From c7892fe1a11367872de6f3ee0fa074b39824e59c Mon Sep 17 00:00:00 2001 From: Norbert Preining Date: Mon, 31 Oct 2022 03:04:01 +0000 Subject: CTAN sync 202210310303 --- graphics/pgf/contrib/bodeplot/README.md | 3038 +++++- graphics/pgf/contrib/bodeplot/bodeplot.dtx | 13662 ++++++++++++++++++++++----- graphics/pgf/contrib/bodeplot/bodeplot.ins | 3179 ++++++- graphics/pgf/contrib/bodeplot/bodeplot.pdf | Bin 1062592 -> 1066728 bytes 4 files changed, 17674 insertions(+), 2205 deletions(-) (limited to 'graphics') diff --git a/graphics/pgf/contrib/bodeplot/README.md b/graphics/pgf/contrib/bodeplot/README.md index 31ac7a132f..c08155898c 100644 --- a/graphics/pgf/contrib/bodeplot/README.md +++ b/graphics/pgf/contrib/bodeplot/README.md @@ -1,55 +1,2999 @@ -# bodeplot -LaTeX package to plot Bode, Nichols, and Nyquist diagrams. -Inspired by the `bodegraph` package. -*Version 1.0.8 and newer store `gnuplot` temporary files in the working directory. Use class option `declutter` to restore pre-v1.0.8 behavior. Option `declutter` can cause errors if used with a `tikzexternalize` prefix.* -Compilation instructions: -1) `latex bodeplot.ins` to generate `bodeplot.sty` -2) To compile documentation (needs `gnuplot` on system PATH): -``` + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + bodeplot/README.md at main · rlkamalapurkar/bodeplot + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Skip to content + + + + + + + + + + + + + + +
+ +
+ + + + + + + +
+ + + + + +
+ + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +
+ +
+ + + + rlkamalapurkar  /   + bodeplot  /   + +
+
+ + + +
+ + +
+
+ Clear Command Palette +
+
+ + + +
+
+ Tip: + Type # to search pull requests +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type # to search issues +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type # to search discussions +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type ! to search projects +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type @ to search teams +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type @ to search people and organizations +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type > to activate command mode +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Go to your accessibility settings to change your keyboard shortcuts +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type author:@me to search your content +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type is:pr to filter to pull requests +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type is:issue to filter to issues +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type is:project to filter to projects +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type is:open to filter to open content +
+
+ Type ? for help and tips +
+
+
+ +
+ +
+
+ We’ve encountered an error and some results aren't available at this time. Type a new search or try again later. +
+
+ + No results matched your search + + + + + + + + + + +
+ + + + + Search for issues and pull requests + + # + + + + Search for issues, pull requests, discussions, and projects + + # + + + + Search for organizations, repositories, and users + + @ + + + + Search for projects + + ! + + + + Search for files + + / + + + + Activate command mode + + > + + + + Search your issues, pull requests, and discussions + + # author:@me + + + + Search your issues, pull requests, and discussions + + # author:@me + + + + Filter to pull requests + + # is:pr + + + + Filter to issues + + # is:issue + + + + Filter to discussions + + # is:discussion + + + + Filter to projects + + # is:project + + + + Filter to open issues, pull requests, and discussions + + # is:open + + + + + + + + + + + + + + + + +
+
+
+ +
+ + + + + + + + + + +
+ + +
+
+
+ + + + + + + + + + +
+ +
+ +
+ +
+ + + + / + + bodeplot + + + Public +
+ + +
+ +
    + +
  • +
    +
    +
    +
  • + + +
  • + +
    + + + + + Unwatch + + + + + 1 + + + +
    +
    +

    Notifications

    + +
    + +
    +
    + + + + + + + + +
    + + +
    + + + + + Get push notifications on iOS or Android. + +
    +
    +
    +
    + + + + +
    +
    +
    + + + +
  • + +
  • +
    + Fork + 1 + +
    + + + +
    + +
    +
    + + + + + + + +
    + +
    +
    +
    +
    +
  • + +
  • + + +
    +
    +
    + + +
    + + + +
    + +
    +
    + + + + + + + +
    + +
    +
    +
    +
    +
    +
    +
    + +
    + + + +
    + +
    +
    + + + + + + + +
    + +
    +
    +
    +
    +
    +
  • + + + +
+ +
+ +
+
+ + + + + + +
+ + + + +
+ Open in github.dev + Open in a new github.dev tab + + + + + + +
+ + +
+ + + + + + + + +Permalink + +
+ +
+
+ + + main + + + + +
+
+
+ Switch branches/tags + +
+ + + +
+ +
+ +
+ + +
+ +
+ + + + + + + + + + + + + + + + + +
+ + +
+
+
+
+ +
+ +
+ + +
+ +
+
+
+

Name already in use

+
+
+ +
+
+
+
+ +
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch? +
+ +
+
+ + +
+
+ + + + Go to file + +
+ + + + +
+
+
+ + + + + + + + + +
+ +
+
+
 
+
+ +
+
 
+ Cannot retrieve contributors at this time +
+
+ + + + + + + + + + + + + +
+ +
+ + +
+ + 57 lines (50 sloc) + + 3.79 KB +
+ +
+ + + + + +
+ +
+
+
+
+ +
+ +
+
+
+ + + +
+ + + + + + + + + +
+ + +
+ +
+
+ +
+ +
+
+ + +
+

bodeplot

+

LaTeX package to plot Bode, Nichols, and Nyquist diagrams.

+

Inspired by the bodegraph package.

+

Version 1.0.8 and newer store gnuplot temporary files in the working directory. Use class option declutter to restore pre-v1.0.8 behavior. Option declutter can cause errors if used with a tikzexternalize prefix.

+

Compilation instructions:

+
    +
  1. latex bodeplot.ins to generate bodeplot.sty
  2. +
  3. To compile documentation (needs gnuplot on system PATH):
  4. +
+
pdflatex bodeplot.dtx --shell-escape
 makeindex -s gind.ist bodeplot.idx
 makeindex -s gglo.ist -o bodeplot.gls bodeplot.glo
 pdflatex bodeplot.dtx --shell-escape
 pdflatex bodeplot.dtx --shell-escape
-```
-Added functionality:
- - New `\BodeZPK` and `\BodeTF` commands to generate Bode plots of any transfer function given either poles, zeros, gain, and delay, or numerator and denominator coefficients and delay
- - Support for unstable poles and zeros.
- - Support for complex poles and zeros.
- - Support for general stable and unstable second order transfer functions.
- - Support for both `gnuplot` (default) and `pgfplots` (package option `pgf`).
- - Support for linear and asymptotic approximation of magnitude and phase plots of any transfer function given poles, zeros, and gain.
-
-Main Bode/Nyquist/Nichols commands:
-Given Zeros, Poles, Gain, and Delay (Bode plots support asymptotic and linear approximation for systems without delays):
- - `\BodeZPK[object1/type1/{options1},object2/type2/{options2},...]{z/{zeros},p/{poles},k/gain,d/delay}{min-frequency}{max-frequency}`
- - `\NicholsZPK[plot/{options},axes/{options}]{z/{zeros},p/{poles},k/gain,d/delay}{min-frequency}{max-frequency}`
- - `\NyquistZPK[plot/{options},axes/{options}]{z/{zeros},p/{poles},k/gain,d/delay}{min-frequency}{max-frequency}`
-
-Given Numerator and denominator coefficients and delay (does not support approximation yet):
- - `\BodeTF[object1/type1/{options1},object2/type2/{options2},...]{num/{coeff},den/{coeff},d/delay}{min-frequency}{max-frequency}`
- - `\NicholsTF[plot/{options},axes/{options}]{num/{coeff},den/{coeff},d/delay}`
- - `\NyquistTF[plot/{options},axes/{options}]{num/{coeff},den/{coeff},d/delay}`
- 
-Other new environments and associated commands:
- - `BodePlot` environment
-    - `\addBodeZPKPlots[{approximation1/{plot-options1}},{approximation2/{plot-options2}},...]{plot-type (phase or magnitude)}{z/{zeros},p/{poles},k/gain,d/delay}`
-    - `\addBodeTFPlot[plot-options]{plot-type (phase or magnitude)}{num/{coeff},den/{coeff},d/delay}`
-    - `\addBodeComponentPlot[plot-options]{basic_component_plot_command}`
-      - Basic component plot commands: ***(append `Lin` to get linear approximation and `Asymp` to get asymptotic approximation)*** ***(change `Pole` to `Zero` to get inverse plots)*** ***(change `Mag` to `Ph` to get phase plots)***
-      - `\MagK{a}` - Pure gain, G(s) = a.
-      - `\MagPole{a}{b}` - Single pole at s = a+bi, G(s) = 1/(s - a-bi).
-      - `\MagCSPoles{z}{w}` - Cannonical Second order system, G(s) = 1/(s^2 + 2zws + w^2).
-      - `\MagSOPoles{a}{b}` - Second Order system, G(s) = 1/(s^2 + as + b).
-      - `\MagDel{T}` - Pure delay, G(s) = exp(-Ts) (does not admit asymptotic approximation).
- - `NicholsChart` environment
-    - `\addNicholsZPKChart[plot-options]{z/{zeros},p/{poles},k/gain,d/delay}`
-    - `\addNicholsTFChart[plot-options]{num/{coeff},den/{coeff},d/delay}`
- - `NyquistPlot` environment
-    - `\addNyquistZPKPlot[plot-options]{z/{zeros},p/{poles},k/gain,d/delay}`
-    - `\addNyquistTFPlot[plot-options]{num/{coeff},den/{coeff},d/delay}`
-
-Limitation: TF commands are wrapped between 0 and 360 degrees in `pgf` mode.
+
+

Added functionality:

+
    +
  • New \BodeZPK and \BodeTF commands to generate Bode plots of any transfer function given either poles, zeros, gain, and delay, or numerator and denominator coefficients and delay
  • +
  • Support for unstable poles and zeros.
  • +
  • Support for complex poles and zeros.
  • +
  • Support for general stable and unstable second order transfer functions.
  • +
  • Support for both gnuplot (default) and pgfplots (package option pgf).
  • +
  • Support for rad/s (default) and Hz (package option Hz or pgf key frequency unit=Hz for per-plot change) frequency units.
  • +
  • Support for deg (default) and rad (package option rad or pgf key phase unit=rad for per-plot change) phase units.
  • +
  • Support for linear and asymptotic approximation of magnitude and phase plots of any transfer function given poles, zeros, and gain.
  • +
+

Main Bode/Nyquist/Nichols commands: +Given Zeros, Poles, Gain, and Delay (Bode plots support asymptotic and linear approximation for systems without delays):

+
    +
  • \BodeZPK[object1/type1/{options1},object2/type2/{options2},...]{z/{zeros},p/{poles},k/gain,d/delay}{min-frequency}{max-frequency}
  • +
  • \NicholsZPK[plot/{options},axes/{options}]{z/{zeros},p/{poles},k/gain,d/delay}{min-frequency}{max-frequency}
  • +
  • \NyquistZPK[plot/{options},axes/{options}]{z/{zeros},p/{poles},k/gain,d/delay}{min-frequency}{max-frequency}
  • +
+

Given Numerator and denominator coefficients and delay (does not support approximation yet):

+
    +
  • \BodeTF[object1/type1/{options1},object2/type2/{options2},...]{num/{coeff},den/{coeff},d/delay}{min-frequency}{max-frequency}
  • +
  • \NicholsTF[plot/{options},axes/{options}]{num/{coeff},den/{coeff},d/delay}
  • +
  • \NyquistTF[plot/{options},axes/{options}]{num/{coeff},den/{coeff},d/delay}
  • +
+

Other new environments and associated commands:

+
    +
  • BodePlot environment +
      +
    • \addBodeZPKPlots[{approximation1/{plot-options1}},{approximation2/{plot-options2}},...]{plot-type (phase or magnitude)}{z/{zeros},p/{poles},k/gain,d/delay}
    • +
    • \addBodeTFPlot[plot-options]{plot-type (phase or magnitude)}{num/{coeff},den/{coeff},d/delay}
    • +
    • \addBodeComponentPlot[plot-options]{basic_component_plot_command} +
        +
      • Basic component plot commands: (append Lin to get linear approximation and Asymp to get asymptotic approximation) (change Pole to Zero to get inverse plots) (change Mag to Ph to get phase plots)
      • +
      • \MagK{a} - Pure gain, G(s) = a.
      • +
      • \MagPole{a}{b} - Single pole at s = a+bi, G(s) = 1/(s - a-bi).
      • +
      • \MagCSPoles{z}{w} - Cannonical Second order system, G(s) = 1/(s^2 + 2zws + w^2).
      • +
      • \MagSOPoles{a}{b} - Second Order system, G(s) = 1/(s^2 + as + b).
      • +
      • \MagDel{T} - Pure delay, G(s) = exp(-Ts) (does not admit asymptotic approximation).
      • +
      +
    • +
    +
  • +
  • NicholsChart environment +
      +
    • \addNicholsZPKChart[plot-options]{z/{zeros},p/{poles},k/gain,d/delay}
    • +
    • \addNicholsTFChart[plot-options]{num/{coeff},den/{coeff},d/delay}
    • +
    +
  • +
  • NyquistPlot environment +
      +
    • \addNyquistZPKPlot[plot-options]{z/{zeros},p/{poles},k/gain,d/delay}
    • +
    • \addNyquistTFPlot[plot-options]{num/{coeff},den/{coeff},d/delay}
    • +
    +
  • +
+

Limitation: TF commands are wrapped between 0 and 360 degrees in pgf mode.

