From 097f244236b682cc77c6ecf25be4150091d8daf9 Mon Sep 17 00:00:00 2001 From: Norbert Preining Date: Sun, 2 Oct 2022 03:04:14 +0000 Subject: CTAN sync 202210020304 --- info/mathtrip/src/graph.tex | 77 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 77 insertions(+) create mode 100644 info/mathtrip/src/graph.tex (limited to 'info/mathtrip/src/graph.tex') diff --git a/info/mathtrip/src/graph.tex b/info/mathtrip/src/graph.tex new file mode 100644 index 0000000000..b3d318fda3 --- /dev/null +++ b/info/mathtrip/src/graph.tex @@ -0,0 +1,77 @@ +%This macro provides the math text for the second column of page 5 +% +%The macro has one parameter: +% 1) The width of the text +\newcommand\TFiveGrapheOne[1]{% + \def\LineOfArray##1##2{##1&{\raggedright ##2}\\} + \parbox[t]{#1}{% + %Space dedicated to the explanation of the graph's + %vocabulary in the tabular environment + \deflength{\HSpace}{.70#1} + \TFiveGraphFontSize + %Since the column is narrow, ragged at right + %produces better spacing + % + \raggedright + \TFiveTitle{Definitions:} + \begin{tabular}{@{}l@{\hspace{.25em}}p{\HSpace}} + \LineOfArray{Loop}{An edge connecting a vertex to itself.} + \LineOfArray{Directed}{Each edge has a direction.} + \LineOfArray{Simple}{Graph with no loops or multi-edges.} + \LineOfArray{Walk}{A sequence $v_0e_1v_1\ldots e_\ell v_\ell$.} + \LineOfArray{Trail}{A walk with distinct edges.} + \LineOfArray{Path}{A trail with distinct vertices.} + \LineOfArray{Connected}{A graph where there exists a path between any two vertices.} + \LineOfArray{Component}{A maximal connected subgraph.} + \LineOfArray{Tree}{A connected acyclic graph.} + \LineOfArray{Free tree}{A tree with no root.} + \LineOfArray{DAG}{Directed acyclic graph.} + \LineOfArray{Eulerian}{Graph with a trail visiting each edge exactly once.} + \LineOfArray{Hamiltonian}{Graph with a cycle visiting each vertex exactly once.} + \LineOfArray{Cut}{A set of edges whose removal increases the number of components.} + \LineOfArray{Cut-set}{A minimal cut.} + \LineOfArray{Cut edge}{A size 1 cut.} + \LineOfArray{k-Connected}{A graph connected with the removal of any $k-1$ vertices.} + \LineOfArray{k-Tough}{$\forall S \subseteq V, S \neq \emptyset$ we have $k\cdot c(G-S) \leq \vert S \vert$.} + \LineOfArray{k-Regular}{A graph where all vertices have degree $k$.} + \LineOfArray{k-Factor}{A $k$-regular spanning subgraph.} + \LineOfArray{Matching}{A set of edges, no two of which are adjacent.} + \LineOfArray{Clique}{A set of vertices, all of which are adjacent.} + \LineOfArray{Ind. set}{A set of vertices, none of which are adjacent.} + \LineOfArray{Vertex cover}{A set of vertices which cover all edges.} + \LineOfArray{Planar graph}{A graph which can be embeded in the plane.} + \LineOfArray{Plane graph}{An embedding of a planar graph.} + \end{tabular} + + \TFiveTitle{Planar graphs} + \AdjustSpace{1ex plus .5ex minus .2ex} + \begin{DisplayFormulae}{1}{0pt}{4ex plus 1ex minus .5ex}{\SmallChar}{\StyleWithoutNumber} + \Fm{\sum_{v\in V} \deg(v) = 2 m} + \end{DisplayFormulae} + \AdjustSpace{1ex plus .5ex minus .2ex} + If $G$ is planar then $n - m + f = 2$, so + \AdjustSpace{1ex plus .5ex minus .2ex} + \begin{DisplayFormulae}{1}{0pt}{4ex plus 1ex minus .5ex}{\SmallChar}{\StyleWithoutNumber} + \Fm{f \leq 2n - 4, \quad m \leq 3 n - 6} + \end{DisplayFormulae} + \AdjustSpace{1ex plus .5ex minus .2ex} + Any planar graph has a vertex with degree $\leq 5$. + + \TFiveTitle{Notation:} + \begin{tabular}{@{}lp{\HSpace}} + \LineOfArray{$E(G)$}{Edge set} + \LineOfArray{$V(G)$}{Vertex set} + \LineOfArray{$c(G)$}{Number of components} + \LineOfArray{$G[S]$}{Induced subgraph} + \LineOfArray{$\deg(v)$}{Degree of $v$} + \LineOfArray{$\Delta(G)$}{Maximum degree} + \LineOfArray{$\delta(G)$}{Minimum degree} + \LineOfArray{$\chi(G)$}{Chromatic number} + \LineOfArray{$\chi_E(G)$}{Edge chromatic number} + \LineOfArray{$G^c$}{Complement graph} + \LineOfArray{$K_n$}{Complete graph} + \LineOfArray{$K_{n_1,n_2}$}{Complete bipartite graph} + \LineOfArray{$\ramsey(k,\ell)$}{Ramsey number} + \end{tabular} + } +} -- cgit v1.2.3