summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex
diff options
context:
space:
mode:
Diffstat (limited to 'macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex')
-rw-r--r--macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex116
1 files changed, 59 insertions, 57 deletions
diff --git a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex
index 099c75a278..1bd4b831e4 100644
--- a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex
+++ b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex
@@ -154,63 +154,65 @@ Here's the list of methods for the \tkzNameObj{line} object. The results are eit
\label{ssub:table_of_the_methods_from_class_line}
\vspace{1em}
-\bgroup
-\catcode`_=12
-\small
-\captionof{table}{Methods of the class line.}
-\begin{tabular}{lll}
-\toprule
-\textbf{Methods} & \textbf{Comments} & \\
-\midrule
-\Imeth{line}{new(A, B)} & |L.AB = line : new(z.A,z.B)| line through the points $A$ and $B$&\\
-\midrule
- \textbf{Points} &&\\
-\midrule
-\Imeth{line}{gold\_ratio ()} & |z.C = L.AB : gold_ratio()| & gold ratio \\
-\Imeth{line}{normalize ()} & |z.C = L.AB : normalize()| & AC =1 and $C\in (AB)$ \\
-\Imeth{line}{normalize\_inv ()} & |z.C = L.AB : normalize_inv()| & CB =1 and $C\in (AB)$ \\
-\Imeth{line}{barycenter (ka,kb)} & |z.C = L.AB : barycenter (1,2)| $C$ & barycenter of |{(A,1)(B,2)}|\\
-\Imeth{line}{point (t)} & |z.C = L.AB : point (2)| & $\overrightarrow{AC} = 2\overrightarrow{AB}$\\
-\Imeth{line}{midpoint ()} & |z.M = L.AB : midpoint ()| & better is |z.M = L.AB.mid| \\
-\Imeth{line}{harmonic\_int } & |z.D = L.AB : harmonic_int (z.C)| & $D\in [AB]$ $C\notin [AB]$\\
-\Imeth{line}{harmonic\_ext (pt)} & |z.D = L.AB : harmonic_ext (z.C)| & $D\notin [AB]$ $C\in [AB]$\\
-\Imeth{line}{harmonic\_both (k)} & |z.C,z.D = L.AB : harmonic_both (tkzphi)| & ${ {CA/CB}={DA/DB}=t\varphi.}$\\
-\Imeth{line}{square ()} & |S.AB =(L.AB : square ()) | & create a square |S.AB|.\footnote{ |_,_,z.C,z.D = get_points(S.AB)|}\\
-\midrule
- \textbf{Lines} &&\\
-\midrule
-\Imeth{line}{ll\_from ( pt )} & |L.CD = L.AB : ll_from (z.C)| & $(CD) \parallel (AB)$ \\
-\Imeth{line}{ortho\_from ( pt )} & |L.CD = L.AB : ortho_from (z.C)|& $(CD) \perp (AB)$\\
-\Imeth{line}{mediator ()}&|L.uv = L.AB : mediator ()| & $(u,v)$ mediator of $(A,B)$\\
-\midrule
- \textbf{Triangles} &&\\
-\midrule
-\Imeth{line}{equilateral (swap)} & |T.ABC = L.AB : equilateral ()| $(\overrightarrow{AB},\overrightarrow{AC})>0$ & or < with swap \\
-\Imeth{line}{isosceles (phi)} & |T.ABC = L.AB : isosceles (math.pi/6)|& \\
-\Imeth{line}{gold ()} & |T.ABC = L.AB : gold ()| & right in $B$ and $AC = \varphi \times AB $ \\
-\Imeth{line}{euclide ()} & |T.ABC = L.AB : euclide ()| & $AB=AC$ and $(\overrightarrow{AB},\overrightarrow{AC}) = math.pi/5$ \\
-\Imeth{line}{golden ()} & |T.ABC = L.AB : golden ()| & $(\overrightarrow{AB},\overrightarrow{AC}) = 2\times \pi/5$ \\
-\midrule
- \textbf{Circles} &&\\
-\midrule
-\Imeth{line}{circle ()} & |C.AB = L.AB : circle ()| & center pa through pb \\
-\Imeth{line}{circle\_swap ()} & |C.BA = L.AB : circle\_swap ()|& center pb through pa \\
-\midrule
- \textbf{Transformations} &&\\
-\midrule
-\Imeth{line}{reflection ( obj )} & |new obj = L.AB : reflection (obj|&\\
-\Imeth{line}{translation ( obj )} & |new obj = L.AB : translation (obj)|&\\
