Only in gl-matrix-2.4.0-pruned: LICENSE.js diff -r -u gl-matrix-2.4.0/src/gl-matrix/mat3.js gl-matrix-2.4.0-pruned/src/gl-matrix/mat3.js --- gl-matrix-2.4.0/src/gl-matrix/mat3.js 2017-07-22 13:02:47.000000000 -0600 +++ gl-matrix-2.4.0-pruned/src/gl-matrix/mat3.js 2019-09-27 15:41:24.534735384 -0600 @@ -70,7 +70,7 @@ * @param {mat3} a matrix to clone * @returns {mat3} a new 3x3 matrix */ -export function clone(a) { +function clone(a) { let out = new glMatrix.ARRAY_TYPE(9); out[0] = a[0]; out[1] = a[1]; @@ -91,7 +91,7 @@ * @param {mat3} a the source matrix * @returns {mat3} out */ -export function copy(out, a) { +function copy(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; @@ -118,7 +118,7 @@ * @param {Number} m22 Component in column 2, row 2 position (index 8) * @returns {mat3} A new mat3 */ -export function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) { +function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) { let out = new glMatrix.ARRAY_TYPE(9); out[0] = m00; out[1] = m01; @@ -147,7 +147,7 @@ * @param {Number} m22 Component in column 2, row 2 position (index 8) * @returns {mat3} out */ -export function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) { +function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) { out[0] = m00; out[1] = m01; out[2] = m02; @@ -166,7 +166,7 @@ * @param {mat3} out the receiving matrix * @returns {mat3} out */ -export function identity(out) { +function identity(out) { out[0] = 1; out[1] = 0; out[2] = 0; @@ -186,7 +186,7 @@ * @param {mat3} a the source matrix * @returns {mat3} out */ -export function transpose(out, a) { +function transpose(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { let a01 = a[1], a02 = a[2], a12 = a[5]; @@ -254,7 +254,7 @@ * @param {mat3} a the source matrix * @returns {mat3} out */ -export function adjoint(out, a) { +function adjoint(out, a) { let a00 = a[0], a01 = a[1], a02 = a[2]; let a10 = a[3], a11 = a[4], a12 = a[5]; let a20 = a[6], a21 = a[7], a22 = a[8]; @@ -277,7 +277,7 @@ * @param {mat3} a the source matrix * @returns {Number} determinant of a */ -export function determinant(a) { +function determinant(a) { let a00 = a[0], a01 = a[1], a02 = a[2]; let a10 = a[3], a11 = a[4], a12 = a[5]; let a20 = a[6], a21 = a[7], a22 = a[8]; @@ -293,7 +293,7 @@ * @param {mat3} b the second operand * @returns {mat3} out */ -export function multiply(out, a, b) { +function multiply(out, a, b) { let a00 = a[0], a01 = a[1], a02 = a[2]; let a10 = a[3], a11 = a[4], a12 = a[5]; let a20 = a[6], a21 = a[7], a22 = a[8]; @@ -324,7 +324,7 @@ * @param {vec2} v vector to translate by * @returns {mat3} out */ -export function translate(out, a, v) { +function translate(out, a, v) { let a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8], @@ -352,7 +352,7 @@ * @param {Number} rad the angle to rotate the matrix by * @returns {mat3} out */ -export function rotate(out, a, rad) { +function rotate(out, a, rad) { let a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8], @@ -382,7 +382,7 @@ * @param {vec2} v the vec2 to scale the matrix by * @returns {mat3} out **/ -export function scale(out, a, v) { +function scale(out, a, v) { let x = v[0], y = v[1]; out[0] = x * a[0]; @@ -410,7 +410,7 @@ * @param {vec2} v Translation vector * @returns {mat3} out */ -export function fromTranslation(out, v) { +function fromTranslation(out, v) { out[0] = 1; out[1] = 0; out[2] = 0; @@ -434,7 +434,7 @@ * @param {Number} rad the angle to rotate the matrix by * @returns {mat3} out */ -export function fromRotation(out, rad) { +function fromRotation(out, rad) { let s = Math.sin(rad), c = Math.cos(rad); out[0] = c; @@ -462,7 +462,7 @@ * @param {vec2} v Scaling vector * @returns {mat3} out */ -export function fromScaling(out, v) { +function fromScaling(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; @@ -484,7 +484,7 @@ * @param {mat2d} a the matrix to copy * @returns {mat3} out **/ -export function fromMat2d(out, a) { +function fromMat2d(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = 0; @@ -507,7 +507,7 @@ * * @returns {mat3} out */ -export function fromQuat(out, q) { +function fromQuat(out, q) { let x = q[0], y = q[1], z = q[2], w = q[3]; let x2 = x + x; let y2 = y + y; @@ -546,7 +546,7 @@ * * @returns {mat3} out */ -export function normalFromMat4(out, a) { +function normalFromMat4(out, a) { let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; @@ -596,7 +596,7 @@ * @param {number} height Height of gl context * @returns {mat3} out */ -export function projection(out, width, height) { +function projection(out, width, height) { out[0] = 2 / width; out[1] = 0; out[2] = 0; @@ -615,7 +615,7 @@ * @param {mat3} a matrix to represent as a string * @returns {String} string representation of the matrix */ -export function str(a) { +function str(a) { return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ')'; @@ -627,7 +627,7 @@ * @param {mat3} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ -export function frob(a) { +function frob(a) { return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2))) } @@ -639,7 +639,7 @@ * @param {mat3} b the second operand * @returns {mat3} out */ -export function add(out, a, b) { +function add(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; @@ -660,7 +660,7 @@ * @param {mat3} b the second operand * @returns {mat3} out */ -export function subtract(out, a, b) { +function subtract(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; @@ -683,7 +683,7 @@ * @param {Number} b amount to scale the matrix's elements by * @returns {mat3} out */ -export function multiplyScalar(out, a, b) { +function multiplyScalar(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; @@ -705,7 +705,7 @@ * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat3} out */ -export function multiplyScalarAndAdd(out, a, b, scale) { +function multiplyScalarAndAdd(out, a, b, scale) { out[0] = a[0] + (b[0] * scale); out[1] = a[1] + (b[1] * scale); out[2] = a[2] + (b[2] * scale); @@ -725,7 +725,7 @@ * @param {mat3} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ -export function exactEquals(a, b) { +function exactEquals(a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8]; @@ -738,7 +738,7 @@ * @param {mat3} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ -export function equals(a, b) { +function equals(a, b) { let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7], a8 = a[8]; let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5], b6 = b[6], b7 = b[7], b8 = b[8]; return (Math.abs(a0 - b0) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) && @@ -756,10 +756,10 @@ * Alias for {@link mat3.multiply} * @function */ -export const mul = multiply; +const mul = multiply; /** * Alias for {@link mat3.subtract} * @function */ -export const sub = subtract; +const sub = subtract; diff -r -u gl-matrix-2.4.0/src/gl-matrix/mat4.js gl-matrix-2.4.0-pruned/src/gl-matrix/mat4.js --- gl-matrix-2.4.0/src/gl-matrix/mat4.js 2017-07-22 13:02:47.000000000 -0600 +++ gl-matrix-2.4.0-pruned/src/gl-matrix/mat4.js 2019-09-27 15:41:24.534735384 -0600 @@ -57,7 +57,7 @@ * @param {mat4} a matrix to clone * @returns {mat4} a new 4x4 matrix */ -export function clone(a) { +function clone(a) { let out = new glMatrix.ARRAY_TYPE(16); out[0] = a[0]; out[1] = a[1]; @@ -85,7 +85,7 @@ * @param {mat4} a the source matrix * @returns {mat4} out */ -export function copy(out, a) { +function copy(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; @@ -126,7 +126,7 @@ * @param {Number} m33 Component in column 3, row 3 position (index 15) * @returns {mat4} A new mat4 */ -export function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { +function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { let out = new glMatrix.ARRAY_TYPE(16); out[0] = m00; out[1] = m01; @@ -169,7 +169,7 @@ * @param {Number} m33 Component in column 3, row 3 position (index 15) * @returns {mat4} out */ -export function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { +function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { out[0] = m00; out[1] = m01; out[2] = m02; @@ -223,7 +223,7 @@ * @param {mat4} a the source