewid*3/2; V:source; rlabel(+,V,-)’)

Figure 18: Illustrating the macros parallel_ and series_, with Start and End points marked.

A macro that produces the same effect automatically is
parallel_(‘elementspec’, ‘elementspec’, . . .)
The arguments must be quoted to delay expansion, unless an argument is a nested parallel_ or

series_ macro, in which case it is not quoted. The elements are drawn in a [] block with defined
points Start, End, and C. An elementspec is of the form

[Sep=val;][Label:] element; [attributes]

16

where an attribute is of the form
[llabel(. . .);] | [rlabel(. . .)] | [b_current(. . .);]

Putting Sep=val; in the first branch sets the default separation of all branches to val; in a later
element, Sep=val; applies only to that branch. An element may have normal arguments but should
not change the drawing direction.

6 Composite circuit elements

Many basic elements are not two-terminal. These elements are usually enclosed in a [] pic block,
and contain named interior locations and components. The block must be placed by using its
compass corners, thus: element with corner at position or, when the block contains a predefined
location, thus: element with location at position. A few macros are positioned with the first
argument; the ground macro, for example: ground(at position). In some cases, an invisible line
can be specified by the first argument to determine length and direction (but not position) of the
block.

Nearly all elements drawn within blocks can be customized by adding an extra argument, which
is executed as the last item within the block.

The macro potentiometer(linespec,cycles,fractional pos,length, . . .), shown in Figure 19,
first draws a resistor along the specified line, then adds arrows for taps at fractional positions along
the body, with default or specified length. A negative length draws the arrow from the right of the
current drawing direction.

potentiometer(down_ dimen_)

Start

End

T1

...(down_ dimen_,,0.5,-5mm__)

Start

End

T1

...(down_ dimen_,,0.25,-5mm__,0.75,5mm__)

Start

End

T1
T2

Figure 19: Default and multiple-tap potentiometer.

The macro addtaps([arrowhd | type=arrowhd;name=Name], fraction, length, fraction, length,
. . .), shown in Figure 20, will add taps to the immediately preceding two-terminal element. However,

R1.start R1.end

Tap1

Tap2
right_; t = 0.2in__

R1: resistor(,,E)
addtaps(<-,0.2,-t,0.8,t) Tx1 Tx3

R2: ebox(,elen_*0.6)

addtaps(type=-;name=Tx,

0.2,-t,0.5,-t,0.8,-t)

R3.Start R3.End

R3.Tap1 R3.Tap3

R3: tapped(‘ebox(,elen_*0.6,)’,->,0.2,-t,0.5,-t,0.8,-t) \

with .Start at R1.start+(0.25in__,-0.6in__)

L1: tapped(‘inductor(right_ 9*dimen_/8,,9)’,

-,0,-t,3/9,-t/2,6/9,-t/2,1,-t)
L1.Tap1 L1.Tap4

Figure 20: Macros for adding taps to two-terminal elements.

the default names Tap1, Tap2 . . . may not be unique in the current scope. An alternative name
for the taps can be specified or, if preferable, the tapped element can be drawn in a [] block using
the macro tapped(‘two-terminal element’, [arrowhd | type=arrowhd;name=Name], fraction,
length, fraction, length, . . .). Internal names .Start, .End, and .C are defined automatically,
corresponding to the drawn element. These and the tap names can be used to place the block.

17

These two macros require the two-terminal element to be drawn either up, down, to the left, or to
the right; they are not designed for obliquely drawn elements.

A few composite symbols derived from two-terminal elements are shown in Figure 21.

KelvinR

T1 T2Start End

KelvinR(,R)
T1 T2

FTcap

Start End
T1

T2

FTcap(B)

Start End
T1

T2
FTcap(C)

Start End

T
FTcap(D)

Start End

T

Figure 21: Composite elements KelvinR(cycles,[R],cycle wid) and FTcap(chars) .

The ground symbol is shown in Figure 22. The first argument specifies position; for example,
the two lines shown have identical effect:

move to (1.5,2); ground

ground(at (1.5,2))

The second argument truncates the stem, and the third defines the symbol type. The fourth
argument specifies the angle at which the symbol is drawn, with D (down) the default. This macro
is one of several in which a temporary drawing direction is set using the setdir_(U|D|L|R|degrees,
default R|L|U|D|degrees) macro and reset at the end using resetdir_.

ground
ground(,T)

(,,F) (,,E) (,,S) (,,S,90) (,,Q) (,,L) (,,P)

Figure 22: The ground(at position, T, N|F|S|L|P|E, U|D|L|R|degrees) macro.

The arguments of the macro antenna(at position, T, A|L|T|S|D|P|F, U|D|L|R|degrees)

shown in Figure 23 are similar to those of ground.

T

antenna

T

(,T)

T1 T2

(,,L)

T1 T2

(,T,L)

T

(,,T)

T1 T2

(,,S)

T1 T2

(,,D)

T

(,,P)

T

(,,F)

Figure 23: Antenna symbols, with macro arguments shown above and terminal names below.

Figure 24 illustrates the macro opamp(linespec, - label, + label, size, chars). The element
is enclosed in a block containing the predefined internal locations shown. These locations can
be referenced in later commands, for example as “last [].Out.” The first argument defines the
direction and length of the opamp, but the position is determined either by the enclosing block of
the opamp, or by a construction such as “opamp with .In1 at Here”, which places the internal
position In1 at the specified location. There are optional second and third arguments for which the

−

+

opamp

Out

In1

In2

N
E1

E

E2
S

W
−

+

Point_(15); opamp(,,,,PR)

V1

V2 − +

Point_(90); opamp

−

+

opamp(,,,,T)

Figure 24: Operational amplifiers. The P option adds power connections. The second and third arguments
can be used to place and rotate arbitrary text at In1 and In2.

18

defaults are \scriptsize$-$ and \scriptsize$+$ respectively, and the fourth argument changes
the size of the opamp. The fifth argument is a string of characters. P adds a power connection, R

exchanges the second and third entries, and T truncates the opamp point.
Typeset text associated with circuit elements is not rotated by default, as illustrated by the

second and third opamps in Figure 24. The opamp labels can be rotated if necessary by using
postprocessor commands (for example PSTricks \rput) as second and third arguments.

The code in Figure 25 places an opamp with three connections.

line right 0.2 then up 0.1

A: opamp(up_,,,0.4,R) with .In1 at Here

line right 0.2 from A.Out

line down 0.1 from A.In2 then right 0.2

−+

Figure 25: A code fragment invoking the opamp(linespec,-,+,size,[R][P]) macro.

Figure 26 shows variants of the transformer macro, which has predefined internal locations P1,
P2, S1, S2, TP, and TS. The first argument specifies the direction and distance from P1 to P2,
with position determined by the enclosing block as for opamps. The second argument places the
secondary side of the transformer to the left or right of the drawing direction. The optional third
and fifth arguments specify the number of primary and secondary arcs respectively. If the fourth
argument string contains an A, the iron core is omitted; if a P, the core is dashed (powder); and if it
contains a W, wide windings are drawn. A D1 puts phase dots at the P1, S1 end, D2 at the P2, S2
ends, and D12 or D21 puts dots at opposite ends.

P1

P2

TP

S1

S2

TS

transformer

P1

P2

TP

S1

S2

TS

...(down_ 0.6„2,P,8)

P1

P2

TP

S1

S2

TS

...(„8,WD12,4)

P1

P2

TP

S1

S2

TS

...(„9,AL)

P1

P2

TP

S1

S2

TS

...(,R,8,AW)

Figure 26: The transformer(linespec,L|R,np,[A|P][W|L][D1|D2|D12|D21],ns) macro (drawing direc-
tion down), showing predefined terminal and centre-tap points.

Figure 27 shows some audio devices, defined in [] blocks, with predefined internal locations as
shown. The first argument specifies the device orientation.

speaker

In1

In2

In3

In4 In5

In6 In7

Box

speaker(,,H)

bell

In1

In2

In3

Box Circle

microphone

In1

In2

In3

Circle

buzzer

In1

In2

In3

Box

buzzer(,,C)

In1

In2

In3

Face

earphone

In1

In2

In3

Box

earphone(,,C)

L R
N

C

Figure 27: Audio components: speaker(U|D|L|R|degrees,size,type), bell, microphone, buzzer,

earphone, with their internally named positions and components.

Thus,
S: speaker(U) with .In2 at Here

places an upward-facing speaker with input In2 at the current location.
The nport(box specs [; other commands], nw, nn, ne, ns, space ratio, pin lgth, style) macro

is shown in Figure 28. The macro begins with the line define(‘nport’,‘[Box: box ‘$1’, so the
first argument is a box specification such as size, fill, or text. The second to fifth arguments specify

19

W1a

W1b

E1a

E1b

n-port

W1a

W1b

E1a

E3b

N1a N1b N2a N2b

S1a S4b· · ·

... W1 E1

S1
nport

nport(wid 2.0 ht 1 fill_(0.9) "n-port",1,2,3,4)

nterm

Figure 28: The nport macro draws a sequence of pairs of named pins on each side of a box. The pin
names are shown. The default is a twoport. The nterm macro draws single pins instead of pin pairs.

the number of ports (pin pairs) to be drawn respectively on the west, north, east, and south sides
of the box. The end of each pin is named according to the side, port number, and a or b pin, as
shown. The sixth argument specifies the ratio of port width to inter-port space, the seventh is the
pin length, and setting the eighth argument to N omits the pin dots. The macro ends with ‘$9’]’),
so that a ninth argument can be used to add further customizations within the enclosing block.

The nterm(box specs, nw, nn, ne, ns, pin lgth, style) macro illustrated in Figure 28 is similar to
the nport macro but has one fewer argument, draws single pins instead of pin pairs, and defaults to
a 3-terminal box.

Many custom labels or added elements may be required, particularly for 2-ports. These elements
can be added using the first argument and the ninth of the nport macro. For example, the following
code adds a pair of labels to the box immediately after drawing it but within the enclosing block:

nport(; ‘"0"’ at Box.w ljust; ‘"∞"’ at Box.e rjust)

If this trick were to be used extensively, then the following custom wrapper would save typing,
add the labels, and pass all arguments to nport:

define(‘nullor’,‘nport(‘$1’

{‘"${}0$"’ at Box.w ljust

‘"∞"’ at Box.e rjust},shift($@))’)

The above example and the related gyrator macro are illustrated in Figure 29.

0 ∞

nullor gyrator
gyrator(invis,,0,N)

gyrator(invis wid boxht,,0,NV)

Figure 29: The nullor example and the gyrator macro are customizations of the nport macro.

The double-throw switches shown in Figure 30 are drawn in the current drawing direction like
the two-terminal elements, but are composite elements that must be placed accordingly.

RTL
NPDT

R

T

L
up_; NPDT

R1L1

R2L2

NPDT(2)

R1L1

R2L2

R3L3

NPDT(3,R)

R1 L1

R2 L2

left_; NPDT(2,R)

Figure 30: Multipole double-throw switches drawn by NPDT(npoles, [R]).

20

Figure 31 shows the macro contact(chars), which contains predefined locations P, C, O for the
armature and normally closed and normally open terminals. An I in the first argument draws open
circles for contacts.

contact

P

O

C

(R)

P

O

C

(O) (C) (P)

P

O

C

(PR)

P

O

C

(PO)

O

C

(PC)

(I)

P
O
C

(RI)

P
O
C

(OI) (CI) (PI)
O

C

(PIO) (PIC)

(T)

C

O
(RT)

O

C
(OT) (CT) (PT) (PTO) (PTC)

(U)

C

O
(RU)

O

C
(OU)

O

(CU)

C

(PU) (PUO) (PUC)

Figure 31: The contact(chars) macro (default drawing direction right) can be used alone, in a set of
ganged contacts, or in relays.

The contacts(poles, chars) macro in Figure 32 draws multiple contacts.

contacts(2)

P1

O1

C1

P2

O2

C2

(2,I)

P1
O1
C1

P2
O2
C2

(2,IO)

P1
O1

P2
O2

(2,PICD)

P1
O1

C1

P2
O2

C2

(2,PTCD)

P1
O1

C1

P2
O2

C2

(2,PUCD)

P1
O1
C1

P2
O2
C2

Figure 32: The contacts(poles, chars) macro (drawing direction right).

For drawing relays, the macro relaycoil(chars, wid, ht, U|D|L|R|degrees) shown in Figure 33
provides a choice of connection points and actuator types.

relaycoil

V1 V2

(NX)

A1
A2
A3

B1
B2
B3

(AXSR)

V1
V2

(BXSR)

V1
V2

(SR) (SO) (SOR)

(HS) (NAC) (AC) (ML) (PO) (RM) (RH) (TH) (EL)

Figure 33: The relaycoil macro.

The relay(poles, chars) macro in Figure 34 defines coil terminals V1, V2 and contact terminals
Pi, Ci, Oi.

The jack and plug macros and their defined points are illustrated in Figure 35. The first
argument of both macros establishes the drawing direction. The second argument is a string of
characters defining drawn components. An R in the string specifies a right orientation with respect
to the drawing direction. The two principal terminals of the jack are included by putting L S or both
into the string with associated make (M) or break (B) points. Thus, LMB within the third argument
draws the L contact with associated make and break points. Repeated L[M|B] or S[M|B] substrings
add auxiliary contacts with specified make or break points.

21

V1 V2

P1

O1

C1

relay

P1
C1

P2
C2

(2,CTh)

P1

O1

P1
O2

(2,O)

V1
V2

P1
O1

C1

P2
O2

C2

(2,PIAX)

V1 V2

P1

O1

C1

P2

O2

C2

relay(2,R)

Figure 34: The relay(poles, chars) macro (drawing direction right).

A

B TB

TA

A

B A

B
C

A

B
C

plug plug(,R) plug(,3) plug(L,3R)

L
F

G

L
LM

LB
S

L

S

L1
LM1L2
LM2

S

L
LB

L

S

S1
SM1

LB
SB

jack jack(,LMBS) ..(L,RLS) ..(L,RLBLMLMS) ..(,RSBSMLB)

Figure 35: The jack(U|D|L|R|degrees, chars) and plug(U|D|L|R|degrees,[2|3][R]) components and
their defined points.

A basic winding macro for magnetic-circuit sketches and similar figures is shown in Figure 36.
For simplicity, the complete spline is first drawn and then blanked in appropriate places using the
background (core) color (lightgray for example, default white).

winding

winding(R)

pitch

diam core wid

core color

T1 T2

Left pins
cw

T1

T2

Left pins
ccw

T1

T2

Right pins
cw

T1

T2

Right pins
ccw

T1

T2

g
i1

−

v1

+

N1

i2

−

v2

+

N2

φ

Figure 36: The winding(L|R, diam, pitch, turns, core wid, core color) macro draws a coil with
axis along the current drawing direction. Terminals T1 and T2 are defined. Setting the first argument
to R draws a right-hand winding.

A macro for drawing headers is in Figure 37, and some experimental connectors are shown in
Figure 38 and Figure 39. The tstrip macro allows “key=value;” arguments for width and height.

P1

Header

P2
P1

Header(2,3,8mm__,10mm__)

P2

P5 P6 P1

left_; Header(2,4,,,fill_(0.9))

P8
P1

P2
down_; Header(2,8)

P15

P16

PinP1
PinP2

Figure 37: Macro Header(1|2, rows, wid, ht, type).

22

L1

L4
...

R1

R4
...

T1

T4
...

tstrip(U)

T1 T5· · ·

tstrip(R,5,

DO;wid=1.0;ht=0.25)

ccoax

C

S

ccoax(,F)

tconn(,O) (,>) (,»)

tconn(,<) (,«)

V2

tbox(V_2)

V1

tbox(V_1,,,<>)

Figure 38: Macros tstrip(R|L|U|D|degrees, chars), ccoax(at location, M|F, diameter),
tconn(linespec, >|»|<|«|O[F], wid), and tbox(text, wid, ht, <|>|<>,type).

H

pconnex(,A)

HN

G

(,AF) (,AC) (,ACF) (U,D) (U,DF) (U,J) (U,JF)

(,P) (,PF)
(,G) (,GF) (L,GF) (,GC)

Figure 39: A small set of power connectors drawn by pconnex(R|L|U|D|degrees, chars). Each connector
has an internal H, N, and where applicable, a G shape.

6.1 Semiconductors

Figure 40 shows the variants of bipolar transistor macro bi_tr(linespec,L|R,P,E) which contains
predefined internal locations E, B, C. The first argument defines the distance and direction from E
to C, with location determined by the enclosing block as for other elements, and the base placed to

E

B

C

bi_tr(up_ dimen_)

E

B

C

bi_tr(,R)
E

B

C

bi_tr(,,P)

E

B

C

bi_tr(,,,E)
E

G

C

igbt

E

G

C

igbt(,,LD)

Figure 40: Variants of bipolar transistor bi_tr(linespec,L|R,P,E) (current direction upward).

the left or right of the current drawing direction according to the second argument. Setting the third
argument to P creates a PNP device instead of NPN, and setting the fourth to E draws an envelope
around the device. Figure 41 shows a composite macro with several optional internal elements.

