
AUTOINST(1) Marc Penninga AUTOINST(1)

NAME
autoinst − wrapper around the LCDF TypeTools, for installing and using OpenType fonts in LaTeX.

SYNOPSIS
autoinst [options] fontfile(s)

DESCRIPTION
Eddie Kohler’s LCDF TypeTools are superb tools for installing OpenType fonts in LaTeX, but they can be
hard to use: they need many, often long, command lines and don’t generate the fd and sty files LaTeX
needs. autoinst simplifies the use of the TypeTools for font installation by generating and executing all
commands for otftotfm and by creating and installing all necessary fd and sty files.

Given a family of font files (in otf or ttf format), autoinst will create several LaTeX font families:

− Four text families (with lining and oldstyle digits, each in both tabular and proportional variants), all
with the following shapes:

n Roman (i.e., upright) text

it, sl Italic and slanted (sometimes called oblique) text

sc Small caps

scit, scsl Italic and slanted small caps

sw Swash

nw ‘‘Upright swash’’

− For each T1−encoded text family: a family of TS1−encoded symbol fonts, in roman, italic and
slanted shapes.

− Families with superiors, inferiors, numerators and denominators, in roman, italic and slanted shapes.

− Families with ‘‘Titling’’ characters; these ‘‘... replace the default glyphs with corresponding forms
designed specifically for titling. These may be all-capital and/or larger on the body, and adjusted for
viewing at larger sizes’’ (according to the OpenType Specification).

− An ornament family, also in roman, italic and slanted shapes.

Of course, if your fonts don’t contain italics, oldstyle digits, small caps etc., the corresponding shapes and
families are not created. In addition, the creation of most families and shapes can be controlled by the user
(see ‘‘COMMAND-LINE OPTIONS’’ below).

These families use the FontPro project’s naming scheme: <FontFamily>−<Suffix>, where <Suffix> is:

LF proportional (i.e., figures have varying widths) lining figures

TLF tabular (i.e., all figures have the same width) lining figures

OsF proportional oldstyle figures

TOsF tabular oldstyle figures

Sup superior characters (note that most fonts have only an incomplete set of superior characters:
digits, some punctuation and the letters abdeilmnorst; normal forms are used for other characters)

Inf inferior characters; usually only digits and some punctuation, normal forms for other characters

Titl Titling characters; see above.

Orn ornaments

Numr numerators

Dnom denominators

The individual fonts are named <FontName>−<suffix>−<shape>−<enc>, where <suffix> is the same as
above (but in lowercase), <shape> is either empty, ‘‘sc’’ or ‘‘swash’’, and <enc> is the encoding (also in
lowercase). A typical name in this scheme would be ‘‘FiraSans−Light−osf−sc−ly1’’.

fontools 2019-11-18 1

AUTOINST(1) Marc Penninga AUTOINST(1)

About the log file

autoinst writes some info about what it thinks it’s doing to a log file. By default this is called
<fontfamily>.log, but this choice can be overridden by the user; see the −logfile command-line option in
‘‘COMMAND-LINE OPTIONS’’ below. If this log file already exists, autoinst will append its data to the
end rather than overwrite it. Use the −verbose command-line option to ask for more detailed info.

A note for MiKTeX users

Automatically installing the fonts into a suitable TEXMF tree (as autoinst tries to do by default) only works
for TeX-installations that use the kpathsea library; with TeX distributions that implement their own
directory searching (such as MiKTeX), autoinst will complain that it cannot find the kpsewhich program
and move all generated files into a subdirectory ./autoinst_output/ of the current directory. If you
use such a TeX distribution, you should either move these files to their correct destinations by hand, or use
the −target option (see ‘‘COMMAND-LINE OPTIONS’’ below) to manually specify a TEXMF tree.

Also, some OpenType fonts contain so many kerning pairs that the resulting pl and vpl files are too big for
MiKTeX’s pltotf and vptovf; the versions that come with W32TeX (http://www.w32tex.org) and TeXLive
(http://tug.org/texlive) don’t seem to have this problem.