+
+
+ +
+ + + + +
+ + +
+ + +
+
+ + + +
+ +
+ + +
+ +
+ + +
+
+ +
+ + + + + + + + + + + + + + + + + + + + + + diff --git a/graphics/pgf/contrib/bodeplot/bodeplot.dtx b/graphics/pgf/contrib/bodeplot/bodeplot.dtx index aad1eb47d6..8b39af91e0 100644 --- a/graphics/pgf/contrib/bodeplot/bodeplot.dtx +++ b/graphics/pgf/contrib/bodeplot/bodeplot.dtx @@ -1,2118 +1,11546 @@ -% \iffalse meta-comment -% -% Copyright (C) 2021 by Rushikesh Kamalapurkar -% ----------------------------------------------------------- -% -% This file may be distributed and/or modified under the conditions of -% the LaTeX Project Public License, either version 1.3c of this license -% or (at your option) any later version. The latest version of this -% license is in: -% -% http://www.latex-project.org/lppl.txt -% -% and version 1.3c or later is part of all distributions of LaTeX -% version 2006/05/20 or later. -% -% \fi -% -% \iffalse -%\NeedsTeXFormat{LaTeX2e}[2006/05/20] -%\ProvidesPackage{bodeplot} -%\RequirePackage{pdftexcmds} -%\RequirePackage{ifplatform} -%\RequirePackage{pgfplots} -% \pgfplotsset{compat=1.18} -% \usepgfplotslibrary{groupplots} -% -%<*driver> -\documentclass{ltxdoc} -\usepackage{cprotect} -\usepackage[declutter]{bodeplot} -\usepackage[colorlinks]{hyperref} -\usepackage{iftex} - \iftutex % LuaTeX, XeTeX - \usepackage{fontspec} - \setmonofont{DejaVuSansMono}[Scale=MatchUppercase] - \else % old engines - \usepackage[T1]{fontenc} - \usepackage{lmodern} - \usepackage[scaled]{DejaVuSansMono} - \fi -\usepackage{showexpl} - \lstset{ - explpreset={numbers=none}, - language=[LaTeX]Tex, - basicstyle=\ttfamily\tiny, - commentstyle=\itshape\ttfamily\tiny, - showspaces=false, - showstringspaces=false, - breaklines=true, - backgroundcolor=\color{white!90!black}, - breakautoindent=true, - captionpos=t - } -\usepackage{geometry} - \geometry{lmargin=2in,rmargin=1in,tmargin=1in,bmargin=1in} -\usetikzlibrary{decorations.markings,arrows.meta,spy,backgrounds} -\usepackage[nottoc]{tocbibind} -\sloppy -\EnableCrossrefs -\CodelineIndex -\RecordChanges -\begin{document} - \DocInput{bodeplot.dtx} - \PrintChanges - \PrintIndex -\end{document} -% -% \fi -% -% \CheckSum{1723} -% -% \changes{v1.0}{2021/10/25}{Initial release} -% \changes{v1.0.4}{2021/11/05}{Fixed unintended optional argument macro expansion} -% \changes{v1.0.6}{2021/11/18}{Fixed issue \#3} -% \changes{v1.0.7}{2021/12/02}{Removed unnecessary semicolons} -% \changes{v1.0.7}{2022/01/18}{Updated documentation} -% \changes{v1.0.8}{2022/07/06}{Added a new class option `declutter'} -% \changes{v1.1.0}{2022/07/06}{Fixed phase wrapping in gnuplot mode} -% \changes{v1.1.1}{2022/07/31}{Enable Hz and rad units} -% -% \GetFileInfo{bodeplot.sty} -% \DoNotIndex{\newcommand,\xdef,\gdef,\def,\edef,\addplot,\approx,\arabic,\opt,\typ,\obj,\else,\if@pgfarg,\if@Hzarg,\if@radarg,\if@declutterarg,\fi,\begin,\end,\feature,\footnotesize,\draw,\detokenize,\DeclareOption,\foreach,\ifdim,\ifodd,\Im,\Re,\let,\newif,\nextgroupplot,\noexpand,\expandafter,\unexpanded,\PackageError,\PackageWarning,\relax,\RequirePackage,\tikzset,\pgfmathsetmacro,\pgfmathtruncatemacro,\ProcessOptions} -% -% \title{The \textsf{bodeplot} package\\version 1.1.1} -% \author{Rushikesh Kamalapurkar \\ \texttt{rlkamalapurkar@gmail.com}} -% -% \maketitle -% \tableofcontents -% \clearpage -% \section{Introduction} -% -% Generate Bode, Nyquist, and Nichols plots for transfer functions in the canonical (TF) form \begin{equation}G(s) = e^{-Ts}\frac{b_ms^m+\cdots+b_1s+b_0}{a_ns^n+\cdots+a_1s+a_0}\label{eq:TF}\end{equation} and the zero-pole-gain (ZPK) form \begin{equation}G(s) = Ke^{-Ts}\frac{(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)}.\label{eq:ZPK}\end{equation} In the equations above, $b_m,\cdots,b_0$ and $a_n,\cdots,a_0$ are real coefficients, $T\geq 0$ is the loop delay, $z_1,\cdots,z_m$ and $p_1,\cdots,p_n$ are complex zeros and poles of the transfer function, respectively, and $K\in \Re$ is the loop gain. -% -% For transfer functions in the ZPK format in (\ref{eq:ZPK}) \emph{with zero delay}, this package also supports linear and asymptotic approximation of Bode plots. -% -% By default, all phase plots use degrees as units. Use the |rad| package option or the optional argument |tikz/{phase unit=rad}| to generate plots in radians. The |phase unit| key accepts either |rad| or |deg| as inputs and needs to be added to the |tikzpicture| environment that contains the plots. -% -% By default, frequency inputs and outputs are in radians per second. Use the |Hz| package option or the optional argument |tikz/{frequency unit=Hz}| to generate plots in hertz. The |frequency unit| key accepts either |rad| or |Hz| as inputs and needs to be added to the |tikzpicture| environment that contains the plots. -% \subsection{External Dependencies} -% By default, the package uses |gnuplot| to do all the computations. If |gnuplot| is not available, the |pgf| package option can be used to do the calculations using the native |pgf| math engine. Compilation using the |pgf| math engine is typically slower, but the end result should be the identical (other than phase wrapping in the TF form, see limitations below). -%\subsection{Directory Structure} -% Since version 1.0.8, the |bodeplot| package places all |gnuplot| temporary files in the working directory. The package option |declutter| restores the original behavior where the temporary files are placed in a folder called |gnuplot|. -% \subsection{Limitations} -% \begin{itemize} -% \item In |pgf| mode, Bode phase plots and Nichols charts in TF form wrap angles so that they are always between 0 and 360$^\circ$ or 0 and $2\pi$ radian. As such, these plots will show phase wrapping discontinuities. Since v1.1.1, in |gnuplot| mode, the package uses the |smooth unwrap| filter to correct wrapping discontinuities. As of now, I have not found a way to do this in |pgf| mode, any merge requests or ideas you may have are welcome! -% \item Use of the |declutter| option with other directory management tools such as a |tikzexternalize| prefix is not recommended. -% \end{itemize} -% \clearpage -% \section{TL;DR} -% All Bode plots in this section are for the transfer function (with and without a transport delay) -% \begin{equation} -% G(s) = 10\frac{s(s+0.1+0.5\mathrm{i})(s+0.1-0.5\mathrm{i})}{(s+0.5+10\mathrm{i})(s+0.5-10\mathrm{i})} = \frac{s(10s^2+2s+2.6)}{(s^2+s+100.25)}. -% \end{equation} -% \iffalse -%<*ignore> -% \fi - -\hrulefill - -{\centering Bode plot in ZPK format -\begin{LTXexample}[pos=l,hsep=20pt,width=0.5\textwidth] -\BodeZPK{% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/10% -} -{0.01} -{100} -\end{LTXexample} - -\hrulefill - -Same Bode plot over the same frequency range but supplied in Hz, in TF format with arrow decoration, transport delay, unit, and color customization (the phase plot may show wrapping if the |pgf| package option is used) -\begin{LTXexample}[pos=r,width=0.5\textwidth] -\BodeTF[% - samples=1000, - plot/mag/{blue,thick}, - plot/ph/{green,thick}, - tikz/{% - >=latex, - phase unit=rad, - frequency unit=Hz% - }, - commands/mag/{ - \draw[->](axis cs:0.1,40) -- (axis cs:{10/(2*pi)},60); - \node at (axis cs: 0.08,30) {\tiny Resonant Peak}; - }% -] -{% - num/{10,2,2.6,0}, - den/{1,1,100.25}% -} -{0.01/(2*pi)} -{100/(2*pi)} -\end{LTXexample} - -\hrulefill -\clearpage -\hrulefill - -Linear approximation with customization -\begin{LTXexample}[pos=l,hsep=20pt,width=0.5\textwidth] -\BodeZPK[% - plot/mag/{red,thick}, - plot/ph/{blue,thick}, - axes/mag/{ytick distance=40}, - axes/ph/{ytick distance=90}, - approx/linear% -]{% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/10% -} -{0.01} -{100} -\end{LTXexample} - -\hrulefill - -Plot with delay and customization -\begin{LTXexample}[pos=r,hsep=20pt,width=0.5\textwidth] -\BodeZPK[% - plot/mag/{blue,thick}, - plot/ph/{green,thick}, - axes/mag/ytick distance=40, - axes/ph/ytick distance=90% -]{% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/10, - d/0.01% -} -{0.01} -{100} -\end{LTXexample} - -\hrulefill -\clearpage -\hrulefill - -Individual gain and phase plots with more customization - -\begin{minipage}[t]{0.45\textwidth} -\begin{LTXexample}[pos=t,width=\columnwidth] -\begin{BodeMagPlot}[% - axes/{height=2cm, - width=4cm} -] -{0.01} -{100} - \addBodeZPKPlots[% - true/{black,thick}, - linear/{red,dashed,thick}, - asymptotic/{blue,dotted,thick}% - ] - {magnitude} - {% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/10% - } -\end{BodeMagPlot} -\end{LTXexample} -\end{minipage}\hfill -\begin{minipage}[t]{0.45\textwidth} -\begin{LTXexample}[pos=t,width=\columnwidth] -\begin{BodePhPlot}[% - height=2cm, - width=4cm, - ytick distance=90 -] -{0.01} -{100} - \addBodeZPKPlots[% - true/{black,thick}, - linear/{red,dashed,thick}, - asymptotic/{blue,dotted,thick}% - ] - {phase} - {% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/10% - } -\end{BodePhPlot} -\end{LTXexample} -\end{minipage} - -\hrulefill - -Nichols chart -\begin{LTXexample}[pos=l,hsep=20pt,width=0.5\textwidth] -\NicholsZPK[samples=1000] -{% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/10, - d/0.01% -} -{0.001} -{500} -\end{LTXexample} - -\hrulefill - -Same Nichols chart in TF format (may show wrapping in |pgf| mode) -\begin{LTXexample}[pos=r,hsep=20pt,width=0.5\textwidth] -\NicholsTF[samples=1000] -{% - num/{10,2,2.6,0}, - den/{1,1,100.25}, - d/0.01% -} -{0.001} -{500} -\end{LTXexample} - -\hrulefill -\clearpage -\hrulefill - -Multiple Nichols charts with customization -\begin{LTXexample}[pos=l,hsep=20pt,width=0.5\textwidth] -\begin{NicholsChart}[% - ytick distance=20, - xtick distance=30 -] -{0.001} -{100} - \addNicholsZPKChart [red,samples=1000] {% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/10% - } - \addNicholsZPKChart [blue,samples=1000] {% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/5% - } -\end{NicholsChart} -\end{LTXexample} - -\hrulefill - -Nyquist plot -\begin{LTXexample}[pos=r,hsep=20pt,width=0.5\textwidth] -\NyquistZPK[plot/{red,thick,samples=1000}] -{% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/10% -} -{-30} -{30} -\end{LTXexample} - -\hrulefill - -Nyquist plot in TF format with arrows -\begin{LTXexample}[pos=l,width=0.5\textwidth] -\NyquistTF[% - plot/{% - samples=1000, - postaction=decorate, - decoration={% - markings, - mark=between positions 0.1 and 0.9 step 5em with {% - \arrow{Stealth [length=2mm, blue]} - } - } - }% -] -{% - num/{10,2,2.6,0}, - den/{1,1,100.25}% -} -{-30} -{30} -\end{LTXexample} - -\hrulefill -\clearpage -\hrulefill - -Multiple Nyquist plots with customization -\begin{LTXexample}[pos=r,hsep=20pt,width=0.5\textwidth] -\begin{NyquistPlot}{-30}{30} - \addNyquistZPKPlot [red,samples=1000] {% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/10% - } - \addNyquistZPKPlot [blue,samples=1000] {% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/5% - } -\end{NyquistPlot} -\end{LTXexample} - -\hrulefill - -Nyquist plots with additional commands, using two different macros - -\begin{minipage}[t]{0.48\textwidth} -\begin{LTXexample}[pos=t,width=\columnwidth] -\begin{NyquistPlot}[% - tikz/{ - spy using outlines={% - circle, - magnification=3, - connect spies, - size=2cm - } - }% -] -{-30}{30} - \addNyquistZPKPlot [blue,samples=1000] {% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/0.5% - } - \coordinate (spyon) at (axis cs:0,0); - \coordinate (spyat) at (axis cs:-22,5); - \spy [green] on (spyon) in - node [fill=white] at (spyat); -\end{NyquistPlot} -\end{LTXexample} -\end{minipage}\hfill -\begin{minipage}[t]{0.48\textwidth} -\begin{LTXexample}[pos=t,width=\columnwidth] -\NyquistZPK[% - plot/{blue,samples=1000}, - tikz/{ - spy using outlines={% - circle, - magnification=3, - connect spies, - size=2cm - } - }, - commands/{ - \coordinate (spyon) at (axis cs:0,0); - \coordinate (spyat) at (axis cs:-22,5); - \spy [green] on (spyon) in - node [fill=white] at (spyat); - }% -] -{% - z/{0,{-0.1,-0.5},{-0.1,0.5}}, - p/{{-0.5,-10},{-0.5,10}}, - k/0.5% -} -{-30} -{30} -\end{LTXexample} -\end{minipage}} - -\hrulefill -\clearpage - -% \iffalse -% -% \fi -% -% \section{Usage} -% \noindent In all the macros described here, the frequency limits supplied by the user are assumed to be in |rad/s| unless either the |Hz| package option is used or the optional argument |tikz/{frequency unit=Hz}| is supplied to the |tikzpicture| environment. All phase plots are getenrated in degrees unless either the |rad| package option is used or the optional argument |tikz/{frequency unit=rad}| is supplied to the |tikzpicture| environment. -% -% \subsection{Bode plots} -% \DescribeMacro{\BodeZPK} -% |\BodeZPK| \oarg{obj1/typ1/\marg{opt1},obj2/typ2/\marg{opt2},...}\\ -% \hspace*{2em}\marg{z/\marg{zeros},p/\marg{poles},k/\marg{gain},d/\marg{delay}}\\ -% \hspace*{2em}\marg{min-freq}\marg{max-freq} -% -% \noindent Plots the Bode plot of a transfer function given in ZPK format using the |groupplot| environment. The three mandatory arguments include: (1) a list of tuples, comprised of the zeros, the poles, the gain, and the transport delay of the transfer function, (2) the lower end of the frequency range for the $x-$axis, and (3) the higher end of the frequency range for the $x-$axis. The zeros and the poles are complex numbers, entered as a comma-separated list of comma-separated lists, of the form |{{real part 1,imaginary part 1},| |{real part 2,imaginary part 2},...}|. If the imaginary part is not provided, it is assumed to be zero. -% -% The optional argument is comprised of a comma separated list of tuples, either |obj/typ/{opt}|, or |obj/{opt}|, or just |{opt}|. Each tuple passes options to different |pgfplots| macros that generate the group, the axes, and the plots according to: -% \begin{itemize} -% \item Tuples of the form |obj/typ/{opt}|: -% \begin{itemize} -% \item |plot/typ/{opt}|: modify plot properties by adding options |{opt}| to the |\addplot| macro for the magnitude plot if |typ| is |mag| and the phase plot if |typ| is |ph|. -% \item |axes/typ/{opt}|: modify axis properties by adding options |{opt}| to the |\nextgroupplot| macro for the magnitude plot if |typ| is |mag| and the phase plot if |typ| is |ph|. -% \item |commands/typ/{opt}|: add any valid TikZ commands (including the the parametric function generator macros in this package, such as |\addBodeZPKPlots|, |\addBodeTFPlot|, and |\addBodeComponentPlot|) to the magnitude plot if |typ| is |mag| and the phase plot if |typ| is |ph|. The commands passed to |opt| need to be valid TikZ commands, separated by semicolons as usual. For example, a TikZ command is used in the description of the |\BodeTF| macro below to mark the gain crossover frequency on the Bode Magnitude plot. -% \end{itemize} -% \item Tuples of the form |obj/{opt}|: -% \begin{itemize} -% \item |plot/{opt}|: adds options |{opt}| to |\addplot| macros for both the magnitude and the phase plots. -% \item |axes/{opt}|: adds options |{opt}| to |\nextgroupplot| macros for both the magnitude and the phase plots. -% \item |group/{opt}|: adds options |{opt}| to the |groupplot| environment. -% \item |tikz/{opt}|: adds options |{opt}| to the |tikzpicture| environment. -% \item |approx/linear|: plots linear approximation. -% \item |approx/asymptotic|: plots asymptotic approximation. -% \end{itemize} -% \item Tuples of the form |{opt}| add all of the supplied options to |\addplot| macros for both the magnitude and the phase plots. -% \end{itemize} -% The options |{opt}| can be any |key=value| options that are supported by the |pgfplots| macros they are added to. - -% For example, given a transfer function \begin{equation}G(s) = 10\frac{s(s+0.1+0.5\mathrm{i})(s+0.1-0.5\mathrm{i})}{(s+0.5+10\mathrm{i})(s+0.5-10\mathrm{i})},\label{eq:ZPKExample}\end{equation} its Bode plot over the frequency range $[0.01,100]$ can be generated using\\ -% |\BodeZPK [blue,thick]|\\ -% | {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}|\\ -% | {0.01}{100}|\\ -% which generates the plot in Figure \ref{simpleBode}. If a delay is not specified, it is assumed to be zero. If a gain is not specified, it is assumed to be 1. By default, each of the axes, excluding ticks and labels, are 5cm wide and 2.5cm high. The width and the height, along with other properties of the plots, the axes, and the group can be customized using native |pgf| keys as shown in the example below. -% -% \begin{figure} -% \begin{center} -% \BodeZPK[blue,thick]{z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}{0.01}{100} -% \cprotect\caption{\label{simpleBode}Output of the default |\BodeZPK| macro.} -% \end{center} -% \end{figure} -% As demonstrated in this example, if a single comma-separated list of options is passed, it applies to both the magnitude and the phase plots. Without any optional arguments, we gets a thick black Bode plot. -% -% A linear approximation of the Bode plot with customization of the plots, the axes, and the group can be generated using\\ -% |\BodeZPK[plot/mag/{red,thick},plot/ph/{blue,thick},|\\ -% | axes/mag/{ytick distance=40,xmajorticks=true,|\\ -% | xlabel={Frequency (rad/s)}},axes/ph/{ytick distance=90},|\\ -% | group/{group style={group size=2 by 1,horizontal sep=2cm,|\\ -% | width=4cm,height=2cm}},approx/linear]|\\ -% | {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}|\\ -% | {0.01}{100}|\\ -% which generates the plot in Figure \ref{customBode}. -% -% \begin{figure} -% \begin{center} -% \BodeZPK[plot/mag/{red,thick},plot/ph/{blue,thick},axes/mag/{ytick distance=40,xmajorticks=true,xlabel={Frequency (rad/s)}},axes/ph/{ytick distance=90},approx/linear,group/{group style={group size = 2 by 1,horizontal sep=2cm},width=4cm,height=2cm}] {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},g/10} {0.01} {100} -% \cprotect\caption{\label{customBode}Customization of the default |\BodeZPK| macro.} -% \end{center} -% \end{figure} -% -% \DescribeMacro{\BodeTF} -% |\BodeTF| \oarg{obj1/typ1/\marg{opt1},obj2/typ2/\marg{opt2},...}\\ -% \hspace*{2em}\marg{num/\marg{coeffs},den/\marg{coeffs},d/\marg{delay}}\\ -% \hspace*{2em}\marg{min-freq}\marg{max-freq} \rmfamily -% -% \noindent Plots the Bode plot of a transfer function given in TF format. The three mandatory arguments include: (1) a list of tuples comprised of the coefficients in the numerator and the denominator of the transfer function and the transport delay, (2) the lower end of the frequency range for the $x-$ axis, and (3) the higher end of the frequency range for the $x-$axis. The coefficients are entered as a comma-separated list, in order from the highest degree of $s$ to the lowest, with zeros for missing degrees. The optional arguments are the same as |\BodeZPK|, except that linear/asymptotic approximation is not supported, so |approx/...| is ignored. -% -% For example, given the same transfer function as (\ref{eq:ZPKExample}) in TF form and with a small transport delay, \begin{equation}G(s) = e^{-0.01s}\frac{s(10s^2+2s+2.6)}{(s^2+s+100.25)},\label{eq:TFExample}\end{equation} its Bode plot over the frequency range $[0.01,100]$ can be generated using\\ -% |\BodeTF[commands/mag/{\node at (axis cs: 2.1,0) |\\ -% | [circle,fill,inner sep=0.05cm,label=below:{$\omega_{gc}$}]{};}]|\\ -% | {num/{10,2,2.6,0},den/{1,1,100.25},d/0.01}|\\ -% | {0.01}{100}|\\ -% which generates the plot in Figure \ref{simpleBodeTF}. Note the $0$ added to the numerator coefficients to account for the fact that the numerator does not have a constant term in it. Note the semicolon after the TikZ command passed to the |\commands| option. -% -% \begin{figure} -% \begin{center} -% \BodeTF[commands/mag/{\node at (axis cs: 2.1,0) [circle,fill,inner sep=0.05cm,label=below:{$\omega_{gc}$}] {};}]{num/{10,2,2.6,0},den/{1,1,100.25},d/0.01}{0.01}{100} -% \cprotect\caption{\label{simpleBodeTF}Output of the |\BodeTF| macro with an optional TikZ command used to mark the gain crossover frequency.} -% \end{center} -% \end{figure} -% -% \DescribeEnv{BodeMagPlot} -% |\begin{BodeMagPlot}|\oarg{obj1/\marg{opt1},obj2/\marg{opt2},...}\\ -% \hspace*{3em}\marg{min-frequency}\marg{max-frequency}\\ -% \hspace*{2em}|\addBode...|\\ -% \hspace*{1.5em}|\end{BodeMagPlot}|\\ -% The |BodeMagPlot| environment works in conjunction with the parametric function generator macros |\addBodeZPKPlots|, |\addBodeTFPlot|, and |\addBodeComponentPlot|, intended to be used for magnitude plots. The optional argument is comprised of a comma separated list of tuples, either |obj/{opt}| or just |{opt}|. Each tuple passes options to different |pgfplots| macros that generate the axes and the plots according to: -% \begin{itemize} -% \item Tuples of the form |obj/{opt}|: -% \begin{itemize} -% \item |tikz/{opt}|: modify picture properties by adding options |{opt}| to the |tikzpicture| environment. -% \item |axes/{opt}|: modify axis properties by adding options |{opt}| to the |semilogaxis| environment. -% \item |commands/{opt}|: add any valid TikZ commands inside |semilogaxis| environment. The commands passed to |opt| need to be valid TikZ commands, separated by semicolons as usual. -% \end{itemize} -% \item Tuples of the form |{opt}| are passed directly to the |semilogaxis| environment. -% \end{itemize} -% The frequency limits are translated to the x-axis limits and the domain of the |semilogaxis| environment. Example usage in the description of |\addBodeZPKPlots|, |\addBodeTFPlot|, and |\addBodeComponentPlot|. -% -%\DescribeEnv{BodePhPlot} -% |\begin{BodePhPlot}|\oarg{obj1/\marg{opt1},obj2/\marg{opt2},...}\\ - % \hspace*{3em}\marg{min-frequency}\marg{max-frequency}\\ - % \hspace*{2em}|\addBode...|\\ - % \hspace*{1.5em}|\end{BodePhPlot}|\\ -% Intended to be used for phase plots, otherwise same as the |BodeMagPlot| environment -% -% \DescribeMacro{\addBodeZPKPlots} -% |\addBodeZPKPlots| \oarg{approx1/\marg{opt1},approx2/\marg{opt2},...}\\ -% \hspace*{2em}\marg{plot-type}\\ -% \hspace*{2em}\marg{z/\marg{zeros},p/\marg{poles},k/\marg{gain},d/\marg{delay}} -% -% \noindent Generates the appropriate parametric functions and supplies them to multiple |\addplot| macros, one for each |approx/{opt}| pair in the optional argument. If no optional argument is supplied, then a single |\addplot| command corresponding to a thick true Bode plot is generated. If an optional argument is supplied, it needs to be one of |true/{opt}|, |linear/{opt}|, or |asymptotic/{opt}|. This macro can be used inside any |semilogaxis| environment as long as a domain for the x-axis is supplied through either the |approx/{opt}| interface or directly in the optional argument of the |semilogaxis| environment. Use with the |BodePlot| environment supplied with this package is recommended. The second mandatory argument, |plot-type| is either |magnitude| or |phase|. If it is not equal to |phase|, it is assumed to be |magnitude|. The last mandatory argument is the same as |\BodeZPK|. -% -% For example, given the transfer function in (\ref{eq:ZPKExample}), its linear, asymptotic, and true Bode plots can be superimposed using -%\begin{verbatim} -%\begin{BodeMagPlot}[height=2cm,width=4cm] {0.01} {100} -% \addBodeZPKPlots[% -% true/{black,thick}, -% linear/{red,dashed,thick}, -% asymptotic/{blue,dotted,thick}] -% {magnitude} -% {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10} -%\end{BodeMagPlot} -% -%\begin{BodePhPlot}[height=2cm, width=4cm, ytick distance=90] {0.01} {100} -% \addBodeZPKPlots[% -% true/{black,thick}, -% linear/{red,dashed,thick}, -% asymptotic/{blue,dotted,thick}] -% {phase} -% {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10} -%\end{BodePhPlot} -%\end{verbatim} -% \begin{figure} -% \begin{center} -% \begin{BodeMagPlot}[height=2cm,width=4cm]{0.01}{100} -% \addBodeZPKPlots[% -% true/{black,thick}, -% linear/{red,dashed,thick}, -% asymptotic/{blue,dotted,thick}] -% {magnitude} -% {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10} -% \end{BodeMagPlot} -% \begin{BodePhPlot}[height=2cm,width=4cm,ytick distance=90]{0.01}{100} -% \addBodeZPKPlots[% -% true/{black,thick}, -% linear/{red,dashed,thick}, -% asymptotic/{blue,dotted,thick}] -% {phase} -% {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10} -% \end{BodePhPlot} -% \end{center} -% \caption{\label{multiBodeZPK}Superimposed approximate and true Bode plots using the \texttt{BodeMagPlot} and \texttt{BodePhPlot} environments and the \texttt{\textbackslash addBodeZPKPlots} macro.} -% \end{figure} -% which generates the plot in Figure \ref{multiBodeZPK}. -% -% \DescribeMacro{\addBodeTFPlot} -% |\addBodeTFPlot|\oarg{plot-options}\\ -% \hspace*{2em}\marg{plot-type}\\ -% \hspace*{2em}\marg{num/\marg{coeffs},den/\marg{coeffs},d/\marg{delay}} -% -% \noindent Generates a single parametric function for either Bode magnitude or phase plot of a transfer function in TF form. The generated parametric function is passed to the |\addplot| macro. This macro can be used inside any |semilogaxis| environment as long as a domain for the x-axis is supplied through either the |plot-options| interface or directly in the optional argument of the container |semilogaxis| environment. Use with the |BodePlot| environment supplied with this package is recommended. The second mandatory argument, |plot-type| is either magnitude or |phase|. If it is not equal to |phase|, it is assumed to be |magnitude|. The last mandatory argument is the same as |\BodeTF|. -% -% \DescribeMacro{\addBodeComponentPlot} -% |\addBodeComponentPlot|\oarg{plot-options}\marg{plot-command} -% -% \noindent Generates a single parametric function corresponding to the mandatory argument |plot-command| and passes it to the |\addplot| macro. The plot command can be any parametric function that uses |t| as the independent variable. The parametric function must be |gnuplot| compatible (or |pgfplots| compatible if the package is loaded using the |pgf| option). The intended use of this macro is to plot the parametric functions generated using the basic component macros described in Section \ref{sec:BasicComponents} below. -% -% \subsubsection{Basic components up to first order\label{sec:BasicComponents}} -% -% \DescribeMacro{\TypeFeatureApprox} -% |\TypeFeatureApprox|\marg{real-part}\marg{imaginary-part} -% -% \noindent This entry describes 20 different macros of the form |\TypeFeatureApprox| that take the real part and the imaginary part of a complex number as arguments. The |Type| in the macro name should be replaced by either |Mag| or |Ph| to generate a parametric function corresponding to the magnitude or the phase plot, respectively. The |Feature| in the macro name should be replaced by one of |K|, |Pole|, |Zero|, or |Del|, to generate the Bode plot of a gain, a complex pole, a complex zero, or a transport delay, respectively. If the |Feature| is set to either |K| or |Del|, the |imaginary-part| mandatory argument is ignored. The |Approx| in the macro name should either be removed, or it should be replaced by |Lin| or |Asymp| to generate the true Bode plot, the linear approximation, or the asymptotic approximation, respectively. If the |Feature| is set to |Del|, then |Approx| has to be removed. For example, -% \begin{itemize} -% \item |\MagK{k}{0}| or |\MagK{k}{400}| generates a parametric function for the true Bode magnitude of $ G(s) = k $ -% \item |\PhPoleLin{a}{b}| generates a parametric function for the linear approximation of the Bode phase of $ G(s) = \frac{1}{s-a-\mathrm{i}b} $. -% \item |\PhDel{T}{200}| or |\PhDel{T}{0}| generates a parametric function for the Bode phase of $ G(s) = e^{-Ts} $. -% \end{itemize} -% All 20 of the macros defined by combinations of |Type|, |Feature|, and |Approx|, and any |gnuplot| (or |pgfplot| if the |pgf| class option is loaded) compatible function of the 20 macros can be used as |plot-command| in the |addBodeComponentPlot| macro. This is sufficient to generate the Bode plot of any rational transfer function with delay. For example, the Bode phase plot in Figure \ref{multiBodeZPK} can also be generated using: -%\begin{verbatim} -%\begin{BodePhPlot}[ytick distance=90]{0.01}{100} -% \addBodeComponentPlot[black,thick]{\PhZero{0}{0} + \PhZero{-0.1}{-0.5} + -% \PhZero{-0.1}{0.5} + \PhPole{-0.5}{-10} + \PhPole{-0.5}{10} + -% \PhK{10}{0}} -% \addBodeComponentPlot[red,dashed,thick] {\PhZeroLin{0}{0} + -% \PhZeroLin{-0.1}{-0.5} + \PhZeroLin{-0.1}{0.5} + -% \PhPoleLin{-0.5}{-10} + \PhPoleLin{-0.5}{10} + \PhKLin{10}{20}} -% \addBodeComponentPlot[blue,dotted,thick] {\PhZeroAsymp{0}{0} + -% \PhZeroAsymp{-0.1}{-0.5} + \PhZeroAsymp{-0.1}{0.5} + -% \PhPoleAsymp{-0.5}{-10} + \PhPoleAsymp{-0.5}{10} + \PhKAsymp{10}{40}} -%\end{BodePhPlot} -%\end{verbatim} -%\begin{figure} -% \begin{center} -% \begin{BodePhPlot}[ytick distance=90]{0.01}{100} -% \addBodeComponentPlot[black,thick] {\PhZero{0}{0} + \PhZero{-0.1}{-0.5} + \PhZero{-0.1}{0.5} + \PhPole{-0.5}{-10} + \PhPole{-0.5}{10} + \PhK{10}{0}} -% \addBodeComponentPlot[red,dashed,thick] {\PhZeroLin{0}{0} + \PhZeroLin{-0.1}{-0.5} + \PhZeroLin{-0.1}{0.5} + \PhPoleLin{-0.5}{-10} + \PhPoleLin{-0.5}{10} + \PhKLin{10}{20}} -% \addBodeComponentPlot[blue,dotted,thick] {\PhZeroAsymp{0}{0} + \PhZeroAsymp{-0.1}{-0.5} + \PhZeroAsymp{-0.1}{0.5} + \PhPoleAsymp{-0.5}{-10} + \PhPoleAsymp{-0.5}{10} + \PhKAsymp{10}{40}} -% \end{BodePhPlot} -% \end{center} -% \caption{\label{multiBodeComponents}Superimposed approximate and true Bode Phase plot using the \texttt{BodePhPlot} environment, the \texttt{\textbackslash addBodeComponentPlot} macro, and several macros of the \texttt{\textbackslash TypeFeatureApprox} form.} -%\end{figure} -% which gives us the plot in Figure \ref{multiBodeComponents}. -% -% \subsubsection{Basic components of the second order} -% -% \DescribeMacro{\TypeSOFeatureApprox} -% |\TypeSOFeatureApprox|\marg{a1}\marg{a0} -% -% \noindent This entry describes 12 different macros of the form |\TypeSOFeatureApprox| that take the coefficients $ a_1 $ and $ a_0 $ of a general second order system as inputs. The |Feature| in the macro name should be replaced by either |Poles| or |Zeros| to generate the Bode plot of $G(s)=\frac{1}{s^2+a_1 s+a_0}$ or $G(s)=s^2+a_1 s+a_0$, respectively. The |Type| in the macro name should be replaced by either |Mag| or |Ph| to generate a parametric function corresponding to the magnitude or the phase plot, respectively. The |Approx| in the macro name should either be removed, or it should be replaced by |Lin| or |Asymp| to generate the true Bode plot, the linear approximation, or the asymptotic approximation, respectively. -% -% \DescribeMacro{\MagSOFeaturePeak} -% |\MagSOFeaturePeak|\oarg{draw-options}\marg{a1}\marg{a0} -% -% \noindent This entry describes 2 different macros of the form |\MagSOFeaturePeak| that take the the coefficients $ a_1 $ and $ a_0 $ of a general second order system as inputs, and draw a resonant peak using the |\draw| TikZ macro. The |Feature| in the macro name should be replaced by either |Poles| or |Zeros| to generate a peak for poles and a valley for zeros, respectively. For example, the command -%\begin{verbatim} -%\begin{BodeMagPlot}[xlabel={}]{0.1}{10} -% \addBodeComponentPlot[red,dashed,thick]{\MagSOPoles{0.2}{1}} -% \addBodeComponentPlot[black,thick]{\MagSOPolesLin{0.2}{1}} -% \MagSOPolesPeak[thick]{0.2}{1} -%\end{BodeMagPlot} -%\end{verbatim} -% generates the plot in Figure \ref{BodePeak}. -% -% \begin{figure} -% \begin{center} -% \begin{BodeMagPlot}[xlabel={}]{0.1}{10} -% \addBodeComponentPlot[red,dashed,thick]{\MagSOPoles{0.2}{1}} -% \addBodeComponentPlot[black,thick]{\MagSOPolesLin{0.2}{1}} -% \MagSOPolesPeak[very thick]{0.2}{1} -% \end{BodeMagPlot} -% \end{center} -% \cprotect\caption{\label{BodePeak} Resonant peak in asymptotic Bode plot using |\MagSOPolesPeak|.} -% \end{figure} -% -% \DescribeMacro{\TypeCSFeatureApprox} -% |\TypeCSFeatureApprox|\marg{zeta}\marg{omega-n} -% -% \noindent This entry describes 12 different macros of the form |\TypeCSFeatureApprox| that take the damping ratio, $ \zeta $, and the natural frequency, $ \omega_n $ of a canonical second order system as inputs. The |Type| in the macro name should be replaced by either |Mag| or |Ph| to generate a parametric function corresponding to the magnitude or the phase plot, respectively. The |Feature| in the macro name should be replaced by either |Poles| or |Zeros| to generate the Bode plot of $G(s)=\frac{1}{s^2+2\zeta\omega_n s+\omega_n^2}$ or $G(s)=s^2+2\zeta\omega_n s+\omega_n^2$, respectively. The |Approx| in the macro name should either be removed, or it should be replaced by |Lin| or |Asymp| to generate the true Bode plot, the linear approximation, or the asymptotic approximation, respectively. -% -% \DescribeMacro{\MagCSFeaturePeak} -% |\MagCSFeaturePeak|\oarg{draw-options}\marg{zeta}\marg{omega-n} -% -% \noindent This entry describes 2 different macros of the form |\MagCSFeaturePeak| that take the damping ratio, $ \zeta $, and the natural frequency, $ \omega_n $ of a canonical second order system as inputs, and draw a resonant peak using the |\draw| TikZ macro. The |Feature| in the macro name should be replaced by either |Poles| or |Zeros| to generate a peak for poles and a valley for zeros, respectively. -% -% \DescribeMacro{\MagCCFeaturePeak} -% |\MagCCFeaturePeak|\oarg{draw-options}\marg{real-part}\marg{imaginary-part} -% -% \noindent This entry describes 2 different macros of the form |\MagCCFeaturePeak| that take the real and imaginary parts of a pair of complex conjugate poles or zeros as inputs, and draw a resonant peak using the |\draw| TikZ macro. The |Feature| in the macro name should be replaced by either |Poles| or |Zeros| to generate a peak for poles and a valley for zeros, respectively. -% -% \subsection{Nyquist plots} -% \DescribeMacro{\NyquistZPK} -% |\NyquistZPK| \oarg{plot/\marg{opt},axes/\marg{opt}}\\ -% \hspace*{2em}\marg{z/\marg{zeros},p/\marg{poles},k/\marg{gain},d/\marg{delay}}\\ -% \hspace*{2em}\marg{min-freq}\marg{max-freq} -% -% \noindent Plots the Nyquist plot of a transfer function given in ZPK format with a thick red $+$ marking the critical point (-1,0). The mandatory arguments are the same as |\BodeZPK|. Since there is only one plot in a Nyquist diagram, the |\typ| specifier in the optional argument tuples is not needed. As such, the supported optional argument tuples are |plot/{opt}|, which passes |{opt}| to |\addplot|, |axes/{opt}|, which passes |{\opt}| to the |axis| environment, and |tikz/{opt}|, which passes |{\opt}| to the |tikzpicture| environment. Asymptotic/linear approximations are not supported in Nyquist plots. If just |{opt}| is provided as the optional argument, it is interpreted as |plot/{opt}|. Arrows to indicate the direction of increasing $\omega$ can be added by adding |\usetikzlibrary{decorations.markings}| and |\usetikzlibrary{arrows.meta}| to the preamble and then passing a tuple of the form\\ -%|plot/{postaction=decorate,decoration={markings,|\\ -%| mark=between positions 0.1 and 0.9 step 5em with|\\ -%| {\arrow{Stealth| |[length=2mm, blue]}}}}|\\ -%\textbf{Caution:} with a high number of samples, adding arrows in this way may cause the error message |! Dimension too big|. -% -% For example, the command\\ -% |\NyquistZPK[plot/{red,thick,samples=2000},axes/{blue,thick}]|\\ -% | {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}|\\ -% | {-30}{30}|\\ -% generates the Nyquist plot in Figure \ref{simpleNyquistZPK}. -% -% \begin{figure} -% \begin{center} -% \NyquistZPK[plot/{red,thick,samples=2000},axes/{blue,thick}] {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10} {-30} {30} -% \cprotect\caption{\label{simpleNyquistZPK}Output of the |\NyquistZPK| macro.} -% \end{center} -% \end{figure} -% -% % \DescribeMacro{\NyquistTF} -% |\NyquistTF| \oarg{plot/\marg{opt},axes/\marg{opt}}\\ -% \hspace*{2em}\marg{num/\marg{coeffs},den/\marg{coeffs},d/\marg{delay}}\\ -% \hspace*{2em}\marg{min-freq}\marg{max-freq} -% -% \noindent Nyquist plot of a transfer function given in TF format. Same mandatory arguments as |\BodeTF| and same optional arguments as |\NyquistZPK|. For example, the command\\ -% |\NyquistTF[plot/{green,thick,samples=500,postaction=decorate,|\\ -% | decoration={markings,|\\ -% | mark=between positions 0.1 and 0.9 step 5em|\\ -% | with{\arrow{Stealth[length=2mm, blue]}}}}]|\\ -% | {num/{10,2,2.6,0},den/{1,1,100.25}}|\\ -% | {-30}{30}|\\ -% generates the Nyquist plot in Figure \ref{simpleNyquistTF}. -% -% \begin{figure} -% \begin{center} -% \NyquistTF[plot/{green,thick,samples=500,postaction=decorate,decoration={markings,mark=between positions 0.1 and 0.9 step 5em with {\arrow{Stealth[length=2mm, blue]}}}}] {num/{10,2,2.6,0},den/{1,1,100.25},d/0.01} {-30} {30} -% \cprotect\caption{\label{simpleNyquistTF}Output of the |\NyquistTF| macro with direction arrows. Increasing the number of samples can cause |decorations.markings| to throw errors.} -% \end{center} -% \end{figure} -% -% \DescribeEnv{NyquistPlot} -% |\begin{NyquistPlot}|\oarg{obj1/\marg{opt1},obj2/\marg{opt2},...}\\ -% \hspace*{3em}\marg{min-frequency}\marg{max-frequency}\\ -% \hspace*{2em}|\addNyquist...|\\ -% \hspace*{1.5em}|\end{NyquistPlot}|\\ -% The |NyquistPlot| environment works in conjunction with the parametric function generator macros |\addNyquistZPKPlot| and |\addNyquistTFPlot|. The optional argument is comprised of a comma separated list of tuples, either |obj/{opt}| or just |{opt}|. Each tuple passes options to different |pgfplots| macros that generate the axes and the plots according to: -% \begin{itemize} -% \item Tuples of the form |obj/{opt}|: -% \begin{itemize} -% \item |tikz/{opt}|: modify picture properties by adding options |{opt}| to the |tikzpicture| environment. -% \item |axes/{opt}|: modify axis properties by adding options |{opt}| to the |axis| environment. -% \item |commands/{opt}|: add any valid TikZ commands inside |axis| environment. The commands passed to |opt| need to be valid TikZ commands, separated by semicolons as usual. -% \end{itemize} -% \item Tuples of the form |{opt}| are passed directly to the |axis| environment. -% \end{itemize} -% The frequency limits are translated to the x-axis limits and the domain of the |axis| environment. -% -% \DescribeMacro{\addNyquistZPKPlot} -% |\addNyquistZPKPlot|\oarg{plot-options}\\ -% \hspace*{2em}\marg{z/\marg{zeros},p/\marg{poles},k/\marg{gain},d/\marg{delay}} -% -% \noindent Generates a twp parametric functions for the magnitude and the phase a transfer function in ZPK form. The generated magnitude and phase parametric functions are converted to real and imaginary part parametric functions and passed to the |\addplot| macro. This macro can be used inside any |axis| environment as long as a domain for the x-axis is supplied through either the |plot-options| interface or directly in the optional argument of the container |axis| environment. Use with the |NyquistPlot| environment supplied with this package is recommended. The mandatory argument is the same as |\BodeZPK|. -% -% \DescribeMacro{\addNyquistTFPlot} -% |\addNyquistTFPlot|\oarg{plot-options}\\ -% \hspace*{2em}\marg{num/\marg{coeffs},den/\marg{coeffs},d/\marg{delay}} -% -% \noindent Similar to |\addNyquistZPKPlot|, with a transfer function input in the TF form. -% -% \subsection{Nichols charts} -% \DescribeMacro{\NicholsZPK} -% |\NicholsZPK| \oarg{plot/\marg{opt},axes/\marg{opt}}\\ -% \hspace*{2em}\marg{z/\marg{zeros},p/\marg{poles},k/\marg{gain},d/\marg{delay}}\\ -% \hspace*{2em}\marg{min-freq}\marg{max-freq} -% -% \noindent Nichols chart of a transfer function given in ZPK format. Same arguments as |\NyquistZPK|. -% -% \DescribeMacro{\NicholsTF} -% |\NicholsTF| \oarg{plot/\marg{opt},axes/\marg{opt}}\\ -% \hspace*{2em}\marg{num/\marg{coeffs},den/\marg{coeffs},d/\marg{delay}}\\ -% \hspace*{2em}\marg{min-freq}\marg{max-freq} -% -% \noindent Nichols chart of a transfer function given in TF format. Same arguments as |\NyquistTF|. For example, the command\\ -% |\NicholsTF[plot/{green,thick,samples=2000}]|\\ -% | {num/{10,2,2.6,0},den/{1,1,100.25},d/0.01}|\\ -% | {0.001}{100}|\\ -% generates the Nichols chart in Figure \ref{simpleNicholsTF}. -% -% \begin{figure} -% \begin{center} -% \NicholsTF[plot/{green,thick,samples=2000}] {num/{10,2,2.6,0},den/{1,1,100.25},d/0.01} {0.001} {100} -% \cprotect\caption{\label{simpleNicholsTF}Output of the |\NyquistZPK| macro.