E

B

C

Darlington

E

B

B1

C

(R,DZB1)

E

B

B1

C

(,EB1)

E

B

B1

C

(,EB1DZR1)

E

B

B1

C

(,EB1DE1E2)

Figure 41: Macro Darlington(L|R,[E][P][B1][E1|R1][E2|R2][D][Z]), drawing direction up_.

The code fragment example in Figure 42 places a bipolar transistor, connects a ground to the
emitter, and connects a resistor to the collector.

The bi_tr and igbt macros are wrappers for the macro bi_trans(linespec, L|R, chars, E),
which draws the components of the transistor according to the characters in its third argument. For
example, multiple emitters and collectors can be specified as shown in Figure 43.

23

S: dot; line left_ 0.1; up_

Q1: bi_tr(,R) with .B at Here

ground(at Q1.E)

line up 0.1 from Q1.C; resistor(right_ S.x-Here.x); dot

Figure 42: The bi_tr(linespec,L|R,P,E) macro.

C

B

E

B

C

BU

uE
S

S

bi_trans(,,BCuEBUS)

C

B

E0E2 E1

Em2

bi_trans(,,BCdE2BU)

E

B

C0 C2C1

Cm2

bi_trans(,,BC2dEBU)

Figure 43: The bi_trans(linespec,L|R,chars,E) macro. The sub-elements are specified by the third
argument. The substring En creates multiple emitters E0 to En. Collectors are similar.

A UJT macro with predefined internal locations B1, B2, and E is shown in Figure 44, and a
thyristor macro with predefined internal locations G and T1, T2, or A, K is in Figure 45. Except for
the G terminal, a thyristor (the IEC variant excluded) is much like an two-terminal element. The

B1

E
B2

ujt(up_ dimen_,,,E)

B1

E B2

ujt(,,P,)

B1

EB2

ujt(,R,,)

B1

EB2

ujt(,R,P,)

Figure 44: UJT devices, with current drawing direction up_.

A

K
G

thyristor

T1

T2
G

...(,B)

T1

T2
G

...(,BRK)

T1

T2 G

...(,BE)

A

K
G

...(,A)

A

K
G

...(,F)

T1

T2G

...(,BRE)

A

KG

...(,UARE)

A

K

G

...(,AV)

A

K

G

...(,IEC)

A

K

G

...(,UAH)

A

K

Ga

...(,N)

A

K

Ga

...(,UANRE)

A

K G

...(,SCR)

A

K G

...(SCRE)

A

KG

...(SCRRE)

A

K
G

...(SCS)

Ga A

K G

...(SCSE)

Ga A

K

G

...(SUSE)

T1

T2

G

...(SBSE)

scr(,,Q)
Q.G

scs(,,Q2)
Q2.G

Q2.Ga

sus(,RE,Q3)

Q3.G

sbs(,E,Q4)

Q4.G

Figure 45: The top two rows illustrate use of the thyristor(linespec, chars) macro, drawing direction
down_, and the bottom row shows wrapper macros (drawing direction right_) that place the
thyristor like a two-terminal element. Append K to the second argument to draw open arrowheads.

wrapper macro scr(linespec, chars, label) and similar macros scs, sus, and sbs place thyristors
using linespec as for a two-terminal element, but require a third argument for the label for the
compound block; thus,

scr(from A to B,,Q3); line right from Q3.G

draws the element from position A to position B with label Q3, and draws a line from G.
Some FETs with predefined internal locations S, D, and G are also included, with similar

arguments to those of bi_tr, as shown in Figure 46. In all cases the first argument is a linespec,

24

j_fet(right_ dimen_,,,E)

G

S D
j_fet(,,P,)

G

S D
e_fet(,R,,)

G

S D

e_fet(,,P)

d_fet(,,,)

d_fet(,,P)

e_fet(,,,S)

e_fet(,,P,S)

d_fet(,,,S)

d_fet(,,P,S)

c_fet(,,,)

c_fet(,,P)

mosfet(,,dGSDF,)

dG

F
S D

. . .(,,uHSDF,)

uH

. . .(,,dMEDSQuB,)

dM

E
Q

uB

. . .(,,uMEDSuB)

G

S DB . . .(,,ZSDFdT,)

Z

dT

IRF4905

G

D

S

G0 G1

mosfet(,,dBSDFQM1,E)

G0G1

...(,,dBSDFQuM1)

Figure 46: JFET, insulated-gate enhancement and depletion MOSFETs, and simplified versions. These
macros are wrappers that invoke the mosfet macro as shown in the middle and bottom rows. The
two lower-right examples show custom devices, the first defined by omitting the substrate connection,
and the second defined using a wrapper macro.

and entering R as the second argument orients the G terminal to the right of the current drawing
direction. The macros in the top three rows of the figure are wrappers for the general macro
mosfet(linespec,R,characters,E). The third argument of this macro is a subset of the characters
{BDEFGLMQRSTXZ}, each letter corresponding to a diagram component as shown in the bottom row
of the figure. Preceding the characters B, G, and S by u or d adds an up or down arrowhead to the
pin, preceding T by d negates the pin, and preceding M by u or d puts the pin at the drain or source
end respectively of the gate. The obsolete letter L is equivalent to dM and has been kept temporarily
for compatibility. This system allows considerable freedom in choosing or customizing components,
as illustrated in Figure 46.

The number of possible semiconductor symbols is very large, so these macros must be regarded
as prototypes. Often an element is a minor modification of existing elements. For example, the
thyristor(linespec, chars) macro illustrated in Figure 45 is derived from the diode and bipolar
transistor macros. Another example is the tgate macro shown in Figure 47, which also shows a
pass transistor.

A B
G

Gb
tgate

A B
G

Gb

tgate(,L)

A B
G

tgate(,B)

A B

G

Gb
ptrans

A B

G

Gb

ptrans(,L)

Figure 47: The tgate(linespec, [B][R|L]) element, derived from a customized diode and ebox, and the
ptrans(linespec, [R|L]) macro. These are not two-terminal elements, so the linespec argument
defines the direction and length of the line from A to B but not the element position.

Some other non-two-terminal macros are dot, which has an optional argument “at location”,
the line-thickness macros, the fill_ macro, and crossover, which is a useful if archaic method to
show non-touching conductor crossovers, as in Figure 48.

This figure also illustrates how elements and labels can be colored using the macro
rgbdraw(r, g, b, drawing commands)

where the r, g, b values are in the range 0 to 1 (integers from 0 to 255 for SVG) to specify the rgb
color. This macro is a wrapper for the following, which may be more convenient if many elements
are to be given the same color:

25

Q1 Q2

RL

Vcc

RLR1 R1

R2

−Vcc

R2

Figure 48: Bipolar transistor circuit, illustrating crossover and colored elements.

setrgb(r, g, b)

drawing commands
resetrgb

A macro is also provided for colored fills:
rgbfill(r, g, b, drawing commands)

These macros depend heavily on the postprocessor and are intended only for PSTricks, Tikz PGF,
MetaPost, SVG, and the Postscript or PDF output of dpic.

7 Corners

If two straight lines meet at an angle then, depending on the postprocessor, the corner may not be
mitred or rounded unless the two lines belong to a multisegment line, as illustrated in Figure 49. This

line up 0.2
line right 0.2

line up 0.2 \
then right 0.2

line up 0.2

line right 0.2 \
chop -hlth chop 0

line up 0.2
round
line right 0.2

line up 0.15 left 0.15
corner
line up 0.1 right 0.1

A

corner(,at A)
L M

Mitre_(L,M,5 bp__)
A

B

C

mitre_(A,B,C)

Figure 49: Producing mitred angles and corners.

is normally not an issue for circuit diagrams unless the figure is magnified or thick lines are drawn.
Rounded corners can be obtained by setting post-processor parameters, but the figure shows the effect
of macros round and corner. The macros mitre_(Position1,Position2,Position3,length,attributes)
and Mitre_(Line1,Line2,length,attributes) may assist as shown. Otherwise, a right-angle line can
be extended by half the line thickness (macro hlth) as shown on the upper row of the figure, or a
two-segment line can be overlaid at the corner to produce the same effect.

8 Looping

Sequential actions can be performed using either the dpic command
for variable=expression to expression [by expression] do { actions }

or at the m4 processing stage. The libgen library defines the macro
for_(start, end, increment, ‘actions’)

for this and other purposes. Nested loops are allowed and the innermost loop index variable is m4x.

The first three arguments must be integers and the end value must be reached exactly; for example,
for_(1,3,2,‘print In‘’m4x’) prints locations In1 and In3, but for_(1,4,2,‘print In‘’m4x’)

does not terminate since the index takes on values 1, 3, 5,

26

Repetitive actions can also be performed with the libgen macro
Loopover_(‘variable’, actions, value1, value2, . . .)

which evaluates actions for each instance of variable set to value1, value2,

9 Logic gates

Figure 50 shows the basic logic gates included in library liblog.m4. The first argument of the gate
macros can be an integer N from 0 to 16, specifying the number of input locations In1, . . . InN,
as illustrated for the NOR gate in the figure. By default, N = 2 except for macros NOT_gate and
BUFFER_gate, which have one input In1 unless they are given a first argument, which is treated as
the line specification of a two-terminal element.

AND_gate

OR_gate

BUFFER_gate

XOR_gate

NAND_gate

NOR_gate(3)
Out

N_Out

In1
In2
In3

NOT_gate

NXOR_gate(NPN)

In1
In2

In3

&

NAND_gate(,B)

≥ 1

NOR_gate(3,NB)

= 1

BOX_gate(PN,N,,,=1)

=

BOX_gate(PP,N,,,=)

Figure 50: Basic logic gates. The input and output locations of a three-input NOR gate are shown.
Inputs are negated by including an N in the second argument letter sequence. A B in the second
argument produces a box shape as shown in the rightmost column, where the second example has
AND functionality and the bottom two are examples of exclusive OR functions.

Input locations retain their positions relative to the gate body regardless of gate orientation, as
in Figure 51. Beyond a default number (6) of inputs, the gates are given wings as in Figure 52.

.PS

‘FF.m4’

log_init

S: NOR_gate

left_

R: NOR_gate at S+(0,-L_unit*(AND_ht+1))

line from S.Out right L_unit*3 then down S.Out.y-R.In2.y then to R.In2

line from R.Out left L_unit*3 then up S.In2.y-R.Out.y then to S.In2

line left 4*L_unit from S.In1 ; "Ssp_" rjust

line right 4*L_unit from R.In1 ; "sp_R" ljust

.PE

S

R

Figure 51: SR flip-flop.

Negated inputs or outputs are marked by circles drawn using the NOT_circle macro. The name
marks the point at the outer edge of the circle and the circle itself has the same name prefixed
by N_. For example, the output circle of a nand gate is named N_Out and the outermost point of
the circle is named Out. Instead of a number, the first argument can be a sequence of letters P or N

to define normal or negated inputs; thus for example, NXOR_gate(NPN) defines a 3-input nxor gate
with not-circle inputs In1 and In3 and normal input In2 as shown in the figure. The macro IOdefs

can also be used to create a sequence of custom named inputs or outputs.
Gates are typically not two-terminal elements and are normally drawn horizontally or vertically

(although arbitrary directions may be set with e.g. Point_(degrees)). Each gate is contained in a
block of typical height 6*L_unit where L_unit is a macro intended to establish line separation for
an imaginary grid on which the elements are superimposed.

Including an N in the second argument character sequence of any gate negates the inputs, and
including B in the second argument invokes the general macro BOX_gate([P|N]...,[P|N],horiz

27

Ȳ

Y

Ē

S0

S1

S2

I0 I1 I2 I3 I4 I5 I6 I7

Figure 52: Eight-input multiplexer, showing a gate with wings.

size,vert size,label), which draws box gates. Thus, BOX_gate(PNP,N„8,\geq 1) creates a gate of
default width, eight L_units height, negated output, three inputs with the second negated, and
internal label “≥ 1”. If the fifth argument begins with sprintf or a double quote then the argument
is copied literally; otherwise it is treated as scriptsize mathematics.

The macro BUFFER_gate(linespec,[N|B],wid,ht,[N|P]*,[N|P]*) is a wrapper for the compos-
ite element BUFFER_gen. If the second argument is B, then a box gate is drawn; otherwise the gate
is triangular. Arguments 5 and 6 determine the number of defined points along the northeast and
southeast edges respectively, with an N adding a NOT circle. If the first argument is non-blank
however, then the buffer is drawn along an invisible line like a two-terminal element, which is
convenient sometimes but requires internal locations of the block to be referenced using last [], as
shown in Figure 53.

In1

bd = dimen_*3/4

BUFFER_gate(,,bd,bd)

NE
Out

SE
C

In1

N_NE1
N_NE2

Out

BUFFER_gate(,N,bd,bd,NN)
BUFFER_gen(ITNOC,bd,bd,PN,,N,

LH_symbol at C)

In1

In2
Out

N_SE1
C

BUFFER_gate(right_ elen_,,bd,bd)

BUFFER_gate(right_ elen_,N,bd,bd,,N,LH_symbol(I) at C)

line down dimen_/3 from last [].N_SE1.s then left dimen_*2/3

Figure 53: The BUFFER_gate and BUFFER_gen macros. The bottom two examples show how the gate can
be drawn as a two-terminal macro but internal block locations must be referenced using last [].

A good strategy for drawing complex logic circuits might be summarized as follows:

• Establish the absolute locations of gates and other major components (e.g. chips) relative to a
grid of mesh size commensurate with L_unit, which is an absolute length.

• Draw minor components or blocks relative to the major ones, using parameterized relative
distances.

28

• Draw connecting lines relative to the components and previously drawn lines.

• Write macros for repeated objects.

• Tune the diagram by making absolute locations relative, and by tuning the parameters. Some
useful macros for this are the following, which are in units of L_unit:

AND_ht, AND_wd: the height and width of basic AND and OR gates

BUF_ht, BUF_wd: the height and width of basic buffers

N_diam: the diameter of NOT circles

Figure 54 shows a multiplexer block with variations, and Figure 55 shows the very similar
demultiplexer.

M1

0

1

2

3

Mux(4,M1)

In0

In1

In2

In3

Out

Sel

0

1

2

3

OE

left_; Mux(4,,LNOE)

In0

NOE

Out

Sel
00

01

10

11

OE

Mux(4,,OEBN2)

Sel0 Sel1

In0

In3

OE

0 1 2 3 4 5 6 7

down_; Mux(8,,L3,,28*L_unit)

Sel0

Sel2

In0 In7

Figure 54: The Mux(input count, label, [L][B|H|X][N[n]|S[n]][[N]OE],wid,ht) macro.

DM1

0

1

2

3

Demux(4,DM1)

Out0

Out3

In

Sel

0

1

2

3

OE

left_; Demux(4,,LOE)

Sel

Out0

OE
In

00

01

10

11
OE

(4,,NOEBN2)

Sel0 Sel1

Out0

Out3NOE

In
0 1 2 3 4 5 6 7

down_; Demux(8,,L3,,28*L_unit)

Sel0

Sel2

Out0 Out7

In

Figure 55: The Demux(input count, label, [L][B|H|X][N[n]|S[n]][[N]OE],wid,ht) macro.

Figure 56 shows the macro FlipFlop(D|T|RS|JK, label, boxspec, pinlength), which is a wrapper
for the more general macro FlipFlopX(boxspec, label, leftpins, toppins, rightpins, bottompins,
pinlength). The first argument modifies the box (labelled Chip) default specification. Each of
arguments 3 to 6 is null or a string of pinspecs separated by semicolons (;). A pinspec is either
empty (null) or of the form [pinopts]:[label[:Picname]]. The first colon draws the pin. Pins are
placed top to bottom or left to right along the box edges with null pinspecs counted for placement.
Pins are named by side and number by default; eg W1, W2, ..., N1, N2, ..., E1, ..., S1,

... ; however, if :Picname is present in a pinspec then Picname replaces the default name. A
pinspec label is text placed at the pin base. Semicolons are not allowed in labels; use e.g., \char59{}

instead. To put a bar over a label, use lg_bartxt(label). The pinopts are [L|M|I|O][N][E] as for
the lg_pin macro. Option argument 7 is the pin length in drawing units.

29

Q1

D

CK

Q

Q

FlipFlop(D,Q1)

Q2

T

CK

Q

Q

FlipFlop(T,Q2,

ht h1 wid w1 fill_(0.9))

R

S

Q

Q

FlipFlop(RS,,,

Chip.wid/8)

J

CK

K

CLR

Q

Q

PR

FlipFlop(JK)

D

CK

Q

Q

FlipFlopX(,,

:D;E:CK,,:Q;:lg_bartxt(Q))

T

CK

Q

FlipFlopX(,,

:T;E:CK,,:Q;)

J

CK

K

CLR

Q

FlipFlopX(,,

:J;E:CK;:K,N:CLR,:Q;)

Figure 56: The FlipFlop and FlipFlopX macros, with variations.