A note for MacTeX users

By default, autoinst will try to install all generated files into the $TEXMFLOCAL tree; when this directory
isn’t user-writable, it will use the $TEXMFHOME tree instead. Unfortunately, MacTeX’s version of
updmap−sys (which is called behind the scenes) doesn’t search in $TEXMFHOME, and hence MacTeX
will not find the new fonts.

To remedy this, either run autoinst as root (so that it can install everything into $TEXMFLOCAL) or
manually run updmap −user to tell TeX about the files in $TEXMFHOME. The latter option does,
however, hav e some caveats; see https://tug.org/texlive/scripts−sys−user.html.

Using the fonts in your LaTeX documents

autoinst generates a style file for using the fonts in LaTeX documents, named <FontFamily>.sty. This style
file also takes care of loading the fontenc and textcomp packages. To use the fonts, add the command
\usepackage{<FontFamily>} to the preamble of your document.

This style file defines a number of options:

mainfont

Redefine \familydefault to make this font the main font for the document. This is a no-op if the
font is installed as a serif font; but if the font is installed as a sanserif or typewriter font, this option
saves you from having to redefine \familydefault yourself.

lining, oldstyle, tabular, proportional
Choose which figure style to use. The defaults are ‘‘oldstyle’’ and ‘‘proportional’’ (if available).

scale=<number>

Scale the font by a factor of <number>. E.g., to increase the size of the font by 5%, use
\usepackage[scale=1.05]{<FontFamily>}. May also be spelled scaled.

This option is only available when you have the xkeyval package installed.

medium, book, text, regular
Select the weight that LaTeX will use as the ‘‘regular’’ weight; the default is regular.

heavy, black, extrabold, demibold, semibold, bold
Select the weight that LaTeX will use as the ‘‘bold’’ weight; the default is bold.

The previous two groups of options will only work if you have the mweights package installed.

The style file will also try to load the fontaxes package (on CTAN), which gives easy access to various font
shapes and styles. Using the machinery set up by fontaxes, the generated style file defines a number of
commands (which take the text to be typeset as argument) and declarations (which don’t take arguments,
but affect all text up to the end of the current group) to access titling, superior and inferior characters:

fontools 2019-11-18 2

AUTOINST(1) Marc Penninga AUTOINST(1)

DECLARATION COMMAND SHORT FORM OF COMMAND

\tlshape \texttitling \texttl

\sufigures \textsuperior \textsu

\infigures \textinferior \textin

In addition, the \swshape and \textsw commands are redefined to place swash on fontaxes’ secondary
shape axis (fontaxes places it on the primary shape axis) to make them behave properly when nested, so that
\swshape\upshape will give upright swash.

There are no commands for accessing the numerator and denominator fonts; these can be selected using
fontaxes’ standard commands, e.g., \fontfigurestyle{numerator}\selectfont.

The style file also provides a command \ornament{<number>}, where <number> is a number from 0
to the total number of ornaments minus one. Ornaments are always typeset using the current family, series
and shape. A list of all ornaments in a font can be created by running LaTeX on the file nfssfont.tex (part of
a standard LaTeX installation) and supplying the name of the ornament font.

To access ornament glyphs, autoinst creates a font-specific encoding file <FontFamily>_orn.enc, but only
if that file doesn’t yet exist in the current directory. This is a deliberate feature that allows you to provide
your own encoding vector, e.g. if your fonts use non-standard glyph names for ornaments.

These commands are only generated for existing shapes and number styles; no commands are generated for
shapes and styles that don’t exist, or whose generation was turned off by the user. Also these commands
are built on top of fontaxes, so if that package cannot be found, you’re limited to using the lower-level
commands from standard NFSS (\fontfamily, \fontseries, \fontshape etc.).

By default, autoinst generates text fonts with OT1, LY1 and T1 encodings, and the generated style files use
T1 as the default text encoding. Other encodings can be chosen using the −encoding option (see
‘‘COMMAND-LINE OPTIONS’’ below).

