© XCharter-Math ↔

Daniel Flipo
daniel.flipo@free.fr

8th October 2022

1 What is XCharter-Math?

XCharter-Math is an OpenType maths font based on Bitstream Charter meant to be used with XCharter text fonts.

Latin and Greek letters and many maths symbols are borrowed or derived from Michael Sharpe's XCharter fonts. Other sources for maths glyphs were found in MathDesign (by Paul Pichaureau) and Fourier-GUTenberg (by Michel Bovani).

It requires LuaTeX or XeTeX as engine and the unicode-math package ${ }^{1}$.
Please note that the current version (0.34) is experimental, do expect metrics and glyphs to change until version 1.0 is reached. Comments, suggestions and bug reports are welcome!

2 Usage

2.1 Calling \setmathfont

A basic call for XCharter-Math would be:
kage\{unicode-math\}\setmathfont\{XCharter-Math.otf\}\%Callbyfilenameor\setmathfont\{XCharterMath\}\%CallbyfontnamethisloadsXCharter-Mathasmathsfont2withthedefaultoptions,seesubsections3.1onpage$3,3.2$onpage4and3.3onpage5forcustomisation.undefined

Please note that the three sets of text fonts have to be chosen separately, f.i.:

[^0]```
\setmainfont{XCharter} % rm
\setsansfont{Cabin}[Scale=MatchLowercase] % sf
\setmonofont{Inconsolatazi4}[Scale=MatchLowercase] % tt
otherwise you would get Latin Modern for text fonts.
```


### 2.2 Calling xcharter-otf.sty (recommended)

As an alternative to load XCharter-Math you can type:
ge[options${}^{3}$]\{xcharter-otf\}itloadsunicode-mathwiththedefaultoptions,setsXCharter-MathasmathsfontandXCharterTextfontsasRomanfonts(families$sf$and$tt$leftunchanged)butdoesabitmore:undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

1. it loads realscripts for better superscripts;
2. it checks at \begin\{document\} if packages amssymb or latexsym are loaded and } issues warnings in case they are;
3. it provides aliases for glyphs named differently in Unicode, so that latexsym or AMS names are also available;
4. it defines specific maths characters like \varemptyset ( $\emptyset$ ), \parallelslant (//), \shortparallelslant (II), etc.;
5. it reduces spacing in maths mode: \thinmuskip, \medmuskip and \thickmuskip unless the loose option is activated.

Apart from the loose option mentioned above, xcharter-otf. sty provides two options no-text and Scale=<decimal> meant to be used to load the XCharter-Math font together with roman text fonts other than XCharter, while keeping the advantages 1. to 5 . pointed in the preceding list, f.i.
}Optionno-textcanalsobeusefulifXCharteristobeloadedwithspecificoptions,f.i.\usepackage[no-text]\{xcharter-otf\}\setmainfont\{XCharter\}[RawFeature=+onum;+ss01]undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

## 3 What is provided?

XCharter-Math provides all glyphs supplied by Fourier-GUTenberg plus all glyphs available in the amssymb and latexsym packages and many more. Therefore, these two packages should not be loaded as they might override XCharter-Math glyphs.

[^1]Sans-serif, typewriter and fraktur styles are borrowed from Latin Modern fonts. See in section 3.6 on page 8 how to choose from other maths fonts for these styles.

A full list of available glyphs is shown in file unimath-xcharter.pdf.

### 3.1 Upright or slanted?

Package unicode-math follows $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ conventions for Latin and Greek letters: in maths mode, the default option (math-style=TeX) prints Latin letters $a \ldots z$ A... $Z$ and lowercase Greek letters $\alpha \ldots \omega$ slanted (italic) while uppercase Greek letters АВГ... $\Omega$ are printed upright. This can be changed by option math-style as shown in table 1.

Table 1: Effects of the math-style package option.

| Package option | Latin | Greek |
| :--- | :---: | :---: |
| math-style=ISO | $(a, z, B, X)$ | $(\alpha, \beta, \Gamma, \Xi)$ |
| math-style=TeX | $(a, z, B, X)$ | $(\alpha, \beta, \Gamma, \Xi)$ |