Customized gates can be defined simply. For example, the following code defines the custom
flipflops in Figure 57.

S

CK

R

PR

Q

Q
CLR

SERIAL

INPUT

CLEAR

CLOCK

S

CK

R

PR

Q

Q
CLR

S

CK

R

PR

Q

Q
CLR

S

CK

R

PR

Q

Q
CLR

S

CK

R

PR

Q

CLR

OUTPUT

PR4 PR3 PR2 PR1 PR0

PRESET

ENABLE

Figure 57: A 5-bit shift register.

define(‘customFF’,‘FlipFlopX(wid 10*L_unit ht FF_ht*L_unit,,

:S;NE:CK;:R, N:PR, :Q;;ifelse(‘$1’,1,:lg_bartxt(Q)), N:CLR) ’)

This definition makes use of macros L_unit and FF_ht that predefine dimensions. There are three
pins on the right side; the centre pin is null and the bottom is null if the first macro argument is 1.

For hybrid applications, the dac and adc macros are illustrated in Figure 58. The figure shows the
default and predefined internal locations, the number of which can be specified as macro arguments.

In addition to the logic gates described here, some experimental IC chip diagrams are included
with the distributed example files.

30

In1

NW

SW SE

NE
N1

S1

Out1
C

dac

DAC
In1

In2

N1 N2

Out1
Out2

Out3

S1 S2 S3
Q: dac(,,2,2,3,3); "DAC" "2" at Q.C

NW

SW SE

NE

In1

N1

S1

Out1
C

adc

ADC
In1

In2

N1 N2

Out1
Out2
Out3

S1 S2 S3
adc(,,2,2,3,3)

Figure 58: The dac(width,height,nIn,nN,nOut,nS) and adc(width,height,nIn,nN,nOut,nS) macros.

10 Element and diagram scaling

There are several issues related to scale changes. You may wish to use millimetres, for example,
instead of the default inches. You may wish to change the size of a complete diagram while keeping
the relative proportions of objects within it. You may wish to change the sizes or proportions
of individual elements within a diagram. You must take into account that line widths are scaled
separately from drawn objects, and that the size of typeset text is independent of the pic language.

The scaling of circuit elements will be described first, then the pic scaling facilities.

10.1 Circuit scaling

The circuit elements all have default dimensions that are multiples of the pic environmental parameter
linewid, so changing this parameter changes default element dimensions. The scope of a pic variable
is the current block; therefore, a sequence such as

resistor

T: [linewid = linewid*1.5; up_; Q: bi_tr] with .Q.B at Here

ground(at T.Q.E)

resistor(up_ dimen_ from T.Q.C)

connects two resistors and a ground to an enlarged transistor. Alternatively, you may redefine the
default length elen_ or the body-size parameter dimen_. For example, adding the line

define(‘dimen_’,(dimen_*1.2))

after the cct_init line of quick.m4 produces slightly larger body sizes for all circuit elements. For
logic elements, the equivalent to the dimen_ macro is L_unit, which has default value (linewid/10).

The macros capacitor, inductor, and resistor have arguments that allow the body sizes to
be adjusted individually. The macro resized mentioned previously can also be used.

10.2 Pic scaling

There are at least three kinds of graphical elements to be considered:

1. When generating final output after reading the .PE line, pic processors divide distances and
sizes by the value of the environmental parameter scale, which is 1 by default. Therefore, the
effect of assigning a value to scale at the beginning of the diagram is to change the drawing
unit (initially 1 inch) throughout the figure. For example, the file quick.m4 can be modified
to use millimetres as follows:

.PS # Pic input begins with .PS

scale = 25.4 # mm

cct_init # Set defaults

elen = 19 # Variables are allowed

...

31

The default sizes of pic objects are redefined by assigning new values to the environmental
parameters arcrad, arrowht, arrowwid, boxht, boxrad, boxwid, circlerad, dashwid,

ellipseht, ellipsewid, lineht, linewid, moveht, movewid, textht, and textwid. The
. . .ht and . . .wid parameters refer to the default sizes of vertical and horizontal lines, moves, etc.,
except for arrowht and arrowwid, which are arrowhead dimensions. The boxrad parameter
can be used to put rounded corners on boxes. Assigning a new value to scale also multiplies
all of these parameters except arrowht, arrowwid, textht, and textwid by the new value
of scale (gpic multiplies them all). Therefore, objects drawn to default sizes are unaffected
by changing scale at the beginning of the diagram. To change default sizes, redefine the
appropriate parameters explicitly.

2. The .PS line can be used to scale the entire drawing, regardless of its interior. Thus, for
example, the line .PS 100/25.4 scales the entire drawing to a width of 100 mm. Line thickness,
text size, and dpic arrowheads are unaffected by this scaling.

If the final picture width exceeds maxpswid, which has a default value of 8.5, then the picture
is scaled to this size. Similarly, if the height exceeds maxpsht (default 11), then the picture
is scaled to fit. These parameters can be assigned new values as necessary, for example, to
accommodate landscape figures.

3. The finished size of typeset text is independent of pic variables, but can be determined as in
Section 12. Then, "text" wid x ht y tells pic the size of text, once the printed width x
and height y have been found.

4. Line widths are independent of diagram and text scaling, and have to be set explicitly.
For example, the assignment linethick = 1.2 sets the default line width to 1.2 pt. The
macro linethick_(points) is also provided, together with default macros thicklines_ and
thinlines_.

11 Writing macros

The m4 language is quite simple and is described in numerous documents such as the original
reference [8] or in later manuals [14]. If a new circuit or other element is required, then it may
suffice to modify and rename one of the library definitions or simply add an option to it. Hints for
drawing general two-terminal elements are given in libcct.m4. However, if an element or block is
to be drawn in only one orientation then most of the elaborations used for general two-terminal
elements in Section 4 can be dropped. If you develop a library of custom macros in the installation
directory then the statement include(mylibrary.m4) can bring its definitions into play.

It may not be necessary to define your own macro if all that is needed is a small addition to
an existing element that is defined in an enclosing [] block. After the element arguments are
expanded, one argument beyond the normal list is automatically expanded before exiting the block,
as mentioned near the beginning of Section 6. This extra argument can be used to embellish the
element.

A macro is defined using quoted name and replacement text as follows:
define(‘name’,‘replacement text’)

After this line is read by the m4 processor, then whenever name is encountered as a separate
string, it is replaced by its replacement text, which may have multiple lines. The quotation characters
are used to defer macro expansion. Macro arguments are referenced inside a macro by number; thus
$1 refers to the first argument. A few examples will be given.

32

Example 1: Custom two-terminal elements can often be defined by writing a wrapper for an
existing element. For example, an enclosed thermal switch can be defined as shown in Figure 59.

define(‘thermalsw’,

‘dswitch(‘$1’,‘$2’,WDdBTh)

circle rad distance(M4T,last line.c) at last line.c ’)

Figure 59: A custom thermal switch defined from the dswitch macro.

Example 2: In the following, two macros are defined to simplify the repeated drawing of a series
resistor and series inductor, and the macro tsection defines a subcircuit that is replicated several
times to generate Figure 60.

.PS

‘Tline.m4’

cct_init

hgt = elen_*1.5

ewd = dimen_*0.9

define(‘sresistor’,‘resistor(right_ ewd); llabel(,r)’)

define(‘sinductor’,‘inductor(right_ ewd,W); llabel(,L)’)

define(‘tsection’,‘sinductor

{ dot; line down_ hgt*0.25; dot

parallel_(‘resistor(down_ hgt*0.5); rlabel(,R)’,

‘capacitor(down_ hgt*0.5); rlabel(,C)’)

dot; line down_ hgt*0.25; dot }

sresistor ’)

SW: Here

gap(up_ hgt)

sresistor

for i=1 to 4 do { tsection }

line dotted right_ dimen_/2

tsection

gap(down_ hgt)

line to SW

.PE

r L

RC

r L

RC

r L

RC

r L

RC

r L

RC

r

Figure 60: A lumped model of a transmission line, illustrating the use of custom macros.

33

Example 3: Composite elements containing several basic elements may be required. Figure 61 shows
a circuit that can be drawn in any reference direction prespecified by Point_(degrees), containing
labels that always appear in their natural horizontal orientation. Two flags in the argument determine

rπ

+

−

vπ

gmvπ

ro

Base

Emitter

Collector

hybrid_PI_BJT

rπ

+

−

vπ

gmvπ

ro

hybrid_PI_BJT(M)

rπ

+

−
vπ

gmvπ

ro

hybrid_PI_BJT(LM)

rπ+

−
vπ

gmvπ

ro

Point_(45)
hybrid_PI_BJT

Figure 61: A composite element containing several basic elements

the circuit orientation with respect to the current drawing direction and whether a mirrored circuit
is drawn. The key to writing such a macro is to observe that the pic language allows two-terminal
elements to change the current drawing direction, so the value of rp_ang should be saved and
restored as necessary after each internal two-terminal element has been drawn. A draft of such a
macro follows:

‘Point_(degrees)

hybrid_PI_BJT([L][M])

L=left orientation; M=mirror’

define(‘hybrid_PI_BJT’,

‘[# Size (and direction) parameters:

hunit = ifinstr(‘$1’,M,-)dimen_

vunit = ifinstr(‘$1’,L,-)dimen_*3/2

hp_ang = rp_ang # Save the reference direction

Rpi: resistor(to rvec_(0,-vunit)); point_(hp_ang) # Restore direction

DotG: dot(at rvec_(hunit*5/4,0))

Gm: consource(to rvec_(0,vunit),I,R); point_(hp_ang) # Restore direction

dot(at rvec_(hunit*3/4,0))

Ro: resistor(to rvec_(0,-vunit)); point_(hp_ang) # Restore direction

line from Rpi.start to Rpi.start+vec_(-hunit/2,0) chop -lthick/2 chop 0

Base: dot(,,1)

line from Gm.end to Ro.start+vec_(hunit/2,0) chop -lthick/2 chop 0

Collector: dot(,,1)

line from Rpi.end to Ro.end chop -lthick/2

DotE: dot(at 0.5 between Rpi.end and DotG)

line to rvec_(0,-vunit/2)

Emitter: dot(,,1)

Labels

‘"$\mathrm{r_\pi}$"’ at Rpi.c+vec_(hunit/4,0)

‘"$ + $"’ at Rpi.c+vec_(-hunit/6, vunit/4)

‘"$ - $"’ at Rpi.c+vec_(-hunit/6,-vunit/4)

‘"$\mathrm{v_\pi}$"’ at Rpi.c+vec_(-hunit/4,0)

‘"$\mathrm{g_m}$$\mathrm{v_\pi}$"’ at Gm.c+vec_(-hunit*3/8,-vunit/4)

‘"$\mathrm{r_o}$"’ at Ro.c+vec_(hunit/4,0)

‘$2’] ’)

34

Example 4: A number of elements have arguments meant explicitly for customization. Figure 62
customizes the source macro to show a cycle of a horizontal sinusoid with adjustable phase given
by argument 2 in degrees, as might be wanted for a 3-phase circuit:

phsource(,120)

define(‘phsource’,‘source($1,

#‘Set angle to 0, draw sinusoid, restore angle’

m4smp_ang = rp_ang; rp_ang = 0

sinusoid(m4h/2,twopi_/(m4h),

ifelse(‘$2’,,,‘($2)/360*twopi_+’)pi_/2,-m4h/2,m4h/2) with .Origin at Here

rp_ang = m4smp_ang,

$3,$4,$5)’)

Figure 62: A source element customized using its second argument.

Example 5: Repeated subcircuits might have different orientations that include only the element
and its mirror image, for example, so the power of the vec_() and rvec_() macros is not required.
Suppose that an optoisolator is to be drawn with left-right or right-left orientation as shown in
Figure 63.

C CA A

E EK KB

Figure 63: Showing opto and opto(BR) with defined labels.

The macro interface could be something like the following:
opto([L|R][A|B]),

where an R in the argument string signifies a right-left (mirrored) orientation and the element is of
either A or B type; that is, there are two related elements that might be drawn in either orientation,
for a total of four possibilities. Those who find such an interface to be too cryptic might prefer to
invoke the macro as

opto(orientation=Rightleft;type=B),
which includes semantic sugar surrounding the R and B characters for readability; this usage is made
possible by testing the argument string using the ifinstr() macro rather than requiring an exact
match. A draft of the macro follows, and the file Optoiso.m4 in the examples directory adds a third
type option.

‘opto([R|L][A|B])’

define(‘opto’,‘[{u = dimen_/2

Q: bi_trans(up u*2,ifinstr(‘$1’,R,R),ifinstr(‘$1’,B,B)CBUdE)

E: Q.E; C: Q.C; A:ifinstr(‘$1’,R,Q.e+(u*3/2,u),Q.w+(-u*3/2,u)); K: A-(0,u*2)

ifinstr(‘$1’,B,line from Q.B to (Q.B,E); B: Here)

D: diode(from A to K)

arrow from D.c+(0,u/6) to Q.ifinstr(‘$1’,R,e,w)+(0,u/6) chop u/3 chop u/4

arrow from last arrow.start-(0,u/3) to last arrow.end-(0,u/3)

Enc: box rad u wid abs(C.x-A.x)+u*2 ht u*2 with .c at 0.5 between C and K

‘$2’ }]’)

Two instances of this subcircuit are drawn and placed by the following code, with the result shown
in Figure 63.

Q1: opto

Q2: opto(type=B;orientation=Rightleft) with .w at Q1.e+(dimen_,0)

35

12 Interaction with LATEX

The sizes of typeset labels and other TEX boxes are generally unknown prior to processing the
diagram by LATEX. Although they are not needed for many circuit diagrams, these sizes may be
required explicitly for calculations or implicitly for determining the diagram bounding box. The
following example shows how text sizes can affect the overall size of a diagram:

.PS

B: box

"Left text" at B.w rjust

"Right text: x^2" at B.e ljust

.PE

The pic interpreter cannot know the size of the text to the left and right of the box, and the
diagram is generated using default text values. One solution to this problem is to measure the text
sizes by hand and include them literally, thus:

"Left text" wid 38.47pt__ ht 7pt__ at B.w rjust

but this is tedious.
Often, a better solution is to process the diagram twice. The diagram source is processed as

usual by m4 and a pic processor, and the main document source is LATEXed to input the diagram
and format the text, and also to write the text dimensions into a supplementary file. Then the
diagram source is processed again, reading the required dimensions from the supplementary file and
producing a diagram ready for final LATEXing. This hackery is summarized below, with an example
in Figure 64.

• Put \usepackage{boxdims} into the document source.

• Insert the following at the beginning of the diagram source, where jobname is the name of the
main LATEX file:
sinclude(jobname.dim)

s_init(unique name)

• Use the macro s_box(text) to produce typeset text of known size, or alternatively, invoke
the macros \boxdims and boxdim described later. The argument of s_box need not be text
exclusively; it can be anything that produces a TEX box.

.PS

gen_init

sinclude(Circuit_macros.dim)

s_init(stringdims)

B: box

s_box(Left text) at B.w rjust

s_box(Right text: $xˆ%g$,2) at B.e ljust

.PE

Left text Right text: x2

Figure 64: The macro s_box sets string dimensions automatically when processed twice. If two or more
arguments are given to s_box, they are passed through sprintf. The dots show the figure bounding
box.

The macro s_box(text) evaluates initially to
"\boxdims{name}{text}" wid boxdim(name,w) ht boxdim(name,v)

On the second pass, this is equivalent to
"text" wid x ht y

where x and y are the typeset dimensions of the LATEX input text. If s_box is given two or more
arguments as in Figure 64 then they are processed by sprintf.

The argument of s_init, which should be unique within jobname.dim, is used to generate a
unique \boxdims first argument for each invocation of s_box in the current file. If s_init has been
omitted, the symbols “!!” are inserted into the text as a warning. Be sure to quote any commas in

36

the arguments. Since the first argument of s_box is LATEX source, make a rule of quoting it to avoid
comma and name-clash problems. For convenience, the macros s_ht, s_wd, and s_dp evaluate to
the dimensions of the most recent s_box string or to the dimensions of their argument names, if
present.

The file boxdims.sty distributed with this package should be installed where LATEX can find it.
The essential idea is to define a two-argument LATEX macro \boxdims that writes out definitions for
the width, height and depth of its typeset second argument into file jobname.dim, where jobname
is the name of the main source file. The first argument of \boxdims is used to construct unique
symbolic names for these dimensions. Thus, the line

box "\boxdims{Q}{\Huge Hi there!}"

has the same effect as
box "\Huge Hi there!"

except that the line
define(‘Q_w’,77.6077pt__)define(‘Q_h’,17.27779pt__)define(‘Q_d’,0.0pt__)dnl

is written into file jobname.dim (and the numerical values depend on the current font). These
definitions are required by the boxdim macro described below.

The LATEX macro
\boxdimfile{dimension file}

is used to specify an alternative to jobname.dim as the dimension file to be written. This simplifies
cases where jobname is not known in advance or where an absolute path name is required.

