diff options
Diffstat (limited to 'macros/latex/contrib/tkz/tkz-elements/doc')
9 files changed, 125 insertions, 124 deletions
diff --git a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex index 099c75a278..1bd4b831e4 100644 --- a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex +++ b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex @@ -154,63 +154,65 @@ Here's the list of methods for the \tkzNameObj{line} object. The results are eit \label{ssub:table_of_the_methods_from_class_line} \vspace{1em} -\bgroup -\catcode`_=12 -\small -\captionof{table}{Methods of the class line.} -\begin{tabular}{lll} -\toprule -\textbf{Methods} & \textbf{Comments} & \\ -\midrule -\Imeth{line}{new(A, B)} & |L.AB = line : new(z.A,z.B)| line through the points $A$ and $B$&\\ -\midrule - \textbf{Points} &&\\ -\midrule -\Imeth{line}{gold\_ratio ()} & |z.C = L.AB : gold_ratio()| & gold ratio \\ -\Imeth{line}{normalize ()} & |z.C = L.AB : normalize()| & AC =1 and $C\in (AB)$ \\ -\Imeth{line}{normalize\_inv ()} & |z.C = L.AB : normalize_inv()| & CB =1 and $C\in (AB)$ \\ -\Imeth{line}{barycenter (ka,kb)} & |z.C = L.AB : barycenter (1,2)| $C$ & barycenter of |{(A,1)(B,2)}|\\ -\Imeth{line}{point (t)} & |z.C = L.AB : point (2)| & $\overrightarrow{AC} = 2\overrightarrow{AB}$\\ -\Imeth{line}{midpoint ()} & |z.M = L.AB : midpoint ()| & better is |z.M = L.AB.mid| \\ -\Imeth{line}{harmonic\_int } & |z.D = L.AB : harmonic_int (z.C)| & $D\in [AB]$ $C\notin [AB]$\\ -\Imeth{line}{harmonic\_ext (pt)} & |z.D = L.AB : harmonic_ext (z.C)| & $D\notin [AB]$ $C\in [AB]$\\ -\Imeth{line}{harmonic\_both (k)} & |z.C,z.D = L.AB : harmonic_both (tkzphi)| & ${ {CA/CB}={DA/DB}=t\varphi.}$\\ -\Imeth{line}{square ()} & |S.AB =(L.AB : square ()) | & create a square |S.AB|.\footnote{ |_,_,z.C,z.D = get_points(S.AB)|}\\ -\midrule - \textbf{Lines} &&\\ -\midrule -\Imeth{line}{ll\_from ( pt )} & |L.CD = L.AB : ll_from (z.C)| & $(CD) \parallel (AB)$ \\ -\Imeth{line}{ortho\_from ( pt )} & |L.CD = L.AB : ortho_from (z.C)|& $(CD) \perp (AB)$\\ -\Imeth{line}{mediator ()}&|L.uv = L.AB : mediator ()| & $(u,v)$ mediator of $(A,B)$\\ -\midrule - \textbf{Triangles} &&\\ -\midrule -\Imeth{line}{equilateral (swap)} & |T.ABC = L.AB : equilateral ()| $(\overrightarrow{AB},\overrightarrow{AC})>0$ & or < with swap \\ -\Imeth{line}{isosceles (phi)} & |T.ABC = L.AB : isosceles (math.pi/6)|& \\ -\Imeth{line}{gold ()} & |T.ABC = L.AB : gold ()| & right in $B$ and $AC = \varphi \times AB $ \\ -\Imeth{line}{euclide ()} & |T.ABC = L.AB : euclide ()| & $AB=AC$ and $(\overrightarrow{AB},\overrightarrow{AC}) = math.pi/5$ \\ -\Imeth{line}{golden ()} & |T.ABC = L.AB : golden ()| & $(\overrightarrow{AB},\overrightarrow{AC}) = 2\times \pi/5$ \\ -\midrule - \textbf{Circles} &&\\ -\midrule -\Imeth{line}{circle ()} & |C.AB = L.AB : circle ()| & center pa through pb \\ -\Imeth{line}{circle\_swap ()} & |C.BA = L.AB : circle\_swap ()|& center pb through pa \\ -\midrule - \textbf{Transformations} &&\\ -\midrule -\Imeth{line}{reflection ( obj )} & |new obj = L.AB : reflection (obj|&\\ -\Imeth{line}{translation ( obj )} & |new obj = L.AB : translation (obj)|&\\ -\Imeth{line}{projection ( obj )} & |z.H = L.AB : projection (z.C)| & $CH \perp (AB)$ and $H\in (AB)$\\ -\midrule - \textbf{Miscellaneous} &&\\ -\midrule -\Imeth{line}{distance (pt)} & |d = L.Ab : distance (z.C)| & see \ref{ssub:example_distance_and_projection}\\ -\Imeth{line}{in\_out (pt)} & |b = L.AB : in_out (z.C)| $b$ is a boolean b=true if $C\in (AB)$ &\\ -\Imeth{line}{slope ()} & |a = L.AB : slope()| & better is L.AB.slope \\ -\bottomrule -\end{tabular} - -\egroup +\begin{minipage}{\textwidth} + \bgroup + \catcode`_=12 + \small + \captionof{table}{Methods of the class line.