} -% \end{center} -% \end{figure} -% -% -% \DescribeEnv{NicholsChart} -% |\begin{NicholsChart}|\oarg{obj1/\marg{opt1},obj2/\marg{opt2},...}\\ -% \hspace*{3em}\marg{min-frequency}\marg{max-frequency}\\ -% \hspace*{2em}|\addNichols...|\\ -% \hspace*{1.5em}|\end{NicholsChart}|\\ -% The |NicholsChart| environment works in conjunction with the parametric function generator macros |\addNicholsZPKChart| and |\addNicholsTFChart|. The optional argument is comprised of a comma separated list of tuples, either |obj/{opt}| or just |{opt}|. Each tuple passes options to different |pgfplots| macros that generate the axes and the plots according to: -% \begin{itemize} -% \item Tuples of the form |obj/{opt}|: -% \begin{itemize} -% \item |tikz/{opt}|: modify picture properties by adding options |{opt}| to the |tikzpicture| environment. -% \item |axes/{opt}|: modify axis properties by adding options |{opt}| to the |axis| environment. -% \item |commands/{opt}|: add any valid TikZ commands inside |axis| environment. The commands passed to |opt| need to be valid TikZ commands, separated by semicolons as usual. -% \end{itemize} -% \item Tuples of the form |{opt}| are passed directly to the |axis| environment. -% \end{itemize} -% The frequency limits are translated to the x-axis limits and the domain of the |axis| environment. -% -% \DescribeMacro{\addNicholsZPKChart} -% |\addNicholsZPKChart|\oarg{plot-options}\\ -% \hspace*{2em}\marg{z/\marg{zeros},p/\marg{poles},k/\marg{gain},d/\marg{delay}} -% -% \noindent Generates a twp parametric functions for the magnitude and the phase a transfer function in ZPK form. The generated magnitude and phase parametric functions are passed to the |\addplot| macro. This macro can be used inside any |axis| environment as long as a domain for the x-axis is supplied through either the |plot-options| interface or directly in the optional argument of the container |axis| environment. Use with the |NicholsChart| environment supplied with this package is recommended. The mandatory argument is the same as |\BodeZPK|. -% -% \DescribeMacro{\addNicholsTFChart} -% |\addNicholsTFChart|\oarg{plot-options}\\ -% \hspace*{2em}\marg{num/\marg{coeffs},den/\marg{coeffs},d/\marg{delay}} -% -% \noindent Similar to |\addNicholsZPKChart|, with a transfer function input in the TF form. -% -% \StopEventually{\PrintIndex} -% \clearpage -% \section{Implementation} -% \subsection{Initialization} -% \begin{macro}{\n@mod} -% \begin{macro}{\n@pow} -% \begin{macro}{gnuplot@id} -% \begin{macro}{gnuplot@prefix} -% \changes{v1.0.3}{2021/11/03}{Added jobname to gnuplot prefix} -% \changes{v1.0.8}{2022/07/06}{Fixed issue \#6} -% This code is needed to support both |pgfplots| and |gnuplot| simultaneously. New macros are defined for the |pow| and |mod| functions to address differences between the two math engines. We start by processing the class options. -% \begin{macrocode} -\newif\if@pgfarg\@pgfargfalse -\DeclareOption{pgf}{ - \@pgfargtrue -} -\newif\if@declutterarg\@declutterargfalse -\DeclareOption{declutter}{ - \@declutterargtrue -} -\newif\if@radarg\@radargfalse -\DeclareOption{rad}{ - \@radargtrue -} -\newif\if@hzarg\@hzargfalse -\DeclareOption{Hz}{ - \@hzargtrue -} -\ProcessOptions\relax -% \end{macrocode} -% Then, we define two new macros to unify |pgfplots| and |gnuplot|. -% \begin{macrocode} -\newcommand{\n@mod}[2]{(#1)-(floor((#1)/(#2))*(#2))} -\if@pgfarg - \newcommand{\n@pow}[2]{(#1)^(#2)} - \pgfplotsset{ - trig format plots=rad - } -\else - \newcommand{\n@pow}[2]{(#1)**(#2)} -% \end{macrocode} -% Then, we create a counter so that a new data table is generated and for each new plot. If the plot macros have not changed, the tables, once generated, can be reused by |gnuplot|, which reduces compilation time. The |declutter| option is used to enable the |gnuplot| directory to declutter the working directory. -% \begin{macrocode} - \newcounter{gnuplot@id} - \setcounter{gnuplot@id}{0} - \if@declutterarg - \edef\bodeplot@prefix{gnuplot/\jobname} - \else - \edef\bodeplot@prefix{\jobname} - \fi - \tikzset{ - gnuplot@prefix/.style={ - id=\arabic{gnuplot@id}, - prefix=\bodeplot@prefix - } - } -% \end{macrocode} -% If the operating system is not Windows, and if the |declutter| option is not passed, we create the |gnuplot| folder if it does not already exist. \changes{v1.0.2}{2021/11/01}{Fixed issue \#1} -% \begin{macrocode} - \ifwindows\else - \if@declutterarg - \immediate\write18{mkdir -p gnuplot} - \fi - \fi -\fi -% \end{macrocode} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \begin{macro}{bode@style} -% Default axis properties for all plot macros are collected in this |pgf| style. -% \begin{macrocode} -\pgfplotsset{ - bode@style/.style = { - label style={font=\footnotesize}, - tick label style={font=\footnotesize}, - grid=both, - major grid style={color=gray!80}, - minor grid style={color=gray!20}, - x label style={at={(ticklabel cs:0.5)},anchor=near ticklabel}, - y label style={at={(ticklabel cs:0.5)},anchor=near ticklabel}, - scale only axis, - samples=200, - width=5cm, - log basis x=10 - } -} -% \end{macrocode} -% \end{macro} -% \begin{macro}{freq@filter} -% \begin{macro}{freq@label} -% \begin{macro}{freq@scale} -% \begin{macro}{ph@scale} -% \begin{macro}{ph@x@label} -% \begin{macro}{ph@y@label} -% These macros handle the |Hz| and |rad| class options and two new |pgf| keys named |frequency unit| and |phase unit| for conversion of frequency and phase units, respectively. \changes{v1.1.1}{2022/07/31}{New macros to enable `Hz' and `rad' units for frequency and phase, respectively} -% \begin{macrocode} -\pgfplotsset{freq@filter/.style = {}} -\def\freq@scale{1} -\pgfplotsset{freq@label/.style = {xlabel = {Frequency (rad/s)}}} -\pgfplotsset{ph@x@label/.style = {xlabel={Phase (deg)}}} -\pgfplotsset{ph@y@label/.style = {ylabel={Phase (deg)}}} -\def\ph@scale{180/pi} -\if@radarg - \pgfplotsset{ph@y@label/.style = {ylabel={Phase (rad)}}} - \pgfplotsset{ph@x@label/.style = {xlabel={Phase (rad)}}} - \def\ph@scale{1} -\fi -\if@hzarg - \def\freq@scale{2*pi} - \pgfplotsset{freq@label/.style = {xlabel = {Frequency (Hz)}}} - \if@pgfarg - \pgfplotsset{freq@filter/.style = {x filter/.expression={x-log10(2*pi)}}} - \fi -\fi -\tikzset{ - phase unit/.initial={deg}, - phase unit/.default={deg}, - phase unit/.is choice, - phase unit/deg/.code={ - \renewcommand{\ph@scale}{180/pi} - \pgfplotsset{ph@x@label/.style = {xlabel={Phase (deg)}}} - \pgfplotsset{ph@y@label/.style = {ylabel={Phase (deg)}}} - }, - phase unit/rad/.code={ - \renewcommand{\ph@scale}{1} - \pgfplotsset{ph@y@label/.style = {ylabel={Phase (rad)}}} - \pgfplotsset{ph@x@label/.style = {xlabel={Phase (rad)}}} - }, - frequency unit/.initial={rad}, - frequency unit/.default={rad}, - frequency unit/.is choice, - frequency unit/Hz/.code={ - \renewcommand{\freq@scale}{2*pi} - \pgfplotsset{freq@label/.style = {xlabel = {Frequency (Hz)}}} - \if@pgfarg - \pgfplotsset{freq@filter/.style = {x filter/.expression={x-log10(2*pi)}}} - \fi - }, - frequency unit/rad/.code={ - \renewcommand{\freq@scale}{1} - \pgfplotsset{freq@label/.style = {xlabel = {Frequency (rad/s)}}} - } -} -% \end{macrocode} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \begin{macro}{get@interval@start} -% \begin{macro}{get@interval@end} -% Internal macros to extract start and end frequency limits from domain specifications.\changes{v1.1.1}{2022/07/31}{New macros to enable `Hz' and `rad' units for frequency and phase, respectively} -% \begin{macrocode} -\def\get@interval@start#1:#2\@nil{#1} -\def\get@interval@end#1:#2\@nil{#2} -% \end{macrocode} -% \end{macro} -% \end{macro} -% \subsection{Parametric function generators for poles, zeros, gains, and delays.} -% All calculations are carried out assuming that frequeny inputs are in |rad/s|. Magnitude outputs are in |dB| and phase outputs are in degrees or radians, depending on the value of |\ph@scale|. -% \begin{macro}{\MagK} -% \begin{macro}{\MagKAsymp} -% \begin{macro}{\MagKLin} -% \begin{macro}{\PhK} -% \begin{macro}{\PhKAsymp} -% \begin{macro}{\PhKLin} -% True, linear, and asymptotic magnitude and phase parametric functions for a pure gain $G(s)=k+0\mathrm{i}$. The macros take two arguments corresponding to real and imaginary part of the gain to facilitate code reuse between delays, gains, poles, and zeros, but only real gains are supported. The second argument, if supplied, is ignored. -% \begin{macrocode} -\newcommand*{\MagK}[2]{(20*log10(abs(#1)))} -\newcommand*{\MagKAsymp}{\MagK} -\newcommand*{\MagKLin}{\MagK} -\newcommand*{\PhK}[2]{((#1<0?-pi:0)*\ph@scale)} -\newcommand*{\PhKAsymp}{\PhK} -\newcommand*{\PhKLin}{\PhK} -% \end{macrocode} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \begin{macro}{\PhKAsymp} -% \begin{macro}{\PhKLin} -% True magnitude and phase parametric functions for a pure delay $G(s)=e^{-Ts}$. The macros take two arguments corresponding to real and imaginary part of the gain to facilitate code reuse between delays, gains, poles, and zeros, but only real gains are supported. The second argument, if supplied, is ignored. -% \begin{macrocode} -\newcommand*{\MagDel}[2]{0} -\newcommand*{\PhDel}[2]{(-#1*t*\ph@scale)} -% \end{macrocode} -% \end{macro} -% \end{macro} -% \begin{macro}{\MagPole} -% \begin{macro}{\MagPoleAsymp} -% \begin{macro}{\MagPoleLin} -% \begin{macro}{\PhPole} -% \begin{macro}{\PhPoleAsymp} -% \begin{macro}{\PhPoleLin} -% These macros are the building blocks for most of the plotting functions provided by this package. We start with Parametric function for the true magnitude of a complex pole. -% \begin{macrocode} -\newcommand*{\MagPole}[2] - {(-20*log10(sqrt(\n@pow{#1}{2} + \n@pow{t - (#2)}{2})))} -% \end{macrocode} -% Parametric function for linear approximation of the magnitude of a complex pole. -% \begin{macrocode} -\newcommand*{\MagPoleLin}[2]{(t < sqrt(\n@pow{#1}{2} + \n@pow{#2}{2}) ? - -20*log10(sqrt(\n@pow{#1}{2} + \n@pow{#2}{2})) : - -20*log10(t) - )} -% \end{macrocode} -% Parametric function for asymptotic approximation of the magnitude of a complex pole, same as linear approximation. -% \begin{macrocode} -\newcommand*{\MagPoleAsymp}{\MagPoleLin} -% \end{macrocode} -% Parametric function for the true phase of a complex pole. -% \begin{macrocode} -\newcommand*{\PhPole}[2]{((#1 > 0 ? (#2 > 0 ? - (\n@mod{-atan2((t - (#2)),-(#1))}{2*pi}) : - (-atan2((t - (#2)),-(#1)))) : - (-atan2((t - (#2)),-(#1))))*\ph@scale)} -% \end{macrocode} -% Parametric function for linear approximation of the phase of a complex pole. -% \begin{macrocode} -\newcommand*{\PhPoleLin}[2]{ - ((abs(#1)+abs(#2) == 0 ? -pi/2 : - (t < (sqrt(\n@pow{#1}{2} + \n@pow{#2}{2}) / - (\n@pow{10}{sqrt(\n@pow{#1}{2}/(\n@pow{#1}{2} + \n@pow{#2}{2}))})) ? - (-atan2(-(#2),-(#1))) : - (t >= (sqrt(\n@pow{#1}{2} + \n@pow{#2}{2}) * - (\n@pow{10}{sqrt(\n@pow{#1}{2}/(\n@pow{#1}{2} + \n@pow{#2}{2}))})) ? - (#2>0?(#1>0?3*pi/2:-pi/2):-pi/2) : - (-atan2(-(#2),-(#1)) + (log10(t/(sqrt(\n@pow{#1}{2} + \n@pow{#2}{2}) / - (\n@pow{10}{sqrt(\n@pow{#1}{2}/(\n@pow{#1}{2} + - \n@pow{#2}{2}))}))))*((#2>0?(#1>0?3*pi/2:-pi/2):-pi/2) + atan2(-(#2),-(#1)))/ - (log10(\n@pow{10}{sqrt((4*\n@pow{#1}{2})/ - (\n@pow{#1}{2} + \n@pow{#2}{2}))}))))))*\ph@scale)} -% \end{macrocode} -% Parametric function for asymptotic approximation of the phase of a complex pole. -% \begin{macrocode} -\newcommand*{\PhPoleAsymp}[2]{((t < (sqrt(\n@pow{#1}{2} + \n@pow{#2}{2})) ? - (-atan2(-(#2),-(#1))) : - (#2>0?(#1>0?3*pi/2:-pi/2):-pi/2))*\ph@scale)} -% \end{macrocode} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \begin{macro}{\MagZero} -% \begin{macro}{\MagZeroAsymp} -% \begin{macro}{\MagZeroLin} -% \begin{macro}{\PhZero} -% \begin{macro}{\PhZeroAsymp} -% \begin{macro}{\PhZeroLin} -% Plots of zeros are defined to be negative of plots of poles. The |0-| is necessary due to a bug in |gnuplot| (fixed in version 5.4, patchlevel 3). -% \begin{macrocode} -\newcommand*{\MagZero}{0-\MagPole} -\newcommand*{\MagZeroLin}{0-\MagPoleLin} -\newcommand*{\MagZeroAsymp}{0-\MagPoleAsymp} -\newcommand*{\PhZero}{0-\PhPole} -\newcommand*{\PhZeroLin}{0-\PhPoleLin} -\newcommand*{\PhZeroAsymp}{0-\PhPoleAsymp} -% \end{macrocode} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \subsection{Second order systems.} -% Although second order systems can be dealt with using the macros defined so far, the following dedicated macros for second order systems involve less computation. -% \begin{macro}{\MagCSPoles} -% \begin{macro}{\MagCSPolesAsymp} -% \begin{macro}{\MagCSPolesLin} -% \begin{macro}{\PhCSPoles} -% \begin{macro}{\PhCSPolesAsymp} -% \begin{macro}{\PhCSPolesLin} -% \begin{macro}{\MagCSZeros} -% \begin{macro}{\MagCSZerosAsymp} -% \begin{macro}{\MagCSZerosLin} -% \begin{macro}{\PhCSZeros} -% \begin{macro}{\PhCSZerosAsymp} -% \begin{macro}{\PhCSZerosLin} -% Consider the canonical second order transfer function $G(s) = \frac{1}{s^2 + 2 \zeta w_n s + w_n^2}$. We start with true, linear, and asymptotic magnitude plots for this transfer function. -% \begin{macrocode} -\newcommand*{\MagCSPoles}[2]{(-20*log10(sqrt(\n@pow{\n@pow{#2}{2} - - \n@pow{t}{2}}{2} + \n@pow{2*#1*#2*t}{2})))} -\newcommand*{\MagCSPolesLin}[2]{(t < #2 ? -40*log10(#2) : - 40*log10(t))} -\newcommand*{\MagCSPolesAsymp}{\MagCSPolesLin} -% \end{macrocode} -% Then, we have true, linear, and asymptotic phase plots for the canonical second order transfer function. -% \begin{macrocode} -\newcommand*{\PhCSPoles}[2]{((-atan2((2*(#1)*(#2)*t),(\n@pow{#2}{2} - - \n@pow{t}{2})))*\ph@scale)} -\newcommand*{\PhCSPolesLin}[2]{((t < (#2 / (\n@pow{10}{abs(#1)})) ? - 0 : - (t >= (#2 * (\n@pow{10}{abs(#1)})) ? - (#1>0 ? -pi : pi) : - (#1>0 ? (-pi*(log10(t*(\n@pow{10}{#1})/#2))/(2*#1)) : - (pi*(log10(t*(\n@pow{10}{abs(#1)})/#2))/(2*abs(#1))))))*\ph@scale)} -\newcommand*{\PhCSPolesAsymp}[2]{((#1>0?(t<#2?0:-pi):(t<#2?0:pi))*\ph@scale)} -% \end{macrocode} -% Plots of the inverse function $G(s)=s^2+2\zeta\omega_n s+\omega_n^2$ are defined to be negative of plots of poles. The |0-| is necessary due to a bug in |gnuplot| (fixed in version 5.4, patchlevel 3). -% \begin{macrocode} -\newcommand*{\MagCSZeros}{0-\MagCSPoles} -\newcommand*{\MagCSZerosLin}{0-\MagCSPolesLin} -\newcommand*{\MagCSZerosAsymp}{0-\MagCSPolesAsymp} -\newcommand*{\PhCSZeros}{0-\PhCSPoles} -\newcommand*{\PhCSZerosLin}{0-\PhCSPolesLin} -\newcommand*{\PhCSZerosAsymp}{0-\PhCSPolesAsymp} -% \end{macrocode} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \begin{macro}{\MagCSPolesPeak} -% \begin{macro}{\MagCSZerosPeak} -% These macros are used to add a resonant peak to linear and asymptotic plots of canonical second order poles and zeros. Since the plots are parametric, a separate |\draw| command is needed to add a vertical arrow. -% \begin{macrocode} -\newcommand*{\MagCSPolesPeak}[3][]{ - \draw[#1,->] (axis cs:{#3},{-40*log10(#3)}) -- - (axis cs:{#3},{-40*log10(#3)-20*log10(2*abs(#2))}) -} -\newcommand*{\MagCSZerosPeak}[3][]{ - \draw[#1,->] (axis cs:{#3},{40*log10(#3)}) -- - (axis cs:{#3},{40*log10(#3)+20*log10(2*abs(#2))}) -} -% \end{macrocode} -% \end{macro} -% \end{macro} -% \begin{macro}{\MagSOPoles} -% \begin{macro}{\MagSOPolesAsymp} -% \begin{macro}{\MagSOPolesLin} -% \begin{macro}{\PhSOPoles} -% \begin{macro}{\PhSOPolesAsymp} -% \begin{macro}{\PhSOPolesLin} -% \begin{macro}{\MagSOZeros} -% \begin{macro}{\MagSOZerosAsymp} -% \begin{macro}{\MagSOZerosLin} -% \begin{macro}{\PhSOZeros} -% \begin{macro}{\PhSOZerosAsymp} -% \begin{macro}{\PhSOZerosLin} -% Consider a general second order transfer function $G(s) = \frac{1}{s^2 + a s + b}$. We start with true, linear, and asymptotic magnitude plots for this transfer function. -% \begin{macrocode} -\newcommand*{\MagSOPoles}[2]{ - (-20*log10(sqrt(\n@pow{#2 - \n@pow{t}{2}}{2} + \n@pow{#1*t}{2})))} -\newcommand*{\MagSOPolesLin}[2]{ - (t < sqrt(abs(#2)) ? -20*log10(abs(#2)) : - 40*log10(t))} -\newcommand*{\MagSOPolesAsymp}{\MagSOPolesLin} -% \end{macrocode} -% Then, we have true, linear, and asymptotic phase plots for the general second order transfer function. -% \begin{macrocode} -\newcommand*{\PhSOPoles}[2]{((-atan2((#1)*t,((#2) - \n@pow{t}{2})))*\ph@scale)} -\newcommand*{\PhSOPolesLin}[2]{((#2>0 ? - \PhCSPolesLin{(#1/(2*sqrt(#2)))}{(sqrt(#2))} : - (#1>0 ? -pi : pi))*\ph@scale)} -\newcommand*{\PhSOPolesAsymp}[2]{((#2>0 ? - \PhCSPolesAsymp{(#1/(2*sqrt(#2)))}{(sqrt(#2))} : - (#1>0 ? -pi : pi))*\ph@scale)} -% \end{macrocode} -% Plots of the inverse function $G(s)=s^2+as+b$ are defined to be negative of plots of poles. The |0-| is necessary due to a bug in |gnuplot| (fixed in version 5.4, patchlevel 3). -% \begin{macrocode} -\newcommand*{\MagSOZeros}{0-\MagSOPoles} -\newcommand*{\MagSOZerosLin}{0-\MagSOPolesLin} -\newcommand*{\MagSOZerosAsymp}{0-\MagSOPolesAsymp} -\newcommand*{\PhSOZeros}{0-\PhSOPoles} -\newcommand*{\PhSOZerosLin}{0-\PhSOPolesLin} -\newcommand*{\PhSOZerosAsymp}{0-\PhSOPolesAsymp} -% \end{macrocode} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \end{macro} -% \begin{macro}{\MagSOPolesPeak} -% \begin{macro}{\MagSOZerosPeak} -% These macros are used to add a resonant peak to linear and asymptotic plots of general second order poles and zeros. Since the plots are parametric, a separate |\draw| command is needed to add a vertical arrow. -% \begin{macrocode} -\newcommand*{\MagSOPolesPeak}[3][]{ - \draw[#1,->] (axis cs:{sqrt(abs(#3))},{-20*log10(abs(#3))}) -- - (axis cs:{sqrt(abs(#3))},{-20*log10(abs(#3)) - - 20*log10(abs(#2/sqrt(abs(#3))))}); -} -\newcommand*{\MagSOZerosPeak}[3][]{ - \draw[#1,->] (axis cs:{sqrt(abs(#3))},{20*log10(abs(#3))}) -- - (axis cs:{sqrt(abs(#3))},{20*log10(abs(#3)) + - 20*log10(abs(#2/sqrt(abs(#3))))}); -} -% \end{macrocode} -% \end{macro} -% \end{macro} -% \subsection{Commands for Bode plots} -% \subsubsection{User macros} -% \begin{macro}{\BodeZPK} -% This macro takes lists of complex poles and zeros of the form |{re,im}|, and values of gain and delay as inputs and constructs parametric functions for the Bode magnitude and phase plots. This is done by adding together the parametric functions generated by the macros for individual zeros, poles, gain, and delay, described above. The parametric functions are then plotted in a |tikzpicture| environment using the |\addplot| macro. Unless the package is loaded with the option |pgf|, the parametric functions are evaluated using |gnuplot|. \changes{v1.0.1}{2021/10/29}{Pass arbitrary TikZ commands as options.} -% \begin{macrocode} -\newcommand{\BodeZPK}[4][approx/true]{ -% \end{macrocode} -% Most of the work is done by the |\parse@opt| and the |\build@ZPK@plot| macros, described in the 'Internal macros' section. The former is used to parse the optional arguments and the latter to extract poles, zeros, gain, and delay from the first mandatory argument and to generate macros |\func@mag| and |\func@ph| that hold the magnitude and phase parametric functions. The |\noexpand| macros below are needed to so that only the macro |\opt@group| is expanded. \changes{v1.0.3}{2021/11/03}{Added Tikz option}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively} -% \begin{macrocode} - \parse@opt{#1} - \gdef\func@mag{} - \gdef\func@ph{} - \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]} - \temp@cmd - \build@ZPK@plot{\func@mag}{\func@ph}{\opt@approx}{#2} - \edef\temp@cmd{\noexpand\begin{groupplot}[ - bode@style, - xmin=#3, - xmax=#4, - domain=#3*\freq@scale:#4*\freq@scale, - height=2.5cm, - xmode=log, - group style = {group size = 1 by 2,vertical sep=0.25cm}, - \opt@group - ]} - \temp@cmd -% \end{macrocode} -% To ensure frequency tick marks on magnitude and the phase plots are always aligned, we use the |groupplot| library. The |\noexpand| and |\unexpanded\expandafter| macros below are used to expand macros in the plot and group optional arguments. -% \begin{macrocode} - \edef\temp@mag@cmd{\noexpand\nextgroupplot [ylabel={Gain (dB)}, xmajorticks=false, \optmag@axes] - \noexpand\addplot [freq@filter, variable=t, thick, \optmag@plot]} - \edef\temp@ph@cmd{\noexpand\nextgroupplot [ph@y@label, freq@label, \optph@axes] - \noexpand\addplot [freq@filter, variable=t, thick, \optph@plot]} - \if@pgfarg - \temp@mag@cmd {\func@mag}; - \optmag@commands - \temp@ph@cmd {\func@ph}; - \optph@commands - \else -% \end{macrocode} -% In |gnuplot| mode, we increment the |gnuplot@id| counter before every plot to make sure that new and reusable |.gnuplot| and |.table| files are generated for every plot. We use |raw gnuplot| to make sure that the tables generated by |gnuplot| use the correct phase and frequency units as supplied by the user. -% \begin{macrocode} - \stepcounter{gnuplot@id} - \temp@mag@cmd gnuplot [raw gnuplot, gnuplot@prefix] - { set table $meta; - set dummy t; - set logscale x 10; - set xrange [#3*\freq@scale:#4*\freq@scale]; - set samples \pgfkeysvalueof{/pgfplots/samples}; - plot \func@mag; - set table "\bodeplot@prefix\arabic{gnuplot@id}.table"; - plot "$meta" using ($1/(\freq@scale)):($2); - }; - \optmag@commands - \stepcounter{gnuplot@id} - \temp@ph@cmd gnuplot [raw gnuplot, gnuplot@prefix] - { set table $meta; - set dummy t; - set logscale x 10; - set xrange [#3*\freq@scale:#4*\freq@scale]; - set samples \pgfkeysvalueof{/pgfplots/samples}; - plot \func@ph; - set table "\bodeplot@prefix\arabic{gnuplot@id}.table"; - plot "$meta" using ($1/(\freq@scale)):($2); - }; - \optph@commands - \fi - \end{groupplot} - \end{tikzpicture} -} -% \end{macrocode} -% \end{macro} -% \begin{macro}{\BodeTF} -% Implementation of this macro is very similar to the |\BodeZPK| macro above. The only difference is the lack of linear and asymptotic plots and slightly different parsing of the mandatory arguments. \changes{v1.0.3}{2021/11/03}{Added Tikz option} \changes{v1.1.0}{2022/07/06}{Fixed phase wrapping in gnuplot mode}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively} -% \begin{macrocode} -\newcommand{\BodeTF}[4][]{ - \parse@opt{#1} - \gdef\func@mag{} - \gdef\func@ph{} - \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]} - \temp@cmd - \build@TF@plot{\func@mag}{\func@ph}{#2} - \edef\temp@cmd{\noexpand\begin{groupplot}[ - bode@style, - xmin=#3, - xmax=#4, - domain=#3*\freq@scale:#4*\freq@scale, - height=2.5cm, - xmode=log, - group style = {group size = 1 by 2,vertical sep=0.25cm}, - \opt@group - ]} - \temp@cmd - \edef\temp@mag@cmd{\noexpand\nextgroupplot [ylabel={Gain (dB)}, xmajorticks=false, \optmag@axes] - \noexpand\addplot [freq@filter, variable=t, thick, \optmag@plot]} - \edef\temp@ph@cmd{\noexpand\nextgroupplot [ph@y@label, freq@label, \optph@axes] - \noexpand\addplot [freq@filter, variable=t, thick, \optph@plot]} - \if@pgfarg - \temp@mag@cmd {\func@mag}; - \optmag@commands - \temp@ph@cmd {\n@mod{\func@ph}{2*pi*\ph@scale}}; - \optph@commands - \else - \stepcounter{gnuplot@id} - \temp@mag@cmd gnuplot [raw gnuplot, gnuplot@prefix] - { set table $meta; - set dummy t; - set logscale x 10; - set xrange [#3*\freq@scale:#4*\freq@scale]; - set samples \pgfkeysvalueof{/pgfplots/samples}; - plot \func@mag; - set table "\bodeplot@prefix\arabic{gnuplot@id}.table"; - plot "$meta" using ($1/(\freq@scale)):($2); - }; - \optmag@commands - \stepcounter{gnuplot@id} - \temp@ph@cmd gnuplot [raw gnuplot, gnuplot@prefix] - { set table $meta; - set dummy t; - set logscale x 10; - set trange [#3*\freq@scale:#4*\freq@scale]; - set samples \pgfkeysvalueof{/pgfplots/samples}; - plot '+' using (t) : ((\func@ph)/(\ph@scale)) smooth unwrap; - set table "\bodeplot@prefix\arabic{gnuplot@id}.table"; - plot "$meta" using ($1/(\freq@scale)):($2*\ph@scale); - }; - \optph@commands - \fi - \end{groupplot} - \end{tikzpicture} -} -% \end{macrocode} -% \end{macro} -% \begin{macro}{\addBodeZPKPlots} -% This macro is designed to issues multiple |\addplot| macros for the same set of poles, zeros, gain, and delay. All of the work is done by the |\build@ZPK@plot| macro. \changes{v1.0.1}{2021/10/29}{Improved optional argument handling.}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively} -% \begin{macrocode} -\newcommand{\addBodeZPKPlots}[3][true/{}]{ - \foreach \approx/\opt in {#1} { - \gdef\plot@macro{} - \gdef\temp@macro{} - \ifnum\pdf@strcmp{#2}{phase}=0 - \build@ZPK@plot{\temp@macro}{\plot@macro}{\approx}{#3} - \else - \build@ZPK@plot{\plot@macro}{\temp@macro}{\approx}{#3} - \fi - \edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}} - \edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil} - \edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil} - \if@pgfarg - \edef\temp@cmd{\noexpand\addplot [freq@filter, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, thick, \opt]} - \temp@cmd {\plot@macro}; - \else - \stepcounter{gnuplot@id} - \edef\temp@cmd{\noexpand\addplot [variable=t, thick, \opt]} - \temp@cmd gnuplot [raw gnuplot, gnuplot@prefix] - { set table $meta; - set dummy t; - set logscale x 10; - set xrange [\domain@start*\freq@scale:\domain@end*\freq@scale]; - set samples \pgfkeysvalueof{/pgfplots/samples}; - plot \plot@macro; - set table "\bodeplot@prefix\arabic{gnuplot@id}.table"; - plot "$meta" using ($1/(\freq@scale)):($2); - }; - \fi - } -} -% \end{macrocode} -%\end{macro} -% \begin{macro}{\addBodeTFPlot} -% This macro is designed to issues a single |\addplot| macros for the set of coefficients and delay. All of the work is done by the |\build@TF@plot| macro. \changes{v1.1.0}{2022/07/06}{Fixed phase wrapping in gnuplot mode}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively} -% \begin{macrocode} -\newcommand{\addBodeTFPlot}[3][thick]{ - \gdef\plot@macro{} - \gdef\temp@macro{} - \ifnum\pdf@strcmp{#2}{phase}=0 - \build@TF@plot{\temp@macro}{\plot@macro}{#3} - \else - \build@TF@plot{\plot@macro}{\temp@macro}{#3} - \fi - \edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}} - \edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil} - \edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil} - \if@pgfarg - \ifnum\pdf@strcmp{#2}{phase}=0 - \addplot [freq@filter, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1]{\n@mod{\plot@macro}{2*pi}}; - \else - \addplot [freq@filter, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1]{\plot@macro}; - \fi - \else - \stepcounter{gnuplot@id} - \ifnum\pdf@strcmp{#2}{phase}=0 - \addplot [variable=t, #1] gnuplot [raw gnuplot, gnuplot@prefix] - { set table $meta; - set dummy t; - set logscale x 10; - set trange [\domain@start*\freq@scale:\domain@end*\freq@scale]; - set samples \pgfkeysvalueof{/pgfplots/samples}; - plot '+' using (t) : ((\plot@macro)/(\ph@scale)) smooth unwrap; - set table "\bodeplot@prefix\arabic{gnuplot@id}.table"; - plot "$meta" using ($1/(\freq@scale)):($2*\ph@scale); - }; - \else - \addplot [variable=t, #1] gnuplot [raw gnuplot, gnuplot@prefix] - { set table $meta; - set dummy t; - set logscale x 10; - set xrange [\domain@start*\freq@scale:\domain@end*\freq@scale]; - set samples \pgfkeysvalueof{/pgfplots/samples}; - plot \plot@macro; - set table "\bodeplot@prefix\arabic{gnuplot@id}.table"; - plot "$meta" using ($1/(\freq@scale)):($2); - }; - \fi - \fi -} -% \end{macrocode} -%\end{macro} -% \begin{macro}{\addBodeComponentPlot} -% This macro is designed to issue a single |\addplot| macro capable of plotting linear combinations of the basic components described in Section \ref{sec:BasicComponents}. The only work to do here is to handle the |pgf| package option.\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively} -% \begin{macrocode} -\newcommand{\addBodeComponentPlot}[2][thick]{ - \edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}} - \edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil} - \edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil} - \if@pgfarg - \addplot [freq@filter, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1] {#2}; - \else - \stepcounter{gnuplot@id} - \addplot [variable=t, #1] gnuplot [raw gnuplot, gnuplot@prefix] - { set table $meta; - set dummy t; - set logscale x 10; - set xrange [\domain@start*\freq@scale:\domain@end*\freq@scale]; - set samples \pgfkeysvalueof{/pgfplots/samples}; - plot #2; - set table "\bodeplot@prefix\arabic{gnuplot@id}.table"; - plot "$meta" using ($1/(\freq@scale)):($2); - }; - \fi -} -% \end{macrocode} -%\end{macro} -% \begin{environment}{BodePhPlot} -% An environment to host phase plot macros that pass parametric functions to |\addplot| macros. Uses the defaults specified in |bode@style| to create a shortcut that includes the |tikzpicture| and |semilogaxis| environments.\changes{v1.1.0}{2022/07/20}{Added separate environments for phase and magnitude plots}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively} -% \begin{macrocode} -\newenvironment{BodePhPlot}[3][]{ - \parse@env@opt{#1} - \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}] - \noexpand\begin{semilogxaxis}[ - ph@y@label, - freq@label, - bode@style, - xmin={#2}, - xmax={#3}, - domain=#2:#3, - height=2.5cm, - \unexpanded\expandafter{\opt@axes} - ] - } - \temp@cmd -}{ - \end{semilogxaxis} - \end{tikzpicture} -} -% \end{macrocode} -% \end{environment} -% \begin{environment}{BodeMagPlot} -% An environment to host magnitude plot macros that pass parametric functions to |\addplot| macros. Uses the defaults specified in |bode@style| to create a shortcut that includes the |tikzpicture| and |semilogaxis| environments.\changes{v1.1.0}{2022/07/20}{Added separate environments for phase and magnitude plots}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively} -% \begin{macrocode} -\newenvironment{BodeMagPlot}[3][]{ - \parse@env@opt{#1} - \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}] - \noexpand\begin{semilogxaxis}[ - bode@style, - freq@label, - xmin={#2}, - xmax={#3}, - domain=#2:#3, - height=2.5cm, - ylabel={Gain (dB)}, - \unexpanded\expandafter{\opt@axes} - ] - } - \temp@cmd -}{ - \end{semilogxaxis} - \end{tikzpicture} -} -% \end{macrocode} -% \end{environment} -% \begin{environment}{BodePlot} -% Same as |BodeMagPlot|. The |BodePlot| environment is deprecated as of v1.1.0, please use the |BodePhPlot| and |BodeMagPlot| environments instead.\changes{v1.0.3}{2021/11/03}{Added tikz option to environments}\changes{v1.1.0}{2022/02/20}{Deprecated BodePlot environment}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively} -% \begin{macrocode} -\newenvironment{BodePlot}[3][]{ - \parse@env@opt{#1} - \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}] - \noexpand\begin{semilogxaxis}[ - bode@style, - freq@label, - xmin={#2}, - xmax={#3}, - domain=#2:#3, - height=2.5cm, - \unexpanded\expandafter{\opt@axes} - ] - } - \temp@cmd -}{ - \end{semilogxaxis} - \end{tikzpicture} -} -% \end{macrocode} -% \end{environment} -% \subsubsection{Internal macros} -% \begin{macro}{\add@feature} -% This is an internal macro to add a basic component (pole, zero, gain, or delay), described using one of the macros in Section \ref{sec:BasicComponents} (input |#2|), to a parametric function stored in a global macro (input |#1|). The basic component value (input |#3|) is a complex number of the form |{re,im}|. If the imaginary part is missing, it is assumed to be zero. Implementation made possible by \href{https://tex.stackexchange.com/a/619637/110602}{this StackExchange answer}. -% \begin{macrocode} -\newcommand*{\add@feature}[3]{ - \ifcat$\detokenize\expandafter{#1}$ - \xdef#1{\unexpanded\expandafter{#1 0+#2}} - \else - \xdef#1{\unexpanded\expandafter{#1+#2}} - \fi - \foreach \y [count=\n] in #3 { - \xdef#1{\unexpanded\expandafter{#1}{\y}} - \xdef\Last@LoopValue{\n} - } - \ifnum\Last@LoopValue=1 - \xdef#1{\unexpanded\expandafter{#1}{0}} - \fi -} -% \end{macrocode} -%\end{macro} -% \begin{macro}{\build@ZPK@plot} -% This is an internal macro to build parametric Bode magnitude and phase plots by concatenating basic component (pole, zero, gain, or delay) macros (Section \ref{sec:BasicComponents}) to global magnitude and phase macros (inputs |#1| and |#2|). The |\add@feature| macro is used to do the concatenation. The basic component macros are inferred from a |feature/{values}| list, where |feature| is one of |z|,|p|,|k|, and |d|, for zeros, poles, gain, and delay, respectively, and |{values}| is a comma separated list of comma separated lists (complex numbers of the form |{re,im}|). If the imaginary part is missing, it is assumed to be zero. -% \begin{macrocode} -\newcommand{\build@ZPK@plot}[4]{ - \foreach \feature/\values in {#4} { - \ifnum\pdf@strcmp{\feature}{z}=0 - \foreach \z in \values { - \ifnum\pdf@strcmp{#3}{linear}=0 - \add@feature{#2}{\PhZeroLin}{\z} - \add@feature{#1}{\MagZeroLin}{\z} - \else - \ifnum\pdf@strcmp{#3}{asymptotic}=0 - \add@feature{#2}{\PhZeroAsymp}{\z} - \add@feature{#1}{\MagZeroAsymp}{\z} - \else - \add@feature{#2}{\PhZero}{\z} - \add@feature{#1}{\MagZero}{\z} - \fi - \fi - } - \fi - \ifnum\pdf@strcmp{\feature}{p}=0 - \foreach \p in \values { - \ifnum\pdf@strcmp{#3}{linear}=0 - \add@feature{#2}{\PhPoleLin}{\p} - \add@feature{#1}{\MagPoleLin}{\p} - \else - \ifnum\pdf@strcmp{#3}{asymptotic}=0 - \add@feature{#2}{\PhPoleAsymp}{\p} - \add@feature{#1}{\MagPoleAsymp}{\p} - \else - \add@feature{#2}{\PhPole}{\p} - \add@feature{#1}{\MagPole}{\p} - \fi - \fi - } - \fi - \ifnum\pdf@strcmp{\feature}{k}=0 - \ifnum\pdf@strcmp{#3}{linear}=0 - \add@feature{#2}{\PhKLin}{\values} - \add@feature{#1}{\MagKLin}{\values} - \else - \ifnum\pdf@strcmp{#3}{asymptotic}=0 - \add@feature{#2}{\PhKAsymp}{\values} - \add@feature{#1}{\MagKAsymp}{\values} - \else - \add@feature{#2}{\PhK}{\values} - \add@feature{#1}{\MagK}{\values} - \fi - \fi - \fi - \ifnum\pdf@strcmp{\feature}{d}=0 - \ifnum\pdf@strcmp{#3}{linear}=0 - \PackageError {bodeplot} {Linear approximation for pure delays is not - supported.} {Plot the true Bode plot using `true' instead of `linear'.} - \else - \ifnum\pdf@strcmp{#3}{asymptotic}=0 - \PackageError {bodeplot} {Asymptotic approximation for pure delays is not - supported.} {Plot the true Bode plot using `true' instead of `asymptotic'.} - \else - \ifdim\values pt < 0pt - \PackageError {bodeplot} {Delay needs to be a positive number.} - \fi - \add@feature{#2}{\PhDel}{\values} - \add@feature{#1}{\MagDel}{\values} - \fi - \fi - \fi - } -} -% \end{macrocode} -%\end{macro} -% \begin{macro}{\build@TF@plot} -% This is an internal macro to build parametric Bode magnitude and phase functions by computing the magnitude and the phase given numerator and denominator coefficients and delay (input |#3|). The functions are assigned to user-supplied global magnitude and phase macros (inputs |#1| and |#2|). \changes{v1.0.8}{2022/07/05}{Included phase due to delay in wrapping.}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively} -% \begin{macrocode} -\newcommand{\build@TF@plot}[3]{ - \gdef\num@real{0} - \gdef\num@im{0} - \gdef\den@real{0} - \gdef\den@im{0} - \gdef\loop@delay{0} - \foreach \feature/\values in {#3} { - \ifnum\pdf@strcmp{\feature}{num}=0 - \foreach \numcoeff [count=\numpow] in \values { - \xdef\num@degree{\numpow} - } - \foreach \numcoeff [count=\numpow] in \values { - \pgfmathtruncatemacro{\currentdegree}{\num@degree-\numpow} - \ifnum\currentdegree = 0 - \xdef\num@real{\num@real+\numcoeff} - \else - \ifodd\currentdegree - \xdef\num@im{\num@im+(\numcoeff*(\n@pow{-1}{(\currentdegree-1)/2})*% - (\n@pow{t}{\currentdegree}))} - \else - \xdef\num@real{\num@real+(\numcoeff*(\n@pow{-1}{(\currentdegree)/2})*% - (\n@pow{t}{\currentdegree}))} - \fi - \fi - } - \fi - \ifnum\pdf@strcmp{\feature}{den}=0 - \foreach \dencoeff [count=\denpow] in \values { - \xdef\den@degree{\denpow} - } - \foreach \dencoeff [count=\denpow] in \values { - \pgfmathtruncatemacro{\currentdegree}{\den@degree-\denpow} - \ifnum\currentdegree = 0 - \xdef\den@real{\den@real+\dencoeff} - \else - \ifodd\currentdegree - \xdef\den@im{\den@im+(\dencoeff*(\n@pow{-1}{(\currentdegree-1)/2})*% - (\n@pow{t}{\currentdegree}))} - \else - \xdef\den@real{\den@real+(\dencoeff*(\n@pow{-1}{(\currentdegree)/2})*% - (\n@pow{t}{\currentdegree}))} - \fi - \fi + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + bodeplot/bodeplot.dtx at main · rlkamalapurkar/bodeplot + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Skip to content + + + + + + + + + + + + + + +
+ +
+ + + + + + + +
+ + + + + +
+ + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +
+ +
+ + + + rlkamalapurkar  /   + bodeplot  /   + +
+
+ + + +
+ + +
+
+ Clear Command Palette +
+
+ + + +
+
+ Tip: + Type # to search pull requests +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type # to search issues +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type # to search discussions +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type ! to search projects +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type @ to search teams +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type @ to search people and organizations +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type > to activate command mode +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Go to your accessibility settings to change your keyboard shortcuts +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type author:@me to search your content +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type is:pr to filter to pull requests +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type is:issue to filter to issues +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type is:project to filter to projects +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type is:open to filter to open content +
+
+ Type ? for help and tips +
+
+
+ +
+ +
+
+ We’ve encountered an error and some results aren't available at this time. Type a new search or try again later. +
+
+ + No results matched your search + + + + + + + + + + +
+ + + + + Search for issues and pull requests + + # + + + + Search for issues, pull requests, discussions, and projects + + # + + + + Search for organizations, repositories, and users + + @ + + + + Search for projects + + ! + + + + Search for files + + / + + + + Activate command mode + + > + + + + Search your issues, pull requests, and discussions + + # author:@me + + + + Search your issues, pull requests, and discussions + + # author:@me + + + + Filter to pull requests + + # is:pr + + + + Filter to issues + + # is:issue + + + + Filter to discussions + + # is:discussion + + + + Filter to projects + + # is:project + + + + Filter to open issues, pull requests, and discussions + + # is:open + + + + + + + + + + + + + + + + +
+
+
+ +
+ + + + + + + + + + +
+ + +
+
+
+ + + + + + + + + + +
+ +
+ +
+ +
+ + + + / + + bodeplot + + + Public +
+ + +
+ +
    + +
  • +
    +
    +
    +
  • + + +
  • + +
    + + + + + Unwatch + + + + + 1 + + + +
    +
    +