Another simplification is available. Instead of the sinclude(dimension file) line above, the
dimension file can be read by m4 before reprocessing the source for the second time:

m4 library files dimension file diagram source file ...

Here is a second small example. Suppose that the file tsbox.m4 contains the following:

\documentclass{article}

\usepackage{boxdims,ifpstricks(pstricks,tikz)}

\begin{document}

.PS

cct_init s_init(unique) sinclude(tsbox.dim)

[source(up_,AC); llabel(,s_box(AC supply))]; showbox_

.PE

\end{document}

The file is processed twice as follows:
m4 pgf.m4 tsbox.m4 | dpic -g > tsbox.tex; pdflatex tsbox

m4 pgf.m4 tsbox.m4 | dpic -g > tsbox.tex; pdflatex tsbox

The first command line produces a file tsbox.pdf with incorrect bounding box. The second command
reads the data in tsbox.dim to size the label correctly. The equivalent pstricks commands (note the
ifpstricks macro in the second source line) are

m4 pstricks.m4 tsbox.m4 | dpic -p > tsbox.tex; latex tsbox

m4 pstricks.m4 tsbox.m4 | dpic -p > tsbox.tex; latex tsbox; dvips tsbox

Objects can be taylored to their attached text by invoking \boxdims and boxdim explicitly. The
small source file in Figure 65, for example, produces the box in the figure.

.PS

‘eboxdims.m4’

sinclude(Circuit_macros.dim) # The input file is Circuit_macros.tex

box fill_(0.9) wid boxdim(Q,w) + 5pt__ ht boxdim(Q,v) + 5pt__ \

"\boxdims{Q}{\large$\displaystyle\int_0^T e^{tA}\,dt$}"

.PE

∫

T

0

e
tA

dt

Q_w

Q_h+Q_d

Figure 65: Fitting a box to typeset text.

The figure is processed twice, as described previously. The line sinclude(jobname.dim) reads
the named file if it exists. The macro boxdim(name,suffix,default) from libgen.m4 expands the

37

expression boxdim(Q,w) to the value of Q_w if it is defined, else to its third argument if defined, else
to 0, the latter two cases applying if jobname.dim doesn’t exist yet. The values of boxdim(Q,h) and
boxdim(Q,d) are similarly defined and, for convenience, boxdim(Q,v) evaluates to the sum of these.
Macro pt__ is defined as *scale/72.27 in libgen.m4, to convert points to drawing coordinates.

Sometimes a label needs a plain background in order to blank out previously drawn components
overlapped by the label, as shown on the left of Figure 66. The technique illustrated in Figure 65
is automated by the macro f_box(boxspecs, label arguments). For the special case of only one
argument, e.g., f_box(Wood chips), this macro simply overwrites the label on a white box of
identical size. Otherwise, the first argument specifies the box characteristics (except for size), and
the macro evaluates to

box boxspecs s_box(label arguments).
For example, the result of the following command is shown on the right of Figure 66.

f_box(color "lightgray" thickness 2 rad 2pt__,"\huge$n^{%g}$",4-1)

Wood chips n
3

Figure 66: Illustrating the f_box macro.

More tricks can be played. The example
Picture: s_box(‘\includegraphics{file.eps}’) with .sw at location

shows a nice way of including eps graphics in a diagram. The included picture (named Picture

in the example) has known position and dimensions, which can be used to add vector graphics
or text to the picture. To aid in overlaying objects, the macro boxcoord(object name, x-fraction,
y-fraction) evaluates to a position, with boxcoord(object name,0,0) at the lower left corner of the
object, and boxcoord(object name,1,1) at its upper right.

13 PSTricks and other tricks

This section applies only to a pic processor (dpic) that is capable of producing output compatible
with PSTricks, Tikz PGF, or in principle, other graphics postprocessors.

By using command lines, or simply by inserting LATEX graphics directives along with strings to be
formatted, one can mix arbitrary PSTricks (or other) commands with m4 input to create complicated
effects.

Some commonly required effects are particularly simple. For example, the rotation of text by
PSTricks postprocessing is illustrated by the file

.PS

‘Axes.m4’

arrow right 0.7 "‘x-axis’" below

arrow up 0.7 from 1st arrow.start "‘\rput[B]{90}(0,0){y-axis}’" rjust

.PE

which contains both horizontal text and text rotated 90◦ along the vertical line. This rotation of text
is also implemented by the macro rs_box, which is similar to s_box but rotates its text argument by
90◦, a default angle that can be changed by preceding invocation with define(‘text_ang’,degrees).
The rs_box macro requires either PSTricks or Tikz PGF and, like s_box, it calculates the size of
the resulting text box but requires the diagram to be processed twice.

Another common requirement is the filling of arbitrary shapes, as illustrated by the following
lines within a .m4 file:

command "‘\pscustom[fillstyle=solid,fillcolor=lightgray]{’"

drawing commands for an arbitrary closed curve
command "‘}%’"

For colour printing or viewing, arbitrary colours can be chosen, as described in the PSTricks
manual. PSTricks parameters can be set by inserting the line

command "‘\psset{option=value, . . .}’"

38

in the drawing commands or by using the macro psset_(PSTricks options).
The macros shade(gray value,closed line specs) and rgbfill(red value, green value, blue value,

closed line specs) can be invoked to accomplish the same effect as the above fill example, but are
not confined to use only with PSTricks.

Since arbitrary LATEX can be output, either in ordinary strings or by use of command output,
complex examples such as found in reference [3], for example, can be included. The complications
are twofold: LATEX and dpic may not know the dimensions of the formatted result, and the code
is generally unique to the postprocessor. Where postprocessors are capable of equivalent results,
then macros such as rs_box, shade, and rgbfill mentioned previously can be used to hide code
differences.

13.1 Tikz with pic

Arbitrary pic output can be inserted into a \tikzpicture environment. The trick is to keep the pic
and Tikz coordinate systems the same. The lines

\begin{tikzpicture}[scale=2.54]

\end{tikzpicture}

in the dpic -g output must be changed to

\begin{scope}[scale=2.54]

\end{scope}

This is accomplished, for example, by adapting the \mtotex macro of Section 2.1.4 as follows:

\newcommand\mtotikz[1]{\immediate\write18{m4 pgf.m4 #1.m4 | dpic -g

| sed -e "/begin{tikzpicture}/s/tikzpicture/scope/"

-e "/end{tikzpicture}/s/tikzpicture/scope/" > #1.tex}\input{./#1.tex}}%

Then, from within a Tikz pictdure, \mtotikz{filename} will create filename.tex from filename.m4

and read the result into the Tikz code.
In addition, the Tikz code may need to refer to nodes defined in the pic diagram. The included

m4 macro tikznode(tikz node name,[position],[string]) defines a zero-size Tikz node at the given
pic position, which is Here by default. This macro must be invoked in the outermost scope of a pic
diagram, and the .PS value scaling construct may not be used.

14 Web documents, pdf, and alternative output formats

Circuit diagrams contain graphics and symbols, and the issues related to web publishing are similar
to those for other mathematical documents. Here the important factor is that gpic -t generates
output containing tpic \special commands, which must be converted to the desired output, whereas
dpic can generate several alternative formats, as shown in Figure 67. One of the easiest methods for
producing web documents is to generate postscript as usual and to convert the result to pdf format
with Adobe Distiller or equivalent.

PDFlatex produces pdf without first creating a postscript file but does not handle tpic \specials,
so dpic must be installed.

Most PDFLatex distributions are not directly compatible with PSTricks, but the Tikz PGF
output of dpic is compatible with both LATEX and PDFLatex. Several alternative dpic output
formats such as mfpic and MetaPost also work well. To test MetaPost, create a file filename.mp

containing appropriate header lines, for example:

verbatimtex

\documentclass[11pt]{article}

\usepackage{times,boxdims,graphicx}

\boxdimfile{tmp.dim}

\begin{document} etex

39

Then append one or more diagrams by using the equivalent of
m4 <installdir>mpost.m4 library files diagram.m4 | dpic -s » filename.mp

The command “mpost –tex=latex filename.mp end” processes this file, formatting the di-
agram text by creating a temporary .tex file, LATEXing it, and recovering the .dvi output to
create filename.1 and other files. If the boxdims macros are being invoked, this process must be
repeated to handle formatted text correctly as described in Section 12. In this case, either put
sinclude(tmp.dim) in the diagram .m4 source or read the .dim file at the second invocation of m4
as follows:

m4 <installdir>mpost.m4 library files tmp.dim diagram.m4 | dpic -s » filename.mp

On some operating systems, the absolute path name for tmp.dim has to be used to ensure that
the correct dimension file is written and read. This distribution includes a Makefile that simplifies
the process; otherwise a script can automate it.

Having produced filename.1, rename it to filename.mps and, voilà, you can now run PDFlatex
on a .tex source that includes the diagram using \includegraphics{filename.mps} as usual.

The dpic processor is capable of other output formats, as illustrated in Figure 67 and in example
files included with the distribution. The LATEX drawing commands alone or with eepic or pict2e

extensions are suitable only for simple diagrams.

LATEX
LATEX

pict2e

PDF

.pdf

-d

LATEX

.tex

-e

tpic

.tex

LATEX

psfrag

Postscript

psfrag

.eps

-f

LATEX
or

PDFlatex
tikz

PGF

.tex

-g

LATEX

Mfpic

Metafont

mfpic

.tex

-m

LATEX

PSTricks

PSTricks

.tex

-p

dpic

MetaPost

Meta-

Post

.mp

-s

Post-

script

.eps

-r

LATEX
or

PDFlatex

SVG

.svg

-v

Inkscape
or

HTML

Xfig

.fig

-x

Xfig

LATEX
or

PDFlatex

gpic -t m4
.pic.pic

Diagram source Macro libraries

Figure 67: Output formats produced by gpic-t and dpic. SVG output can be read by Inkscape or used
directly in web documents.

15 Developer’s notes

Years ago in the course of writing a book, I took a few days off to write a pic-like interpreter (dpic)
to automate the tedious coordinate calculations required by LATEX picture objects. The macros in
this distribution and the interpreter are the result of that effort, drawings I have had to produce
since, and suggestions received from others. The interpreter has been upgraded over time to generate
mfpic, MetaPost [5], raw Postscript, Postscript with psfrag tags, raw PDF, PSTricks, and TikZ
PGF output, the latter two my preference because of their quality and flexibility, including facilities
for colour and rotations, together with simple font selection. Xfig-compatible output was introduced
early on to allow the creation of diagrams both by programming and by interactive graphics. SVG
output was added relatively recently, and seems suitable for producing web diagrams directly and for
further editing by the Inkscape interactive graphics editor. The latest addition is raw PDF output,
which has very basic text capability and is most suitable for creating diagrams without labels, but
on which sophisticated text can be overlaid. Dpic can write the coordinates of selected locations to
an external file to be used in overlaying text or other items on the diagram.

Instead of using pic macros, I preferred the equally simple but more powerful m4 macro processor,
and therefore m4 is required here, although dpic now supports pic-like macros. Free versions of m4
are available for Unix, Windows, and other operating systems.

40

If starting over today would I not just use one of the other drawing packages available these
days? It would depend on the context, but pic remains a good choice for line drawings because it
is easy to learn and read but powerful enough for coding the geometrical calculations required for
precise component sizing and placement. It would be nice if arbitrary rotations and scaling were
simpler and if a general path element with clipping were available as in Postscript. However, all the
power of Postscript or Tikz PGF, for example, remains available, as arbitrary postprocessor code
can be included with pic code.

The main value of this distribution is not in the use of a specific language but in the element
data encoded in the macros, which have been developed with reference to standards and refined over
two decades. Some of them have become less readable as more options and flexibility have been
added, and if starting over today, perhaps I would change some details. Compromises have been
made in order to retain reasonable compatibility with the variety of postprocessors. No choice of
tool is without compromise, and producing good graphics seems to be time consuming, no matter
how it is done, especially for circuits or other diagrams that contain random detail.

The dpic interpreter has several output-format options that may be useful. The eepicemu and
pict2e extensions of the primitive LATEX picture objects are supported. The mfpic output allows the
production of Metafont alphabets of circuit elements or other graphics, thereby essentially removing
dependence on device drivers, but with the complication of treating every alphabetic component
as a TEX box. The xfig output allows elements to be precisely defined with dpic and interactively
placed with xfig. Similarly, the SVG output can be read directly by the Inkscape graphics editor,
but SVG can also be used directly for web pages. Dpic will also generate low-level MetaPost or
Postscript code, so that diagrams defined using pic can be manipulated and combined with others.
The Postscript output can be imported into CorelDraw and Adobe Illustrator for further processing.
With raw Postscript, PDF, and SVG output, the user is responsible for ensuring that the correct
fonts are provided and for formatting the text.

Many thanks to the people who continue to send comments, questions, and, occasionally, bug
fixes. What began as a tool for my own use changed into a hobby that has persisted, thanks to your
help and advice.

16 Bugs

This section provides hints and a list of common errors.
The distributed macros are not written for maximum robustness. Arguments could be entered in

a key–value style (for example, resistor(up_ elen_,style=N;cycles=8) instead of by positional
parameters, but it was decided early on to keep macro usage as close as possible to pic conventions.
Macro arguments could be tested for correctness and explanatory error messages could be written
as necessary, but that would make the macros more difficult to read and to write. You will have to
read them when unexpected results are obtained or when you wish to modify them.

Maintaining reasonable compatibility with both gpic and dpic and, especially, for different
postprocessors, has resulted in some macros becoming more complicated than is preferable.

Here are some hints, gleaned from experience and from comments I have received.

1. Misconfiguration: One of the configuration files listed in Section 2.2 and libgen.m4 must
be read by m4 before any other library macros. Otherwise, the macros assume default
configuration. To aid in detecting the default condition, a WARNING comment line is inserted
into the pic output. If only PSTricks is to be used, for example, then the simplest strategy is to
set it as the default processor by typing “make psdefault” in the installation directory to change
the mention of gpic to pstricks near the top of libgen.m4. Similarly if only Tikz PGF
will be used, change gpic to pgf using the Makefile. The package default is to read gpic.m4

for historical compatibility. The processor options must be chosen correspondingly, gpic -t

for gpic.m4 and, most often, dpic -p or dpic -g when dpic is employed. For example, the
pipeline for PSTricks output from file quick.m4 is

m4 -I installdir pstricks.m4 quick.m4 | dpic -p > quick.tex

but for Tikz PGF processing, the configuration file and dpic option have to be changed:

41

m4 -I installdir pgf.m4 quick.m4 | dpic -g > quick.tex

Any non-default configuration file must appear explicitly in the command line or in an
include() statement.

2. Pic objects versus macros: A common error is to write something like

line from A to B; resistor from B to C; ground at D

when it should be

line from A to B; resistor(from B to C); ground(at D)

This error is caused by an unfortunate inconsistency between pic object attributes and the
way m4 and pic pass macro arguments.

3. Commas: Macro arguments are separated by commas, so any comma that is part of an
argument must be protected by parentheses or quotes. Thus,

shadebox(box with .n at w,h)

produces an error, whereas

shadebox(box with .n at w‘,’h)

and

shadebox(box with .n at (w,h))

do not. The parentheses are preferred. For example, a macro invoked by circuit elements
contained the line

command "\pscustom[fillstyle=solid‘,’fillcolor=m4fillv]{%"

which includes a comma, duly quoted. However, if such an element is an argument of another
macro, the quotes are removed and the comma causes obscure “too many arguments” error
messages. Changing this line to

command sprintf("\pscustom[fillstyle=solid,fillcolor=m4fillv]{%%")

cured the problem because the protecting parentheses are not stripped away.

4. Default directions and lengths: The linespec argument of element macros defines a
straight-line segment, which requires the equivalent of four parameters to be specified uniquely.
If information is omitted, default values are used. Writing

source(up_)

draws a source up a distance equal to the current lineht value, which may cause confusion.
Writing

source(0.5)

draws a source of length 0.5 units in the current pic default direction, which is one of right,

left, up, or down. The best practice is to specify both the direction and length of an element,
thus:

source(up_ elen_).

The effect of a linespec argument is independent of any direction set using the Point_ or
similar macros. To draw an element at an obtuse angle (see Section 7) try, for example,

Point_(45); source(to rvec_(0.5,0))

5. Processing sequence: It is easy to forget that m4 finishes before pic processing begins.
Consequently, it may be puzzling that the following mix of a pic loop and the m4 macro s_box

does not appear to produce the required result:

for i=1 to 5 do {s_box(A[i]); move }

In this example, the s_box macro is expanded only once and the index i is not a number.
This particular example can be repaired by using an m4 loop:

for_(1,5,1,‘s_box(A[m4x]); move’)

42

6. Quotes: Single quote characters are stripped in pairs by m4, so the string

"‘‘inverse’’"

will become

"‘inverse’".

The cure is to add single quotes in pairs as necessary.

The only subtlety required in writing m4 macros is deciding when to quote macro arguments.
In the context of circuits it seemed best to assume that arguments would not be protected by
quotes at the level of macro invocation, but should be quoted inside each macro. There may
be cases where this rule is not optimal or where the quotes could be omitted, and there are
rare exceptions such as the parallel_ macro.