NFSS codes

LaTeX’s New Font Selection System (NFSS) identifies fonts by a combination of family, series (the
concatenation of weight and width), shape and size. autoinst parses the font’s metadata (more precisely:
the output of otfinfo −−info) to determine these parameters. When this fails (usually because the
font family contains uncommon weights, widths or shapes), autoinst ends up with different fonts having
the same values for these font parameters; such fonts cannot be used in NFSS, since there’s no way
distinguish them. When autoinst detects such a situation, it will print an error message and abort. If that
happens, either rerun autoinst on a smaller set of fonts, or add the missing widths, weights and shapes to
the tables NFSS_WIDTH, NFSS_WEIGHT and NFSS_SHAPE, near the top of the source code. Please also
send a bug report (see AUTHOR below).

The mapping of shapes to NFSS codes is done using the following table:

SHAPE CODE

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−

Roman, Upright n

Italic, Cursive, Kursive it

Oblique, Slant(ed), Incline(d) sl

(Exception: Adobe Silentium Pro contains two Roman shapes; we map the first of these to ‘‘n’’, for the
second one we (ab)use the ‘‘it’’ code as this family doesn’t contain an Italic shape.)

The mapping of weights and widths to NFSS codes is a more complex, two-step proces. In the first step, all
fonts are assigned a ‘‘series’’ name that is simply the concatenation of its weight and width (after expanding
any abbreviations and converting to lowercase). A font with ‘‘Cond’’ width and ‘‘Ultra’’ weight will then
be known as ‘‘ultrablackcondensed’’.

In the second step, autoinst tries to map all combinations of NFSS codes (ul, el, l, sl, m, sb, b, eb and ub for
weights; uc, ec, c, sc, m, sx, x, ex and ux for widths) to actual fonts. Of course, not all 81 combinations of
these NFSS weights and widths will map to existing fonts; and conversely it may not be possible to assign
ev ery existing font a unique code in a sane way (especially for the weights, some font families offer more

fontools 2019-11-18 3

AUTOINST(1) Marc Penninga AUTOINST(1)

choices or finer granularity than NFSS’s codes can handle; e.g., Fira Sans contains fifteen(!) different
weights, including an additional ‘‘Medium’’ weight between Regular and Semibold).

autoinst tries hard to ensure that the most common NFSS codes (and high-level commands such as
\bfseries, which are built on top of those codes) will ‘‘just work’’.

To see exactly which NFSS codes map to which fonts, see the log file (pro tip: run autoinst with the
−dryrun option to check the chosen mapping beforehand). The −nfssweight and −nfsswidth command-line
options can be used to finetune the mapping between NFSS codes and fonts.

To access specific weights or widths, one can always use the \fontseries command with the full series
name (i.e., \fontseries{demibold}\selectfont).

COMMAND-LINE OPTIONS
autoinst tries hard to do The Right Thing (TM) by default, so you usually won’t really need these options;
but most aspects of its operation can be fine-tuned if you want to.

You may use either one or two dashes before options, and option names may be shortened to a unique
prefix (e.g., −encoding may be abbreviated to −enc or even −en, but −e is ambiguous (it may mean either
−encoding or −extra)).

−version

Print autoinst’s version number and exit.

−help

Print a (relatively) short help text and exit.

−dryrun

Don’t generate output; just parse input fonts and write a log file saying what autoinst would have
done.

−logfile=filename

Write log data to filename instead of the default <fontfamily>.log. If the file already exists, autoinst

appends to it; it doesn’t overwrite an existing file.

−verbose

Add more details to the log file. Repeat this option for even more info.

−encoding=encoding[,encoding]

Generate the specified encoding(s) for the text fonts. Multiple encodings may be specified as a
comma-separated list: −encoding=OT1,LY1,T1 (without spaces!). The style file passes these to
otftotfm in the specified order, so the last one will become the default text encoding of your document.

The default choice of encodings is ‘‘OT1,LY1,T1’’. For each encoding, a file <encoding>.enc (in all
lowercase!) should be somewhere where otftotfm can find it. Suitable encoding files for OT1, T1/TS1,

LY1, LGR, T2A/B/C and T3/TS3 come with autoinst. (These files are called fontools_ot1.enc etc. to
avoid name clashes with other packages; the ‘‘fontools_’’ prefix may be omitted.)

−ts1/−nots1

Control the creation of TS1−encoded fonts. The default is −ts1 if the text encodings (see −encoding

above) include T1, −nots1 otherwise.