    Notifications

    + +
    + +
    +
    + + + + + + + + +
    + + +
    + + + + + Get push notifications on iOS or Android. + +
    +
    +
    +
    + + + + +
    +
    +
    + + + +
  • + +
  • +
    + Fork + 1 + +
    + + + +
    + +
    +
    + + + + + + + +
    + +
    +
    +
    +
    +
  • + +
  • + + +
    +
    +
    + + +
    + + + +
    + +
    +
    + + + + + + + +
    + +
    +
    +
    +
    +
    +
    +
    + +
    + + + +
    + +
    +
    + + + + + + + +
    + +
    +
    +
    +
    +
    +
  • + + + +
+ +
+ +
+
+ + + + + + +
+ + + + +
+ Open in github.dev + Open in a new github.dev tab + + + + + + +
+ + +
+ + + + + + + + +Permalink + +
+ +
+
+ + + main + + + + +
+
+
+ Switch branches/tags + +
+ + + +
+ +
+ +
+ + +
+ +
+ + + + + + + + + + + + + + + + + +
+ + +
+
+
+
+ +
+ +
+ + +
+ +
+
+
+

Name already in use

+
+
+ +
+
+
+
+ +
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch? +
+ +
+
+ + +
+
+ + + + Go to file + +
+ + + + +
+
+
+ + + + + + + + + +
+ +
+
+ + + +
+ + + + + + +
+
+ + Latest commit + 3746d16 + Oct 30, 2022 + + + + + + History + + +
+
+ +
+ +
+
+ + + 1 + + contributor + + +
+ +