| math-style=french | $(a, z, B, X)$ | $(\alpha, \beta, \Gamma, \Xi)$ |
| math-style=upright | $(a, z, B, X)$ | $(\alpha, \beta, \Gamma, \Xi)$ |

Bold letters are printed upright except lowercase Greek letters which are slanted (the default option is bold-style=TeX). This can be changed by option bold-style as shown in table 2.

Table 2: Effects of the bold-style package option.

| Package option | Latin | Greek |
| :--- | :---: | :---: |
| bold-style=ISO | $(\boldsymbol{a}, \boldsymbol{z}, \boldsymbol{B}, \boldsymbol{X})$ | $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\Gamma}, \boldsymbol{\Xi})$ |
| bold-style=TeX | $(\mathbf{a}, \mathbf{z}, \mathbf{B}, \mathbf{X})$ | $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\Gamma}, \boldsymbol{\Xi})$ |
| bold-style=upright | $(\mathbf{a}, \mathbf{z}, \mathbf{B}, \mathbf{X})$ | $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\Gamma}, \boldsymbol{\Xi})$ |

Other possible customisation: $\nabla$ is printed upright and $\partial$ is printed slanted by default, but nabla=italic and partial=upright can change this.

All these options are offered by the unicode-math package but they can be added to the \setmathfont call ${ }^{4}$, for example:
\setmathfont\{XCharter-Math.otf\}[math-style=french, partial=upright] will print for the code

$$
\begin{aligned}
& \backslash[\backslash f r a c\{\backslash \text { partial } f\}\{\backslash \operatorname{partial~} \mathrm{x}\}=\backslash \operatorname{alpha} \backslash \operatorname{symbf}\{V\}+a \backslash \text { nabla } \backslash \text { Gamma } \\
&+\backslash \text { symbf }\{\backslash \operatorname{beta} \backslash \backslash \operatorname{symbf}\{\mathrm{M}\} \backslash] \\
& \frac{\partial f}{\partial x}=\alpha \mathbf{V}+a \nabla \Gamma+\boldsymbol{\beta M}
\end{aligned}
$$

[^2]while the default settings would print
$$
\frac{\partial f}{\partial x}=\alpha \mathbf{V}+a \nabla \Gamma+\boldsymbol{\beta} \mathbf{M}
$$

Both shapes remain available anytime: \$\uppi, \itpi\$ prints $\pi, \pi$.
If your text editor is able to handle Greek letters or maths symbols, they can be entered in the code instead control sequences (i.e. $\alpha, \beta, \Gamma, \ldots$ for \alpha, \beta, \Gamma,...).

### 3.2 Character variants

XCharter-Math provides fourteen "Character Variants" options, listed on table 3, to choose between different glyphs for Greek characters and some others. Alternative calligraphic capitals have been added for $\mathrm{E}, \mathrm{Q}$ and T in version 0.50 .

Table 3: Character variants.

|  | Default | Variant | Name |
| :---: | :---: | :---: | :---: |
| cv00 | 0 | 0 | 0 |
| cv01 | $\hbar$ | $\hbar$ | \hslash |
| cv02 | $\varnothing$ | $\emptyset$ | \emptyset |
| cv03 | $\epsilon$ | $\varepsilon$ | \epsilon |
| cv04 | $\kappa$ | $x$ | \kappa |
| cv05 | $\pi$ | ш | \pi |
| cv06 | $\phi$ | $\varphi$ | \phi |
| cv07 | $\rho$ | $\varrho$ | \rho |
| cv08 | $\sigma$ | $s$ | \sigma |
| cv09 | $\theta$ | $\vartheta$ | $\backslash$ theta |
| cv10 | $\Theta$ | $\ominus$ | $\backslash$ Theta |
| cv20 | $\mathscr{E}$ | $\mathscr{E}$ | \symcal\{E\} |
| cv21 | $\mathscr{Q}$ | Q | \symcal\{Q\} |
| cv22 | $\mathscr{T}$ | $\mathscr{C}$ | \symcal\{T\} |

For instance, to get \epsilon and \phi typeset as $\varepsilon$ and $\varphi$ instead of $\epsilon$ and $\phi$, you can add option CharacterVariant $=\{3,6\}$ to the \setmathfont call:
\setmathfont\{XCharter-Math.otf\}[CharacterVariant=\{3,6\}]
This works for all shapes and weights of these characters: f.i. \$\symbf\{\epsilon\}\$, $\$ \backslash$ symbf $\{\backslash$ phi $\} \$$ are output as $\boldsymbol{\varepsilon}, \boldsymbol{\varphi}$ instead of $\boldsymbol{\epsilon}, \boldsymbol{\phi}$.

Similarly with math-style=french, \epsilon and \phi are output as $\varepsilon$ and $\varphi$ (upright).