−serif/−sanserif/−typewriter

Install the font as a serif, sanserif or typewriter font, respectively. This changes how you access the
font in LaTeX: with \rmfamily/\textrm, \sffamily/\textsf or \ttfamily/\texttt.

Installing the font as a typewriter font will cause two further changes: it will − by default − turn off the
use of f−ligatures (though this can be overridden with the −ligatures option), and it will disable
hyphenation for this font. This latter effect cannot be disabled in autoinst; if you want typewriter text
to be hyphenated, use the hyphenat package.

If none of these options is specified, autoinst tries to guess: if the font’s filename contains the string
‘‘mono’’ or if the field isFixedPitch in the font’s post table is True, it will select −typewriter;
else if the filename contains ‘‘sans’’ it selects −sanserif; and otherwise it will opt for −serif.

fontools 2019-11-18 4

AUTOINST(1) Marc Penninga AUTOINST(1)

−lining/−nolining

Control the creation of fonts with lining figures. The default is −lining.

−oldstyle/−nooldstyle

Control the creation of fonts with oldstyle figures. The default is −oldstyle.

−proportional/−noproportional

Control the creation of fonts with proportional figures. The default is −proportional.

−tabular/−notabular

Control the creation of fonts with tabular figures. The default is −tabular.

−smallcaps/−nosmallcaps

Control the creation of small caps fonts. The default is −smallcaps.

−swash/−noswash

Control the creation of swash fonts. The default is −swash.

−titling/−notitling

Control the creation of titling families. The default is −titling.

−superiors/−nosuperiors

Control the creation of fonts with superior characters. The default is −superiors.

−noinferiors

−inferiors [= none | auto | subs | sinf | dnom]
The OpenType standard defines several kinds of digits that might be used as inferiors or subscripts:
‘‘Subscripts’’ (OpenType feature ‘‘subs’’), ‘‘Scientific Inferiors’’ (‘‘sinf ’’), and ‘‘Denominators’’
(‘‘dnom’’). This option allows the user to determine which of these styles autoinst should use for the
inferior characters. Alternatively, the value ‘‘auto’’ tells autoinst to use the first value in ‘‘subs’’,
‘‘sinf ’’ or ‘‘dnom’’ that is supported by the font. Saying just −inferiors is equivalent to
−inferiors=auto; otherwise the default is −noinferiors.

If you specify a style of inferiors that isn’t present in the font, autoinst will fall back to its default

behaviour of not creating fonts with inferiors at all; it won’t try to substitute one of the other styles.

−fractions/−nofractions

Control the creation of fonts with numerators and denominators. The default is −nofractions.

−ligatures/−noligatures

Some fonts create glyphs for the standard f−ligatures (ff, fi, fl, ffi, ffl), but don’t provide a ‘‘liga’’
feature to access these. This option tells autoinst to add extra LIGKERN rules to the generated fonts
to enable the use of these ligatures. The default is −ligatures, unless the user specified the
−typewriter option.

Specify −noligatures to disable the generation of ligatures even for fonts that do contain a ‘‘liga’’
feature.

−defaultlining/−defaultoldstyle

−defaulttabular/−defaultproportional

Tell autoinst which figure style is the current font family’s default (i.e., which figures you get when
you don’t specify any OpenType features).

Don’t use these options unless you are certain you need them! They are only needed for fonts that
don’t provide OpenType features for their default figure style; and even in that case, autoinst’s default
values (−defaultlining and −defaulttabular) are usually correct.

−nofigurekern

Some fonts provide kerning pairs for tabular figures. This is very probably not what you want (e.g.,
numbers in tables won’t line up exactly). This option adds extra −−ligkern options to the commands
for otftotfm to suppress such kerns. Note that this option leads to very long commands (it adds one
hundred −−ligkern options), which may cause problems on some systems.

fontools 2019-11-18 5

AUTOINST(1) Marc Penninga AUTOINST(1)

−mergewidths/−nomergewidths, −mergeweights/−nomergeweights, −mergeshapes/−nomergeshapes

Some font put different widths, weights or shapes (e.g., small caps) in separate families. These
options tell autoinst to merge those separate families into the main family. Since this is usually
desirable, they are all enabled by default.