7. Dollar signs: The i-th argument of an m4 macro is $i, where i is an integer, so the following
construction can cause an error when it is part of a macro,

"0" rjust below

since $0 expands to the name of the macro itself. To avoid this problem, put the string in
quotes or write "$‘’0$".

8. Name conflicts: Using the name of a macro as part of a comment or string is a simple and
common error. Thus,

arrow right "$\dot x$" above

produces an error message because dot is a macro name. Macro expansion can be avoided by
adding quotes, as follows:

arrow right ‘"$\dot x$"’ above

Library macros intended only for internal use have names that begin with m4 or M4 to avoid
name clashes, but in addition, a good rule is to quote all LATEX in the diagram input.

If extensive use of strings that conflict with macro names is required, then one possibility is to
replace the strings by macros to be expanded by LATEX, for example the diagram

.PS

box "\stringA"

.PE

with the LATEX macro

\newcommand{\stringA}{

Circuit containing planar inductor and capacitor}

9. Current direction: Some macros, particularly those for labels, do unexpected things if
care is not taken to preset the current direction using macros right_, left_, up_, down_,

or rpoint_(·). Thus for two-terminal macros it is good practice to write, e.g.

resistor(up_ from A to B); rlabel(,R_1)

rather than

resistor(from A to B); rlabel(,R_1),

which produce different results if the last-defined drawing direction is not up. It might be
possible to change the label macros to avoid this problem without sacrificing ease of use.

10. Position of elements that are not 2-terminal: The linespec argument of elements
defined in [] blocks must be understood as defining a direction and length, but not the
position of the resulting block. In the pic language, objects inside these brackets are placed by
default as if the block were a box. Place the element by its compass corners or defined interior
points as described in the first paragraph of Section 6 on page 17, for example

igbt(up_ elen_) with .E at (1,0)

43

11. Pic error messages: Some errors are detected only after scanning beyond the end of the
line containing the error. The semicolon is a logical line end, so putting a semicolon at the
end of lines may assist in locating bugs.

12. Line continuation: A line is continued to the next if the rightmost character is a backslash
or, with dpic, if the backslash is followed immediately by the # character. A blank after the
backslash, for example, produces a pic error.

13. Scaling: Pic and these macros provide several ways to scale diagrams and elements within
them, but subtle unanticipated effects may appear. The line .PS x provides a convenient way
to force the finished diagram to width x. However, if gpic is the pic processor then all scaled
parameters are affected, including those for arrowheads and text parameters, which may not
be the desired result. A good general rule is to use the scale parameter for global scaling
unless the primary objective is to specify overall dimensions.

14. Buffer overflow: For some m4 implementations, the error message pushed back more

than 4096 chars results from expanding large macros or macro arguments, and can be
avoided by enlarging the buffer. For example, the option -B16000 enlarges the buffer size to
16000 bytes. However, this error message could also result from a syntax error.

15. PSTricks anomaly: If you are using PSTricks and you get the error message Graphics

parameter ‘noCurrentPoint’ not defined.. then your version of PSTricks is older than
August 2010. You can do the following:

(a) Update your PSTricks package.

(b) Instead, comment out the second definition of M4PatchPSTricks in pstricks.m4. The
first definition works for some older PSTricks distributions.

(c) Insert define(‘M4PatchPSTricks’,) immediately after the .PS line of your diagram.
This change prevents the line \psset{noCurrentPoint} from being added to the .tex

code for the diagram. This line is a workaround for a “feature” of the current PSTricks
\psbezier command that changes its behaviour within the \pscustom environment. This
situation occurs rarely and so the line is unnecessary for many diagrams.

(d) For very old versions of PSTricks such as pstricks97, disable the workaround totally by
changing the second definition in pstricks.m4 to define(‘M4PatchPSTricks’,). Undo
the change if you later update PSTricks.

16. m4 -I error: Some old versions of m4 may not implement the -I option or the M4PATH

environment variable that simplify file inclusion. The simplest course of action is probably
to install GNU m4, which is free and widely available. Otherwise, all include(filename)

statements in the libraries and calling commands have to be given absolute filename paths.
You can define the HOMELIB_ macro in libgen.m4 to the path of the installation directory and
change the library include statements to the form include(HOMELIB_‘’filename).

17 List of macros

The following table lists macros in the libraries, configuration files, and selected macros from example
diagrams. Some of the sources in the examples directory contain additional macros, such as for
flowcharts, Boolean logic, and binary trees.

Internal macros defined within the libraries begin with the characters m4 or M4 and, for the
most part, are not listed here.

The library in which each macro is found is given, and a brief description.

above_ gen string position above relative to current direction

abs_(number) gen absolute value function

adc(width,height,nIn,nN,nOut,nS)

44

cct ADC with defined width, height, and number of inputs
Ini, top terminals Ni, ouputs Outi, and bottom
terminals Si

addtaps[arrowhd | type=arrowhd;name=Name], fraction, length, fraction, length, · · ·)
cct Add taps to the previous two-terminal element. arrowhd

= blank or one of . - <- -> <->. Each fraction
determines the position along the element body of the
tap. A negative length draws the tap to the right of the
current direction; positive length to the left. Tap names
are Tap1, Tap2, · · · by default or Name1, Name2, · · · if
specified (Section 6)

along_(linear object name) gen short for between name.start and name.end

Along_(LinearObj,distance,[R])gen Position arg2 (default all the way) along a linear object
from .start to .end (from .end to .start if arg3=R)

amp(linespec,size) cct amplifier (Section 4.2)

And, Or, Not, Nand, Nor, Xor, Nxor, Buffer

log Wrappers of AND_gate, . . . for use in the Autologix

macro
AND_gate(n,N) log basic ‘and’ gate, 2 or n inputs; N=negated input.

Otherwise, arg1 can be a sequence of letters P|N to define
normal or negated inputs (Section 9)

AND_gen(n,chars,[wid,[ht]]) log general AND gate: n=number of inputs (0 ≤ n ≤ 16);
chars: B=base and straight sides; A=Arc;
[N]NE,[N]SE,[N]I,[N]N,[N]S=inputs or circles;
[N]O=output; C=center. Otherwise, arg1 can be a
sequence of letters P|N to define normal or negated inputs.

AND_ht log height of basic ‘and’ and ‘or’ gates in L_units

AND_wd log width of basic ‘and’ and ‘or’ gates in L_units

antenna(at location, T, A|L|T|S|D|P|F, U|D|L|R|degrees)
cct antenna, without stem for nonblank 2nd arg; A=aerial,

L=loop, T=triangle, S=diamond, D=dipole, P=phased,
F=fork; up, down, left, right, or angle from horizontal
(default 90) (Section 6)

arca(absolute chord linespec, ccw|cw, radius, modifiers)
gen arc with acute angle (obtuse if radius is negative), drawn

in a [] block

arcd(center, radius,start degrees,end degrees)
gen Arc definition (see arcr), angles in degrees (Section 3.3)

arcdimension_(arcspec,offset,label, D|H|W|blank width,tic offset,arrowhead)

gen like dimension_, for drawing arcs for dimensioning
diagrams; arrowhead=-> | <-. Uses the first argument
as the attributes of an invisible arc: arc invis arg1.
Arg2 is the radial displacement (possibly negative) of the
dimension arrows. If arg3 is s_box(...) or rs_box(. . .)
and arg4=D|H|W then arg4 means: D: blank width is the
diagonal length of arg3; H: blank width is the height of
arg3 + textoffset*2; W: blank width is the width of
arg3 + textoffset*2; otherwise arg4 is the absolute
blank width

arcr(center,radius,start angle,end angle,modifiers,ht)

45

gen Arc definition. If arg5 contains <- or -> then a midpoint
arrowhead of height equal to arg6 is added. Arg5 can
contain modifiers (e.g. outlined "red"), for the arc and
arrowhead. Modifiers following the macro affect the arc
only, e.g., arcr(A,r,0,pi_/2,->) dotted ->

(Section 3.3)

arcto(position 1,position 2,radius,[dashed|dotted])

gen line toward position 1 with rounded corner toward
position 2

arrowline(linespec) cct line (dotted, dashed permissible) with centred arrowhead
(Section 4.2)

AutoGate log Draw the tree for a gate as in the Autologix macro. No
inputs or external connections are drawn. The names of
the internal gate inputs are stacked in ‘AutoInNames’

Autologix(Boolean function sequence,[N[oconnect]][L[eftinputs]][R][V][M][;offset=value]

log Draw the Boolean expressions defined in function
notation using And, Or, Not, Buffer, Xor, Nand,

Nor, Nxor and variables, e.g.,
Autologix(And(Or(x1, x2),Or(x1,x2)));. The
Boolean functions are separated by semicolons (;).
Function outputs are aligned vertically but appending
:location attribute to a function can be used to place it.
Each unique variable var causes an input point Invar to
be defined. Preceding the variable by a ˜ causes a not
gate to be drawn at the input. The inputs are drawn in a
row at the upper left by default. An L in arg2 draws the
inputs in a column at the left; R reverses the order of the
drawn inputs; V scans the expression from right to left
when listing inputs; M draws the left-right mirror image of
the diagram; and N draws only the function tree without
the input array. The inputs are labelled In1, In2, . . . and
the function outputs are Out1, Out2, Each variable
var corresponds also to one of the input array points with
label Invar. Setting offset=value displaces the drawn
input list in order to disambiguate the input connections
when L is used

b_ gen blue color value

b_current(label,pos,In|Out,Start|End,frac)

cct labelled branch-current arrow to frac between branch end
and body (Section 4.3)

basename_(string sequence, separator)
gen Extract the rightmost name from a sequence of names

separated by arg2 (default dot “.”)

battery(linespec,n,R) cct n-cell battery: default 1 cell, R=reversed polarity
(Section 4.2)

beginshade(gray value) gen begin gray shading, see shade e.g., beginshade(.5);

closed line specs; endshade

bell(U|D|L|R|degrees, size) cct bell, In1 to In3 defined (Section 6)

below_ gen string position relative to current direction

bi_tr(linespec,L|R,P,E) cct left or right, N- or P-type bipolar transistor, without or
with envelope (Section 6.1)

bi_trans(linespec,L|R,chars,E)

46

cct bipolar transistor, core left or right; chars: BU=bulk line,
B=base line and label, S=Schottky base hooks,
uEn|dEn=emitters E0 to En, uE|dE=single emitter,
Cn|uCn|dCn=collectors C0 to Cn; u or d add an arrow,
C=single collector; u or d add an arrow, G=gate line and
location, H=gate line; L=L-gate line and location,
[d]D=named parallel diode, d=dotted connection,
[u]T=thyristor trigger line; arg 4 = E: envelope
(Section 6.1)

binary_(n, [m]) gen binary representation of n, left padded to m digits if the
second argument is nonblank

BOX_gate(inputs,output,swid,sht,label)
log output=[P|N], inputs=[P|N]. . ., sizes swid and sht in

L_units (default AND_wd = 7) (Section 9)

boxcoord(planar obj,x fraction,y fraction)

gen internal point in a planar object

boxdim(name,h|w|d|v,default) gen evaluate, e.g. name_w if defined, else default if given, else
0 v gives sum of d and h values (Section 12)

bp__ gen big-point-size factor, in scaled inches, (*scale/72)

bswitch(linespec, [L|R],chars)

cct pushbutton switch R=right orientation (default L=left);
chars: O= normally open, C=normally closed

BUF_ht log basic buffer gate height in L_units

BUF_wd log basic buffer gate width in L_units

BUFFER_gate(linespec, [N|B], wid, ht, [N|P]*, [N|P]*, [N|P]*)

log basic buffer, dfault 1 input or as a 2-terminal element,
arg2: N=negated input, B=box gate; arg 5: normal (P) or
negated N) inputs labeled In1 (Section 9)

BUFFER_gen(chars,wd,ht,[N|P]*,[N|P]*,[N|P]*)

log general buffer, chars: T=triangle, [N]O=output location
Out (NO draws circle N_Out); [N]I, [N]N, [N]S, [N]NE,

[N]SE input locations; C=centre location. Args 4-6 allow
alternative definitions of respective In, NE, and SE

argument sequences

buzzer(U|D|L|R|degrees, size,[C])

cct buzzer, In1 to In3 defined, C=curved (Section 6)

c_fet(linespec,L|R,P) cct left or right, plain or negated pin simplified MOSFET

capacitor(linespec,char[+[L]],R, height, wid)

cct capacitor, char: F or none=flat plate, C=curved-plate,
E=polarized boxed plates, K=filled boxed plates,
M=unfilled boxes, M=one rectangular plate, P=alternate
polarized; + adds a polarity sign; +L polarity sign to the
left of drawing direction; arg3: R=reversed polarity, arg4
= height (defaults F: dimen_/3, C,P: dimen_/4, E,K:
dimen_/5) arg5 = wid (defaults F: height*0.3, C,P:
height*0.4, E,K: height) (Section 4.2)

cbreaker(linespec,L|R,D|Th|TS)

cct circuit breaker to left or right, D=with dots; Th=thermal;
TS=squared thermal (Section 4.2)

ccoax(at location, M|F, diameter)
cct coax connector, M=male, F=female (Section 6)

47

cct_init cct initialize circuit-diagram environment (reads libcct.m4)

centerline_(linespec, thickness|color, minimum long dash len, short dash len, gap len
gen Technical drawing centerline

Cintersect(Pos1, Pos2, rad1, rad2, [R])

gen Upper (lower if arg5=R) intersection of circles at Pos1
and Pos2, radius rad1 and rad2

clabel(label,label,label) cct centre triple label (Section 4.4)

cm__ gen absolute centiimetres

consource(linespec,V|I|v|i,R)cct voltage or current controlled source with alternate forms;
R=reversed polarity (Section 4.2)

contact(chars) cct single-pole contact: O= normally open, C= normally
closed (default), I= open circle contacts, P= three
position, R= right orientation, T= T contacts, U= U
contacts (Section 6)

contacts(count, chars) cct multiple ganged single-pole contacts: P= three position,
O= normally open, C= normally closed, D= dashed
ganging line over contact armatures I= open circle
contacts, R= right orientation, T= T contacts, U= U
contact lines parallel to drawing direction (Section 6)

contline(line) gen evaluates to continue if processor is dpic, otherwise to
first arg (default line)

corner(line thickness,attributes,turn radians)
gen Mitre (default filled square) drawn at end of last line or

at a given position. arg1 default: current line thickness;
arg2: e.g. outlined string; if arg2 starts with at position
then a manhattan (right-left-up-down) corner is drawn;
arg3= radians (turn angle, +ve is ccw, default π/2). The
corner is enclosed in braces in order to leave Here

unchanged unless arg2 begins with at (Section 7)

Cos(integer) gen cosine function, integer degrees

cosd(arg) gen cosine of an expression in degrees

Cosine(amplitude, freq, time, phase)

gen function a × cos(ωt + φ)

cross(at location) gen plots a small cross

cross3D(x1,y1,z1,x2,y2,z2) 3D cross product of two triples

crossover(linespec, L|R, Line1, ...)

cct line jumping left or right over named lines (Section 6.1)

crosswd_ gen cross dimension

csdim_ cct controlled-source width

d_fet(linespec,L|R,P,S,E|S) cct left or right, N or P depletion MOSFET, normal or
simplified, without or with envelope or thick channel
(Section 6.1)

dabove(at location) darrow above (displaced dlinewid/2)

dac(width,height,nIn,nN,nOut,nS)

cct DAC with defined width, height, and number of inputs
Ini, top terminals Ni, ouputs Outi, and bottom
terminals Si (Section 9)

darc(center position, radius, start radians, end radians, dline thickness, arrowhead wid, ar-
rowhead ht, terminals)

48

darrow See also Darc. CCW arc in dline style, with closed ends
or (dpic only) arrowheads. Permissible terminals: x-, -x,
x-x, ->, x->, <-, <-x, <-> where x means | or
(half-thickness line) !.

Darc(center position, radius, start radians, end radians, parameters)
darrow Wrapper for darc. CCW arc in dline style, with closed

ends or (dpic only) arrowheads. Semicolon-separated
parameters: thick=value, wid=value, ends= x-, -x, x-x,
->, x->, <-, <-x, <-> where x means | or (half-thickness
line) !.