} + \begin{tabular}{lll} + \toprule + \textbf{Methods} & \textbf{Comments} & \\ + \midrule + \Imeth{line}{new(A, B)} & |L.AB = line : new(z.A,z.B)| line through the points $A$ and $B$&\\ + \midrule + \textbf{Points} &&\\ + \midrule + \Imeth{line}{gold\_ratio ()} & |z.C = L.AB : gold_ratio()| & gold ratio \\ + \Imeth{line}{normalize ()} & |z.C = L.AB : normalize()| & AC =1 and $C\in (AB)$ \\ + \Imeth{line}{normalize\_inv ()} & |z.C = L.AB : normalize_inv()| & CB =1 and $C\in (AB)$ \\ + \Imeth{line}{barycenter (ka,kb)} & |z.C = L.AB : barycenter (1,2)| $C$ & barycenter of |{(A,1)(B,2)}|\\ + \Imeth{line}{point (t)} & |z.C = L.AB : point (2)| & $\overrightarrow{AC} = 2\overrightarrow{AB}$\\ + \Imeth{line}{midpoint ()} & |z.M = L.AB : midpoint ()| & better is |z.M = L.AB.mid| \\ + \Imeth{line}{harmonic\_int } & |z.D = L.AB : harmonic_int (z.C)| & $D\in [AB]$ $C\notin [AB]$\\ + \Imeth{line}{harmonic\_ext (pt)} & |z.D = L.AB : harmonic_ext (z.C)| & $D\notin [AB]$ $C\in [AB]$\\ + \Imeth{line}{harmonic\_both (k)} & |z.C,z.D = L.AB : harmonic_both (tkzphi)| & ${ {CA/CB}={DA/DB}=t\varphi.}$\\ + \Imeth{line}{square ()} & |S.AB =(L.AB : square ()) | & create a square |S.AB|.\footnote{ |_,_,z.C,z.D = get_points(S.AB)|}\\ + \midrule + \textbf{Lines} &&\\ + \midrule + \Imeth{line}{ll\_from ( pt )} & |L.CD = L.AB : ll_from (z.C)| & $(CD) \parallel (AB)$ \\ + \Imeth{line}{ortho\_from ( pt )} & |L.CD = L.AB : ortho_from (z.C)|& $(CD) \perp (AB)$\\ + \Imeth{line}{mediator ()}&|L.uv = L.AB : mediator ()| & $(u,v)$ mediator of $(A,B)$\\ + \midrule + \textbf{Triangles}&&\\ + \midrule + \Imeth{line}{equilateral (swap)} & |T.ABC = L.AB : equilateral ()| $(\overrightarrow{AB},\overrightarrow{AC})>0$ & or < with swap \footnote{Triangles are defined in the direct sense of rotation, unless the "swap" option is present.} \\ + \Imeth{line}{isosceles (phi,swap)} & |T.ABC = L.AB : isosceles (math.pi/6)|& \\ + \Imeth{line}{gold (swap)} & |T.ABC = L.AB : gold ()| & right in $B$ and $AC = \varphi \times AB $ \\ + \Imeth{line}{euclide (swap)} & |T.ABC = L.AB : euclide ()| & $AB=AC$ and $(\overrightarrow{AB},\overrightarrow{AC}) = math.pi/5$ \\ + \Imeth{line}{golden (swap)} & |T.ABC = L.AB : golden ()| & $(\overrightarrow{AB},\overrightarrow{AC}) = 2\times \pi/5$ \\ + \midrule + \textbf{Circles} &&\\ + \midrule + \Imeth{line}{circle ()} & |C.AB = L.AB : circle ()| & center pa through pb \\ + \Imeth{line}{circle\_swap ()} & |C.BA = L.AB : circle\_swap ()|& center pb through pa \\ + \midrule + \textbf{Transformations} &&\\ + \midrule + \Imeth{line}{reflection ( obj )} & |new obj = L.AB : reflection (obj|&\\ + \Imeth{line}{translation ( obj )} & |new obj = L.AB : translation (obj)|&\\ + \Imeth{line}{projection ( obj )} & |z.H = L.AB : projection (z.C)| & $CH \perp (AB)$ and $H\in (AB)$\\ + \midrule + \textbf{Miscellaneous} &&\\ + \midrule + \Imeth{line}{distance (pt)} & |d = L.Ab : distance (z.C)| & see \ref{ssub:example_distance_and_projection}\\ + \Imeth{line}{in\_out (pt)} & |b = L.AB: in_out(z.C)| b=true if $C\in (AB)$ &\\ + \Imeth{line}{slope ()} & |a = L.AB : slope()| & better is L.AB.slope \\ + \bottomrule + \end{tabular} + + \egroup +\end{minipage} % subsubsection table_of_the_methods_from_class_line (end) Here are a few examples. diff --git a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-quadrilateral.tex b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-quadrilateral.tex index 1e1a23b1d4..2171337792 100644 --- a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-quadrilateral.tex +++ b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-quadrilateral.tex @@ -93,7 +93,7 @@ z.G = Q.ABCD.g \toprule \textbf{Methods} & \textbf{Comments} \\ \midrule \\ -\Imeth{quadrilateral}{cyclic ()} & inscribed ? (see next example)\\ +\Imeth{quadrilateral}{iscyclic ()} & inscribed ? (see next example)\\ \bottomrule % \end{tabular} \egroup @@ -110,7 +110,7 @@ L.DB = line : new (z.D,z.B) T.equ = L.DB : equilateral () z.C = T.equ.pc Q.new = quadrilateral : new (z.A,z.B,z.C,z.D) -bool = Q.new : cyclic () +bool = Q.new : iscyclic () if bool == true then C.cir = triangle : new (z.A,z.B,z.C): circum_circle () z.O = C.cir.center @@ -138,7 +138,7 @@ L.DB = line : new (z.D,z.B) T.equ = L.DB : equilateral () z.C = T.equ.pc Q.new = quadrilateral : new (z.A,z.B,z.C,z.D) -bool = Q.new : cyclic () +bool = Q.new : iscyclic () if bool == true then C.cir = triangle : new (z.A,z.B,z.C): circum_circle () z.O = C.cir.center diff --git a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-rectangle.tex b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-rectangle.tex index 29e9fb89d4..62cb44b1c9 100644 --- a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-rectangle.tex +++ b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-rectangle.tex @@ -122,12 +122,11 @@ z.I = R.new.center scale = .5 z.A = point : new ( 0 , 0 ) z.B = point : new ( 4 , 0 ) -z.C = point : new ( 4 , 3 ) -P.ABCD = rectangle : angle ( z.C , z.A , math.pi/6) +z.I = point : new ( 4 , 3 ) +P.ABCD = rectangle : angle ( z.I , z.A , math.pi/6) z.B = P.ABCD.pb z.C = P.ABCD.pc z.D = P.ABCD.pd -z.I = P.ABCD.center \end{tkzelements} \begin{tikzpicture} @@ -144,12 +143,11 @@ z.I = P.ABCD.center scale = .5 z.A = point : new ( 0 , 0 ) z.B = point : new ( 4 , 0 ) -z.C = point : new ( 4 , 3 ) -P.ABCD = rectangle : angle ( z.C , z.A , math.pi/6) +z.I = point : new ( 4 , 3 ) +P.ABCD = rectangle : angle ( z.I , z.A , math.pi/6) z.B = P.ABCD.pb z.C = P.ABCD.pc z.D = P.ABCD.pd -z.I = P.ABCD.center \end{tkzelements} \begin{tikzpicture} \tkzGetNodes @@ -211,21 +209,22 @@ z.I = R.side.center \begin{minipage}{.5\textwidth} \begin{verbatim} \begin{tkzelements} -z.E = point : new ( 0 , 0 ) -z.G = point : new ( 4 , 3 ) -R.diag = rectangle : diagonal (z.E,z.G) -z.F = R.diag.pb -z.H = R.diag.pd -z.I = R.diag.center +z.A = point : new ( 0 , 0 ) +z.C = point : new ( 4 , 3 ) +R.diag = rectangle : diagonal (z.A,z.C) +z.B = R.diag.pb +z.D = R.diag.pd +z.I = R.diag.center \end{tkzelements} \begin{tikzpicture} \tkzGetNodes -\tkzDrawPolygon(E,F,G,H) -\tkzDrawPoints(E,F,G,H) -\tkzLabelPoints((E,F) -\tkzLabelPoints[above](G,H) +\tkzDrawPolygon(A,B,C,D) +\tkzDrawPoints(A,B,C,D) +\tkzLabelPoints(A,B) +\tkzLabelPoints[above](C,D) \tkzDrawPoints[red](I) +\tkzLabelSegment[sloped,above](A,B){|rectangle : diagonal (z.A,z.C)|} \end{tikzpicture} \end{verbatim} \end{minipage} @@ -266,11 +265,12 @@ z.I = R.gold.center \begin{tikzpicture} \tkzGetNodes -\tkzDrawPolygon(A,B,C,D) -\tkzDrawPoints(A,B,C,D) -\tkzLabelPoints(A,B) -\tkzLabelPoints[above](C,D) +\tkzDrawPolygon(X,Y,Z,W) +\tkzDrawPoints(X,Y,Z,W) +\tkzLabelPoints(X,Y) +\tkzLabelPoints[above](Z,W) \tkzDrawPoints[red](I) +\tkzLabelSegment[sloped,above](X,Y){|rectangle : gold (z.X,z.Y)|} \end{tikzpicture} \end{verbatim} \end{minipage} diff --git a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-convention.tex b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-convention.tex index f25d02d569..90e07b1ef7 100644 --- a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-convention.tex +++ b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-convention.tex @@ -16,7 +16,7 @@ and outside the environment \tkzNameEnv{tkzelements} you can use the macro \begin{mybox} - |\fthenelse{\equal{\tkzUseLua{bool}}{true}}{ ... }{ ... }| + |\ifthenelse{\equal{\tkzUseLua{bool}}{true}}{ ... }{ ... }| \end{mybox} after loading the \tkzNamePack{ifthen} package. diff --git a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-examples.tex b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-examples.tex index f9658252c2..7a00735fd4 100644..100755 --- a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-examples.tex +++ b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-examples.tex @@ -804,38 +804,40 @@ z.L = intersection (L.AR,L.BG) \subsection{Director circle} % (fold) \label{sub:director_circle} - -\begin{tkzexample}[latex=0cm,small,code only] -\begin{tkzelements} -scale = .5 -z.O = point: new (0 , 0) -z.F1 = point: new (4 , 0) -z.F2 = point: new (-4 , 0) -z.H = point: new (4*math.sqrt(2) , 0) -E = ellipse: foci (z.F2,z.F1,z.H) -a,b = E.Rx, E.Ry -z.A = E.covertex -T = triangle: new (z.H,z.O,z.A) -z.P = T: parallelogram () -C = circle: new (z.O,z.P) -z.L = C: point (2) -L.J,L.K = E: tangent_from (z.L) -z.J = L.J.pb -z.K = L.K.pb -\end{tkzelements} - \begin{tikzpicture} - \tkzGetNodes - \tkzDrawPoints(F1,F2,O) -\tkzDrawCircles[teal](O,P) -\tkzDrawPolygon(H,O,A,P) -\tkzDrawEllipse[red](O,\tkzUseLua{a},\tkzUseLua{b},0) -\tkzDrawSegments[orange](O,P O,L L,J L,K) -\tkzDrawPoints(F1,F2,O,H,A,P,L,J,K) -\tkzLabelPoints(F1,F2,O,H,A,P,L,J,K) -\tkzMarkRightAngles(A,P,H J,L,K) -\end{tikzpicture} -\end{tkzexample} - +% modif C: point (0.25) instead of 2 +\begin{minipage}[t]{.5\textwidth}\vspace{0pt}% + \begin{verbatim} + \begin{tkzelements} + scale = .5 + z.O = point: new (0 , 0) + z.F1 = point: new (4 , 0) + z.F2 = point: new (-4 , 0) + z.H = point: new (4*math.sqrt(2) , 0) + E = ellipse: foci (z.F2,z.F1,z.H) + a,b = E.Rx, E.Ry + z.A = E.covertex + T = triangle: new (z.H,z.O,z.A) + z.P = T: parallelogram () + C = circle: new (z.O,z.P) + z.L = C: point (0.25) + L.J,L.K = E: tangent_from (z.L) + z.J = L.J.pb + z.K = L.K.pb + \end{tkzelements} + \begin{tikzpicture} + \tkzGetNodes + \tkzDrawPoints(F1,F2,O) + \tkzDrawCircles[teal](O,P) + \tkzDrawPolygon(H,O,A,P) + \tkzDrawEllipse[red](O,\tkzUseLua{a},\tkzUseLua{b},0) + \tkzDrawSegments[orange](O,P O,L L,J