In earlier versions, −mergeshapes was called −mergesmallcaps; for reasons of backward
compatibility, that option is still supported.

−nfssweight=code=weight, −nfsswidth=code=width

Map the NFSS code code to the given weight or width, overriding the built-in tables. Each of these
options may be given multiple times, to override more than one NFSS code. Example: to map the ‘‘ul’’
code to the ‘‘Thin’’ weight, use −nfssweight=ul=thin. To inhibit the use of the ‘‘ul’’ code
completely, use −nfssweight=ul=.

−extra=text

Append text as extra options to the command lines for otftotfm. To prevent text from accidentily being
interpreted as options to autoinst, it should be properly quoted.

−manual

Manual mode; for users who want to post-process the generated files and commands. By default,
autoinst immediately executes all otftotfm commands it generates; in manual mode, these are instead
written to a file autoinst.bat. Furthermore it tells otftotfm to generate human readable (and editable)
pl/vpl files instead of the default tfm/vf ones, and to place all generated files in a subdirectory
./autoinst_output/ of the current directory, rather than install them into your TeX installation.

When using this option, you need to execute the following manual steps after autoinst has finished:

− run pltotf and vptovf on the generated pl and vf files, to convert them to tfm/vf format;
− move all generated files to a proper TEXMF tree, and, if necessary, update the filename database;
− tell TeX about the new map file (usually by running updmap or similar).

Note that some options (−target, −vendor and −typeface, −[no]updmap) are meaningless, and hence
ignored, in manual mode.

−target=DIRECTORY

Install all generated files into the TEXMF tree at DIRECTORY.

By default, autoinst searches the $TEXMFLOCAL and $TEXMFHOME trees and installs all files into
the first user-writable TEXMF tree it finds. If autoinst cannot find such a user-writable directory
(which shouldn’t happen, since $TEXMFHOME is supposed to be user-writable) it will print a warning
message and put all files into the subdirectory ./autoinst_output/ of the current directory. It’s
then up to the user to move the generated files to a better location and update all relevant databases
(usually by calling texhash and updmap).

WARNING: using this option may interfere with kpathsea and updmap (especially when the chosen
directory is outside the standard TEXMF trees), so using −target will disable the automatic call to
updmap (as if −noupdmap had been given). It is up to the user to manually update all databases (i.e.,
by calling texhash and updmap or similar).

−vendor=VENDOR

−typeface=TYPEFACE

These options are equivalent to otftotfm’s −−vendor and −−typeface options: they change the
‘‘vendor’’ and ‘‘typeface’’ parts of the names of the subdirectories in the TEXMF tree where generated
files will be stored. The default values are ‘‘lcdftools’’ and the font’s FontFamily name.

Note that these options change only directory names, not the names of any generated files.

−updmap/−noupdmap

Control whether or not updmap is called after the last call to otftotfm. The default is −updmap.

fontools 2019-11-18 6

AUTOINST(1) Marc Penninga AUTOINST(1)

SEE ALSO
Eddie Kohler’s TypeTools (http://www.lcdf.org/type).

Perl can be obtained from http://www.perl.org; it is included in most Linux distributions. For Windows, try
ActivePerl (http://www.activestate.com) or Strawberry Perl (http://strawberryperl.com).

XeTeX (http://www.tug.org/xetex) and LuaTeX (http://www.luatex.org) are Unicode-aware TeX engines
that can use OpenType fonts directly, without any (La)TeX−specific support files.

The FontPro project (https://github.com/sebschub/FontPro) offers very complete LaTeX support (even for
typesetting maths) for Adobe’s Minion Pro, Myriad Pro and Cronos Pro font families.

AUTHOR
Marc Penninga (marcpenninga@gmail.com)

When sending a bug report, please give as much relevant information as possible; this usually includes (but
may not be limited to) the log file (please add the −verbose command-line option, for extra info). If you
see any error messages, please include these verbatim; don’t paraphase.

COPYRIGHT
Copyright (C) 2005−2019 Marc Penninga.