matrix * @returns {mat4} out */ -export function transpose(out, a) { +function transpose(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { let a01 = a[1], a02 = a[2], a03 = a[3]; @@ -325,7 +325,7 @@ * @param {mat4} a the source matrix * @returns {mat4} out */ -export function adjoint(out, a) { +function adjoint(out, a) { let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; @@ -356,7 +356,7 @@ * @param {mat4} a the source matrix * @returns {Number} determinant of a */ -export function determinant(a) { +function determinant(a) { let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; @@ -465,7 +465,7 @@ * @param {vec3} v the vec3 to scale the matrix by * @returns {mat4} out **/ -export function scale(out, a, v) { +function scale(out, a, v) { let x = v[0], y = v[1], z = v[2]; out[0] = a[0] * x; @@ -558,7 +558,7 @@ * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ -export function rotateX(out, a, rad) { +function rotateX(out, a, rad) { let s = Math.sin(rad); let c = Math.cos(rad); let a10 = a[4]; @@ -601,7 +601,7 @@ * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ -export function rotateY(out, a, rad) { +function rotateY(out, a, rad) { let s = Math.sin(rad); let c = Math.cos(rad); let a00 = a[0]; @@ -644,7 +644,7 @@ * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ -export function rotateZ(out, a, rad) { +function rotateZ(out, a, rad) { let s = Math.sin(rad); let c = Math.cos(rad); let a00 = a[0]; @@ -721,7 +721,7 @@ * @param {vec3} v Scaling vector * @returns {mat4} out */ -export function fromScaling(out, v) { +function fromScaling(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; @@ -800,7 +800,7 @@ * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ -export function fromXRotation(out, rad) { +function fromXRotation(out, rad) { let s = Math.sin(rad); let c = Math.cos(rad); @@ -835,7 +835,7 @@ * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ -export function fromYRotation(out, rad) { +function fromYRotation(out, rad) { let s = Math.sin(rad); let c = Math.cos(rad); @@ -870,7 +870,7 @@ * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ -export function fromZRotation(out, rad) { +function fromZRotation(out, rad) { let s = Math.sin(rad); let c = Math.cos(rad); @@ -909,7 +909,7 @@ * @param {vec3} v Translation vector * @returns {mat4} out */ -export function fromRotationTranslation(out, q, v) { +function fromRotationTranslation(out, q, v) { // Quaternion math let x = q[0], y = q[1], z = q[2], w = q[3]; let x2 = x + x; @@ -955,7 +955,7 @@ * @param {mat4} mat Matrix to be decomposed (input) * @return {vec3} out */ -export function getTranslation(out, mat) { +function getTranslation(out, mat) { out[0] = mat[12]; out[1] = mat[13]; out[2] = mat[14]; @@ -973,7 +973,7 @@ * @param {mat4} mat Matrix to be decomposed (input) * @return {vec3} out */ -export function getScaling(out, mat) { +function getScaling(out, mat) { let m11 = mat[0]; let m12 = mat[1]; let m13 = mat[2]; @@ -1000,7 +1000,7 @@ * @param {mat4} mat Matrix to be decomposed (input) * @return {quat} out */ -export function getRotation(out, mat) { +function getRotation(out, mat) { // Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm let trace = mat[0] + mat[5] + mat[10]; let S = 0; @@ -1051,7 +1051,7 @@ * @param {vec3} s Scaling vector * @returns {mat4} out */ -export function fromRotationTranslationScale(out, q, v, s) { +function fromRotationTranslationScale(out, q, v, s) { // Quaternion math let x = q[0], y = q[1], z = q[2], w = q[3]; let x2 = x + x; @@ -1111,7 +1111,7 @@ * @param {vec3} o The origin vector around which to scale and rotate * @returns {mat4} out */ -export function fromRotationTranslationScaleOrigin(out, q, v, s, o) { +function fromRotationTranslationScaleOrigin(out, q, v, s, o) { // Quaternion math let x = q[0], y = q[1], z = q[2], w = q[3]; let x2 = x + x; @@ -1164,7 +1164,7 @@ * * @returns {mat4} out */ -export function fromQuat(out, q) { +function fromQuat(out, q) { let x = q[0], y = q[1], z = q[2], w = q[3]; let x2 = x + x; let y2 = y + y; @@ -1248,7 +1248,7 @@ * @param {number} far Far bound of the frustum * @returns {mat4} out */ -export function perspective(out, fovy, aspect, near, far) { +function perspective(out, fovy, aspect, near, far) { let f = 1.0 / Math.tan(fovy / 2); let nf = 1 / (near - far); out[0] = f / aspect; @@ -1281,7 +1281,7 @@ * @param {number} far Far bound of the frustum * @returns {mat4} out */ -export function perspectiveFromFieldOfView(out, fov, near, far) { +function perspectiveFromFieldOfView(out, fov, near, far) { let upTan = Math.tan(fov.upDegrees * Math.PI/180.0); let downTan = Math.tan(fov.downDegrees * Math.PI/180.0); let leftTan = Math.tan(fov.leftDegrees * Math.PI/180.0); @@ -1352,7 +1352,7 @@ * @param {vec3} up vec3 pointing up * @returns {mat4} out */ -export function lookAt(out, eye, center, up) { +function lookAt(out, eye, center, up) { let x0, x1, x2, y0, y1, y2, z0, z1, z2, len; let eyex = eye[0]; let eyey = eye[1]; @@ -1439,7 +1439,7 @@ * @param {vec3} up vec3 pointing up * @returns {mat4} out */ -export function targetTo(out, eye, target, up) { +function targetTo(out, eye, target, up) { let eyex = eye[0], eyey = eye[1], eyez = eye[2], @@ -1488,7 +1488,7 @@ * @param {mat4} a matrix to represent as a string * @returns {String} string representation of the matrix */ -export function str(a) { +function str(a) { return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' + @@ -1501,7 +1501,7 @@ * @param {mat4} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ -export function frob(a) { +function frob(a) { return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2) )) } @@ -1513,7 +1513,7 @@ * @param {mat4} b the second operand * @returns {mat4} out */ -export function add(out, a, b) { +function add(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; @@ -1541,7 +1541,7 @@ * @param {mat4} b the second operand * @returns {mat4} out */ -export function subtract(out, a, b) { +function subtract(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; @@ -1569,7 +1569,7 @@ * @param {Number} b amount to scale the matrix's elements by * @returns {mat4} out */ -export function multiplyScalar(out, a, b) { +function multiplyScalar(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; @@ -1598,7 +1598,7 @@ * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat4} out */ -export function multiplyScalarAndAdd(out, a, b, scale) { +function multiplyScalarAndAdd(out, a, b, scale) { out[0] = a[0] + (b[0] * scale); out[1] = a[1] + (b[1] * scale); out[2] = a[2] + (b[2] * scale); @@ -1625,7 +1625,7 @@ * @param {mat4} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ -export function exactEquals(a, b) { +function exactEquals(a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && @@ -1639,7 +1639,7 @@ * @param {mat4} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ -export function equals(a, b) { +function equals(a, b) { let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; let a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7]; let a8 = a[8], a9 = a[9], a10 = a[10], a11 = a[11]; @@ -1672,10 +1672,10 @@ * Alias for {@link mat4.multiply} * @function */ -export const mul = multiply; +const mul = multiply; /** * Alias for {@link mat4.subtract} * @function */ -export const sub = subtract; +const sub = subtract; diff -r -u gl-matrix-2.4.0/src/gl-matrix.js gl-matrix-2.4.0-pruned/src/gl-matrix.js --- gl-matrix-2.4.0/src/gl-matrix.js 2017-07-22 13:02:47.000000000 -0600 +++ gl-matrix-2.4.0-pruned/src/gl-matrix.js 2019-09-27 17:04:06.477164503 -0600 @@ -26,19 +26,9 @@ THE SOFTWARE. */ // END HEADER -import * as glMatrix from "./gl-matrix/common"; -import * as mat2 from "./gl-matrix/mat2"; -import * as mat2d from "./gl-matrix/mat2d"; import * as mat3 from "./gl-matrix/mat3"; import * as mat4 from "./gl-matrix/mat4"; -import * as quat from "./gl-matrix/quat"; -import * as vec2 from "./gl-matrix/vec2"; -import * as vec3 from "./gl-matrix/vec3"; -import * as vec4 from "./gl-matrix/vec4"; export { - glMatrix, - mat2, mat2d, mat3, mat4, - quat, - vec2, vec3, vec4, -}; \ No newline at end of file + mat3,mat4 +};