+ Users who have contributed to this file +

+
+ + + + + + +
+
+
+
+ + + + + + + + + + + + + +
+ +
+ + +
+ + 2120 lines (2091 sloc) + + 95.6 KB +
+ +
+ + + + +
+ +
+
+
+
+ +
+ +
+
+
+ + + +
+ + + + + + + + + +
+ + +
+ +
+
+ +
+ +
+
+ + + +
+ + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
% \iffalse meta-comment
%
% Copyright (C) 2021 by Rushikesh Kamalapurkar <rlkamalapurkar@gmail.com>
% -----------------------------------------------------------
%
% This file may be distributed and/or modified under the conditions of
% the LaTeX Project Public License, either version 1.3c of this license
% or (at your option) any later version. The latest version of this
% license is in:
%
% http://www.latex-project.org/lppl.txt
%
% and version 1.3c or later is part of all distributions of LaTeX
% version 2006/05/20 or later.
%
% \fi
%
% \iffalse
%<package>\NeedsTeXFormat{LaTeX2e}[2006/05/20]
%<package>\ProvidesPackage{bodeplot}
%<package>\RequirePackage{pdftexcmds}
%<package>\RequirePackage{ifplatform}
%<package>\RequirePackage{environ}
%<package>\RequirePackage{pgfplots}
%<package> \pgfplotsset{compat=1.18}
%<package> \usepgfplotslibrary{groupplots}
%
%<*driver>
\documentclass{ltxdoc}
\usepackage{cprotect}
\usepackage[declutter]{bodeplot}
\usepackage[colorlinks]{hyperref}
\usepackage{iftex}
\iftutex % LuaTeX, XeTeX
\usepackage{fontspec}
\setmonofont{DejaVuSansMono}[Scale=MatchUppercase]
\else % old engines
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage[scaled]{DejaVuSansMono}
\fi
\usepackage{showexpl}
\lstset{
explpreset={numbers=none},
language=[LaTeX]Tex,
basicstyle=\ttfamily\tiny,
commentstyle=\itshape\ttfamily\tiny,
showspaces=false,
showstringspaces=false,
breaklines=true,
backgroundcolor=\color{white!90!black},
breakautoindent=true,
captionpos=t
}
\usepackage{geometry}
\geometry{lmargin=2in,rmargin=1in,tmargin=1in,bmargin=1in}
\usetikzlibrary{decorations.markings,arrows.meta,spy,backgrounds}
\usepackage[nottoc]{tocbibind}
\sloppy
\EnableCrossrefs
\CodelineIndex
\RecordChanges
\begin{document}
\DocInput{bodeplot.dtx}
\PrintChanges
\PrintIndex
\end{document}
%</driver>
% \fi
%
% \CheckSum{1726}
%
% \changes{v1.0}{2021/10/25}{Initial release}
% \changes{v1.0.4}{2021/11/05}{Fixed unintended optional argument macro expansion}
% \changes{v1.0.6}{2021/11/18}{Fixed issue \#3}
% \changes{v1.0.7}{2021/12/02}{Removed unnecessary semicolons}
% \changes{v1.0.7}{2022/01/18}{Updated documentation}
% \changes{v1.0.8}{2022/07/06}{Added a new class option `declutter'}
% \changes{v1.1.0}{2022/07/06}{Fixed phase wrapping in gnuplot mode}
% \changes{v1.1.1}{2022/07/31}{Enable Hz and rad units}
%
% \GetFileInfo{bodeplot.sty}
% \DoNotIndex{\newcommand,\xdef,\gdef,\def,\edef,\addplot,\approx,\arabic,\opt,\typ,\obj,\else,\if@pgfarg,\if@Hzarg,\if@radarg,\if@declutterarg,\fi,\begin,\end,\feature,\footnotesize,\draw,\detokenize,\DeclareOption,\foreach,\ifdim,\ifodd,\Im,\Re,\let,\newif,\nextgroupplot,\noexpand,\expandafter,\unexpanded,\PackageError,\PackageWarning,\relax,\RequirePackage,\tikzset,\pgfmathsetmacro,\pgfmathtruncatemacro,\ProcessOptions}
%
% \title{The \textsf{bodeplot} package\\version 1.1.2}
% \author{Rushikesh Kamalapurkar \\ \texttt{rlkamalapurkar@gmail.com}}
%
% \maketitle
% \tableofcontents
% \clearpage
% \section{Introduction}
%
% Generate Bode, Nyquist, and Nichols plots for transfer functions in the canonical (TF) form \begin{equation}G(s) = e^{-Ts}\frac{b_ms^m+\cdots+b_1s+b_0}{a_ns^n+\cdots+a_1s+a_0}\label{eq:TF}\end{equation} and the zero-pole-gain (ZPK) form \begin{equation}G(s) = Ke^{-Ts}\frac{(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)}.\label{eq:ZPK}\end{equation} In the equations above, $b_m,\cdots,b_0$ and $a_n,\cdots,a_0$ are real coefficients, $T\geq 0$ is the loop delay, $z_1,\cdots,z_m$ and $p_1,\cdots,p_n$ are complex zeros and poles of the transfer function, respectively, and $K\in \Re$ is the loop gain.
%
% For transfer functions in the ZPK format in (\ref{eq:ZPK}) \emph{with zero delay}, this package also supports linear and asymptotic approximation of Bode plots.
%
% By default, all phase plots use degrees as units. Use the |rad| package option or the optional argument |tikz/{phase unit=rad}| to generate plots in radians. The |phase unit| key accepts either |rad| or |deg| as inputs and needs to be added to the |tikzpicture| environment that contains the plots.
%
% By default, frequency inputs and outputs are in radians per second. Use the |Hz| package option or the optional argument |tikz/{frequency unit=Hz}| to generate plots in hertz. The |frequency unit| key accepts either |rad| or |Hz| as inputs and needs to be added to the |tikzpicture| environment that contains the plots.
% \subsection{External Dependencies}
% By default, the package uses |gnuplot| to do all the computations. If |gnuplot| is not available, the |pgf| package option can be used to do the calculations using the native |pgf| math engine. Compilation using the |pgf| math engine is typically slower, but the end result should be the identical (other than phase wrapping in the TF form, see limitations below).
%\subsection{Directory Structure}
% Since version 1.0.8, the |bodeplot| package places all |gnuplot| temporary files in the working directory. The package option |declutter| restores the original behavior where the temporary files are placed in a folder called |gnuplot|.
% \subsection{Limitations}
% \begin{itemize}
% \item In |pgf| mode, Bode phase plots and Nichols charts in TF form wrap angles so that they are always between 0 and 360$^\circ$ or 0 and $2\pi$ radian. As such, these plots will show phase wrapping discontinuities. Since v1.1.1, in |gnuplot| mode, the package uses the |smooth unwrap| filter to correct wrapping discontinuities. As of now, I have not found a way to do this in |pgf| mode, any merge requests or ideas you may have are welcome!
% \item Use of the |declutter| option with other directory management tools such as a |tikzexternalize| prefix is not recommended.
% \end{itemize}
% \clearpage
% \section{TL;DR}
% All Bode plots in this section are for the transfer function (with and without a transport delay)
% \begin{equation}
% G(s) = 10\frac{s(s+0.1+0.5\mathrm{i})(s+0.1-0.5\mathrm{i})}{(s+0.5+10\mathrm{i})(s+0.5-10\mathrm{i})} = \frac{s(10s^2+2s+2.6)}{(s^2+s+100.25)}.
% \end{equation}
% \iffalse
%<*ignore>
% \fi
+
\hrulefill
+
{\centering Bode plot in ZPK format
\begin{LTXexample}[pos=l,hsep=20pt,width=0.5\textwidth]
\BodeZPK{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/10%
}
{0.01}
{100}
\end{LTXexample}
+
\hrulefill
+
Same Bode plot over the same frequency range but supplied in Hz, in TF format with arrow decoration, transport delay, unit, and color customization (the phase plot may show wrapping if the |pgf| package option is used)
\begin{LTXexample}[pos=r,width=0.5\textwidth]
\BodeTF[%
samples=1000,
plot/mag/{blue,thick},
plot/ph/{green,thick},
tikz/{%
>=latex,
phase unit=rad,
frequency unit=Hz%
},
commands/mag/{
\draw[->](axis cs:0.1,40) -- (axis cs:{10/(2*pi)},60);
\node at (axis cs: 0.08,30) {\tiny Resonant Peak};
}%
]
{%
num/{10,2,2.6,0},
den/{1,1,100.25}%
}
{0.01/(2*pi)}
{100/(2*pi)}
\end{LTXexample}
+
\hrulefill
\clearpage
\hrulefill
+
Linear approximation with customization
\begin{LTXexample}[pos=l,hsep=20pt,width=0.5\textwidth]
\BodeZPK[%
plot/mag/{red,thick},
plot/ph/{blue,thick},
axes/mag/{ytick distance=40},
axes/ph/{ytick distance=90},
approx/linear%
]{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/10%
}
{0.01}
{100}
\end{LTXexample}
+
\hrulefill
+
Plot with delay and customization
\begin{LTXexample}[pos=r,hsep=20pt,width=0.5\textwidth]
\BodeZPK[%
plot/mag/{blue,thick},
plot/ph/{green,thick},
axes/mag/ytick distance=40,
axes/ph/ytick distance=90%
]{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/10,
d/0.01%
}
{0.01}
{100}
\end{LTXexample}
+
\hrulefill
\clearpage
\hrulefill
+
Individual gain and phase plots with more customization
+
\begin{minipage}[t]{0.45\textwidth}
\begin{LTXexample}[pos=t,width=\columnwidth]
\begin{BodeMagPlot}[%
axes/{height=2cm,
width=4cm}
]
{0.01}
{100}
\addBodeZPKPlots[%
true/{black,thick},
linear/{red,dashed,thick},
asymptotic/{blue,dotted,thick}%
]
{magnitude}
{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/10%
}
\end{BodeMagPlot}
\end{LTXexample}
\end{minipage}\hfill
\begin{minipage}[t]{0.45\textwidth}
\begin{LTXexample}[pos=t,width=\columnwidth]
\begin{BodePhPlot}[%
height=2cm,
width=4cm,
ytick distance=90
]
{0.01}
{100}
\addBodeZPKPlots[%
true/{black,thick},
linear/{red,dashed,thick},
asymptotic/{blue,dotted,thick}%
]
{phase}
{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/10%
}
\end{BodePhPlot}
\end{LTXexample}
\end{minipage}
+
\hrulefill
+
Nichols chart
\begin{LTXexample}[pos=l,hsep=20pt,width=0.5\textwidth]
\NicholsZPK[samples=1000]
{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/10,
d/0.01%
}
{0.001}
{500}
\end{LTXexample}
+
\hrulefill
+
Same Nichols chart in TF format (may show wrapping in |pgf| mode)
\begin{LTXexample}[pos=r,hsep=20pt,width=0.5\textwidth]
\NicholsTF[samples=1000]
{%
num/{10,2,2.6,0},
den/{1,1,100.25},
d/0.01%
}
{0.001}
{500}
\end{LTXexample}
+
\hrulefill
\clearpage
\hrulefill
+
Multiple Nichols charts with customization
\begin{LTXexample}[pos=l,hsep=20pt,width=0.5\textwidth]
\begin{NicholsChart}[%
ytick distance=20,
xtick distance=30
]
{0.001}
{100}
\addNicholsZPKChart [red,samples=1000] {%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/10%
}
\addNicholsZPKChart [blue,samples=1000] {%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/5%
}
\end{NicholsChart}
\end{LTXexample}
+
\hrulefill
+
Nyquist plot
\begin{LTXexample}[pos=r,hsep=20pt,width=0.5\textwidth]
\NyquistZPK[plot/{red,thick,samples=1000}]
{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/10%
}
{-30}
{30}
\end{LTXexample}
+
\hrulefill
+
Nyquist plot in TF format with arrows
\begin{LTXexample}[pos=l,width=0.5\textwidth]
\NyquistTF[%
plot/{%
samples=1000,
postaction=decorate,
decoration={%
markings,
mark=between positions 0.1 and 0.9 step 5em with {%
\arrow{Stealth [length=2mm, blue]}
}
}
}%
]
{%
num/{10,2,2.6,0},
den/{1,1,100.25}%
}
{-30}
{30}
\end{LTXexample}
+
\hrulefill
\clearpage
\hrulefill
+
Multiple Nyquist plots with customization
\begin{LTXexample}[pos=r,hsep=20pt,width=0.5\textwidth]
\begin{NyquistPlot}{-30}{30}
\addNyquistZPKPlot [red,samples=1000] {%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/10%
}
\addNyquistZPKPlot [blue,samples=1000] {%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/5%
}
\end{NyquistPlot}
\end{LTXexample}
+
\hrulefill
+
Nyquist plots with additional commands, using two different macros
+
\begin{minipage}[t]{0.48\textwidth}
\begin{LTXexample}[pos=t,width=\columnwidth]
\begin{NyquistPlot}[%
tikz/{
spy using outlines={%
circle,
magnification=3,
connect spies,
size=2cm
}
}%
]
{-30}{30}
\addNyquistZPKPlot [blue,samples=1000] {%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/0.5%
}
\coordinate (spyon) at (axis cs:0,0);
\coordinate (spyat) at (axis cs:-22,5);
\spy [green] on (spyon) in
node [fill=white] at (spyat);
\end{NyquistPlot}
\end{LTXexample}
\end{minipage}\hfill
\begin{minipage}[t]{0.48\textwidth}
\begin{LTXexample}[pos=t,width=\columnwidth]
\NyquistZPK[%
plot/{blue,samples=1000},
tikz/{
spy using outlines={%
circle,
magnification=3,
connect spies,
size=2cm
}
},
commands/{
\coordinate (spyon) at (axis cs:0,0);
\coordinate (spyat) at (axis cs:-22,5);
\spy [green] on (spyon) in
node [fill=white] at (spyat);
}%
]
{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/0.5%
}
{-30}
{30}
\end{LTXexample}
\end{minipage}}
+
\hrulefill
\clearpage
+
% \iffalse
%</ignore>
% \fi
%
% \section{Usage}
% \noindent In all the macros described here, the frequency limits supplied by the user are assumed to be in |rad/s| unless either the |Hz| package option is used or the optional argument |tikz/{frequency unit=Hz}| is supplied to the |tikzpicture| environment. All phase plots are getenrated in degrees unless either the |rad| package option is used or the optional argument |tikz/{frequency unit=rad}| is supplied to the |tikzpicture| environment.
%
% \subsection{Bode plots}
% \DescribeMacro{\BodeZPK}
% |\BodeZPK| \oarg{obj1/typ1/\marg{opt1},obj2/typ2/\marg{opt2},...}\\
% \hspace*{2em}\marg{z/\marg{zeros},p/\marg{poles},k/\marg{gain},d/\marg{delay}}\\
% \hspace*{2em}\marg{min-freq}\marg{max-freq}
%
% \noindent Plots the Bode plot of a transfer function given in ZPK format using the |groupplot| environment. The three mandatory arguments include: (1) a list of tuples, comprised of the zeros, the poles, the gain, and the transport delay of the transfer function, (2) the lower end of the frequency range for the $x-$axis, and (3) the higher end of the frequency range for the $x-$axis. The zeros and the poles are complex numbers, entered as a comma-separated list of comma-separated lists, of the form |{{real part 1,imaginary part 1},| |{real part 2,imaginary part 2},...}|. If the imaginary part is not provided, it is assumed to be zero.
%
% The optional argument is comprised of a comma separated list of tuples, either |obj/typ/{opt}|, or |obj/{opt}|, or just |{opt}|. Each tuple passes options to different |pgfplots| macros that generate the group, the axes, and the plots according to:
% \begin{itemize}
% \item Tuples of the form |obj/typ/{opt}|:
% \begin{itemize}
% \item |plot/typ/{opt}|: modify plot properties by adding options |{opt}| to the |\addplot| macro for the magnitude plot if |typ| is |mag| and the phase plot if |typ| is |ph|.
% \item |axes/typ/{opt}|: modify axis properties by adding options |{opt}| to the |\nextgroupplot| macro for the magnitude plot if |typ| is |mag| and the phase plot if |typ| is |ph|.
% \item |commands/typ/{opt}|: add any valid TikZ commands (including the the parametric function generator macros in this package, such as |\addBodeZPKPlots|, |\addBodeTFPlot|, and |\addBodeComponentPlot|) to the magnitude plot if |typ| is |mag| and the phase plot if |typ| is |ph|. The commands passed to |opt| need to be valid TikZ commands, separated by semicolons as usual. For example, a TikZ command is used in the description of the |\BodeTF| macro below to mark the gain crossover frequency on the Bode Magnitude plot.
% \end{itemize}
% \item Tuples of the form |obj/{opt}|:
% \begin{itemize}
% \item |plot/{opt}|: adds options |{opt}| to |\addplot| macros for both the magnitude and the phase plots.
% \item |axes/{opt}|: adds options |{opt}| to |\nextgroupplot| macros for both the magnitude and the phase plots.
% \item |group/{opt}|: adds options |{opt}| to the |groupplot| environment.
% \item |tikz/{opt}|: adds options |{opt}| to the |tikzpicture| environment.
% \item |approx/linear|: plots linear approximation.
% \item |approx/asymptotic|: plots asymptotic approximation.
% \end{itemize}
% \item Tuples of the form |{opt}| add all of the supplied options to |\addplot| macros for both the magnitude and the phase plots.
% \end{itemize}
% The options |{opt}| can be any |key=value| options that are supported by the |pgfplots| macros they are added to.
+
% For example, given a transfer function \begin{equation}G(s) = 10\frac{s(s+0.1+0.5\mathrm{i})(s+0.1-0.5\mathrm{i})}{(s+0.5+10\mathrm{i})(s+0.5-10\mathrm{i})},\label{eq:ZPKExample}\end{equation} its Bode plot over the frequency range $[0.01,100]$ can be generated using\\
% |\BodeZPK [blue,thick]|\\
% | {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}|\\
% | {0.01}{100}|\\
% which generates the plot in Figure \ref{simpleBode}. If a delay is not specified, it is assumed to be zero. If a gain is not specified, it is assumed to be 1. By default, each of the axes, excluding ticks and labels, are 5cm wide and 2.5cm high. The width and the height, along with other properties of the plots, the axes, and the group can be customized using native |pgf| keys as shown in the example below.
%
% \begin{figure}
% \begin{center}
% \BodeZPK[blue,thick]{z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}{0.01}{100}
% \cprotect\caption{\label{simpleBode}Output of the default |\BodeZPK| macro.}
% \end{center}
% \end{figure}
% As demonstrated in this example, if a single comma-separated list of options is passed, it applies to both the magnitude and the phase plots. Without any optional arguments, we gets a thick black Bode plot.
%
% A linear approximation of the Bode plot with customization of the plots, the axes, and the group can be generated using\\
% |\BodeZPK[plot/mag/{red,thick},plot/ph/{blue,thick},|\\
% | axes/mag/{ytick distance=40,xmajorticks=true,|\\
% | xlabel={Frequency (rad/s)}},axes/ph/{ytick distance=90},|\\
% | group/{group style={group size=2 by 1,horizontal sep=2cm,|\\
% | width=4cm,height=2cm}},approx/linear]|\\
% | {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}|\\
% | {0.01}{100}|\\
% which generates the plot in Figure \ref{customBode}.
%
% \begin{figure}
% \begin{center}
% \BodeZPK[plot/mag/{red,thick},plot/ph/{blue,thick},axes/mag/{ytick distance=40,xmajorticks=true,xlabel={Frequency (rad/s)}},axes/ph/{ytick distance=90},approx/linear,group/{group style={group size = 2 by 1,horizontal sep=2cm},width=4cm,height=2cm}] {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},g/10} {0.01} {100}
% \cprotect\caption{\label{customBode}Customization of the default |\BodeZPK| macro.}
% \end{center}
% \end{figure}
%
% \DescribeMacro{\BodeTF}
% |\BodeTF| \oarg{obj1/typ1/\marg{opt1},obj2/typ2/\marg{opt2},...}\\
% \hspace*{2em}\marg{num/\marg{coeffs},den/\marg{coeffs},d/\marg{delay}}\\
% \hspace*{2em}\marg{min-freq}\marg{max-freq} \rmfamily
%
% \noindent Plots the Bode plot of a transfer function given in TF format. The three mandatory arguments include: (1) a list of tuples comprised of the coefficients in the numerator and the denominator of the transfer function and the transport delay, (2) the lower end of the frequency range for the $x-$ axis, and (3) the higher end of the frequency range for the $x-$axis. The coefficients are entered as a comma-separated list, in order from the highest degree of $s$ to the lowest, with zeros for missing degrees. The optional arguments are the same as |\BodeZPK|, except that linear/asymptotic approximation is not supported, so |approx/...| is ignored.
%
% For example, given the same transfer function as (\ref{eq:ZPKExample}) in TF form and with a small transport delay, \begin{equation}G(s) = e^{-0.01s}\frac{s(10s^2+2s+2.6)}{(s^2+s+100.25)},\label{eq:TFExample}\end{equation} its Bode plot over the frequency range $[0.01,100]$ can be generated using\\
% |\BodeTF[commands/mag/{\node at (axis cs: 2.1,0) |\\
% | [circle,fill,inner sep=0.05cm,label=below:{$\omega_{gc}$}]{};}]|\\
% | {num/{10,2,2.6,0},den/{1,1,100.25},d/0.01}|\\
% | {0.01}{100}|\\
% which generates the plot in Figure \ref{simpleBodeTF}. Note the $0$ added to the numerator coefficients to account for the fact that the numerator does not have a constant term in it. Note the semicolon after the TikZ command passed to the |\commands| option.
%
% \begin{figure}
% \begin{center}
% \BodeTF[commands/mag/{\node at (axis cs: 2.1,0) [circle,fill,inner sep=0.05cm,label=below:{$\omega_{gc}$}] {};}]{num/{10,2,2.6,0},den/{1,1,100.25},d/0.01}{0.01}{100}
% \cprotect\caption{\label{simpleBodeTF}Output of the |\BodeTF| macro with an optional TikZ command used to mark the gain crossover frequency.}
% \end{center}
% \end{figure}
%
% \DescribeEnv{BodeMagPlot}
% |\begin{BodeMagPlot}|\oarg{obj1/\marg{opt1},obj2/\marg{opt2},...}\\
% \hspace*{3em}\marg{min-frequency}\marg{max-frequency}\\
% \hspace*{2em}|\addBode...|\\
% \hspace*{1.5em}|\end{BodeMagPlot}|\\
% The |BodeMagPlot| environment works in conjunction with the parametric function generator macros |\addBodeZPKPlots|, |\addBodeTFPlot|, and |\addBodeComponentPlot|, intended to be used for magnitude plots. The optional argument is comprised of a comma separated list of tuples, either |obj/{opt}| or just |{opt}|. Each tuple passes options to different |pgfplots| macros that generate the axes and the plots according to:
% \begin{itemize}
% \item Tuples of the form |obj/{opt}|:
% \begin{itemize}
% \item |tikz/{opt}|: modify picture properties by adding options |{opt}| to the |tikzpicture| environment.
% \item |axes/{opt}|: modify axis properties by adding options |{opt}| to the |semilogaxis| environment.
% \item |commands/{opt}|: add any valid TikZ commands inside |semilogaxis| environment. The commands passed to |opt| need to be valid TikZ commands, separated by semicolons as usual.
% \end{itemize}
% \item Tuples of the form |{opt}| are passed directly to the |semilogaxis| environment.
% \end{itemize}
% The frequency limits are translated to the x-axis limits and the domain of the |semilogaxis| environment. Example usage in the description of |\addBodeZPKPlots|, |\addBodeTFPlot|, and |\addBodeComponentPlot|.
%
%\DescribeEnv{BodePhPlot}
% |\begin{BodePhPlot}|\oarg{obj1/\marg{opt1},obj2/\marg{opt2},...}\\
% \hspace*{3em}\marg{min-frequency}\marg{max-frequency}\\
% \hspace*{2em}|\addBode...|\\
% \hspace*{1.5em}|\end{BodePhPlot}|\\
% Intended to be used for phase plots, otherwise same as the |BodeMagPlot| environment
%
% \DescribeMacro{\addBodeZPKPlots}
% |\addBodeZPKPlots| \oarg{approx1/\marg{opt1},approx2/\marg{opt2},...}\\
% \hspace*{2em}\marg{plot-type}\\
% \hspace*{2em}\marg{z/\marg{zeros},p/\marg{poles},k/\marg{gain},d/\marg{delay}}
%
% \noindent Generates the appropriate parametric functions and supplies them to multiple |\addplot| macros, one for each |approx/{opt}| pair in the optional argument. If no optional argument is supplied, then a single |\addplot| command corresponding to a thick true Bode plot is generated. If an optional argument is supplied, it needs to be one of |true/{opt}|, |linear/{opt}|, or |asymptotic/{opt}|. This macro can be used inside any |semilogaxis| environment as long as a domain for the x-axis is supplied through either the |approx/{opt}| interface or directly in the optional argument of the |semilogaxis| environment. Use with the |BodePlot| environment supplied with this package is recommended. The second mandatory argument, |plot-type| is either |magnitude| or |phase|. If it is not equal to |phase|, it is assumed to be |magnitude|. The last mandatory argument is the same as |\BodeZPK|.
%
% For example, given the transfer function in (\ref{eq:ZPKExample}), its linear, asymptotic, and true Bode plots can be superimposed using
%\begin{verbatim}
%\begin{BodeMagPlot}[height=2cm,width=4cm] {0.01} {100}
% \addBodeZPKPlots[%
% true/{black,thick},
% linear/{red,dashed,thick},
% asymptotic/{blue,dotted,thick}]
% {magnitude}
% {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}
%\end{BodeMagPlot}
%
%\begin{BodePhPlot}[height=2cm, width=4cm, ytick distance=90] {0.01} {100}
% \addBodeZPKPlots[%
% true/{black,thick},
% linear/{red,dashed,thick},
% asymptotic/{blue,dotted,thick}]
% {phase}
% {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}
%\end{BodePhPlot}
%\end{verbatim}
% \begin{figure}
% \begin{center}
% \begin{BodeMagPlot}[height=2cm,width=4cm]{0.01}{100}
% \addBodeZPKPlots[%
% true/{black,thick},
% linear/{red,dashed,thick},
% asymptotic/{blue,dotted,thick}]
% {magnitude}
% {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}
% \end{BodeMagPlot}
% \begin{BodePhPlot}[height=2cm,width=4cm,ytick distance=90]{0.01}{100}
% \addBodeZPKPlots[%
% true/{black,thick},
% linear/{red,dashed,thick},
% asymptotic/{blue,dotted,thick}]
% {phase}
% {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}
% \end{BodePhPlot}
% \end{center}
% \caption{\label{multiBodeZPK}Superimposed approximate and true Bode plots using the \texttt{BodeMagPlot} and \texttt{BodePhPlot} environments and the \texttt{\textbackslash addBodeZPKPlots} macro.}
% \end{figure}
% which generates the plot in Figure \ref{multiBodeZPK}.
%
% \DescribeMacro{\addBodeTFPlot}
% |\addBodeTFPlot|\oarg{plot-options}\\
% \hspace*{2em}\marg{plot-type}\\
% \hspace*{2em}\marg{num/\marg{coeffs},den/\marg{coeffs},d/\marg{delay}}
%
% \noindent Generates a single parametric function for either Bode magnitude or phase plot of a transfer function in TF form. The generated parametric function is passed to the |\addplot| macro. This macro can be used inside any |semilogaxis| environment as long as a domain for the x-axis is supplied through either the |plot-options| interface or directly in the optional argument of the container |semilogaxis| environment. Use with the |BodePlot| environment supplied with this package is recommended. The second mandatory argument, |plot-type| is either magnitude or |phase|. If it is not equal to |phase|, it is assumed to be |magnitude|. The last mandatory argument is the same as |\BodeTF|.
%
% \DescribeMacro{\addBodeComponentPlot}
% |\addBodeComponentPlot|\oarg{plot-options}\marg{plot-command}
%
% \noindent Generates a single parametric function corresponding to the mandatory argument |plot-command| and passes it to the |\addplot| macro. The plot command can be any parametric function that uses |t| as the independent variable. The parametric function must be |gnuplot| compatible (or |pgfplots| compatible if the package is loaded using the |pgf| option). The intended use of this macro is to plot the parametric functions generated using the basic component macros described in Section \ref{sec:BasicComponents} below.
%
% \subsubsection{Basic components up to first order\label{sec:BasicComponents}}
%
% \DescribeMacro{\TypeFeatureApprox}
% |\TypeFeatureApprox|\marg{real-part}\marg{imaginary-part}
%
% \noindent This entry describes 20 different macros of the form |\TypeFeatureApprox| that take the real part and the imaginary part of a complex number as arguments. The |Type| in the macro name should be replaced by either |Mag| or |Ph| to generate a parametric function corresponding to the magnitude or the phase plot, respectively. The |Feature| in the macro name should be replaced by one of |K|, |Pole|, |Zero|, or |Del|, to generate the Bode plot of a gain, a complex pole, a complex zero, or a transport delay, respectively. If the |Feature| is set to either |K| or |Del|, the |imaginary-part| mandatory argument is ignored. The |Approx| in the macro name should either be removed, or it should be replaced by |Lin| or |Asymp| to generate the true Bode plot, the linear approximation, or the asymptotic approximation, respectively. If the |Feature| is set to |Del|, then |Approx| has to be removed. For example,
% \begin{itemize}
% \item |\MagK{k}{0}| or |\MagK{k}{400}| generates a parametric function for the true Bode magnitude of $ G(s) = k $
% \item |\PhPoleLin{a}{b}| generates a parametric function for the linear approximation of the Bode phase of $ G(s) = \frac{1}{s-a-\mathrm{i}b} $.
% \item |\PhDel{T}{200}| or |\PhDel{T}{0}| generates a parametric function for the Bode phase of $ G(s) = e^{-Ts} $.
% \end{itemize}
% All 20 of the macros defined by combinations of |Type|, |Feature|, and |Approx|, and any |gnuplot| (or |pgfplot| if the |pgf| class option is loaded) compatible function of the 20 macros can be used as |plot-command| in the |addBodeComponentPlot| macro. This is sufficient to generate the Bode plot of any rational transfer function with delay. For example, the Bode phase plot in Figure \ref{multiBodeZPK} can also be generated using:
%\begin{verbatim}
%\begin{BodePhPlot}[ytick distance=90]{0.01}{100}
% \addBodeComponentPlot[black,thick]{\PhZero{0}{0} + \PhZero{-0.1}{-0.5} +
% \PhZero{-0.1}{0.5} + \PhPole{-0.5}{-10} + \PhPole{-0.5}{10} +
% \PhK{10}{0}}
% \addBodeComponentPlot[red,dashed,thick] {\PhZeroLin{0}{0} +
% \PhZeroLin{-0.1}{-0.5} + \PhZeroLin{-0.1}{0.5} +
% \PhPoleLin{-0.5}{-10} + \PhPoleLin{-0.5}{10} + \PhKLin{10}{20}}
% \addBodeComponentPlot[blue,dotted,thick] {\PhZeroAsymp{0}{0} +
% \PhZeroAsymp{-0.1}{-0.5} + \PhZeroAsymp{-0.1}{0.5} +
% \PhPoleAsymp{-0.5}{-10} + \PhPoleAsymp{-0.5}{10} + \PhKAsymp{10}{40}}
%\end{BodePhPlot}
%\end{verbatim}
%\begin{figure}
% \begin{center}
% \begin{BodePhPlot}[ytick distance=90]{0.01}{100}
% \addBodeComponentPlot[black,thick] {\PhZero{0}{0} + \PhZero{-0.1}{-0.5} + \PhZero{-0.1}{0.5} + \PhPole{-0.5}{-10} + \PhPole{-0.5}{10} + \PhK{10}{0}}
% \addBodeComponentPlot[red,dashed,thick] {\PhZeroLin{0}{0} + \PhZeroLin{-0.1}{-0.5} + \PhZeroLin{-0.1}{0.5} + \PhPoleLin{-0.5}{-10} + \PhPoleLin{-0.5}{10} + \PhKLin{10}{20}}
% \addBodeComponentPlot[blue,dotted,thick] {\PhZeroAsymp{0}{0} + \PhZeroAsymp{-0.1}{-0.5} + \PhZeroAsymp{-0.1}{0.5} + \PhPoleAsymp{-0.5}{-10} + \PhPoleAsymp{-0.5}{10} + \PhKAsymp{10}{40}}
% \end{BodePhPlot}
% \end{center}
% \caption{\label{multiBodeComponents}Superimposed approximate and true Bode Phase plot using the \texttt{BodePhPlot} environment, the \texttt{\textbackslash addBodeComponentPlot} macro, and several macros of the \texttt{\textbackslash TypeFeatureApprox} form.}
%\end{figure}
% which gives us the plot in Figure \ref{multiBodeComponents}.
%
% \subsubsection{Basic components of the second order}
%
% \DescribeMacro{\TypeSOFeatureApprox}
% |\TypeSOFeatureApprox|\marg{a1}\marg{a0}
%
% \noindent This entry describes 12 different macros of the form |\TypeSOFeatureApprox| that take the coefficients $ a_1 $ and $ a_0 $ of a general second order system as inputs. The |Feature| in the macro name should be replaced by either |Poles| or |Zeros| to generate the Bode plot of $G(s)=\frac{1}{s^2+a_1 s+a_0}$ or $G(s)=s^2+a_1 s+a_0$, respectively. The |Type| in the macro name should be replaced by either |Mag| or |Ph| to generate a parametric function corresponding to the magnitude or the phase plot, respectively. The |Approx| in the macro name should either be removed, or it should be replaced by |Lin| or |Asymp| to generate the true Bode plot, the linear approximation, or the asymptotic approximation, respectively.
%
% \DescribeMacro{\MagSOFeaturePeak}
% |\MagSOFeaturePeak|\oarg{draw-options}\marg{a1}\marg{a0}
%
% \noindent This entry describes 2 different macros of the form |\MagSOFeaturePeak| that take the the coefficients $ a_1 $ and $ a_0 $ of a general second order system as inputs, and draw a resonant peak using the |\draw| TikZ macro. The |Feature| in the macro name should be replaced by either |Poles| or |Zeros| to generate a peak for poles and a valley for zeros, respectively. For example, the command
%\begin{verbatim}
%\begin{BodeMagPlot}[xlabel={}]{0.1}{10}
% \addBodeComponentPlot[red,dashed,thick]{\MagSOPoles{0.2}{1}}
% \addBodeComponentPlot[black,thick]{\MagSOPolesLin{0.2}{1}}
% \MagSOPolesPeak[thick]{0.2}{1}
%\end{BodeMagPlot}
%\end{verbatim}
% generates the plot in Figure \ref{BodePeak}.
%
% \begin{figure}
% \begin{center}
% \begin{BodeMagPlot}[xlabel={}]{0.1}{10}
% \addBodeComponentPlot[red,dashed,thick]{\MagSOPoles{0.2}{1}}
% \addBodeComponentPlot[black,thick]{\MagSOPolesLin{0.2}{1}}
% \MagSOPolesPeak[very thick]{0.2}{1}
% \end{BodeMagPlot}
% \end{center}
% \cprotect\caption{\label{BodePeak} Resonant peak in asymptotic Bode plot using |\MagSOPolesPeak|.}
% \end{figure}
%
% \DescribeMacro{\TypeCSFeatureApprox}
% |\TypeCSFeatureApprox|\marg{zeta}\marg{omega-n}
%
% \noindent This entry describes 12 different macros of the form |\TypeCSFeatureApprox| that take the damping ratio, $ \zeta $, and the natural frequency, $ \omega_n $ of a canonical second order system as inputs. The |Type| in the macro name should be replaced by either |Mag| or |Ph| to generate a parametric function corresponding to the magnitude or the phase plot, respectively. The |Feature| in the macro name should be replaced by either |Poles| or |Zeros| to generate the Bode plot of $G(s)=\frac{1}{s^2+2\zeta\omega_n s+\omega_n^2}$ or $G(s)=s^2+2\zeta\omega_n s+\omega_n^2$, respectively. The |Approx| in the macro name should either be removed, or it should be replaced by |Lin| or |Asymp| to generate the true Bode plot, the linear approximation, or the asymptotic approximation, respectively.