LICENSE
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 2 of the License, or (at your
option) any later version. A copy of the text of the GNU General Public License is included in the fontools

distribution; see the file GPLv2.txt.

DISCLAIMER
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

VERSION
This document describes autoinst version 20191118.

RECENT CHANGES
(See the source for the full story, all the way back to 2005.)

2019−11−18 Fine-tuned calling of kpsewhich on Windows (patch by Akira Kakuto). The font info
parsing now also recognises numerical weights, e.g. in Museo.

2019−10−29 The generated style files now use T1 as the default text encoding.

2019−10−27 The mapping in fd files between font series and standard NFSS attributes now uses the new
alias function instead of ssub (based on code by Frank Mittelbach). The way otftotfm is
called was changed to work around a Perl/Windows bug; the old way might cause the
process to hang. Using the −target option now implies −noupdmap, since choosing a non-
standard target directory interferes with kpathsea/texhash and updmap.

2019−10−01 Handle −target directories with spaces in their path names. Tweaked messages and logs to
make them more useful to the user.

2019−07−12 Replaced single quotes in calls to otfinfo with double quotes, as they caused problems on
Windows 10.

2019−06−25

− Added the −mergeweights and −mergeshapes options, and improved −mergewidths.

− Improved the parsing of fonts’ widths and weights.

− Improved the mapping of widths and weights to NFSS codes.

− Changed logging code so that that results of font info parsing are always logged, even
(especially!) when parsing fails.

fontools 2019-11-18 7

AUTOINST(1) Marc Penninga AUTOINST(1)

− Added a warning when installing fonts from multiple families.

− Added simple recognition for sanserif and typewriter fonts.

− Fixed error checking after calls to otfinfo (autoinst previously only checked whether
fork() was successful, not whether the actual call to otfinfo worked).

− Fixed a bug in the −inferiors option; when used without a (supposedly optional) value, it
would silently gobble the next option instead.

2019−05−22 Added the mainfont option to the generated sty files. Prevented hyphenation for typewriter
fonts (added \hyphenchar\font=−1 to the \DeclareFontFamily declarations).
Added the −version option.

2019−05−17 Changed the way the −ligatures option works: −ligatures enables f−ligatures (even without
a ‘‘liga’’ feature), −noligatures now disables f−ligatures (overriding a ‘‘liga’’ feature).

2019−05−11 Separate small caps families are now also recognised when the family name ends with ‘‘SC’’

(previously autoinst only looked for ‘‘SmallCaps’’).

2019−04−22 Fixed a bug in the generation of swash shapes.

2019−04−19 Fixed a bug that affected −mergesmallcaps with multiple encodings.

2019−04−16 Added the <−mergesmallcaps> option, to handle cases where the small caps fonts are in
separate font families. Titling shape is now treated as a separate family instead of a distinct
shape; it is generated only for fonts with the ’titl’ feature. Only add f−ligatures to fonts
when explicitly asked to (−ligatures).

2019−04−11 Tried to make the log file more relevant. Added the −nfssweight and −nfsswidth options,
and finetuned the automatic mapping between fonts and NFSS codes. Changed the name of
the generated log file to <fontfamily>.log, and revived the −logfile option to allow
overriding this choice. Made −mergewidths the default (instead of −nomergewidths).

2019−04−01 Fine-tuned the decision where to put generated files; in particular, create $TEXMFHOME if it
doesn’t already exist and $TEXMFLOCAL isn’t user-writable.

In manual mode, or when we can’t find a user-writable TEXMF tree, put all generated files
into a subdirectory ./autoinst_output/ instead of all over the current working
directory.

Added ‘‘auto’’ value to the inferiors option, to tell autoinst to use whatever inferior
characters are available.

2019−03−14 Overhauled the mapping of fonts (more specifically of weights and widths; the mapping of
shapes didn’t change) to NFSS codes. Instead of inventing our own codes to deal with every
possible weight and width out there, we now create ‘‘long’’ codes based on the names in the
font metadata. Then we add ‘‘ssub’’ rules to the fd files to map the standard NFSS codes to
our fancy names (see the section NFSS codes; based on discussions with Frank Mittelbach
and Bob Tennent).

fontools 2019-11-18 8