L,K) + \tkzDrawPoints(F1,F2,O,H,A,P,L,J,K) + \tkzLabelPoints(F1,F2,O,H,A,P,L,J,K) + \tkzMarkRightAngles(A,P,H J,L,K) + \end{tikzpicture} + \end{verbatim} +\end{minipage} +\begin{minipage}[t]{.5\textwidth}\vspace{0pt}% \begin{tkzelements} scale = .5 z.O = point: new (0 , 0) @@ -848,13 +850,12 @@ z.A = E.covertex T = triangle: new (z.H,z.O,z.A) z.P = T: parallelogram () C = circle: new (z.O,z.P) -z.L = C: point (2) +z.L = C: point (0.25) L.J,L.K = E: tangent_from (z.L) z.J = L.J.pb z.K = L.K.pb \end{tkzelements} - \hspace*{\fill} \begin{tikzpicture} \tkzGetNodes @@ -867,7 +868,7 @@ z.K = L.K.pb \tkzLabelPoints(F1,F2,O,H,A,P,L,J,K) \tkzMarkRightAngles(A,P,H J,L,K) \end{tikzpicture} -\hspace*{\fill} +\end{minipage} % subsection director_circle (end) diff --git a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-main.pdf b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-main.pdf Binary files differnew file mode 100644 index 0000000000..d05eb7fbb9 --- /dev/null +++ b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-main.pdf diff --git a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-main.tex b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-main.tex index 6540ebffaf..101a65ed15 100644 --- a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-main.tex +++ b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-main.tex @@ -21,10 +21,10 @@ headings = small ]{tkz-doc} \gdef\tkznameofpack{tkz-elements} -\gdef\tkzversionofpack{1.40c} +\gdef\tkzversionofpack{1.50c} \gdef\tkzdateofpack{\today} \gdef\tkznameofdoc{tkz-elements.pdf} -\gdef\tkzversionofdoc{1.40c} +\gdef\tkzversionofdoc{1.50c} \gdef\tkzdateofdoc{\today} \gdef\tkzauthorofpack{Alain Matthes} \gdef\tkzadressofauthor{} @@ -88,8 +88,10 @@ \newfontfamily\ttcondensed{lmmonoltcond10-regular.otf} %% (La)TeX font-related declarations: \linespread{1.05} % Pagella needs more space between lines -\usepackage[math-style=literal,bold-style=literal]{unicode-math} +%\usepackage[math-style=literal,bold-style=literal]{unicode-math} +\usepackage{unicode-math} \usepackage{fourier-otf} +\setmathfont{Concrete-Math.otf} \let\rmfamily\ttfamily \usepackage{multicol,lscape,wrapfig} \usepackage[english]{babel} diff --git a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-why.tex b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-why.tex index e76340cbd0..afc64f416d 100644 --- a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-why.tex +++ b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-why.tex @@ -158,7 +158,7 @@ The following section concerns only drawings, and is handled by tkz-euclide. \vspace{1em} \begin{tkzelements} - scale = .35 + scale = .4 z.A = point: new (0,0) z.B = point: new (6,0) z.C = point: new (0.8,4) @@ -198,10 +198,6 @@ The following section concerns only drawings, and is handled by tkz-euclide. \end{minipage} % subsubsection example_apollonius_circle (end) - % subsubsection using_objects (end) - % subsection calculation_accuracy (end) - - % section why_tkz_elements (end)
\ No newline at end of file diff --git a/macros/latex/contrib/tkz/tkz-elements/doc/tkz-elements.pdf b/macros/latex/contrib/tkz/tkz-elements/doc/tkz-elements.pdf Binary files differindex cee54a9cfe..d05eb7fbb9 100644 --- a/macros/latex/contrib/tkz/tkz-elements/doc/tkz-elements.pdf +++ b/macros/latex/contrib/tkz/tkz-elements/doc/tkz-elements.pdf |