%
% \DescribeMacro{\MagCSFeaturePeak}
% |\MagCSFeaturePeak|\oarg{draw-options}\marg{zeta}\marg{omega-n}
%
% \noindent This entry describes 2 different macros of the form |\MagCSFeaturePeak| that take the damping ratio, $ \zeta $, and the natural frequency, $ \omega_n $ of a canonical second order system as inputs, and draw a resonant peak using the |\draw| TikZ macro. The |Feature| in the macro name should be replaced by either |Poles| or |Zeros| to generate a peak for poles and a valley for zeros, respectively.
%
% \DescribeMacro{\MagCCFeaturePeak}
% |\MagCCFeaturePeak|\oarg{draw-options}\marg{real-part}\marg{imaginary-part}
%
% \noindent This entry describes 2 different macros of the form |\MagCCFeaturePeak| that take the real and imaginary parts of a pair of complex conjugate poles or zeros as inputs, and draw a resonant peak using the |\draw| TikZ macro. The |Feature| in the macro name should be replaced by either |Poles| or |Zeros| to generate a peak for poles and a valley for zeros, respectively.
%
% \subsection{Nyquist plots}
% \DescribeMacro{\NyquistZPK}
% |\NyquistZPK| \oarg{plot/\marg{opt},axes/\marg{opt}}\\
% \hspace*{2em}\marg{z/\marg{zeros},p/\marg{poles},k/\marg{gain},d/\marg{delay}}\\
% \hspace*{2em}\marg{min-freq}\marg{max-freq}
%
% \noindent Plots the Nyquist plot of a transfer function given in ZPK format with a thick red $+$ marking the critical point (-1,0). The mandatory arguments are the same as |\BodeZPK|. Since there is only one plot in a Nyquist diagram, the |\typ| specifier in the optional argument tuples is not needed. As such, the supported optional argument tuples are |plot/{opt}|, which passes |{opt}| to |\addplot|, |axes/{opt}|, which passes |{\opt}| to the |axis| environment, and |tikz/{opt}|, which passes |{\opt}| to the |tikzpicture| environment. Asymptotic/linear approximations are not supported in Nyquist plots. If just |{opt}| is provided as the optional argument, it is interpreted as |plot/{opt}|. Arrows to indicate the direction of increasing $\omega$ can be added by adding |\usetikzlibrary{decorations.markings}| and |\usetikzlibrary{arrows.meta}| to the preamble and then passing a tuple of the form\\
%|plot/{postaction=decorate,decoration={markings,|\\
%| mark=between positions 0.1 and 0.9 step 5em with|\\
%| {\arrow{Stealth| |[length=2mm, blue]}}}}|\\
%\textbf{Caution:} with a high number of samples, adding arrows in this way may cause the error message |! Dimension too big|.
%
% For example, the command\\
% |\NyquistZPK[plot/{red,thick,samples=2000},axes/{blue,thick}]|\\
% | {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}|\\
% | {-30}{30}|\\
% generates the Nyquist plot in Figure \ref{simpleNyquistZPK}.
%
% \begin{figure}
% \begin{center}
% \NyquistZPK[plot/{red,thick,samples=2000},axes/{blue,thick}] {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10} {-30} {30}
% \cprotect\caption{\label{simpleNyquistZPK}Output of the |\NyquistZPK| macro.}
% \end{center}
% \end{figure}
%
% % \DescribeMacro{\NyquistTF}
% |\NyquistTF| \oarg{plot/\marg{opt},axes/\marg{opt}}\\
% \hspace*{2em}\marg{num/\marg{coeffs},den/\marg{coeffs},d/\marg{delay}}\\
% \hspace*{2em}\marg{min-freq}\marg{max-freq}
%
% \noindent Nyquist plot of a transfer function given in TF format. Same mandatory arguments as |\BodeTF| and same optional arguments as |\NyquistZPK|. For example, the command\\
% |\NyquistTF[plot/{green,thick,samples=500,postaction=decorate,|\\
% | decoration={markings,|\\
% | mark=between positions 0.1 and 0.9 step 5em|\\
% | with{\arrow{Stealth[length=2mm, blue]}}}}]|\\
% | {num/{10,2,2.6,0},den/{1,1,100.25}}|\\
% | {-30}{30}|\\
% generates the Nyquist plot in Figure \ref{simpleNyquistTF}.
%
% \begin{figure}
% \begin{center}
% \NyquistTF[plot/{green,thick,samples=500,postaction=decorate,decoration={markings,mark=between positions 0.1 and 0.9 step 5em with {\arrow{Stealth[length=2mm, blue]}}}}] {num/{10,2,2.6,0},den/{1,1,100.25},d/0.01} {-30} {30}
% \cprotect\caption{\label{simpleNyquistTF}Output of the |\NyquistTF| macro with direction arrows. Increasing the number of samples can cause |decorations.markings| to throw errors.}
% \end{center}
% \end{figure}
%
% \DescribeEnv{NyquistPlot}
% |\begin{NyquistPlot}|\oarg{obj1/\marg{opt1},obj2/\marg{opt2},...}\\
% \hspace*{3em}\marg{min-frequency}\marg{max-frequency}\\
% \hspace*{2em}|\addNyquist...|\\
% \hspace*{1.5em}|\end{NyquistPlot}|\\
% The |NyquistPlot| environment works in conjunction with the parametric function generator macros |\addNyquistZPKPlot| and |\addNyquistTFPlot|. The optional argument is comprised of a comma separated list of tuples, either |obj/{opt}| or just |{opt}|. Each tuple passes options to different |pgfplots| macros that generate the axes and the plots according to:
% \begin{itemize}
% \item Tuples of the form |obj/{opt}|:
% \begin{itemize}
% \item |tikz/{opt}|: modify picture properties by adding options |{opt}| to the |tikzpicture| environment.
% \item |axes/{opt}|: modify axis properties by adding options |{opt}| to the |axis| environment.
% \item |commands/{opt}|: add any valid TikZ commands inside |axis| environment. The commands passed to |opt| need to be valid TikZ commands, separated by semicolons as usual.
% \end{itemize}
% \item Tuples of the form |{opt}| are passed directly to the |axis| environment.
% \end{itemize}
% The frequency limits are translated to the x-axis limits and the domain of the |axis| environment.
%
% \DescribeMacro{\addNyquistZPKPlot}
% |\addNyquistZPKPlot|\oarg{plot-options}\\
% \hspace*{2em}\marg{z/\marg{zeros},p/\marg{poles},k/\marg{gain},d/\marg{delay}}
%
% \noindent Generates a twp parametric functions for the magnitude and the phase a transfer function in ZPK form. The generated magnitude and phase parametric functions are converted to real and imaginary part parametric functions and passed to the |\addplot| macro. This macro can be used inside any |axis| environment as long as a domain for the x-axis is supplied through either the |plot-options| interface or directly in the optional argument of the container |axis| environment. Use with the |NyquistPlot| environment supplied with this package is recommended. The mandatory argument is the same as |\BodeZPK|.
%
% \DescribeMacro{\addNyquistTFPlot}
% |\addNyquistTFPlot|\oarg{plot-options}\\
% \hspace*{2em}\marg{num/\marg{coeffs},den/\marg{coeffs},d/\marg{delay}}
%
% \noindent Similar to |\addNyquistZPKPlot|, with a transfer function input in the TF form.
%
% \subsection{Nichols charts}
% \DescribeMacro{\NicholsZPK}
% |\NicholsZPK| \oarg{plot/\marg{opt},axes/\marg{opt}}\\
% \hspace*{2em}\marg{z/\marg{zeros},p/\marg{poles},k/\marg{gain},d/\marg{delay}}\\
% \hspace*{2em}\marg{min-freq}\marg{max-freq}
%
% \noindent Nichols chart of a transfer function given in ZPK format. Same arguments as |\NyquistZPK|.
%
% \DescribeMacro{\NicholsTF}
% |\NicholsTF| \oarg{plot/\marg{opt},axes/\marg{opt}}\\
% \hspace*{2em}\marg{num/\marg{coeffs},den/\marg{coeffs},d/\marg{delay}}\\
% \hspace*{2em}\marg{min-freq}\marg{max-freq}
%
% \noindent Nichols chart of a transfer function given in TF format. Same arguments as |\NyquistTF|. For example, the command\\
% |\NicholsTF[plot/{green,thick,samples=2000}]|\\
% | {num/{10,2,2.6,0},den/{1,1,100.25},d/0.01}|\\
% | {0.001}{100}|\\
% generates the Nichols chart in Figure \ref{simpleNicholsTF}.
%
% \begin{figure}
% \begin{center}
% \NicholsTF[plot/{green,thick,samples=2000}] {num/{10,2,2.6,0},den/{1,1,100.25},d/0.01} {0.001} {100}
% \cprotect\caption{\label{simpleNicholsTF}Output of the |\NyquistZPK| macro.}
% \end{center}
% \end{figure}
%
%
% \DescribeEnv{NicholsChart}
% |\begin{NicholsChart}|\oarg{obj1/\marg{opt1},obj2/\marg{opt2},...}\\
% \hspace*{3em}\marg{min-frequency}\marg{max-frequency}\\
% \hspace*{2em}|\addNichols...|\\
% \hspace*{1.5em}|\end{NicholsChart}|\\
% The |NicholsChart| environment works in conjunction with the parametric function generator macros |\addNicholsZPKChart| and |\addNicholsTFChart|. The optional argument is comprised of a comma separated list of tuples, either |obj/{opt}| or just |{opt}|. Each tuple passes options to different |pgfplots| macros that generate the axes and the plots according to:
% \begin{itemize}
% \item Tuples of the form |obj/{opt}|:
% \begin{itemize}
% \item |tikz/{opt}|: modify picture properties by adding options |{opt}| to the |tikzpicture| environment.
% \item |axes/{opt}|: modify axis properties by adding options |{opt}| to the |axis| environment.
% \item |commands/{opt}|: add any valid TikZ commands inside |axis| environment. The commands passed to |opt| need to be valid TikZ commands, separated by semicolons as usual.
% \end{itemize}
% \item Tuples of the form |{opt}| are passed directly to the |axis| environment.
% \end{itemize}
% The frequency limits are translated to the x-axis limits and the domain of the |axis| environment.
%
% \DescribeMacro{\addNicholsZPKChart}
% |\addNicholsZPKChart|\oarg{plot-options}\\
% \hspace*{2em}\marg{z/\marg{zeros},p/\marg{poles},k/\marg{gain},d/\marg{delay}}
%
% \noindent Generates a twp parametric functions for the magnitude and the phase a transfer function in ZPK form. The generated magnitude and phase parametric functions are passed to the |\addplot| macro. This macro can be used inside any |axis| environment as long as a domain for the x-axis is supplied through either the |plot-options| interface or directly in the optional argument of the container |axis| environment. Use with the |NicholsChart| environment supplied with this package is recommended. The mandatory argument is the same as |\BodeZPK|.
%
% \DescribeMacro{\addNicholsTFChart}
% |\addNicholsTFChart|\oarg{plot-options}\\
% \hspace*{2em}\marg{num/\marg{coeffs},den/\marg{coeffs},d/\marg{delay}}
%
% \noindent Similar to |\addNicholsZPKChart|, with a transfer function input in the TF form.
%
% \StopEventually{\PrintIndex}
% \clearpage
% \section{Implementation}
% \subsection{Initialization}
% \begin{macro}{\n@mod}
% \begin{macro}{\n@pow}
% \begin{macro}{gnuplot@id}
% \begin{macro}{gnuplot@prefix}
% \changes{v1.0.3}{2021/11/03}{Added jobname to gnuplot prefix}
% \changes{v1.0.8}{2022/07/06}{Fixed issue \#6}
% This code is needed to support both |pgfplots| and |gnuplot| simultaneously. New macros are defined for the |pow| and |mod| functions to address differences between the two math engines. We start by processing the class options.
% \begin{macrocode}
\newif\if@pgfarg\@pgfargfalse
\DeclareOption{pgf}{
\@pgfargtrue
}
\newif\if@declutterarg\@declutterargfalse
\DeclareOption{declutter}{
\@declutterargtrue
}
\newif\if@radarg\@radargfalse
\DeclareOption{rad}{
\@radargtrue
}
\newif\if@hzarg\@hzargfalse
\DeclareOption{Hz}{
\@hzargtrue
}
\ProcessOptions\relax
% \end{macrocode}
% Then, we define two new macros to unify |pgfplots| and |gnuplot|.
% \begin{macrocode}
\newcommand{\n@mod}[2]{(#1)-(floor((#1)/(#2))*(#2))}
\if@pgfarg
\newcommand{\n@pow}[2]{(#1)^(#2)}
\pgfplotsset{
trig format plots=rad
}
\else
\newcommand{\n@pow}[2]{(#1)**(#2)}
% \end{macrocode}
% Then, we create a counter so that a new data table is generated and for each new plot. If the plot macros have not changed, the tables, once generated, can be reused by |gnuplot|, which reduces compilation time. The |declutter| option is used to enable the |gnuplot| directory to declutter the working directory.
% \begin{macrocode}
\newcounter{gnuplot@id}
\setcounter{gnuplot@id}{0}
\if@declutterarg
\edef\bodeplot@prefix{gnuplot/\jobname}
\else
\edef\bodeplot@prefix{\jobname}
\fi
\tikzset{
gnuplot@prefix/.style={
id=\arabic{gnuplot@id},
prefix=\bodeplot@prefix
}
}
% \end{macrocode}
% If the operating system is not Windows, and if the |declutter| option is not passed, we create the |gnuplot| folder if it does not already exist. \changes{v1.0.2}{2021/11/01}{Fixed issue \#1}
% \begin{macrocode}
\ifwindows\else
\if@declutterarg
\immediate\write18{mkdir -p gnuplot}
\fi
\fi
\fi
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \begin{macro}{bode@style}
% Default axis properties for all plot macros are collected in this |pgf| style.
% \begin{macrocode}
\pgfplotsset{
bode@style/.style = {
label style={font=\footnotesize},
tick label style={font=\footnotesize},
grid=both,
major grid style={color=gray!80},
minor grid style={color=gray!20},
x label style={at={(ticklabel cs:0.5)},anchor=near ticklabel},
y label style={at={(ticklabel cs:0.5)},anchor=near ticklabel},
scale only axis,
samples=200,
width=5cm,
log basis x=10
}
}
% \end{macrocode}
% \end{macro}
% \begin{macro}{freq@filter}
% \begin{macro}{freq@label}
% \begin{macro}{freq@scale}
% \begin{macro}{ph@scale}
% \begin{macro}{ph@x@label}
% \begin{macro}{ph@y@label}
% These macros handle the |Hz| and |rad| class options and two new |pgf| keys named |frequency unit| and |phase unit| for conversion of frequency and phase units, respectively. \changes{v1.1.1}{2022/07/31}{New macros to enable `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\pgfplotsset{freq@filter/.style = {}}
\def\freq@scale{1}
\pgfplotsset{freq@label/.style = {xlabel = {Frequency (rad/s)}}}
\pgfplotsset{ph@x@label/.style = {xlabel={Phase (deg)}}}
\pgfplotsset{ph@y@label/.style = {ylabel={Phase (deg)}}}
\def\ph@scale{180/pi}
\if@radarg
\pgfplotsset{ph@y@label/.style = {ylabel={Phase (rad)}}}
\pgfplotsset{ph@x@label/.style = {xlabel={Phase (rad)}}}
\def\ph@scale{1}
\fi
\if@hzarg
\def\freq@scale{2*pi}
\pgfplotsset{freq@label/.style = {xlabel = {Frequency (Hz)}}}
\if@pgfarg
\pgfplotsset{freq@filter/.style = {x filter/.expression={x-log10(2*pi)}}}
\fi
\fi
\tikzset{
phase unit/.initial={deg},
phase unit/.default={deg},
phase unit/.is choice,
phase unit/deg/.code={
\renewcommand{\ph@scale}{180/pi}
\pgfplotsset{ph@x@label/.style = {xlabel={Phase (deg)}}}
\pgfplotsset{ph@y@label/.style = {ylabel={Phase (deg)}}}
},
phase unit/rad/.code={
\renewcommand{\ph@scale}{1}
\pgfplotsset{ph@y@label/.style = {ylabel={Phase (rad)}}}
\pgfplotsset{ph@x@label/.style = {xlabel={Phase (rad)}}}
},
frequency unit/.initial={rad},
frequency unit/.default={rad},
frequency unit/.is choice,
frequency unit/Hz/.code={
\renewcommand{\freq@scale}{2*pi}
\pgfplotsset{freq@label/.style = {xlabel = {Frequency (Hz)}}}
\if@pgfarg
\pgfplotsset{freq@filter/.style = {x filter/.expression={x-log10(2*pi)}}}
\fi
},
frequency unit/rad/.code={
\renewcommand{\freq@scale}{1}
\pgfplotsset{freq@label/.style = {xlabel = {Frequency (rad/s)}}}
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \begin{macro}{get@interval@start}
% \begin{macro}{get@interval@end}
% Internal macros to extract start and end frequency limits from domain specifications.\changes{v1.1.1}{2022/07/31}{New macros to enable `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\def\get@interval@start#1:#2\@nil{#1}
\def\get@interval@end#1:#2\@nil{#2}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \subsection{Parametric function generators for poles, zeros, gains, and delays.}
% All calculations are carried out assuming that frequeny inputs are in |rad/s|. Magnitude outputs are in |dB| and phase outputs are in degrees or radians, depending on the value of |\ph@scale|.
% \begin{macro}{\MagK}
% \begin{macro}{\MagKAsymp}
% \begin{macro}{\MagKLin}
% \begin{macro}{\PhK}
% \begin{macro}{\PhKAsymp}
% \begin{macro}{\PhKLin}
% True, linear, and asymptotic magnitude and phase parametric functions for a pure gain $G(s)=k+0\mathrm{i}$. The macros take two arguments corresponding to real and imaginary part of the gain to facilitate code reuse between delays, gains, poles, and zeros, but only real gains are supported. The second argument, if supplied, is ignored.
% \begin{macrocode}
\newcommand*{\MagK}[2]{(20*log10(abs(#1)))}
\newcommand*{\MagKAsymp}{\MagK}
\newcommand*{\MagKLin}{\MagK}
\newcommand*{\PhK}[2]{((#1<0?-pi:0)*\ph@scale)}
\newcommand*{\PhKAsymp}{\PhK}
\newcommand*{\PhKLin}{\PhK}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \begin{macro}{\PhKAsymp}
% \begin{macro}{\PhKLin}
% True magnitude and phase parametric functions for a pure delay $G(s)=e^{-Ts}$. The macros take two arguments corresponding to real and imaginary part of the gain to facilitate code reuse between delays, gains, poles, and zeros, but only real gains are supported. The second argument, if supplied, is ignored.
% \begin{macrocode}
\newcommand*{\MagDel}[2]{0}
\newcommand*{\PhDel}[2]{(-#1*t*\ph@scale)}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \begin{macro}{\MagPole}
% \begin{macro}{\MagPoleAsymp}
% \begin{macro}{\MagPoleLin}
% \begin{macro}{\PhPole}
% \begin{macro}{\PhPoleAsymp}
% \begin{macro}{\PhPoleLin}
% These macros are the building blocks for most of the plotting functions provided by this package. We start with Parametric function for the true magnitude of a complex pole.
% \begin{macrocode}
\newcommand*{\MagPole}[2]
{(-20*log10(sqrt(\n@pow{#1}{2} + \n@pow{t - (#2)}{2})))}
% \end{macrocode}
% Parametric function for linear approximation of the magnitude of a complex pole.
% \begin{macrocode}
\newcommand*{\MagPoleLin}[2]{(t < sqrt(\n@pow{#1}{2} + \n@pow{#2}{2}) ?
-20*log10(sqrt(\n@pow{#1}{2} + \n@pow{#2}{2})) :
-20*log10(t)
)}
% \end{macrocode}
% Parametric function for asymptotic approximation of the magnitude of a complex pole, same as linear approximation.
% \begin{macrocode}
\newcommand*{\MagPoleAsymp}{\MagPoleLin}
% \end{macrocode}
% Parametric function for the true phase of a complex pole.
% \begin{macrocode}
\newcommand*{\PhPole}[2]{((#1 > 0 ? (#2 > 0 ?
(\n@mod{-atan2((t - (#2)),-(#1))}{2*pi}) :
(-atan2((t - (#2)),-(#1)))) :
(-atan2((t - (#2)),-(#1))))*\ph@scale)}
% \end{macrocode}
% Parametric function for linear approximation of the phase of a complex pole.
% \begin{macrocode}
\newcommand*{\PhPoleLin}[2]{
((abs(#1)+abs(#2) == 0 ? -pi/2 :
(t < (sqrt(\n@pow{#1}{2} + \n@pow{#2}{2}) /
(\n@pow{10}{sqrt(\n@pow{#1}{2}/(\n@pow{#1}{2} + \n@pow{#2}{2}))})) ?
(-atan2(-(#2),-(#1))) :
(t >= (sqrt(\n@pow{#1}{2} + \n@pow{#2}{2}) *
(\n@pow{10}{sqrt(\n@pow{#1}{2}/(\n@pow{#1}{2} + \n@pow{#2}{2}))})) ?
(#2>0?(#1>0?3*pi/2:-pi/2):-pi/2) :
(-atan2(-(#2),-(#1)) + (log10(t/(sqrt(\n@pow{#1}{2} + \n@pow{#2}{2}) /
(\n@pow{10}{sqrt(\n@pow{#1}{2}/(\n@pow{#1}{2} +
\n@pow{#2}{2}))}))))*((#2>0?(#1>0?3*pi/2:-pi/2):-pi/2) + atan2(-(#2),-(#1)))/
(log10(\n@pow{10}{sqrt((4*\n@pow{#1}{2})/
(\n@pow{#1}{2} + \n@pow{#2}{2}))}))))))*\ph@scale)}
% \end{macrocode}
% Parametric function for asymptotic approximation of the phase of a complex pole.
% \begin{macrocode}
\newcommand*{\PhPoleAsymp}[2]{((t < (sqrt(\n@pow{#1}{2} + \n@pow{#2}{2})) ?
(-atan2(-(#2),-(#1))) :
(#2>0?(#1>0?3*pi/2:-pi/2):-pi/2))*\ph@scale)}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \begin{macro}{\MagZero}
% \begin{macro}{\MagZeroAsymp}
% \begin{macro}{\MagZeroLin}
% \begin{macro}{\PhZero}
% \begin{macro}{\PhZeroAsymp}
% \begin{macro}{\PhZeroLin}
% Plots of zeros are defined to be negative of plots of poles. The |0-| is necessary due to a bug in |gnuplot| (fixed in version 5.4, patchlevel 3).
% \begin{macrocode}
\newcommand*{\MagZero}{0-\MagPole}
\newcommand*{\MagZeroLin}{0-\MagPoleLin}
\newcommand*{\MagZeroAsymp}{0-\MagPoleAsymp}
\newcommand*{\PhZero}{0-\PhPole}
\newcommand*{\PhZeroLin}{0-\PhPoleLin}
\newcommand*{\PhZeroAsymp}{0-\PhPoleAsymp}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \subsection{Second order systems.}
% Although second order systems can be dealt with using the macros defined so far, the following dedicated macros for second order systems involve less computation.
% \begin{macro}{\MagCSPoles}
% \begin{macro}{\MagCSPolesAsymp}
% \begin{macro}{\MagCSPolesLin}
% \begin{macro}{\PhCSPoles}
% \begin{macro}{\PhCSPolesAsymp}
% \begin{macro}{\PhCSPolesLin}
% \begin{macro}{\MagCSZeros}
% \begin{macro}{\MagCSZerosAsymp}
% \begin{macro}{\MagCSZerosLin}
% \begin{macro}{\PhCSZeros}
% \begin{macro}{\PhCSZerosAsymp}
% \begin{macro}{\PhCSZerosLin}
% Consider the canonical second order transfer function $G(s) = \frac{1}{s^2 + 2 \zeta w_n s + w_n^2}$. We start with true, linear, and asymptotic magnitude plots for this transfer function.
% \begin{macrocode}
\newcommand*{\MagCSPoles}[2]{(-20*log10(sqrt(\n@pow{\n@pow{#2}{2}
- \n@pow{t}{2}}{2} + \n@pow{2*#1*#2*t}{2})))}
\newcommand*{\MagCSPolesLin}[2]{(t < #2 ? -40*log10(#2) : - 40*log10(t))}
\newcommand*{\MagCSPolesAsymp}{\MagCSPolesLin}
% \end{macrocode}
% Then, we have true, linear, and asymptotic phase plots for the canonical second order transfer function.
% \begin{macrocode}
\newcommand*{\PhCSPoles}[2]{((-atan2((2*(#1)*(#2)*t),(\n@pow{#2}{2}
- \n@pow{t}{2})))*\ph@scale)}
\newcommand*{\PhCSPolesLin}[2]{((t < (#2 / (\n@pow{10}{abs(#1)})) ?
0 :
(t >= (#2 * (\n@pow{10}{abs(#1)})) ?
(#1>0 ? -pi : pi) :
(#1>0 ? (-pi*(log10(t*(\n@pow{10}{#1})/#2))/(2*#1)) :
(pi*(log10(t*(\n@pow{10}{abs(#1)})/#2))/(2*abs(#1))))))*\ph@scale)}
\newcommand*{\PhCSPolesAsymp}[2]{((#1>0?(t<#2?0:-pi):(t<#2?0:pi))*\ph@scale)}
% \end{macrocode}
% Plots of the inverse function $G(s)=s^2+2\zeta\omega_n s+\omega_n^2$ are defined to be negative of plots of poles. The |0-| is necessary due to a bug in |gnuplot| (fixed in version 5.4, patchlevel 3).
% \begin{macrocode}
\newcommand*{\MagCSZeros}{0-\MagCSPoles}
\newcommand*{\MagCSZerosLin}{0-\MagCSPolesLin}
\newcommand*{\MagCSZerosAsymp}{0-\MagCSPolesAsymp}
\newcommand*{\PhCSZeros}{0-\PhCSPoles}
\newcommand*{\PhCSZerosLin}{0-\PhCSPolesLin}
\newcommand*{\PhCSZerosAsymp}{0-\PhCSPolesAsymp}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \begin{macro}{\MagCSPolesPeak}
% \begin{macro}{\MagCSZerosPeak}
% These macros are used to add a resonant peak to linear and asymptotic plots of canonical second order poles and zeros. Since the plots are parametric, a separate |\draw| command is needed to add a vertical arrow.
% \begin{macrocode}
\newcommand*{\MagCSPolesPeak}[3][]{
\draw[#1,->] (axis cs:{#3},{-40*log10(#3)}) --
(axis cs:{#3},{-40*log10(#3)-20*log10(2*abs(#2))})
}
\newcommand*{\MagCSZerosPeak}[3][]{
\draw[#1,->] (axis cs:{#3},{40*log10(#3)}) --
(axis cs:{#3},{40*log10(#3)+20*log10(2*abs(#2))})
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \begin{macro}{\MagSOPoles}
% \begin{macro}{\MagSOPolesAsymp}
% \begin{macro}{\MagSOPolesLin}
% \begin{macro}{\PhSOPoles}
% \begin{macro}{\PhSOPolesAsymp}
% \begin{macro}{\PhSOPolesLin}
% \begin{macro}{\MagSOZeros}
% \begin{macro}{\MagSOZerosAsymp}
% \begin{macro}{\MagSOZerosLin}
% \begin{macro}{\PhSOZeros}
% \begin{macro}{\PhSOZerosAsymp}
% \begin{macro}{\PhSOZerosLin}
% Consider a general second order transfer function $G(s) = \frac{1}{s^2 + a s + b}$. We start with true, linear, and asymptotic magnitude plots for this transfer function.
% \changes{v1.1.2}{2022/10/29}{Fix scaling bug introduced in v1.1.1}
% \begin{macrocode}
\newcommand*{\MagSOPoles}[2]{
(-20*log10(sqrt(\n@pow{#2 - \n@pow{t}{2}}{2} + \n@pow{#1*t}{2})))}
\newcommand*{\MagSOPolesLin}[2]{
(t < sqrt(abs(#2)) ? -20*log10(abs(#2)) : - 40*log10(t))}
\newcommand*{\MagSOPolesAsymp}{\MagSOPolesLin}
% \end{macrocode}
% Then, we have true, linear, and asymptotic phase plots for the general second order transfer function.
% \begin{macrocode}
\newcommand*{\PhSOPoles}[2]{((-atan2((#1)*t,((#2) - \n@pow{t}{2})))*\ph@scale)}
\newcommand*{\PhSOPolesLin}[2]{((#2>0 ?
\PhCSPolesLin{(#1/(2*sqrt(#2)))}{(sqrt(#2))} :
(#1>0 ? -pi : pi)))}
\newcommand*{\PhSOPolesAsymp}[2]{((#2>0 ?
\PhCSPolesAsymp{(#1/(2*sqrt(#2)))}{(sqrt(#2))} :
(#1>0 ? -pi : pi)))}
% \end{macrocode}
% Plots of the inverse function $G(s)=s^2+as+b$ are defined to be negative of plots of poles. The |0-| is necessary due to a bug in |gnuplot| (fixed in version 5.4, patchlevel 3).
% \begin{macrocode}
\newcommand*{\MagSOZeros}{0-\MagSOPoles}
\newcommand*{\MagSOZerosLin}{0-\MagSOPolesLin}
\newcommand*{\MagSOZerosAsymp}{0-\MagSOPolesAsymp}
\newcommand*{\PhSOZeros}{0-\PhSOPoles}
\newcommand*{\PhSOZerosLin}{0-\PhSOPolesLin}
\newcommand*{\PhSOZerosAsymp}{0-\PhSOPolesAsymp}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \begin{macro}{\MagSOPolesPeak}
% \begin{macro}{\MagSOZerosPeak}
% These macros are used to add a resonant peak to linear and asymptotic plots of general second order poles and zeros. Since the plots are parametric, a separate |\draw| command is needed to add a vertical arrow.
% \begin{macrocode}
\newcommand*{\MagSOPolesPeak}[3][]{
\draw[#1,->] (axis cs:{sqrt(abs(#3))},{-20*log10(abs(#3))}) --
(axis cs:{sqrt(abs(#3))},{-20*log10(abs(#3)) -
20*log10(abs(#2/sqrt(abs(#3))))});
}
\newcommand*{\MagSOZerosPeak}[3][]{
\draw[#1,->] (axis cs:{sqrt(abs(#3))},{20*log10(abs(#3))}) --
(axis cs:{sqrt(abs(#3))},{20*log10(abs(#3)) +
20*log10(abs(#2/sqrt(abs(#3))))});
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \subsection{Commands for Bode plots}
% \subsubsection{User macros}
% \begin{macro}{\BodeZPK}
% This macro takes lists of complex poles and zeros of the form |{re,im}|, and values of gain and delay as inputs and constructs parametric functions for the Bode magnitude and phase plots. This is done by adding together the parametric functions generated by the macros for individual zeros, poles, gain, and delay, described above. The parametric functions are then plotted in a |tikzpicture| environment using the |\addplot| macro. Unless the package is loaded with the option |pgf|, the parametric functions are evaluated using |gnuplot|. \changes{v1.0.1}{2021/10/29}{Pass arbitrary TikZ commands as options.}
% \begin{macrocode}
\newcommand{\BodeZPK}[4][approx/true]{
% \end{macrocode}
% Most of the work is done by the |\parse@opt| and the |\build@ZPK@plot| macros, described in the 'Internal macros' section. The former is used to parse the optional arguments and the latter to extract poles, zeros, gain, and delay from the first mandatory argument and to generate macros |\func@mag| and |\func@ph| that hold the magnitude and phase parametric functions. The |\noexpand| macros below are needed to so that only the macro |\opt@group| is expanded. \changes{v1.0.3}{2021/11/03}{Added Tikz option}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\parse@opt{#1}
\gdef\func@mag{}
\gdef\func@ph{}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]}
\temp@cmd
\build@ZPK@plot{\func@mag}{\func@ph}{\opt@approx}{#2}
\edef\temp@cmd{\noexpand\begin{groupplot}[
bode@style,
xmin=#3,
xmax=#4,
domain=#3*\freq@scale:#4*\freq@scale,
height=2.5cm,
xmode=log,
group style = {group size = 1 by 2,vertical sep=0.25cm},
\opt@group
]}
\temp@cmd
% \end{macrocode}
% To ensure frequency tick marks on magnitude and the phase plots are always aligned, we use the |groupplot| library. The |\noexpand| and |\unexpanded\expandafter| macros below are used to expand macros in the plot and group optional arguments.
% \begin{macrocode}
\edef\temp@mag@cmd{\noexpand\nextgroupplot [ylabel={Gain (dB)}, xmajorticks=false, \optmag@axes]
\noexpand\addplot [freq@filter, variable=t, thick, \optmag@plot]}
\edef\temp@ph@cmd{\noexpand\nextgroupplot [ph@y@label, freq@label, \optph@axes]
\noexpand\addplot [freq@filter, variable=t, thick, \optph@plot]}
\if@pgfarg
\temp@mag@cmd {\func@mag};
\optmag@commands
\temp@ph@cmd {\func@ph};
\optph@commands
\else
% \end{macrocode}
% In |gnuplot| mode, we increment the |gnuplot@id| counter before every plot to make sure that new and reusable |.gnuplot| and |.table| files are generated for every plot. We use |raw gnuplot| to make sure that the tables generated by |gnuplot| use the correct phase and frequency units as supplied by the user.
% \begin{macrocode}
\stepcounter{gnuplot@id}
\temp@mag@cmd gnuplot [raw gnuplot, gnuplot@prefix]
{ set table $meta;
set dummy t;
set logscale x 10;
set xrange [#3*\freq@scale:#4*\freq@scale];
set samples \pgfkeysvalueof{/pgfplots/samples};
plot \func@mag;
set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
plot "$meta" using ($1/(\freq@scale)):($2);
};
\optmag@commands
\stepcounter{gnuplot@id}
\temp@ph@cmd gnuplot [raw gnuplot, gnuplot@prefix]
{ set table $meta;
set dummy t;
set logscale x 10;
set xrange [#3*\freq@scale:#4*\freq@scale];
set samples \pgfkeysvalueof{/pgfplots/samples};
plot \func@ph;
set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
plot "$meta" using ($1/(\freq@scale)):($2);
};
\optph@commands
\fi
\end{groupplot}
\end{tikzpicture}
}
% \end{macrocode}
% \end{macro}
% \begin{macro}{\BodeTF}
% Implementation of this macro is very similar to the |\BodeZPK| macro above. The only difference is the lack of linear and asymptotic plots and slightly different parsing of the mandatory arguments. \changes{v1.0.3}{2021/11/03}{Added Tikz option} \changes{v1.1.0}{2022/07/06}{Fixed phase wrapping in gnuplot mode}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\newcommand{\BodeTF}[4][]{
\parse@opt{#1}
\gdef\func@mag{}
\gdef\func@ph{}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]}
\temp@cmd
\build@TF@plot{\func@mag}{\func@ph}{#2}
\edef\temp@cmd{\noexpand\begin{groupplot}[
bode@style,
xmin=#3,
xmax=#4,
domain=#3*\freq@scale:#4*\freq@scale,
height=2.5cm,
xmode=log,
group style = {group size = 1 by 2,vertical sep=0.25cm},
\opt@group
]}
\temp@cmd
\edef\temp@mag@cmd{\noexpand\nextgroupplot [ylabel={Gain (dB)}, xmajorticks=false, \optmag@axes]
\noexpand\addplot [freq@filter, variable=t, thick, \optmag@plot]}
\edef\temp@ph@cmd{\noexpand\nextgroupplot [ph@y@label, freq@label, \optph@axes]
\noexpand\addplot [freq@filter, variable=t, thick, \optph@plot]}
\if@pgfarg
\temp@mag@cmd {\func@mag};
\optmag@commands
\temp@ph@cmd {\n@mod{\func@ph}{2*pi*\ph@scale}};
\optph@commands
\else
\stepcounter{gnuplot@id}
\temp@mag@cmd gnuplot [raw gnuplot, gnuplot@prefix]
{ set table $meta;
set dummy t;
set logscale x 10;
set xrange [#3*\freq@scale:#4*\freq@scale];
set samples \pgfkeysvalueof{/pgfplots/samples};
plot \func@mag;
set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
plot "$meta" using ($1/(\freq@scale)):($2);
};
\optmag@commands
\stepcounter{gnuplot@id}
\temp@ph@cmd gnuplot [raw gnuplot, gnuplot@prefix]
{ set table $meta;
set dummy t;
set logscale x 10;
set trange [#3*\freq@scale:#4*\freq@scale];
set samples \pgfkeysvalueof{/pgfplots/samples};
plot '+' using (t) : ((\func@ph)/(\ph@scale)) smooth unwrap;
set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
plot "$meta" using ($1/(\freq@scale)):($2*\ph@scale);
};
\optph@commands
\fi
\end{groupplot}
\end{tikzpicture}
}
% \end{macrocode}
% \end{macro}
% \begin{macro}{\addBodeZPKPlots}
% This macro is designed to issues multiple |\addplot| macros for the same set of poles, zeros, gain, and delay. All of the work is done by the |\build@ZPK@plot| macro. \changes{v1.0.1}{2021/10/29}{Improved optional argument handling.}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\newcommand{\addBodeZPKPlots}[3][true/{}]{
\foreach \approx/\opt in {#1} {
\gdef\plot@macro{}
\gdef\temp@macro{}
\ifnum\pdf@strcmp{#2}{phase}=0
\build@ZPK@plot{\temp@macro}{\plot@macro}{\approx}{#3}
\else
\build@ZPK@plot{\plot@macro}{\temp@macro}{\approx}{#3}
\fi
\edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
\edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
\edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
\edef\temp@cmd{\noexpand\addplot [freq@filter, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, thick, \opt]}
\temp@cmd {\plot@macro};
\else
\stepcounter{gnuplot@id}
\edef\temp@cmd{\noexpand\addplot [variable=t, thick, \opt]}
\temp@cmd gnuplot [raw gnuplot, gnuplot@prefix]
{ set table $meta;
set dummy t;
set logscale x 10;
set xrange [\domain@start*\freq@scale:\domain@end*\freq@scale];
set samples \pgfkeysvalueof{/pgfplots/samples};