Please note that curly braces are mandatory whenever more than one "Character Variant" is selected.

Note about \hbar (v 0.43): unicode-math defines \hbar as \hslash (U+210F) while amsmath provides two different glyphs (italic h with horizontal or diagonal stroke).

XCharter Math now follows unicode-math; the italic h with horizontal stroke can be printed using \hslash or \hbar together with character variant cv01 or with \mithbar (replacement for AMS' command \hbar).

### 3.3 Stylistic sets

XCharter-Math provides five "Stylistic Sets" options to choose between different glyphs for families of maths symbols.

StylisticSet=4, alias ${ }^{5}$ Style=leqslant, converts large inequalities into their slanted variants, see table 5a.

StylisticSet=5, alias Style=smaller, converts some symbols into their smaller variants, see table 5b.

Table 4: Stylistic Sets 4 and 5
(a) Style=leqslant (+ss04)

| Command | Default | Variant |
| :---: | :---: | :---: |
| \leq | $\leq$ | $\leqslant$ |
| \geq | $\geq$ | $\geqslant$ |
| \nleq | $\not \pm$ | * |
| \ngeq | $\nsupseteq$ | $\not \geqslant$ |
| $\backslash l e q q$ | $\leqq$ | $\leqslant$ |
| \geqq | $\geqq$ | $\geqslant$ |
| \eqless | $<$ | < |
| \eqgtr | > | > |
| \lesseqgtr | $\lesseqgtr$ | $\leqslant$ |
| \gtreqless | $\gtreqless$ | $\gtrless$ |
| $\backslash l e s s e q q g t r$ | $\gtreqless$ | 5 |
| \gtreqqless | $\gtreqless$ | $\geqslant$ |

(b) Style=smaller (+ss05)

| Command | Default | Variant | |
|---|---|---|---|
| \in | $\epsilon$ | $\epsilon$ |
| \ni | $\ni$ | $\ni$ |
| \mid | $\mid$ | $\prime$ |
| \nmid | $\nmid$ | + |
| \parallel | $\\|$ | $\prime \prime$ |
| \nparallel | $H$ | $\#$ |
| \parallelslant | $\\|$ | $" /$ |
| \nparallelslant | H | H |

StylisticSet=6, alias Style=subsetneq, converts some inclusion symbols, as shown in table 6a on the next page.

StylisticSet=7, alias Style=parallelslant, converts "parallel" symbols into their slanted variants, see table 6b on the following page.

To enable Stylistic Sets 4, 6 and 7 for XCharter-Math, you should enter
{XCharter-Math.otf\}[StylisticSet=\{4,6,7\}]or\usepackage[Style=\{leqslant,subsetneq,parallelslant\}]\{xcharter-otf\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

then, $$
x\leq y \quad A \subsetneq B \quad D \parallel D'
$$ will print as

$$
x \leqslant y \quad A \varsubsetneqq B \quad D / / D^{\prime}
$$

[^3]Table 5: Stylistic Sets 6 and 7

| (a) Style=subsetneq (+ss06) |  |  | (b) Style=parallelslant (+ss07) |  |  | |
|---|---|---|---|---|---|---|
| Command | Default | Variant | Command | Default | Variant |
| \subsetneq | $\subsetneq$ | $\mp$ | \parallel | \|| | II |
| $\backslash$ supsetneq | $\supsetneq$ | $\supsetneq$ | \nparallel | H | H |
| $\backslash$ subsetneqq | $\varsubsetneqq$ | $\varsubsetneqq$ | \shortparallel | 11 | 11 |
| $\backslash$ supsetneqq | $\supsetneq$ | $\supsetneqq$ | \nshortparallel | H | H |

instead of

$$
x \leq y \quad A \subsetneq B \quad D \| D^{\prime}
$$

StylisticSet=3, alias ${ }^{6}$ Style=upint, converts integrals signs into their upright variants, see table 6.

Table 6: Style=upint (+ss03)

| Command | \int | \iint | \iiint | \iiiint | \oint | \oiint | \oiiint |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Default | J | $\iint$ | $\iiint$ | $\iiint \int$ | $\oint$ | $\oiint$ | $\oiint$ | $\oiiint$ |
| Upright |  | $\iint$ | $\iiint$ | $\iiint \int$ | $\oint$ | $\oiint$ | $\oiint$ | $\oiint$ |


| Command | \intclockwise | \awint | \varointclockwise | \ointctrclockwise |
| :--- | :---: | :---: | :---: | :---: |
| Default | $f$ | $\&$ | $\oint$ | $\oint$ |
| Upright | $f$ | $\&$ | $\oint$ | $\oint$ |

### 3.4 Other font features

To get oldstyle numbers in maths, the feature +onum is available:
t\{XCharter-Math.otf\}[Numbers=OldStyle]or\usepackage[Style=\{fulloldstyle]\{xcharter-otf\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
 0123456789,0123456789
```