Darlington(L|R,chars) cct Composite Darlington pair Q1 and Q2 with internal
locations E, B, C; Characters in arg2: E= envelope, P=
P-type, B1= internal base lead, D= damper diode, R1=
Q1 bias resistor; E1= ebox, R2= Q2 bias resistor; E1=
ebox, Z= zener bias diode (Section 6.1)

darrow_init darrow initialize darrow drawing parameters (reads darrow.m4)

Darrow(linespec, parameters) darrow Wrapper for darrow. Semicolon-separated parameters: S,
E truncate at start or end by dline thickness/2; thick=val
(total thicknes, ie width); wid=val (arrowhead width);
ht=val (arrowhead height); ends= x-x or -x or x- where
x is ! (half-width line) or | (full-width line).

darrow(linespec, t,t,width,arrowhd wd,arrowhd ht,parameters)
darrow See also Darrow. double arrow, truncated at beginning or

end, specified sizes, with arrowhead or closed stem.
parameters= x- or -> or x-> or <- or <-x or <-> where x
is | or !. The !- or -! parameters close the stem with
half-thickness lines to simplify butting to other objects.

dashline(linespec,thickness|color|<->, dash len, gap len,G)

gen dashed line with dash at end (G ends with gap)

dbelow(at location) darrow below (displaced dlinewid/2)

dcosine3D(i,x,y,z) 3D extract i-th entry of triple x,y,z

delay_rad_ cct delay radius

delay(linespec,size) cct delay element (Section 4.2)

deleminit_ darrow sets drawing direction for dlines

Demux(n,label, [L][B|H|X][N[n]|S[n]][[N]OE], wid,ht)
log binary multiplexer, n inputs, L reverses input pin

numbers, B displays binary pin numbers, H displays
hexadecimal pin numbers, X do not print pin numbers,
N[n] puts Sel or Sel0 .. Seln at the top (i.e., to the left of
the drawing direction), S[n] puts the Sel inputs at the
bottom (default) OE (N=negated) OE pin (Section 9)

dend(at location) darrow close (or start) double line

dfillcolor darrow dline fill color (default white)

diff_(a,b) gen difference function

diff3D(x1,y1,z1,x2,y2,z2) 3D difference of two triples

dimen_ cct size parameter for circuit elements (Section 10.1)

dimension_(linespec,offset,label, D|H|W|blank width,tic offset,arrowhead)

gen macro for dimensioning diagrams; arrowhead=-> | <-

diode(linespec,B|CR|D|G|L|LE[R]|P[R]|S|Sh|T|V|v|w|Z|chars,[R][E])

49

cct diode: B=bi-directional, CR=current regulator, D=diac,
G=Gunn, L=open form with centre line, LE[R]=LED
[right], P[R]=photodiode [right], S=Schottky,
Sh=Shockley, T=tunnel, V=varicap, v=varicap (curved
plate), w=varicap (reversed polarity), Z=zener; appending
K to arg 2 draws open arrowheads; arg 3: R=reversed
polarity, E=enclosure (Section 4.2)

dir_ darrow used for temporary storage of direction by darrow macros

distance(Position 1, Position2)

gen distance between named positions

distance(position, position) gen distance between positions

dlabel(long,lat,label,label,label,chars)
cct general triple label; chars: x (drawing direction)

displacement is from the centre of the last line rather than
the centre of the last []; L,R,A,B align labels ljust, rjust,
above, or below (absolute) respectively (Section 4.4)

dleft darrow double line left turn

Dline(linespec, parameters) darrow Wrapper for dline. Semicolon-separated parameters: S, E

truncate at start or end by dline thickness/2; thick=val
(total thicknes, ie width); ends= x-x or -x or x- where x
is ! (half-width line) or | (full-width line).

dline(linespec,t,t,width,parameters)
darrow See also Dline. Double line, truncated by half width at

either end, closed at either or both ends. parameters=
x-x or -x or x- where x is ! (half-width line) or |

(full-width line).

dlinewid darrow width of double lines

dljust(at location) darrow ljust (displaced dlinewid/2)

dn_ gen down with respect to current direction

dna_ cct internal character sequence that specifies which
subcomponents are drawn

dot(at location,radius,fill) gen filled circle (third arg= gray value: 0=black, 1=white)

dot3D(x1,y1,z1,x2,y2,z2) 3D dot product of two triples

dotrad_ gen dot radius

down_ gen sets current direction to down (Section 5)

dright darrow double arrow right turn

drjust(at location) darrow rjust (displaced dlinewid/2)

dswitch(linespec,L|R,W[ud]B[K]chars)

50

cct SPST switch left or right, W=baseline, B=contact blade,
dB=contact blade to the right of drawing direction, Bm
= mirror contact blade, Bo = contact blade more widely
open, Cb = circuit-breaker function, Co = contactor
function, C = external operating mechanism, D = circle
at contact and hinge, (dD = hinge only, uD = contact
only) E = emergency button, EL = early close (or late
open), LE = late close (or early open), F = fused, H =
time delay closing, uH = time delay opening, HH = time
delay opening and closing, K=vertical closing contact line,
L = limit, M = maintained (latched), MM = momentary
contact on make, MR = momentary contact on release,
MMR = momentary contact on make and release, O =
hand operation button, P = pushbutton, Th = thermal
control linkage, Tr = tripping, Y = pull switch, Z = turn
switch (Section 4.2)

dtee([L|R]) darrow double arrow tee junction with tail to left, right, or
(default) back along current direction

dtor_ gen degrees to radians conversion constant

dturn(degrees ccw) darrow turn dline arg1 degrees left (ccw)

E__ gen the constant e

e_ gen .e relative to current direction

e_fet(linespec,L|R,P,S,E|S) cct left or right, N or P enhancement MOSFET, normal or
simplified, without or with envelope or thick channel
(Section 6.1)

earphone(U|D|L|R|degrees, size)

cct earphone, In1 to In3 defined (Section 6)

ebox(linespec,length,ht,fill value)

cct two-terminal box element with adjustable dimensions and
fill value 0 (black) to 1 (white). length and ht are relative
to the direction of linespec (Section 4.2)

elchop(Name1,Name2) gen chop for ellipses: evaluates to chop r where r is the
distance from the centre of ellipse Name1 to the
intersection of the ellipse with a line to location Name2;
e.g., line from A to E elchop(E,A)

eleminit_(linespec) cct internal line initialization

elen_ cct default element length

em_arrows([N|I|E][D],angle,length)

cct radiation arrows, N=nonionizing, I=ionizing, E=simple;
D=dot (Section 4.2)

endshade gen end gray shading, see beginshade

Equidist3(Pos1, Pos2, Pos3, Result)
gen Calculates location named Result equidistant from the

first three positions, i.e. the centre of the circle passing
through the three positions

expe gen exponential, base e

f_box(boxspecs,text,expr1,· · ·)gen like s_box but the text is overlaid on a box of identical
size. If there is only one argument then the default box is
invisible and filed white (Section 12)

Fector(x1,y1,z1,x2,y2,z2) 3D vector projected on current view plane with top face of
3-dimensonal arrowhead normal to x2,y2,z2

51

FF_ht cct flipflop height parameter in L_units

FF_wid cct flipflop width parameter in L_units

fill_(number) gen fill macro, 0=black, 1=white (Section 6.1)

fitcurve(V,n,[e.g. dotted],m (default 0))

gen Draw a spline through positions V[m], ldots V[n]: Works
only with dpic.

FlipFlop(D|T|RS|JK,label,boxspec,pinlength)

log flip-flops, boxspec=e.g. ht x wid y (Section 9)

FlipFlop6(label,spec,boxspec) log This macro (6-input flip-flops) has been superseded by
FlipFlopX and may be deleted in future.
spec=[[n]NQ][[n]Q][[n]CK][[n]PR][lb]

[[n]CLR][[n]S][[n].|D|T|R] to include and negate
pins, lb to print labels

FlipFlopJK(label, spec,boxspec)

log This macro (JK flip-flop) has been superseded by
FlipFlopX and may be deleted in future. Similar to
FlipFlop6.

FlipFlopX(boxspec, label, leftpins, toppins, rightpins, bottompins, pinlength)

log General flipflop. Arg 1 modifies the box (labelled Chip)
default specification. Each of args 3 to 6 is null or a
string of pinspecs separated by semicolons (;). A Pinspec
is either empty or of the form
[pinopts]:[label[:Picname]]. The first colon draws the
pin. Pins are placed top to bottom or left to right along
the box edges with null pinspecs counted for placement.
Pins are named by side and number by default; eg W1,

W2, ..., N1, N2, ..., E1, ..., S1, ... ; however,
if :Picname is present in a pinspec then Picname replaces
the default name. A pinspec label is text placed at the
pin base. Semicolons are not allowed in labels; use, e.g.,
\char59{} instead. To put a bar over a label, use
lg_bartxt(label). The pinopts are [N|L|M][E]; N=pin
with not circle; L=active low out; M=active low in; E=edge
trigger (Section 9). Optional arg 7 is the length of pins

for_(start,end,increment,‘actions’)

gen integer for loop with index variable m4x (Section 8)

FTcap(chars) cct Feed-through capacitor; example of a composite element
derived from a two-terminal element. Defined points:
.Start, .End, .C .T1 .T2 T Arg 1: (default) A= type A,
B= type B, C= type C (Section 6)

fuse(linespec, type, wid, ht) cct fuse symbol, type= A|B|C|D|S|HB|HC or dA=D

(Section 4.2)

g_ gen green color value

G_hht log gate half-height in L_units

gap(linespec,fill,A) cct gap with (filled) dots, A=chopped arrow between dots
(Section 4.2)

gen_init gen initialize environment for general diagrams (customizable,
reads libgen.m4)

glabel_ cct internal general labeller

gpolyline_(fraction,location, ...)

gen internal to gshade

52

graystring(gray value) gen evaluates to a string compatible with the postprocessor in
use to go with colored, shaded, or outlined attributes.
(PSTricks, metapost, pgf-tikz, pdf, postscript, svg). The
argument is a fraction in the range [0, 1]; see rgbstring

grid_(x,y) log absolute grid location

ground(at location, T, N|F|S|L|P|E, U|D|L|R|degrees)
cct ground, without stem for nonblank 2nd arg; N=normal,

F=frame, S=signal, L=low-noise, P=protective,
E=European; up, down, left, right, or angle from
horizontal (default -90) (Section 6)

gshade(gray value,A,B,...,Z,A,B)

gen (Note last two arguments). Shade a polygon with named
vertices, attempting to avoid sharp corners

gyrator(box specs,space ratio,pin lgth,[N][V])

cct Gyrator two-port wrapper for nport, N omits pin dots; V

gives a vertical orientation (Section 6)

H_ht log hysteresis symbol dimension in L_units

Header(1|2,rows,wid,ht,type) log Header block with 1 or 2 columns and square Pin 1
(Section 6)

HeaderPin(location, type, Picname,n|e|s|w,length)

log General pin for Header macro; arg 4 specifies pin
direction with respect to the current drawing direction)

hatchbox(boxspec,hashsep,hatchspec)

gen Manhattan box with 45 degree hatching, e.g.,
hatchbox(outlined "blue"„dashed outlined

"green" thick 0.4)

heater(linespec, ndivisions, wid, ht)
cct heater element (Section 4.2)

hex_digit(n) gen hexadecimal digit for 0 ≤ n < 16

hexadecimal_(n, [m]) gen hexadecimal representation of n, left padded to m digits
if the second argument is nonblank

hlth gen current line half thickness in drawing units

hoprad_ cct hop radius in crossover macro

ht_ gen height relative to current direction

ifdpic(if true,if false) gen test if dpic has been specified as pic processor

ifgpic(if true,if false) gen test if gpic has been specified as pic processor

ifinstr(string,string,if true,if false)

gen test if the second argument is a substring of the first; also
ifinstr(string,string,if true,string,string,if true, . . .
if false)

ifmfpic(if true,if false) gen test if mfpic has been specified as pic post-processor

ifmpost(if true,if false) gen test if MetaPost has been specified as pic post-processor

ifpgf(if true,if false) gen test if Tikz PGF has been specified as pic post-processor

ifpostscript(if true,if false) gen test if Postscript (dpic -r) has been specified as pic
output format

ifpsfrag(if true,if false) gen Test if either psfrag or psfrag_ has been defined. For
postscript with psfrag strings, one or the other should be
defined prior to or at the beginning of the diagram

ifpstricks(if true,if false) gen test if PSTricks has been specified as post-processor

53

ifroff(if true,if false) gen test if troff or groff has been specified as post-processor

ifxfig(if true,if false) gen test if Fig 3.2 (dpic -x) has been specified as pic output
format

igbt(linespec,L|R,[L][[d]D]) cct left or right IGBT, L=alternate gate type, D=parallel
diode, dD=dotted connections

in__ gen absolute inches

inductor(linespec,W|L,n,[M|P],loop wid)

cct inductor, arg2: narrow (default), W=wide, L=looped;
arg3: n arcs (default 4); arg4: M=magnetic core,
P=powder (dashed) core, arg5: loop width (default L,W:
dimen_/5; other: dimen_/8) (Section 4.2)

inner_prod(linear obj,linear obj)
gen inner product of (x,y) dimensions of two linear objects

Int_ gen corrected (old) gpic int() function

integrator(linespec,size) cct integrating amplifier (Section 4.2)

intersect_(line1.start,line1.end, line2.start,line2.end)

gen intersection of two lines

Intersect_(Name1,Name2) gen intersection of two named lines

IOdefs(linespec,label,[P|N]*,L|R)

log Define locations label1, . . . labeln along the line; P= label
only; N=with NOT_circle; R=circle to right of current
direction

j_fet(linespec,L|R,P,E) cct left or right, N or P JFET, without or with envelope
(Section 6.1)

jack(U|D|L|R|degrees,chars) cct arg1: drawing direction; string arg2: R=right orientation,
one or more L[M][B] for L and auxiliary contacts with
make or break points; S[M][B] for S and auxiliary
contacts (Section 6)

KelvinR(cycles,[R],cycle wid) cct IEEE resistor in a [] block with Kelvin taps T1 and T2
(Section 6)

L_unit log logic-element grid size

lamp(linespec, [R]) cct Two-terminal incandescent lamp (Section 4.2)

larrow(label,->|<-,dist) cct arrow dist to left of last-drawn 2-terminal element
(Section 4.3)

lbox(wid, ht, type) gen box oriented in current direction, type= e.g. dotted

LCintersect(line name, Centre, rad, [R])

gen First (second if arg4 is R) intersection of a line with a
circle

LCtangent(Pos1, Centre, rad, [R])

gen Left (right if arg4=R) tangent point of line from Pos1 to
circle at Centre with radius arg3

left_ gen left with respect to current direction (Section 5)

length3D(x,y,z) 3D Euclidean length of triple x,y,z

LEintersect(line name, Centre, ellipse wid, ellipse ht, [R])

gen First (second if arg5 is R) intersection of a line with an
ellipse

LEtangent(Pos1, Centre, ellips wid, ellipse ht [R])

gen Left (right if arg5=R) tangent point of line from Pos1 to
ellipse at Centre with given width and height

lg_bartxt log draws an overline over logic-pin text (except for xfig)

54

lg_pin(location, logical name, pin label, n|e|s|w[L|M|I|O][N][E], pinno, optlen)

log comprehensive logic pin; n|e|s|w=direction, L=active
low out, M=active low in, I=inward arrow, O=outward
arrow, N=negated, E=edge trigger

lg_pintxt log reduced-size text for logic pins

lg_plen log logic pin length in in L_units

LH_symbol([U|D|L|R|degrees][I])

log logic-gate hysteresis symbol; I=inverted

lin_ang(line-reference) gen the angle from .start to .end of a line or move

lin_leng(line-reference) gen length of a line, equivalent to line-reference.len with dpic

linethick_(number) gen set line thickness in points

ljust_ gen ljust with respect to current direction

llabel(label,label,label) cct triple label on left side of the element (Section 4.4)

loc_(x, y) gen location adjusted for current direction

log_init log initialize environment for logic diagrams (customizable,
reads liblog.m4)

log10E_ gen constant log10(e)

loge gen logarithm, base e

Loopover_(‘variable’,actions,value1, value2, . . .)
gen Repeat actions with variable set successively to value1,

value2, . . ., setting macro m4Lx to 1, 2, . . .

lp_xy log coordinates used by lg_pin

lpop(xcoord, ycoord, radius, fill, zero ht)
gen for lollipop graphs: filled circle with stem to

(xcoord,zeroht)

lswitch(linespec, L|R, chars)

cct knife switch R=right orientation (default L=left);
chars=[O|C][D][K][A] O=opening arrow; C=closing
arrow; D=dots; K=closed switch; A=blade arrowhead
(Section 4.2)

lt_ gen left with respect to current direction

LT_symbol(U|D|L|R|degrees) log logic-gate triangle symbol

lthick gen current line thickness in drawing units

m4_arrow(linespec,ht,wid) gen arrow with adjustable head, filled when possible

m4dupstr(string,n,‘name’) gen Defines name as n concatenated copies of string.

m4lstring(arg1,arg2) gen expand arg1 if it begins with sprintf or ", otherwise arg2

m4xpand(arg) gen Evaluate the argument as a macro

m4xtract(‘string1’,string2) gen delete string2 from string1, return 1 if present

manhattan gen sets direction cosines for left, right, up, down

Max(arg, arg, . . .) gen Max of an arbitrary number of inputs

memristor(linespec, wid, ht) cct memristor element (Section 4.2)

microphone(U|D|L|R|degrees, size)

cct microphone, In1 to In3 defined (Section 6)

Min(arg, arg, . . .) gen Min of an arbitrary number of inputs

Mitre_(Line1,Line2,length,line attributes)