plot \plot@macro;
set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
plot "$meta" using ($1/(\freq@scale)):($2);
};
\fi
}
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\addBodeTFPlot}
% This macro is designed to issues a single |\addplot| macros for the set of coefficients and delay. All of the work is done by the |\build@TF@plot| macro. \changes{v1.1.0}{2022/07/06}{Fixed phase wrapping in gnuplot mode}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\newcommand{\addBodeTFPlot}[3][thick]{
\gdef\plot@macro{}
\gdef\temp@macro{}
\ifnum\pdf@strcmp{#2}{phase}=0
\build@TF@plot{\temp@macro}{\plot@macro}{#3}
\else
\build@TF@plot{\plot@macro}{\temp@macro}{#3}
\fi
\edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
\edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
\edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
\ifnum\pdf@strcmp{#2}{phase}=0
\addplot [freq@filter, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1]{\n@mod{\plot@macro}{2*pi}};
\else
\addplot [freq@filter, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1]{\plot@macro};
\fi
\else
\stepcounter{gnuplot@id}
\ifnum\pdf@strcmp{#2}{phase}=0
\addplot [variable=t, #1] gnuplot [raw gnuplot, gnuplot@prefix]
{ set table $meta;
set dummy t;
set logscale x 10;
set trange [\domain@start*\freq@scale:\domain@end*\freq@scale];
set samples \pgfkeysvalueof{/pgfplots/samples};
plot '+' using (t) : ((\plot@macro)/(\ph@scale)) smooth unwrap;
set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
plot "$meta" using ($1/(\freq@scale)):($2*\ph@scale);
};
\else
\addplot [variable=t, #1] gnuplot [raw gnuplot, gnuplot@prefix]
{ set table $meta;
set dummy t;
set logscale x 10;
set xrange [\domain@start*\freq@scale:\domain@end*\freq@scale];
set samples \pgfkeysvalueof{/pgfplots/samples};
plot \plot@macro;
set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
plot "$meta" using ($1/(\freq@scale)):($2);
};
\fi
\fi
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\addBodeComponentPlot}
% This macro is designed to issue a single |\addplot| macro capable of plotting linear combinations of the basic components described in Section \ref{sec:BasicComponents}. The only work to do here is to handle the |pgf| package option.\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\newcommand{\addBodeComponentPlot}[2][thick]{
\edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
\edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
\edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
\addplot [freq@filter, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1] {#2};
\else
\stepcounter{gnuplot@id}
\addplot [variable=t, #1] gnuplot [raw gnuplot, gnuplot@prefix]
{ set table $meta;
set dummy t;
set logscale x 10;
set xrange [\domain@start*\freq@scale:\domain@end*\freq@scale];
set samples \pgfkeysvalueof{/pgfplots/samples};
plot #2;
set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
plot "$meta" using ($1/(\freq@scale)):($2);
};
\fi
}
% \end{macrocode}
%\end{macro}
% \begin{environment}{BodePhPlot}
% An environment to host phase plot macros that pass parametric functions to |\addplot| macros. Uses the defaults specified in |bode@style| to create a shortcut that includes the |tikzpicture| and |semilogaxis| environments.\changes{v1.1.0}{2022/07/20}{Added separate environments for phase and magnitude plots}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}\changes{v1.1.2}{2022/10/29}{Defined using the `NewEnviron' command from the `environ' package to fix conflicts with externalization}
% \begin{macrocode}
\NewEnviron{BodePhPlot}[3][]{
\parse@env@opt{#1}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]
\noexpand\begin{semilogxaxis}[
ph@y@label,
freq@label,
bode@style,
xmin={#2},
xmax={#3},
domain=#2:#3,
height=2.5cm,
\unexpanded\expandafter{\opt@axes}
]
}
\temp@cmd
\BODY
\end{semilogxaxis}
\end{tikzpicture}
}
% \end{macrocode}
% \end{environment}
% \begin{environment}{BodeMagPlot}
% An environment to host magnitude plot macros that pass parametric functions to |\addplot| macros. Uses the defaults specified in |bode@style| to create a shortcut that includes the |tikzpicture| and |semilogaxis| environments.\changes{v1.1.0}{2022/07/20}{Added separate environments for phase and magnitude plots}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}\changes{v1.1.2}{2022/10/29}{Defined using the `NewEnviron' command from the `environ' package to fix conflicts with externalization}
% \begin{macrocode}
\NewEnviron{BodeMagPlot}[3][]{
\parse@env@opt{#1}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]
\noexpand\begin{semilogxaxis}[
bode@style,
freq@label,
xmin={#2},
xmax={#3},
domain=#2:#3,
height=2.5cm,
ylabel={Gain (dB)},
\unexpanded\expandafter{\opt@axes}
]
}
\temp@cmd
\BODY
\end{semilogxaxis}
\end{tikzpicture}
}
% \end{macrocode}
% \end{environment}
% \begin{environment}{BodePlot}
% Same as |BodeMagPlot|. The |BodePlot| environment is deprecated as of v1.1.0, please use the |BodePhPlot| and |BodeMagPlot| environments instead.\changes{v1.0.3}{2021/11/03}{Added tikz option to environments}\changes{v1.1.0}{2022/02/20}{Deprecated BodePlot environment}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}\changes{v1.1.2}{2022/10/29}{Defined using the `NewEnviron' command from the `environ' package to fix conflicts with externalization}
% \begin{macrocode}
\NewEnviron{BodePlot}[3][]{
\parse@env@opt{#1}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]
\noexpand\begin{semilogxaxis}[
bode@style,
freq@label,
xmin={#2},
xmax={#3},
domain=#2:#3,
height=2.5cm,
\unexpanded\expandafter{\opt@axes}
]
}
\temp@cmd
\BODY
\end{semilogxaxis}
\end{tikzpicture}
}
% \end{macrocode}
% \end{environment}
% \subsubsection{Internal macros}
% \begin{macro}{\add@feature}
% This is an internal macro to add a basic component (pole, zero, gain, or delay), described using one of the macros in Section \ref{sec:BasicComponents} (input |#2|), to a parametric function stored in a global macro (input |#1|). The basic component value (input |#3|) is a complex number of the form |{re,im}|. If the imaginary part is missing, it is assumed to be zero. Implementation made possible by \href{https://tex.stackexchange.com/a/619637/110602}{this StackExchange answer}.
% \begin{macrocode}
\newcommand*{\add@feature}[3]{
\ifcat$\detokenize\expandafter{#1}$
\xdef#1{\unexpanded\expandafter{#1 0+#2}}
\else
\xdef#1{\unexpanded\expandafter{#1+#2}}
\fi
\foreach \y [count=\n] in #3 {
\xdef#1{\unexpanded\expandafter{#1}{\y}}
\xdef\Last@LoopValue{\n}
}
\ifnum\Last@LoopValue=1
\xdef#1{\unexpanded\expandafter{#1}{0}}
\fi
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\build@ZPK@plot}
% This is an internal macro to build parametric Bode magnitude and phase plots by concatenating basic component (pole, zero, gain, or delay) macros (Section \ref{sec:BasicComponents}) to global magnitude and phase macros (inputs |#1| and |#2|). The |\add@feature| macro is used to do the concatenation. The basic component macros are inferred from a |feature/{values}| list, where |feature| is one of |z|,|p|,|k|, and |d|, for zeros, poles, gain, and delay, respectively, and |{values}| is a comma separated list of comma separated lists (complex numbers of the form |{re,im}|). If the imaginary part is missing, it is assumed to be zero.
% \begin{macrocode}
\newcommand{\build@ZPK@plot}[4]{
\foreach \feature/\values in {#4} {
\ifnum\pdf@strcmp{\feature}{z}=0
\foreach \z in \values {
\ifnum\pdf@strcmp{#3}{linear}=0
\add@feature{#2}{\PhZeroLin}{\z}
\add@feature{#1}{\MagZeroLin}{\z}
\else
\ifnum\pdf@strcmp{#3}{asymptotic}=0
\add@feature{#2}{\PhZeroAsymp}{\z}
\add@feature{#1}{\MagZeroAsymp}{\z}
\else
\add@feature{#2}{\PhZero}{\z}
\add@feature{#1}{\MagZero}{\z}
\fi
\fi
}
\fi
\ifnum\pdf@strcmp{\feature}{p}=0
\foreach \p in \values {
\ifnum\pdf@strcmp{#3}{linear}=0
\add@feature{#2}{\PhPoleLin}{\p}
\add@feature{#1}{\MagPoleLin}{\p}
\else
\ifnum\pdf@strcmp{#3}{asymptotic}=0
\add@feature{#2}{\PhPoleAsymp}{\p}
\add@feature{#1}{\MagPoleAsymp}{\p}
\else
\add@feature{#2}{\PhPole}{\p}
\add@feature{#1}{\MagPole}{\p}
\fi
\fi
}
\fi
\ifnum\pdf@strcmp{\feature}{k}=0
\ifnum\pdf@strcmp{#3}{linear}=0
\add@feature{#2}{\PhKLin}{\values}
\add@feature{#1}{\MagKLin}{\values}
\else
\ifnum\pdf@strcmp{#3}{asymptotic}=0
\add@feature{#2}{\PhKAsymp}{\values}
\add@feature{#1}{\MagKAsymp}{\values}
\else
\add@feature{#2}{\PhK}{\values}
\add@feature{#1}{\MagK}{\values}
\fi
\fi
\fi
\ifnum\pdf@strcmp{\feature}{d}=0
\ifnum\pdf@strcmp{#3}{linear}=0
\PackageError {bodeplot} {Linear approximation for pure delays is not
supported.} {Plot the true Bode plot using `true' instead of `linear'.}
\else
\ifnum\pdf@strcmp{#3}{asymptotic}=0
\PackageError {bodeplot} {Asymptotic approximation for pure delays is not
supported.} {Plot the true Bode plot using `true' instead of `asymptotic'.}
\else
\ifdim\values pt < 0pt
\PackageError {bodeplot} {Delay needs to be a positive number.}
\fi
\add@feature{#2}{\PhDel}{\values}
\add@feature{#1}{\MagDel}{\values}
\fi
\fi
\fi
}
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\build@TF@plot}
% This is an internal macro to build parametric Bode magnitude and phase functions by computing the magnitude and the phase given numerator and denominator coefficients and delay (input |#3|). The functions are assigned to user-supplied global magnitude and phase macros (inputs |#1| and |#2|). \changes{v1.0.8}{2022/07/05}{Included phase due to delay in wrapping.}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\newcommand{\build@TF@plot}[3]{
\gdef\num@real{0}
\gdef\num@im{0}
\gdef\den@real{0}
\gdef\den@im{0}
\gdef\loop@delay{0}
\foreach \feature/\values in {#3} {
\ifnum\pdf@strcmp{\feature}{num}=0
\foreach \numcoeff [count=\numpow] in \values {
\xdef\num@degree{\numpow}
}
\foreach \numcoeff [count=\numpow] in \values {
\pgfmathtruncatemacro{\currentdegree}{\num@degree-\numpow}
\ifnum\currentdegree = 0
\xdef\num@real{\num@real+\numcoeff}
\else
\ifodd\currentdegree
\xdef\num@im{\num@im+(\numcoeff*(\n@pow{-1}{(\currentdegree-1)/2})*%
(\n@pow{t}{\currentdegree}))}
\else
\xdef\num@real{\num@real+(\numcoeff*(\n@pow{-1}{(\currentdegree)/2})*%
(\n@pow{t}{\currentdegree}))}
\fi
\fi
}
\fi
\ifnum\pdf@strcmp{\feature}{den}=0
\foreach \dencoeff [count=\denpow] in \values {
\xdef\den@degree{\denpow}
}
\foreach \dencoeff [count=\denpow] in \values {
\pgfmathtruncatemacro{\currentdegree}{\den@degree-\denpow}
\ifnum\currentdegree = 0
\xdef\den@real{\den@real+\dencoeff}
\else
\ifodd\currentdegree
\xdef\den@im{\den@im+(\dencoeff*(\n@pow{-1}{(\currentdegree-1)/2})*%
(\n@pow{t}{\currentdegree}))}
\else
\xdef\den@real{\den@real+(\dencoeff*(\n@pow{-1}{(\currentdegree)/2})*%
(\n@pow{t}{\currentdegree}))}
\fi
\fi
}
\fi
\ifnum\pdf@strcmp{\feature}{d}=0
\xdef\loop@delay{\values}
\fi
}
\xdef#2{((atan2((\num@im),(\num@real))-atan2((\den@im),%
(\den@real))-\loop@delay*t)*(\ph@scale))}
\xdef#1{(20*log10(sqrt((\n@pow{\num@real}{2})+(\n@pow{\num@im}{2})))-%
20*log10(sqrt((\n@pow{\den@real}{2})+(\n@pow{\den@im}{2}))))}
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\parse@opt}
% Parses options supplied to the main Bode macros. A |for| loop over tuples of the form |\obj/\typ/\opt| with a long list of nested if-else statements does the job. If the input |\obj| is |plot|, |axes|, |group|, |approx|, or |tikz| the corresponding |\opt| are passed, unexpanded, to the |\addplot| macro, the |\nextgroupplot| macro, the |groupplot| environment, the |\build@ZPK@plot| macro, and the |tikzpicture| environment, respectively. If |\obj| is |commands|, the corresponding |\opt| are stored, unexpanded, in the macros |\optph@commands| and |\optmag@commands|, to be executed in appropriate |axis| environments. \changes{v1.0.3}{2021/11/03}{Added Tikz option} \changes{v1.0.5}{2021/11/15}{Fixed a bug}
% \begin{macrocode}
\newcommand{\parse@opt}[1]{
\gdef\optmag@axes{}
\gdef\optph@axes{}
\gdef\optph@plot{}
\gdef\optmag@plot{}
\gdef\opt@group{}
\gdef\opt@approx{}
\gdef\optph@commands{}
\gdef\optmag@commands{}
\gdef\opt@tikz{}
\foreach \obj/\typ/\opt in {#1} {
\ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{plot}=0
\ifnum\pdf@strcmp{\unexpanded\expandafter{\typ}}{mag}=0
\xdef\optmag@plot{\unexpanded\expandafter{\opt}}
\else
\ifnum\pdf@strcmp{\unexpanded\expandafter{\typ}}{ph}=0
\xdef\optph@plot{\unexpanded\expandafter{\opt}}
\else
\xdef\optmag@plot{\unexpanded\expandafter{\opt}}
\xdef\optph@plot{\unexpanded\expandafter{\opt}}
\fi
\fi
\else
\ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{axes}=0
\ifnum\pdf@strcmp{\unexpanded\expandafter{\typ}}{mag}=0
\xdef\optmag@axes{\unexpanded\expandafter{\opt}}
\else
\ifnum\pdf@strcmp{\unexpanded\expandafter{\typ}}{ph}=0
\xdef\optph@axes{\unexpanded\expandafter{\opt}}
\else
\xdef\optmag@axes{\unexpanded\expandafter{\opt}}
\xdef\optph@axes{\unexpanded\expandafter{\opt}}
\fi
\fi
\else
\ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{group}=0
\xdef\opt@group{\unexpanded\expandafter{\opt}}
\else
\ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{approx}=0
\xdef\opt@approx{\unexpanded\expandafter{\opt}}
\else
\ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{commands}=0
\ifnum\pdf@strcmp{\unexpanded\expandafter{\typ}}{ph}=0
\xdef\optph@commands{\unexpanded\expandafter{\opt}}
\else
\xdef\optmag@commands{\unexpanded\expandafter{\opt}}
\fi
\else
\ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{tikz}=0
\xdef\opt@tikz{\unexpanded\expandafter{\opt}}
\else
\xdef\optmag@plot{\unexpanded\expandafter{\optmag@plot},
\unexpanded\expandafter{\obj}}
\xdef\optph@plot{\unexpanded\expandafter{\optph@plot},
\unexpanded\expandafter{\obj}}
\fi
\fi
\fi
\fi
\fi
\fi
}
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\parse@env@opt}
% Parses options supplied to the Bode, Nyquist, and Nichols environments. A |for| loop over tuples of the form |\obj/\opt|, processed using nested if-else statements does the job. The input |\obj| should either be |axes| or |tikz|, and the corresponding |\opt| are passed, unexpanded, to the |axis| environment and the |tikzpicture| environment, respectively. \changes{v1.0.3}{2021/11/03}{Added tikz option to environments}
% \begin{macrocode}
\newcommand{\parse@env@opt}[1]{
\gdef\opt@axes{}
\gdef\opt@tikz{}
\foreach \obj/\opt in {#1} {
\ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{axes}=0
\xdef\opt@axes{\unexpanded\expandafter{\opt}}
\else
\ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{tikz}=0
\xdef\opt@tikz{\unexpanded\expandafter{\opt}}
\else
\xdef\opt@axes{\unexpanded\expandafter{\opt@axes},
\unexpanded\expandafter{\obj}}
\fi
\fi
}
}
% \end{macrocode}
% \end{macro}
% \subsection{Nyquist plots}
% \subsubsection{User macros}
% \begin{macro}{\NyquistZPK}
% Converts magnitude and phase parametric functions built using |\build@ZPK@plot| into real part and imaginary part parametric functions. A plot of these is the Nyquist plot. The parametric functions are then plotted in a |tikzpicture| environment using the |\addplot| macro. Unless the package is loaded with the option |pgf|, the parametric functions are evaluated using |gnuplot|. A large number of samples is typically needed to get a smooth plot because frequencies near 0 result in plot points that are very close to each other. Linear frequency sampling is unnecessarily fine near zero and very coarse for large $\omega$. Logarithmic sampling makes it worse, perhaps inverse logarithmic sampling will help, pull requests to fix that are welcome! \changes{v1.0.3}{2021/11/03}{Added commands and tikz options}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\newcommand{\NyquistZPK}[4][]{
\parse@N@opt{#1}
\gdef\func@mag{}
\gdef\func@ph{}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]}
\temp@cmd
\build@ZPK@plot{\func@mag}{\func@ph}{}{#2}
\edef\temp@cmd{\noexpand\begin{axis}[
bode@style,
domain=#3*\freq@scale:#4*\freq@scale,
height=5cm,
xlabel={$\Re$},
ylabel={$\Im$},
samples=500,
\unexpanded\expandafter{\opt@axes}
]}
\temp@cmd
\addplot [only marks,mark=+,thick,red] (-1 , 0);
\edef\temp@cmd{\noexpand\addplot [variable=t, thick, \unexpanded\expandafter{\opt@plot}]}
\if@pgfarg
\temp@cmd ( {\n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale))},
{\n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))} );
\opt@commands
\else
\stepcounter{gnuplot@id}
\temp@cmd gnuplot [parametric, gnuplot@prefix] {
\n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale)),
\n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))
};
\opt@commands
\fi
\end{axis}
\end{tikzpicture}
}
% \end{macrocode}
% \end{macro}
% \begin{macro}{\NyquistTF}
% Implementation of this macro is very similar to the |\NyquistZPK| macro above. The only difference is a slightly different parsing of the mandatory arguments via |\build@TF@plot|. \changes{v1.0.3}{2021/11/03}{Added commands and tikz options}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\newcommand{\NyquistTF}[4][]{
\parse@N@opt{#1}
\gdef\func@mag{}
\gdef\func@ph{}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]}
\temp@cmd
\build@TF@plot{\func@mag}{\func@ph}{#2}
\edef\temp@cmd{\noexpand\begin{axis}[
bode@style,
domain=#3*\freq@scale:#4*\freq@scale,
height=5cm,
xlabel={$\Re$},
ylabel={$\Im$},
samples=500,
\unexpanded\expandafter{\opt@axes}
]}
\temp@cmd
\addplot [only marks, mark=+, thick, red] (-1 , 0);
\edef\temp@cmd{\noexpand\addplot [variable=t, thick, \unexpanded\expandafter{\opt@plot}]}
\if@pgfarg
\temp@cmd ( {\n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale))},
{\n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))} );
\opt@commands
\else
\stepcounter{gnuplot@id}
\temp@cmd gnuplot [parametric, gnuplot@prefix] {
\n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale)),
\n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))
};
\opt@commands
\fi
\end{axis}
\end{tikzpicture}
}
% \end{macrocode}
% \end{macro}
% \begin{macro}{\addNyquistZPKPlot}
% Adds Nyquist plot of a transfer function in ZPK form. This macro is designed to pass two parametric function to an |\addplot| macro. The parametric functions for phase (|\func@ph|) and magnitude (|\func@mag|) are built using the |\build@ZPK@plot| macro, converted to real and imaginary parts and passed to |\addplot| commands.\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\newcommand{\addNyquistZPKPlot}[2][]{
\gdef\func@mag{}
\gdef\func@ph{}
\build@ZPK@plot{\func@mag}{\func@ph}{}{#2}
\edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
\edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
\edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
\addplot [domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1] ( {\n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale))},
{\n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))} );
\else
\stepcounter{gnuplot@id}
\addplot [domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1] gnuplot [parametric, gnuplot@prefix] {
\n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale)),
\n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))
};
\fi
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\addNyquistTFPlot}
% Adds Nyquist plot of a transfer function in TF form. This macro is designed to pass two parametric function to an |\addplot| macro. The parametric functions for phase (|\func@ph|) and magnitude (|\func@mag|) are built using the |\build@TF@plot| macro, converted to real and imaginary parts and passed to |\addplot| commands.\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\newcommand{\addNyquistTFPlot}[2][]{
\gdef\func@mag{}
\gdef\func@ph{}
\build@TF@plot{\func@mag}{\func@ph}{#2}
\edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
\edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
\edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
\addplot [domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1] ( {\n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale))},
{\n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))} );
\else
\stepcounter{gnuplot@id}
\addplot [domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1] gnuplot [parametric, gnuplot@prefix]{
\n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale)),
\n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))
};
\fi
}
% \end{macrocode}
%\end{macro}
%\begin{macro}{NyquistPlot}
% An environment to host |\addNyquist...| macros that pass parametric functions to |\addplot|. Uses the defaults specified in |bode@style| to create a shortcut that includes the |tikzpicture| and |axis| environments. \changes{v1.0.3}{2021/11/03}{Added tikz option to environments}\changes{v1.1.2}{2022/10/29}{Defined using the `NewEniron' command from the `environ' package to fix conflicts with externalization}
% \begin{macrocode}
\NewEnviron{NyquistPlot}[3][]{
\parse@env@opt{#1}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]
\noexpand\begin{axis}[
bode@style,
height=5cm,
domain=#2:#3,
xlabel={$\Re$},
ylabel={$\Im$},
\unexpanded\expandafter{\opt@axes}
]
}
\temp@cmd
\addplot [only marks,mark=+,thick,red] (-1 , 0);
\BODY
\end{axis}
\end{tikzpicture}
}
% \end{macrocode}
%\end{macro}
% \subsubsection{Internal commands\label{sec:NInternal}}
% \begin{macro}{\parse@N@opt}
% Parses options supplied to the main Nyquist and Nichols macros. A |for| loop over tuples of the form |\obj/\opt|, processed using nested if-else statements does the job. If the input |\obj| is |plot|, |axes|, or |tikz| then the corresponding |\opt| are passed, unexpanded, to the |\addplot| macro, the |axis| environment, and the |tikzpicture| environment, respectively. \changes{v1.0.3}{2021/11/03}{Added commands and tikz options}
% \begin{macrocode}
\newcommand{\parse@N@opt}[1]{
\gdef\opt@axes{}
\gdef\opt@plot{}
\gdef\opt@commands{}
\gdef\opt@tikz{}
\foreach \obj/\opt in {#1} {
\ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{axes}=0
\xdef\opt@axes{\unexpanded\expandafter{\opt}}
\else
\ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{plot}=0
\xdef\opt@plot{\unexpanded\expandafter{\opt}}
\else
\ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{commands}=0
\xdef\opt@commands{\unexpanded\expandafter{\opt}}
\else
\ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{tikz}=0
\xdef\opt@tikz{\unexpanded\expandafter{\opt}}
\else
\xdef\opt@plot{\unexpanded\expandafter{\opt@plot},
\unexpanded\expandafter{\obj}}
\fi
\fi
\fi
\fi
}
}
% \end{macrocode}
% \end{macro}
% \subsection{Nichols charts}
% \begin{macro}{\NicholsZPK}
% \changes{v1.0.3}{2021/11/03}{Added commands and tikz options}
% \begin{macro}{\NicholsTF}
% \changes{v1.0.3}{2021/11/03}{Added commands and tikz options}
% \begin{macro}{NicholsChart}
% \changes{v1.0.3}{2021/11/03}{Added tikz option to environments}\changes{v1.1.2}{2022/10/29}{Defined using the `NewEniron' command from the `environ' package to fix conflicts with externalization}
% \begin{macro}{\addNicholsZPKChart}
% \begin{macro}{\addNicholsTFChart}
% These macros and the |NicholsChart| environment generate Nichols charts, and they are implemented similar to their Nyquist counterparts.\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
\newcommand{\NicholsZPK}[4][]{
\parse@N@opt{#1}
\gdef\func@mag{}
\gdef\func@ph{}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]}
\temp@cmd
\build@ZPK@plot{\func@mag}{\func@ph}{}{#2}
\edef\temp@cmd{\noexpand\begin{axis}[
ph@x@label,
bode@style,
domain=#3*\freq@scale:#4*\freq@scale,
height=5cm,
ylabel={Gain (dB)},
samples=500,
\unexpanded\expandafter{\opt@axes}
]}
\temp@cmd
\edef\temp@cmd{\noexpand\addplot [variable=t,thick,\opt@plot]}
\if@pgfarg
\temp@cmd ( {\func@ph} , {\func@mag} );
\opt@commands
\else
\stepcounter{gnuplot@id}
\temp@cmd gnuplot [raw gnuplot, gnuplot@prefix]
{ set table $meta;
set logscale x 10;
set dummy t;
set samples \pgfkeysvalueof{/pgfplots/samples};
set trange [#3*\freq@scale:#4*\freq@scale];
plot '+' using (\func@mag) : ((\func@ph)/(\ph@scale));
unset logscale x;
set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
plot "$meta" using ($2*\ph@scale):($1);
};
\opt@commands
\fi
\end{axis}
\end{tikzpicture}
}
\newcommand{\NicholsTF}[4][]{
\parse@N@opt{#1}
\gdef\func@mag{}
\gdef\func@ph{}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]}
\temp@cmd
\build@TF@plot{\func@mag}{\func@ph}{#2}
\edef\temp@cmd{\noexpand\begin{axis}[
ph@x@label,
bode@style,
domain=#3*\freq@scale:#4*\freq@scale,
height=5cm,
ylabel={Gain (dB)},
samples=500,
\unexpanded\expandafter{\opt@axes}
]}
\temp@cmd
\edef\temp@cmd{\noexpand\addplot [variable=t,thick, \opt@plot]}
\if@pgfarg
\temp@cmd ( {\n@mod{\func@ph}{2*pi*\ph@scale}} , {\func@mag} );
\opt@commands
\else
\stepcounter{gnuplot@id}
\temp@cmd gnuplot [raw gnuplot, gnuplot@prefix]
{ set table $meta1;
set logscale x 10;
set dummy t;
set samples \pgfkeysvalueof{/pgfplots/samples};
set trange [#3*\freq@scale:#4*\freq@scale];
plot '+' using (\func@mag) : ((\func@ph)/(\ph@scale));
unset logscale x;
set table $meta2;
plot "$meta1" using ($1):($2) smooth unwrap;
set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
plot "$meta2" using ($2*\ph@scale):($1);
};
\opt@commands
\fi
\end{axis}
\end{tikzpicture}
}
\NewEnviron{NicholsChart}[3][]{
\parse@env@opt{#1}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]
\noexpand\begin{axis}[
ph@x@label,
bode@style,
domain=#2:#3,
height=5cm,
ylabel={Gain (dB)},
\unexpanded\expandafter{\opt@axes}
]
}
\temp@cmd
\BODY
\end{axis}
\end{tikzpicture}
}
\newcommand{\addNicholsZPKChart}[2][]{
\gdef\func@mag{}
\gdef\func@ph{}
\build@ZPK@plot{\func@mag}{\func@ph}{}{#2}
\edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
\edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
\edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
\addplot [variable=t, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, #1] ( {\func@ph} , {\func@mag} );
\else
\stepcounter{gnuplot@id}
\addplot [#1] gnuplot [raw gnuplot, gnuplot@prefix]
{ set table $meta;
set logscale x 10;
set dummy t;
set samples \pgfkeysvalueof{/pgfplots/samples};
set trange [\domain@start*\freq@scale:\domain@end*\freq@scale];
plot '+' using (\func@mag) : ((\func@ph)/(\ph@scale));
unset logscale x;
set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
plot "$meta" using ($2*\ph@scale):($1);
};
\fi
}
\newcommand{\addNicholsTFChart}[2][]{
\gdef\func@mag{}
\gdef\func@ph{}
\build@TF@plot{\func@mag}{\func@ph}{#2}
\edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
\edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
\edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
\addplot [variable=t, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, #1] ( {\n@mod{\func@ph}{2*pi*\ph@scale}} , {\func@mag} );
\else
\stepcounter{gnuplot@id}
\addplot [#1] gnuplot [raw gnuplot, gnuplot@prefix]
{ set table $meta1;
set logscale x 10;
set dummy t;
set samples \pgfkeysvalueof{/pgfplots/samples};
set trange [\domain@start*\freq@scale:\domain@end*\freq@scale];
plot '+' using (\func@mag) : ((\func@ph)/(\ph@scale));
unset logscale x;
set table $meta2;
plot "$meta1" using ($1):($2) smooth unwrap;
set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
plot "$meta2" using ($2*\ph@scale):($1);
};
\fi
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \Finale
\endinput
+
+ + + +
+ +
+ + + + +
+ + +
+ + +
+
+ + + +
+ +
+ + +
+ +
+ + +
+
+ +
+ + + + + + + + + + + + + + + + + + + + + + diff --git a/graphics/pgf/contrib/bodeplot/bodeplot.ins b/graphics/pgf/contrib/bodeplot/bodeplot.ins index 1a80024f83..88209ac674 100644 --- a/graphics/pgf/contrib/bodeplot/bodeplot.ins +++ b/graphics/pgf/contrib/bodeplot/bodeplot.ins @@ -1,41 +1,3138 @@ -%% -%% Copyright (C) 2021 by Rushikesh Kamalapurkar -%% -%% This file may be distributed and/or modified under the -%% conditions of the LaTeX Project Public License, either -%% version 1.3c of this license or (at your option) any later -%% version. The latest version of this license is in: -%% -%% http://www.latex-project.org/lppl.txt -%% -%% and version 1.3c or later is part of all distributions of -%% LaTeX version 2006/05/20 or later. -%% -\input docstrip.tex -\keepsilent -\usedir{tex/latex/bodeplot} -\preamble -This is a generated file. -Copyright (C) 2021 by Rushikesh Kamalapurkar -This file may be distributed and/or modified under the -conditions of the LaTeX Project Public License, either -version 1.3c of this license or (at your option) any later -version. The latest version of this license is in: -http://www.latex-project.org/lppl.txt -and version 1.3c or later is part of all distributions of -LaTeX version 2006/05/20 or later. -\endpreamble -\generate{\file{bodeplot.sty}{\from{bodeplot.dtx}{package}}} -\Msg{*********************************************************} -\Msg{*} -\Msg{* To finish the installation you have to move the} -\Msg{* following file into a directory searched by TeX:} -\Msg{*} -\Msg{* bodeplot.sty} -\Msg{*} -\Msg{* To produce the documentation run the file bodeplot.dtx} -\Msg{* through LaTeX.} -\Msg{*} -\Msg{* Happy TeXing!} -\Msg{*********************************************************} -\endbatchfile \ No newline at end of file + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + bodeplot/bodeplot.ins at main · rlkamalapurkar/bodeplot + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Skip to content + + + + + + + + + + + + + + +
+ +
+ + + + + + + +
+ + + + + +
+ + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +
+ +
+ + + + rlkamalapurkar  /   + bodeplot  /   + +
+
+ + + +
+ + +
+
+ Clear Command Palette +
+
+ + + +
+
+ Tip: + Type # to search pull requests +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type # to search issues +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type # to search discussions +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type ! to search projects +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type @ to search teams +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type @ to search people and organizations +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type > to activate command mode +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Go to your accessibility settings to change your keyboard shortcuts +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type author:@me to search your content +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type is:pr to filter to pull requests +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type is:issue to filter to issues +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type is:project to filter to projects +
+
+ Type ? for help and tips +
+
+
+ +
+
+ Tip: + Type is:open to filter to open content +
+
+ Type ? for help and tips +
+
+
+ +
+ +
+
+ We’ve encountered an error and some results aren't available at this time. Type a new search or try again later. +
+
+ + No results matched your search + + + + + + + + + + +
+ + + + + Search for issues and pull requests + + # + + + + Search for issues, pull requests, discussions, and projects + + # + + + + Search for organizations, repositories, and users + + @ + + + + Search for projects + + ! + + + + Search for files + + / + + + + Activate command mode + + > + + + + Search your issues, pull requests, and discussions + + # author:@me + + + + Search your issues, pull requests, and discussions + + # author:@me + + + + Filter to pull requests + + # is:pr + + + + Filter to issues + + # is:issue + + + + Filter to discussions + + # is:discussion + + + + Filter to projects + + # is:project + + + + Filter to open issues, pull requests, and discussions + + # is:open + + + + + + + + + + + + + + + + +
+
+
+ +
+ + + + + + + + + + +
+ + +
+
+
+ + + + + + + + + + +
+ +
+ +
+ +
+ + + + / + + bodeplot + + + Public +
+ + +
+ +
    + +
  • +
    +
    +
    +
  • + + +
  • + +
    + + + + + Unwatch + + + + + 1 + + + +
    +
    +