[^4]
### 3.5 Standard $H^{4} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ math commands

All standard ${ }^{2} T_{\mathrm{E}} \mathrm{X}$ maths commands, all amssymb commands and all latexsym commands are supported by XCharter-Math, for some of them loading xcharter-otf.sty is required.

Various wide accents are also supported:
\widehat and \widetilde
$\hat{x} \widehat{x x} \widehat{x x x} \widehat{x x x x} \widehat{x x x x x} \widehat{x x x x x x} \tilde{x} \widetilde{x x} \widetilde{x x x} \widehat{x x x x} \widehat{x x x x x} \widehat{x x x x x x}$
\overline and \underline

$$
\bar{x} \quad \overline{x y} \quad \overline{x y z} \quad \overline{A \cup B} \quad \overline{A \cup(B \cap C) \cup D} \quad \underline{m+n+p}
$$

\wideoverbar, \widecheck and \widebreve

$$
\bar{x} \overline{x y} \overline{x y z} \quad \check{x} \quad \overline{x x x x} \quad \overline{x x x x x x} \quad \bar{x} \quad \overline{x x x x} \quad \overline{x x x x x x}
$$

\overparen and \underparen

$$
\begin{gathered}
\bar{x} \overline{x y} \widetilde{x y z} \quad \widetilde{A \cup B} \quad \widetilde{A \cup(B \cap C) \cup D} \frac{2}{x+y} \frac{26}{a+b+\ldots+z} \\
\underline{x} \quad \underline{x z} \quad \underbrace{x y z} \quad \frac{x+z}{2} \quad \frac{a+b+\ldots+z}{26}
\end{gathered}
$$

\overbrace and \underbrace

$$
\begin{aligned}
& \overparen{\sim} \quad \widehat{a b} \quad \overbrace{a b c} \quad \overbrace{a b c d} \quad \overbrace{a b c d e}^{3} \quad \overbrace{a+b+c}^{26} \\
& \underbrace{a} \quad \underline{a b} \underbrace{a b c d} \underbrace{a b c d e}_{3} \underbrace{a+b+c}_{26} \underbrace{a+b+\ldots+z}
\end{aligned}
$$

\overbracket and \underbracket

$$
\begin{aligned}
& \begin{array}{lllllll}
\bar{a} & \overline{a b} & \overline{a b c} & \overline{a b c d} & \overline{a b c d e} & \frac{3}{a+b+c} & \frac{26}{a+b+\ldots+z} \\
\underline{a} & \underline{a b} & \underline{a b c} & \underline{a b c d} & \underline{a b c d e} & \frac{a+b+c}{3} & \frac{a+b+\ldots+z}{26}
\end{array}
\end{aligned}
$$

\overrightarrow and \overleftarrow
$\begin{array}{lllllll}\vec{v} & \vec{M} & \vec{v} & \overrightarrow{A B} & \overrightarrow{A B C} & \overrightarrow{A B C D} & \overrightarrow{A B C D E F G H} .\end{array}$
$\begin{array}{llllllll}\overleftarrow{v} & \overleftarrow{M} & \overleftarrow{V v} & \overleftarrow{A B} & \overleftarrow{A B C} & \overleftarrow{A B C D} & \overleftarrow{A B C D E F G H}\end{array}$
Finally \widearc and \overrightarc (loading xcharter-otf.sty is required)

$$
\widehat{A M B} \widehat{A M B}
$$

### 3.6 Mathematical alphabets

All Latin and Greek characters are available in italic, upright, bold and bold italic via the \symit\{\}, \symup\{\}, \symbf\{\} and \symbfit\{\} commands.