55

gen e.g., Mitre_(L,M) draws angle at intersection of lines L
and M with legs of length arg3 (default linethick

bp__/2); sets Here to intersection (Section 7)

mitre_(Position1,Position2,Position3,length,line attributes)
gen e.g., mitre_(A,B,C) draws angle ABC with legs of length

arg4 (default linethick bp__/2); sets Here to Position2
(Section 7)

mm__ gen absolute millimetres

mosfet(linespec,L|R,chars,E) cct MOSFET left or right, included components defined by
characters, envelope. arg 3 chars: [u][d]B: center bulk
connection pin; D: D pin and lead; E: dashed substrate;
F: solid-line substrate; [u][d]G: G pin to substrate at
source; [u][d]H: G pin to substrate at center; L: G pin
to channel (obsolete); [u][d]M: G pin to channel; u: at
drain end; d: at source end [u][d]Mn: multiple gates G0
to Gn Pz: parallel zener diode; Q: connect B pin to S pin;
R: thick channel; [u][d]S: S pin and lead u: arrow up;
d: arrow down; [d]T: G pin to center of channel d: not
circle; X: XMOSFET terminal; Z: simplified
complementary MOS (Section 6.1)

Mux_ht cct Mux height parameter in L_units

Mux_wid cct Mux width parameter in L_units

Mux(n,label, [L][B|H|X][N[n]|S[n]][[N]OE], wid,ht)
log binary multiplexer, n inputs, L reverses input pin

numbers, B display binary pin numbers, H display
hexadecimal pin numbers, X do not print pin numbers,
N[n] puts Sel or Sel0 .. Seln at the top (i.e., to the left of
the drawing direction), S[n] puts the Sel inputs at the
bottom (default) OE (N=negated) OE pin (Section 9)

Mx_pins log max number of gate inputs without wings

n_ gen .n with respect to current direction

N_diam log diameter of ‘not’ circles in L_units

N_rad log radius of ‘not’ circles in L_units

NAND_gate(n,N) log ‘nand’ gate, 2 or n inputs; N=negated input. Otherwise,
arg1 can be a sequence of letters P|N to define normal or
negated inputs. (Section 9)

ne_ gen .ne with respect to current direction

NeedDpicTools gen executes copy "HOMELIB_/dpictools.pic" if the file
has not been read

neg_ gen unary negation

NOR_gate(n,N) log ‘nor’ gate, 2 or n inputs; N=negated input. Otherwise,
arg1 can be a sequence of letters P|N to define normal or
negated inputs. (Section 9)

norator(linespec,width,ht) cct norator two-terminal element (Section 4.2)

NOT_circle log ‘not’ circle

NOT_gate(linespec,[B][N|n],wid,height)
log ‘not’ gate. When linespec is blank then the element is

composite and In1, Out, C, NE, and SE are defined;
otherwise the element is drawn as a two-terminal element.
arg2: B=box gate, N=not circle at input and output,
n=not circle at input only (Section 9)

56

NOT_rad log ‘not’ radius in absolute units

NPDT(npoles,[R]) cct Double-throw switch; npoles: number of poles; R= right
orientation with respect to drawing direction (Section 6)

nport(box spec;other commands, nw,nn,ne,ns,space ratio,pin lgth,style, other commands)
cct Default is a standard-box twoport. Args 2 to 5 are the

number of ports to be drawn on w, n, e, s sides. The port
pins are named by side, number, and by a or b pin, e.g.,
W1a, W1b, W2a, . . . Arg 6 specifies the ratio of port
width to interport space (default 2), and arg 7 is the pin
length. Set arg 8 to N to omit the dots on the port pins.
Arguments 1 and 9 allow customizations (Section 6)

nterm(box spec;other commands, nw,nn,ne,ns,pin lgth,style, other commands)
cct n-terminal box macro (default three pins). Args 2 to 5 are

the number of pins to be drawn on W, N, E, S sides. The
pins are named by side and number, e.g. W1, W2, N1, . . .
Arg 6 is the pin length. Set arg 7 to N to omit the dots
on the pins. Arguments 1 and 8 allow customizations, e.g.
nterm(,,,,,,N,"a" at Box.w ljust,"b" at

Box.e rjust, "c" at Box.s above)

nullator(linespec,width,ht) cct nullator two-terminal element (Section 4.2)

nw_ gen .nw with respect to current direction

NXOR_gate(n,N) log ‘nxor’ gate, 2 or n inputs; N=negated input. Otherwise,
arg1 can be a sequence of letters P|N to define normal or
negated inputs. (Section 9)

opamp(linespec,label,label,size,chars, other commands)

cct operational amplifier with −, + or other internal labels,
specified size. chars: P= add power connections, R= swap
In1, In2 labels, T= truncated point. The first and last
arguments allow added customizations (Section 6)

open_arrow(linespec,ht,wid) gen arrow with adjustable open head

OR_gate(n,N) log ‘or’ gate, 2 or n inputs; N=negated input. Otherwise, arg1
can be a sequence of letters P|N to define normal or
negated inputs. (Section 9)

OR_gen(n,chars,[wid,[ht]]) log general OR gate: n=number of inputs (0 ≤ n ≤ 16);
chars: B=base and straight sides; A=Arcs;
[N]NE,[N]SE,[N]I,[N]N,[N]S=inputs or circles; [N]P=XOR
arc; [N]O=output; C=center. Otherwise, arg1 can be a
sequence of letters P|N to define normal or negated inputs.

OR_rad log radius of OR input face in L_units

parallel_(‘elementspec’,‘elementspec’. . .)
cct Parallel combination of two-terminal elements in a []

block. Each argument is a quoted elementspec of the form
[Sep=val;][Label:] element; [attributes] where an
attribute is of the form [llabel(. . .);] |

[rlabel(. . .);] | [b_current(. . .);]. An argument
may also be series_(. . .) or parallel_(. . .) without
attributes or quotes. Sep=val; in the first branch sets the
default separation of all branches to val; in a later
element Sep=val; applies only to that branch. An element
may have normal arguments but should not change the
drawing direction. (Section 5.1)

pc__ gen absolute points

57

pvcell(linespec, width, height) cct PV cell

px__ gen absolute SVG screen pixels

pconnex(R|L|U|D|degrees,chars)
cct power connectors, arg 1: drawing direction; chars:

R=right orientation, M|F= male, female, A|AC=115V, 3
prong, B=box, C=circle, P= PC connector, D= 2-pin
connector, G|GC= GB 3-pin, J= 110V 2-pin (Section 6)

pi_ gen π

plug(U|D|L|R|degrees,[2|3][R])

cct arg1: drawing direction; string arg2: R right orientation,
2|3 number of conductors (Section 6)

pmod(integer, integer) gen +ve mod(M, N) e.g., pmod(−3, 5) = 2

point_(angle) gen (radians) set direction cosines

Point_(integer) gen sets direction cosines in degrees (Section 5)

polar_(x,y) gen rectangular-to polar conversion

potentiometer(linespec,cycles,fractional pos,length,· · ·)
cct resistor with taps T1, T2, . . . with specified fractional

positions and lengths (possibly neg) (Section 6)

print3D(x,y,z) 3D write out triple for debugging

prod_(a,b) gen binary multiplication

project(x,(y,(z) 3D 3D to 2D projection onto the plane perpendicular to the
view vector with angles defined by setview(azim, elev)

psset_(PSTricks settings) gen set PSTricks parameters

pt__ gen TEX point-size factor, in scaled inches, (*scale/72.27)

ptrans(linespec, [R|L]) cct pass transistor; L= left orientation (Section 6.1)

r_ gen red color value

rarrow(label,->|<-,dist) cct arrow dist to right of last-drawn 2-terminal element
(Section 4.3)

Rect_(radius,angle) gen (deg) polar-to-rectangular conversion

rect_(radius,angle) gen (radians) polar-rectangular conversion

reed(linespec, width, height, box attribues, [R][C])

cct Enclosed reed two-terminal contact; R=right orientation;
C=closed contact; e.g., reed(„dimen_/5,shaded

"lightgreen" (Section 6)

relay(number of poles, chars) cct relay: n poles (default 1), chars: O=normally open,
C=normally closed, P=three position, default double
throw, L=drawn left (default), R=drawn right,
Th=thermal. Argument 3=[L|R] is deprecated but works
for backward compatibility (Section 6)

relaycoil(chars, wid, ht, R|L|U|D|degrees)
cct chars: X=or default: external lines from A2 and B2;

AX=external lines at positions A1,A3; BX=external lines
at positions B1,B3; NX=no lines at positions
A1,A2,A3,B1,B2,B3; SO=slow operating; SOR=slow
operating and release; SR=slow release; HS=hight speed;
HS=hight speed; NAC=unaffected by AC current; AC

AC=current; ML=mechanically latched; PO=polarized;
RM=remanent; RH=remanent; TH=thermal; EL=electronic
(Section 6)

58

resetdir_ gen resets direction set by setdir_

resetrgb gen cancel r_, g_, b_ color definitions

resistor(linespec,n|E,chars, cycle wid)

cct resistor, n cycles (default 3), chars: E=ebox, ES=ebox

with slash, Q=offset, H=squared, N=IEEE, V=varistor
variant, R=right-oriented, cycle width (default dimen_/6)
(Section 4.2)

resized(factor,‘macro name’,args)

cct scale the element body size by factor

restorem4dir([‘stack name’])gen Restore m4 direction parameters from the named stack;
default ‘savm4dir_’

reversed(‘macro name’,args) cct reverse polarity of 2-terminal element

rgbdraw(color triple, drawing commands)
gen color drawing for PSTricks, pgf, MetaPost, svg

postprocessors; (color entries are 0 to 1 except for SVG
entries which are 0 to 255), see setrgb (Section 6.1)

rgbfill(color triple, closed path)

gen fill with arbitrary color (color entries are 0 to 1 except
SVG entries which are 0 to 255); see setrgb (Section 6.1)

rgbstring(color triple or color name)

gen evaluates to a string compatible with the postprocessor in
use to go with colored, shaded, or outlined attributes.
(PSTricks, metapost, pgf-tikz, pdf, postscript, svg). The
arguments are fractions in the range [0, 1]; For example,
box outlined rgbstring(0.1,0.2,0.7) shaded

rgbstring(0.75,0.5,0.25). For those postprocessors
that allow it, there can be one argument which is the
name of a defined color

right_ gen set current direction right (Section 5)

rjust_ gen right justify with respect to current direction

rlabel(label,label,label) cct triple label on right side of the element (Section 4.4)

rot3Dx(radians,x,y,z) 3D rotates x,y,z about x axis

rot3Dy(radians,x,y,z) 3D rotates x,y,z about y axis

rot3Dz(radians,x,y,z) 3D rotates x,y,z about z axis

Rot_(position, degrees) gen rotate position by degrees

rot_(x, y, angle) gen rotate x,y by theta radians

rotbox(wid,ht,type,[r|t=val]) gen box oriented in current direction in [] block; type= e.g.
dotted shaded "green". Defined internal locations: N,
E, S, W (and NE, SE, NW, SW if arg4 is blank). If arg4
is r=val then corners have radius val. If arg4 is t=val then
a spline with tension val is used to draw a “superellipse,”
and the bounding box is then only approximate.

rotellipse(wid,ht,type) gen ellipse oriented in current direction in [] block; e.g.
Point_(45); rotellipse(,,dotted fill_(0.9)).

Defined internal locations: N, S, E, W.

round(at location,line thickness,attributes)
gen filled circle for rounded corners; attributes=colored

"gray" for example; leaves Here unchanged if arg1 is
blank (Section 7)

rpoint_(linespec) gen set direction cosines

59

rpos_(position) gen Here + position

rrot_(x, y, angle) gen Here + vrot_(x, y, cos(angle), sin(angle))

rs_box(text,expr1,· · ·) gen like s_box but the text is rotated by text_ang (default
90) degrees (Section 12), (Section 13)

rsvec_(position) gen Here + position

rt_ gen right with respect to current direction

rtod__ gen constant, degrees/radian

rtod_ gen constant, degrees/radian

rvec_(x,y) gen location relative to current direction

s_ gen .s with respect to current direction

s_box(text,expr1,· · ·) gen generate dimensioned text string using \boxdims from
boxdims.sty. Two or more args are passed to sprintf()

(default 90) degrees (Section 12)

s_dp(name,default) gen depth of the most recent (or named) s_box (Section 12)

s_ht(name,default) gen height of the most recent (or named) s_box (Section 12)

s_init(name) gen initialize s_box string label to name which should be
unique (Section 12)

s_name gen the value of the last s_init argument (Section 12)

s_wd(name,default) gen width of the most recent (or named) s_box (Section 12)

savem4dir([‘stack name’]) gen Stack m4 direction parameters in the named stack
(default ‘savm4dir_’)

sbs(linespec, chars, label) cct Wrapper to place an SBS thyristor as a two-terminal
element with [] block label given by the third argument
(Section 6.1)

sc_draw(dna string, chars, iftrue, iffalse)

cct test if chars are in string, deleting chars from string

scr(linespec, chars, label) cct Wrapper to place an SCR thyristor as a two-terminal
element with [] block label given by the third argument
(Section 6.1)

scs(linespec, chars, label) cct Wrapper to place an SCS thyristor as a two-terminal
element with [] block label given by the third argument
(Section 6.1)

se_ gen .se with respect to current direction

series_(elementspec, elementspec, . . .)
cct Series combination in a [] block of elements with

shortened default length. An elementspec is of the form
[Label:] element; [attributes], where an attribute is
of the form [llabel(. . .);] | [rlabel(. . .);]

[b_current(. . .);]. Internal points Start, End, and C

are defined (Section 5.1)

setdir_(R|L|U|D|degrees, default U|D|R|L|degrees)
gen store drawing direction and set it to up, down, left, right,

or angle in degrees (reset by resetdir_). The directions
may be spelled out, i.e., Right, Left, . . . (Section 5.1)

setrgb(red value, green value, blue value,[name])

gen define colour for lines and text, optionally named (default
lcspec); svg values are integers from 0 to 255
(Section 6.1)

setview(azimuth degrees,elevation degrees)

60

3D set projection viewpoint

sfg_init(default line len, node rad, arrowhd len, arrowhd wid), (reads libcct.m4)

cct initialization of signal flow graph macros

sfgabove cct like above but with extra space

sfgarc(linespec,text,text justification,cw|ccw, height scale factor)
cct directed arc drawn between nodes, with text label and a

height-adjustment parameter

sfgbelow cct like below but with extra space

sfgline(linespec,text,text justification)

cct directed straight line chopped by node radius, with text
label

sfgnode(at location,text,above|below,circle options)
cct small circle default white interior, with text label. The

default label position is inside if the diameter is bigger
than textht and textwid; otherwise it is sfgabove.