    Notifications

    + +
    + +
    +
    + + + + + + + + +
    + + +
    + + + + + Get push notifications on iOS or Android. + +
    +
    +
    +
    + + + + +
    +
    +
    + + + +
  • + +
  • +
    + Fork + 1 + +
    + + + +
    + +
    +
    + + + + + + + +
    + +
    +
    +
    +
    +
  • + +
  • + + +
    +
    +
    + + +
    + + + +
    + +
    +
    + + + + + + + +
    + +
    +
    +
    +
    +
    +
    +
    + +
    + + + +
    + +
    +
    + + + + + + + +
    + +
    +
    +
    +
    +
    +
  • + + + +
+ +
+ +
+
+ + + + + + +
+ + + + +
+ Open in github.dev + Open in a new github.dev tab + + + + + + +
+ + +
+ + + + + + + + +Permalink + +
+ +
+
+ + + main + + + + +
+
+
+ Switch branches/tags + +
+ + + +
+ +
+ +
+ + +
+ +
+ + + + + + + + + + + + + + + + + +
+ + +
+
+
+
+ +
+ +
+ + +
+ +
+
+
+

Name already in use

+
+
+ +
+
+
+
+ +
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch? +
+ +
+
+ + +
+
+ + + + Go to file + +
+ + + + +
+
+
+ + + + + + + + + +
+ +
+
+
 
+
+ +
+
 
+ Cannot retrieve contributors at this time +
+
+ + + + + + + + + + + + + +
+ +
+ + +
+ + 41 lines (41 sloc) + + 1.38 KB +
+ +
+ + + + +
+ +
+
+
+
+ +
+ +
+
+
+ + + +
+ + + + + + + + + +
+ + +
+ +
+
+ +
+ +
+
+ + + +
+ + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
%%
%% Copyright (C) 2021 by Rushikesh Kamalapurkar
%%
%% This file may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either
%% version 1.3c of this license or (at your option) any later
%% version. The latest version of this license is in:
%%
%% http://www.latex-project.org/lppl.txt
%%
%% and version 1.3c or later is part of all distributions of
%% LaTeX version 2006/05/20 or later.
%%
\input docstrip.tex
\keepsilent
\usedir{tex/latex/bodeplot}
\preamble
This is a generated file.
Copyright (C) 2021 by Rushikesh Kamalapurkar
This file may be distributed and/or modified under the
conditions of the LaTeX Project Public License, either
version 1.3c of this license or (at your option) any later
version. The latest version of this license is in:
http://www.latex-project.org/lppl.txt
and version 1.3c or later is part of all distributions of
LaTeX version 2006/05/20 or later.
\endpreamble
\generate{\file{bodeplot.sty}{\from{bodeplot.dtx}{package}}}
\Msg{*********************************************************}
\Msg{*}
\Msg{* To finish the installation you have to move the}
\Msg{* following file into a directory searched by TeX:}
\Msg{*}
\Msg{* bodeplot.sty}
\Msg{*}
\Msg{* To produce the documentation run the file bodeplot.dtx}
\Msg{* through LaTeX.}
\Msg{*}
\Msg{* Happy TeXing!}
\Msg{*********************************************************}
\endbatchfile
+
+ + + +
+ +
+ + + + +
+ + +
+ + +
+
+ + + +
+ +
+ + +
+ +
+ + +
+
+ +
+ + + + + + + + + + + + + + + + + + + + + + diff --git a/graphics/pgf/contrib/bodeplot/bodeplot.pdf b/graphics/pgf/contrib/bodeplot/bodeplot.pdf index e47b655740..f866f3ba55 100644 Binary files a/graphics/pgf/contrib/bodeplot/bodeplot.pdf and b/graphics/pgf/contrib/bodeplot/bodeplot.pdf differ -- cgit v1.2.3