Calligraphic alphabet ( $\backslash$ symscr or \symcal or \mathcal command), uppercase: $\mathscr{A} \mathscr{B} \mathscr{C} \mathscr{E} \mathscr{F} \mathscr{G} \mathscr{H} \mathscr{I} \mathscr{K} \mathscr{L} \mathscr{M} \mathscr{N} \mathscr{O} \mathscr{P} \mathscr{R} \mathscr{S} \mathscr{T} V \mathscr{W} \mathscr{Y} \mathscr{Z}$

Blackboard-bold alphabet (\symbb or \mathbb command) uppercase only, plus \Bbbone and \Bbbk:
ABCDEFGHIIKILMINOPQRSTUVWXYZ, $1, k$
Fraktur alphabet is borrowed from Latin Modern, $\mathfrak{A B C D E F} \mathfrak{G} \mathfrak{H} \mathfrak{J} \mathfrak{K M N O P Q} \mathfrak{N T U V M X X Z Z a b c d e f g h i j k l m n o p q u s t u v w x y z ~}$ but this can overwritten, i.e.
\setmathfont\{Asana-Math.otf\}[range=frak,Scale=MatchUppercase]
\$\symfrak\{ABCDEFGHIJKL...XYZ abcdefghijkl...xyz\}\$

Sans serif alphabet is borrowed from Latin Modern,
ABCDEFGHIJKLMabcdefghijk NOPQRSTUVWXYZmnopqrstuvwxyz
but it can be borrowed from another maths font, i.e.
\setmathfont\{STIXTwoMath-Regular.otf\}[range=\{sfup,sfit\},
Scale=MatchUppercase]
\$\symsfup\{ABCD...klm\}\quad\symsfit\{NOPQ...xyz\}\$
ABCDEFGHIJKLMabcdefghijklm NOPQRSTUVWXYZnopqrstuvwxyz
Typewriter alphabet is borrowed from Latin Modern, ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz but it can be borrowed from another maths font, i.e.
\setmathfont\{STIXTwoMath-Regular.otf\}[range=tt, Scale=MatchUppercase]
\$\symtt\{ABCDE...XYZ abcde...xyz\}\$
ABCDEFGHI JKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
Like Latin Modern, XCharter-Math provides only four lowercase latin letters in script (or calligraphic) shape: $e, g, \ell, o$ ( $\backslash \mathrm{mscre}, \backslash \mathrm{mscrg}, \backslash e l l, \backslash m s c r o$ ).

All others (range "1D4B6 to "1D4CF) have to be borrowed from another maths font if needed, i.e.
\setmathfont\{LibertinusMath-Regular.otf\}\%
[range="1D4B6-"1D4CF, Scale=MatchLowercase]

### 3.7 Bold variant

In case short maths formulas have to be printed in section titles, a limited bold variant has been added in version 0.33. Example of usage:
\setmathfont\{XCharter-Math-Bold.otf\}[version=bold, options]

\section\{\mathversion\{bold\} Einstein's equation $\$ \mathrm{E}=\mathrm{mc}$ ^2\$\}

\setmathfont\{XCharter-Math-Bold.otf\}[version=bold]

\section\{\mathversion\{bold\} Einstein's equation $\$ \mathrm{E}=\mathrm{mc}$ ^2\$\}

### 3.8 Missing symbols

XCharter-Math does not aim at being as complete as STIXTwoMath-Regular or Cambria, the current glyph coverage compares with TeXGyre maths fonts. In case some symbols do not show up in the output file, you will see warnings in the . log file, for instance:

Missing character: There is no $\Rightarrow(U+2964)$ in font XCharterMath
Borrowing them from a more complete font, say Asana-Math, is a possible workaround: \setmathfont\{Asana-Math.otf\}[range=\{"2964\},Scale=1.02]
scaling is possible, multiple character ranges are separated with commas:
\setmathfont\{Asana-Math.otf\}[range=\{"294A-"2951,"2964,"2ABB-"2ABE\}]
Let's mention albatross, a useful tool to find out the list of fonts providing a given glyph: f.i. type in a terminal "albatross U+2964", see the manpage or albatrossmanual.pdf.

## 4 Acknowledgements

Many thanks to Michael Sharpe for providing the XCharter text fonts in OpenType format.

I am grateful to George Williams and his co-workers for providing and maintaining FontForge and to Ulrik Vieth for his illuminating paper published in TUGboat 2009 Volume 30 about Open Type Math.


[^0]:    ${ }^{1}$ Please read the documentation unicode-math.pdf.
    ${ }^{2}$ Both calls work equally well with LuaTeX; with XeTeX a call by font name will fail unless the font is declared as a system font.

[^1]:    ${ }^{3}$ Possible options are loose, no-text, Scale= or any of the options described in sections 3.1, 3.2 and 3.3.

[^2]:    ${ }^{4} \mathrm{IMHO}$ it is easier to add all options to the \setmathfont command.

[^3]:    ${ }^{5}$ These Style aliases are provided by xcharter-otf.sty.

[^4]:    ${ }^{6}$ These Style aliases are provided by xcharter-otf.sty.