Options such as fill or line thickness can be given.

sfgself(at location, U|D|L|R|degrees, text, text justification, cw|ccw, scale factor)
cct self-loop drawn at angle angle from a node, with text

label and a size-adjustment parameter

shade(gray value,closed line specs)
gen fill arbitrary closed curve

shadebox(box specification) gen box with edge shading

ShadedPolygon(vertexseq, line attributes, degrees, colorseq)

gen Draws the polygon specified in arg1 and shades the
interior according to arg4 by drawing lines perpendicular
to the angle in arg3. The vertexseq is a colon (:)
separated sequence of vertex positions (or names) of the
polygon in cw or ccw order. A colorseq is of the form 0,
r0,g0,b0, frac1,r1,g1,b1, frac2,r2,g2,b2, . . . 1,rn,gn,bn with
0 < frac1 < frac2 . . . 1

SIdefaults gen Sets scale = 25.4 for drawing units in mm, and sets pic
parameters lineht = 12, linewid = 12, moveht =

12, movewid = 12, arcrad = 6, circlerad = 6,

boxht = 12, boxwid = 18, ellipseht = 12,

ellipsewid = 18, dashwid = 2, arrowht = 3,

arrowwid = arrowht/2,

sign_(number) gen sign function

Sin(integer) gen sine function, integer degrees

sinc(number) gen the sinc(x) function

sind(arg) gen sine of an expression in degrees

sinusoid(amplitude, frequency, phase, tmin, tmax, linetype)

gen draws a sinusoid over the interval (tmin, tmax); e.g., to
draw a dashed sine curve, amplitude a, of n cycles of
length x from A,
sinusoid(a,twopi_*n/x,-pi_/2,0,x,dashed) with

.Start at A

source(linespec,V|v|I|i|AC|B|F|G|H|Q|L|N|P|S|T|X|U|other,diameter,R)

cct source, blank or voltage (2 types), current (2 types), AC,
or type F, G, Q, B, L, N, X or labelled, H = step
(Heaviside), P = pulse, U = square, R = ramp, S =
sinusoid, T = triangle; other = custom interior label or
waveform, R = reversed polarity (Section 4.2)

61

sourcerad_ cct default source radius

sp_ gen evaluates to medium space for gpic strings

speaker(U|D|L|R|degrees,size,H)

cct speaker, In1 to In7 defined; H=horn (Section 6)

sprod3D(a,x,y,z) 3D scalar product of triple x,y,z by a

sqrta(arg) gen square root of the absolute value of arg; i.e.,
sqrt(abs(arg))

SQUID(n, diameter, initial angle, ccw|cw)

cct Superconducting quantum interface device with n
junctions labeled J1, ... Jn placed around a circle
with initial angle -90 deg (by default) with respect to the
current drawing direction. The default diameter is dimen_

stackargs_(‘stackname’,args) gen Stack arg 2, arg 3, ... onto the named stack up to a blank
arg

stackcopy_(‘name 1’,‘name 2’)

gen Copy stack 1 into stack 2, preserving the order of pushed
elements

stackdo_(‘stackname’,commands)
gen Empty the stack to the first blank entry, performing arg 2

stackexec_(‘name 1’,‘name 2’,commands)
gen Copy stack 1 into stack 2, performing arg3 for each

nonblank entry

stackprint_(‘stack name’) gen Print the contents of the stack to the terminal

stackreverse_(‘stack name’) gen Reverse the order of elements in a stack, preserving the
name

stacksplit_(‘stack name’,string,separator)
gen Stack the fields of string left to right separated by

nonblank separator (default .). White space preceding the
fields is ignored.

sum_(a,b) gen binary sum

sum3D(x1,y1,z1,x2,y2,z2) 3D sum of two triples

sus(linespec, chars, label) cct Wrapper to place an SUS thyristor as a two-terminal
element with [] block label given by the third argument
(Section 6.1)

svec_(x,y) log scaled and rotated grid coordinate vector

sw_ gen .sw with respect to current direction

switch(linespec,L|R,[C|O][D],[B|D])

cct SPST switch (wrapper for bswitch, lswitch, and dswitch),
arg2: R=right orientation (default L=left); if arg4=blank
(knife switch): arg3 = [O|C][D][A] O= opening,
C=closing, D=dots, A=blade arrowhead; if arg4=B
(button switch): arg3 = O|C O=normally open,
C=normally closed, if arg4=D: arg3 = same as for
dswitch (Section 4.2)

ta_xy(x, y) cct macro-internal coordinates adjusted for L|R

tapped(‘two-terminal element’, [arrowhd | type=arrowhd;name=Name], fraction, length, frac-
tion, length, · · ·)

62

cct Draw the two-terminal element with taps in a [] block
(see addtaps). arrowhd = blank or one of . - <- ->

<->. Each fraction determines the position along the
element body of the tap. A negative length draws the tap
to the right of the current direction; positive length to the
left. Tap names are Tap1, Tap2, · · · by default or Name1,
Name2, · · · if specified. Internal block names are .Start,

.End, and .C corresponding to the drawn element, and
the tap names (Section 6)

tbox(text,wid,ht,<|>|<>,type) cct Pointed terminal box. The text is placed at the
rectangular center in math mode unless the text begins
with " or sprintf in which case the arument is used
literally. Arg 4 determines whether the point is forward,
backward, or both with respect to the current drawing
direction. (Section 6)

tconn(linespec,>|»|<|«|O[F],wid)

cct Terminal connector, O=circle; OF=filled circle; > or »

output connector (default >) ; < or « input connector;
arg3 is arrowhead width or circle diameter (Section 6)

tgate(linespec, [B][R|L]) cct transmission gate, B= ebox type; L= oriented left
(Section 6.1)

thermocouple(linespec, wid, ht, L|R)

cct Thermocouple drawn to the left (by default) of the
linespec line. If the linespec length equals wid (default
dimen_/5), then only the two branches appear. R= right
orientation. (Section 4.2)

thicklines_(number) gen set line thickness in points

thinlines_(number) gen set line thickness in points

threeD_init 3D initialize 3D transformations (reads lib3D.m4)

thyristor(linespec,[SCR|SCS|SUS|SBS|IEC][chars])

cct Composite thyristor element in []block: types SCR:
silicon controlled rectifier (default), SCS: silicon
controlled switch, SUS: silicon unilateral switch, SBS:
silicon bilateral switch, IEC: type IEC. Chars to modify
or define the element: K: open arrowheads, A: arrowhead,
F: half arrowhead, B: bidirectional diode, E: adds
envelope, H: perpendicular gate (endpoint G), N: anode
gate (endpoint Ga), U: centre line in diodes V:
perpendicular gate across arrowhead centre, R=right
orientation, E=envelope (Section 6.1)

tikznode(Tikz node name, position)

pgf insert Tikz code to define a zero-size Tikz node at
location (default Here) to assist with inclusion of pic code
output in Tikz diagrams. This macro must be invoked in
the outermost pic scope. (Section 13.1)

tline(linespec,wid,ht) cct transmission line, manhattan direction (Section 4.2)

tr_xy_init(origin, unit size, sign)

cct initialize tr_xy

tr_xy(x, y) cct relative macro internal coordinates adjusted for L|R

transformer(linespec,L|R,np,[A|P][W|L][D1|D2|D12|D21],ns)

63

cct 2-winding transformer or choke with terminals P1, P2,
TP, S1, S2, TS: arg2: L = left, R = right, arg3: np
primary arcs, arg5: ns secondary arcs, arg4: A = air core,
P = powder (dashed) core, W = wide windings, L =
looped windings, D1: phase dots at P1 and S1 end; D2 at
P2 and S2 end; D12 at P1 and S2 end; D21 at P2 and S1
end (Section 6)

tstrip(R|L|U|D|degrees, nterms, chars)
cct terminal strip, chars: I=invisible terminals, C=circle

terminals (default), D=dot terminals, O=omitted
separator lines, wid=value; total strip width, ht=value;

strip height (Section 6)

ttmotor(linespec, string, diameter, brushwid, brushht)
cct motor with label (Section 4.2)

twopi_ gen 2π

ujt(linespec,R,P,E) cct unijunction transistor, right, P-channel, envelope
(Section 6.1)

unit3D(x,y,z) 3D unit triple in the direction of triple x,y,z

up__ gen up with respect to current direction

up_ gen set current direction up (Section 5)

variable(‘element’, [A|P|L|[u]N][C|S],angle,length)

cct overlaid arrow or line to indicate variable 2-terminal
element: A=arrow, P=preset, L=linear, N=nonlinear,
C=continuous, S=setpwise (Section 4.2)

Vcoords_(position) gen The x, y coordinate pair of the position

Vdiff_(position,position) gen Vdiff_(A,B) evaluates to A-(B) with dpic, A-(B.x,B.y)

with gpic

vec_(x,y) gen position rotated with respect to current direction

View3D 3D The view vector (triple) defined by setview(azim, elev).
The project macro projects onto the plane perpendicular
to this vector

vlength(x,y) gen vector length
√

x2 + y2

vperp(linear object) gen unit-vector pair CCW-perpendicular to linear object

Vperp(position name, position name)

gen unit-vector pair CCW-perpendicular to line joining two
named positions

vrot_(x,y,xcosine,ycosine) gen rotation operator

vscal_(number,x,y) gen vector scale operator

Vsprod_(position, expression) gen The vector in arg 1 multiplied by the scalar in arg 2

Vsum_(position,position) gen Vsum_(A,B) evaluates to A+B with dpic, A+(B.x,B.y)

with gpic

w_ gen .w with respect to current direction

while_(‘test’,‘actions’) gen Integer m4 while loop

wid_ gen width with respect to current direction

winding(L|R, diam, pitch, turns, core wid, core color)
cct core winding drawn in the current direction;

R=right-handed (Section 6)

XOR_gate(n,N) log ‘xor’ gate, 2 or n inputs; N=negated input. Otherwise,
arg1 can be a sequence of letters P|N to define normal or
negated inputs. (Section 9)

64

XOR_off log XOR and NXOR offset of input face

xtal(linespec) cct quartz crystal (Section 4.2)

xtract(string, substr1, substr2, . . .)
gen returns substrings if present

References

[1] J. D. Aplevich. Drawing with dpic, 2015. In the dpic source distribution.

[2] J. Bentley. More Programming Pearls. Addison-Wesley, Reading, Massachusetts, 1988.

[3] D. Girou. Présentation de PSTricks. Cahiers GUTenberg, 16, 1994. http://cahiers.

gutenberg.eu.org/cg-bin/article/CG_1994___16_21_0.pdf.

[4] M. Goossens, S. Rahtz, and F. Mittelbach. The LATEXGraphics Companion. Addison-Wesley,
Reading, Massachusetts, 1997.

[5] J. D. Hobby. A user’s manual for MetaPost, 1990.

[6] IEEE. Graphic symbols for electrical and electronic diagrams, 1975. Std 315-1975, 315A-1986,
reaffirmed 1993.

[7] B. W. Kernighan. PIC—A graphics language for typesetting, user manual. Technical Report
116, AT&T Bell Laboratories, 1991. http://doc.cat-v.org/unix/v10/10thEdMan/pic.pdf.

[8] B. W. Kernighan and D. M. Richie. The M4 macro processor. Technical report, Bell Laboratories,
1977.

[9] Thomas K. Landauer. The Trouble with Computers. MIT Press, Cambridge, 1995.

[10] W. Lemberg. Gpic man page, 2005. http://www.manpagez.com/man/1/groff/.

[11] O. Mas. Pycirkuit 0.5.0. Python Software Foundation, 2019. https://pypi.org/project/

pycirkuit/.

[12] E. S. Raymond. Making pictures with GNU PIC, 1995. In GNU groff source distribution, also
in the dpic package and at http://www.kohala.com/start/troff/gpic.raymond.ps.

[13] T. Rokicki. DVIPS: A TEX driver. Technical report, Stanford, 1994.

[14] R. Seindal et al. GNU m4, 1994. http://www.gnu.org/software/m4/manual/m4.html.

[15] T. Tantau. Tikz & pgf, 2013. http://mirrors.ctan.org/graphics/pgf/base/doc/

pgfmanual.pdf.

[16] T. Van Zandt. PSTricks: Postscript macros for generic tex, 2007. http://mirrors.ctan.org/

graphics/pstricks/base/doc/pst-user.pdf.

65

	Contents
	Introduction
	Using the macros
	Quick start
	Using m4
	Processing with dpic and PSTricks or Tikz PGF
	Processing with gpic
	Simplifications

	Including the libraries

	Pic essentials
	Manuals
	The linear objects: line, arrow, spline, arc
	Positions
	The planar objects: box, circle, ellipse, and text
	Compound objects
	Other language facilities

	Two-terminal circuit elements
	Circuit and element basics
	The two-terminal elements
	Branch-current arrows
	Labels

	Placing two-terminal elements
	Series and parallel circuits

	Composite circuit elements
	Semiconductors

	Corners
	Looping
	Logic gates
	Element and diagram scaling
	Circuit scaling
	Pic scaling

	Writing macros
	Interaction with LaTeX
	PSTricks and other tricks
	Tikz with pic

	Web documents, pdf, and alternative output formats
	Developer's notes
	Bugs
	Misconfiguration
	Pic objects versus macros
	Commas
	Default directions and lengths
	Processing sequence
	Quotes
	Dollar signs
	Name conflicts
	Current direction
	Position of elements that are not 2-terminal
	Pic error messages
	Line continuation
	Scaling
	Buffer overflow
	PSTricks anomaly
	m4 -I error

	List of macros
	above_
	abs_
	adc
	addtaps
	along_
	Along_
	amp
	And, Or, Not, Nand, Nor, Xor, Nxor, Buffer
	AND_gate
	AND_gen
	AND_ht
	AND_wd
	antenna
	arca
	arcd
	arcdimension_
	arcr
	arcto
	arrowline
	AutoGate
	Autologix
	b_
	b_current
	basename_
	battery
	beginshade
	bell
	below_
	bi_tr
	bi_trans
	binary_
	BOX_gate
	boxcoord
	boxdim
	bp__
	bswitch
	BUF_ht
	BUF_wd
	BUFFER_gate
	BUFFER_gen
	buzzer
	c_fet
	capacitor
	cbreaker
	ccoax
	cct_init
	centerline_
	Cintersect
	clabel
	cm__
	consource
	contact
	contacts
	contline
	corner
	Cos
	cosd
	Cosine
	cross
	cross3D
	crossover
	crosswd_
	csdim_
	d_fet
	dabove
	dac
	darc
	Darc
	Darlington
	darrow_init
	Darrow
	darrow
	dashline
	dbelow
	dcosine3D
	delay_rad_
	delay
	deleminit_
	Demux
	dend
	dfillcolor
	diff_
	diff3D
	dimen_
	dimension_
	diode
	dir_
	distance
	distance
	dlabel
	dleft
	Dline
	dline
	dlinewid
	dljust
	dn_
	dna_
	dot
	dot3D
	dotrad_
	down_
	dright
	drjust
	dswitch
	dtee
	dtor_
	dturn
	E__
	e_
	e_fet
	earphone
	ebox
	elchop
	eleminit_
	elen_
	em_arrows
	endshade
	Equidist3
	expe
	f_box
	Fector
	FF_ht
	FF_wid
	fill_
	fitcurve
	FlipFlop
	FlipFlop6
	FlipFlopJK
	FlipFlopX
	for_
	FTcap
	fuse
	g_
	G_hht
	gap
	gen_init
	glabel_
	gpolyline_
	graystring
	grid_
	ground
	gshade
	gyrator
	H_ht
	Header
	HeaderPin
	hatchbox
	heater
	hex_digit
	hexadecimal_
	hlth
	hoprad_
	ht_
	ifdpic
	ifgpic
	ifinstr
	ifmfpic
	ifmpost
	ifpgf
	ifpostscript
	ifpsfrag
	ifpstricks
	ifroff
	ifxfig
	igbt
	in__
	inductor
	inner_prod
	Int_
	integrator
	intersect_
	Intersect_
	IOdefs
	j_fet
	jack
	KelvinR
	L_unit
	lamp
	larrow
	lbox
	LCintersect
	LCtangent
	left_
	length3D
	LEintersect
	LEtangent
	lg_bartxt
	lg_pin
	lg_pintxt
	lg_plen
	LH_symbol
	lin_ang
	lin_leng
	linethick_
	ljust_
	llabel
	loc_
	log_init
	log10E_
	loge
	Loopover_
	lp_xy
	lpop
	lswitch
	lt_
	LT_symbol
	lthick
	m4_arrow
	m4dupstr
	m4lstring
	m4xpand
	m4xtract
	manhattan
	Max
	memristor
	microphone
	Min
	Mitre_
	mitre_
	mm__
	mosfet
	Mux_ht
	Mux_wid
	Mux
	Mx_pins
	n_
	N_diam
	N_rad
	NAND_gate
	ne_
	NeedDpicTools
	neg_
	NOR_gate
	norator
	NOT_circle
	NOT_gate
	NOT_rad
	NPDT
	nport
	nterm
	nullator
	nw_
	NXOR_gate
	opamp
	open_arrow
	OR_gate
	OR_gen
	OR_rad
	parallel_
	pc__
	pvcell
	px__
	pconnex
	pi_
	plug
	pmod
	point_
	Point_
	polar_
	potentiometer
	print3D
	prod_
	project
	psset_
	pt__
	ptrans
	r_
	rarrow
	Rect_
	rect_
	reed
	relay
	relaycoil
	resetdir_
	resetrgb
	resistor
	resized
	restorem4dir
	reversed
	rgbdraw
	rgbfill
	rgbstring
	right_
	rjust_
	rlabel
	rot3Dx
	rot3Dy
	rot3Dz
	Rot_
	rot_
	rotbox
	rotellipse
	round
	rpoint_
	rpos_
	rrot_
	rs_box
	rsvec_
	rt_
	rtod__
	rtod_
	rvec_
	s_
	s_box
	s_dp
	s_ht
	s_init
	s_name
	s_wd
	savem4dir
	sbs
	sc_draw
	scr
	scs
	se_
	series_
	setdir_
	setrgb
	setview
	sfg_init
	sfgabove
	sfgarc
	sfgbelow
	sfgline
	sfgnode
	sfgself
	shade
	shadebox
	ShadedPolygon
	SIdefaults
	sign_
	Sin
	sinc
	sind
	sinusoid
	source
	sourcerad_
	sp_
	speaker
	sprod3D
	sqrta
	SQUID
	stackargs_
	stackcopy_
	stackdo_
	stackexec_
	stackprint_
	stackreverse_
	stacksplit_
	sum_
	sum3D
	sus
	svec_
	sw_
	switch
	ta_xy
	tapped
	tbox
	tconn
	tgate
	thermocouple
	thicklines_
	thinlines_
	threeD_init
	thyristor
	tikznode
	tline
	tr_xy_init
	tr_xy
	transformer
	tstrip
	ttmotor
	twopi_
	ujt
	unit3D
	up__
	up_
	variable
	Vcoords_
	Vdiff_
	vec_
	View3D
	vlength
	vperp
	Vperp
	vrot_
	vscal_
	Vsprod_
	Vsum_
	w_
	while_
	wid_
	winding
	XOR_gate
	XOR_off
	xtal
	xtract

	References .