-\Imeth{line}{projection ( obj )} & |z.H = L.AB : projection (z.C)| & $CH \perp (AB)$ and $H\in (AB)$\\
-\midrule
- \textbf{Miscellaneous} &&\\
-\midrule
-\Imeth{line}{distance (pt)} & |d = L.Ab : distance (z.C)| & see \ref{ssub:example_distance_and_projection}\\
-\Imeth{line}{in\_out (pt)} & |b = L.AB : in_out (z.C)| $b$ is a boolean b=true if $C\in (AB)$ &\\
-\Imeth{line}{slope ()} & |a = L.AB : slope()| & better is L.AB.slope \\
-\bottomrule
-\end{tabular}
-
-\egroup
+\begin{minipage}{\textwidth}
+ \bgroup
+ \catcode`_=12
+ \small
+ \captionof{table}{Methods of the class line.}
+ \begin{tabular}{lll}
+ \toprule
+ \textbf{Methods} & \textbf{Comments} & \\
+ \midrule
+ \Imeth{line}{new(A, B)} & |L.AB = line : new(z.A,z.B)| line through the points $A$ and $B$&\\
+ \midrule
+ \textbf{Points} &&\\
+ \midrule
+ \Imeth{line}{gold\_ratio ()} & |z.C = L.AB : gold_ratio()| & gold ratio \\
+ \Imeth{line}{normalize ()} & |z.C = L.AB : normalize()| & AC =1 and $C\in (AB)$ \\
+ \Imeth{line}{normalize\_inv ()} & |z.C = L.AB : normalize_inv()| & CB =1 and $C\in (AB)$ \\
+ \Imeth{line}{barycenter (ka,kb)} & |z.C = L.AB : barycenter (1,2)| $C$ & barycenter of |{(A,1)(B,2)}|\\
+ \Imeth{line}{point (t)} & |z.C = L.AB : point (2)| & $\overrightarrow{AC} = 2\overrightarrow{AB}$\\
+ \Imeth{line}{midpoint ()} & |z.M = L.AB : midpoint ()| & better is |z.M = L.AB.mid| \\
+ \Imeth{line}{harmonic\_int } & |z.D = L.AB : harmonic_int (z.C)| & $D\in [AB]$ $C\notin [AB]$\\
+ \Imeth{line}{harmonic\_ext (pt)} & |z.D = L.AB : harmonic_ext (z.C)| & $D\notin [AB]$ $C\in [AB]$\\
+ \Imeth{line}{harmonic\_both (k)} & |z.C,z.D = L.AB : harmonic_both (tkzphi)| & ${ {CA/CB}={DA/DB}=t\varphi.}$\\
+ \Imeth{line}{square ()} & |S.AB =(L.AB : square ()) | & create a square |S.AB|.\footnote{ |_,_,z.C,z.D = get_points(S.AB)|}\\
+ \midrule
+ \textbf{Lines} &&\\
+ \midrule
+ \Imeth{line}{ll\_from ( pt )} & |L.CD = L.AB : ll_from (z.C)| & $(CD) \parallel (AB)$ \\
+ \Imeth{line}{ortho\_from ( pt )} & |L.CD = L.AB : ortho_from (z.C)|& $(CD) \perp (AB)$\\
+ \Imeth{line}{mediator ()}&|L.uv = L.AB : mediator ()| & $(u,v)$ mediator of $(A,B)$\\
+ \midrule
+ \textbf{Triangles}&&\\
+ \midrule
+ \Imeth{line}{equilateral (swap)} & |T.ABC = L.AB : equilateral ()| $(\overrightarrow{AB},\overrightarrow{AC})>0$ & or < with swap \footnote{Triangles are defined in the direct sense of rotation, unless the "swap" option is present.} \\
+ \Imeth{line}{isosceles (phi,swap)} & |T.ABC = L.AB : isosceles (math.pi/6)|& \\
+ \Imeth{line}{gold (swap)} & |T.ABC = L.AB : gold ()| & right in $B$ and $AC = \varphi \times AB $ \\
+ \Imeth{line}{euclide (swap)} & |T.ABC = L.AB : euclide ()| & $AB=AC$ and $(\overrightarrow{AB},\overrightarrow{AC}) = math.pi/5$ \\
+ \Imeth{line}{golden (swap)} & |T.ABC = L.AB : golden ()| & $(\overrightarrow{AB},\overrightarrow{AC}) = 2\times \pi/5$ \\
+ \midrule
+ \textbf{Circles} &&\\
+ \midrule
+ \Imeth{line}{circle ()} & |C.AB = L.AB : circle ()| & center pa through pb \\
+ \Imeth{line}{circle\_swap ()} & |C.BA = L.AB : circle\_swap ()|& center pb through pa \\
+ \midrule
+ \textbf{Transformations} &&\\
+ \midrule
+ \Imeth{line}{reflection ( obj )} & |new obj = L.AB : reflection (obj|&\\
+ \Imeth{line}{translation ( obj )} & |new obj = L.AB : translation (obj)|&\\
+ \Imeth{line}{projection ( obj )} & |z.H = L.AB : projection (z.C)| & $CH \perp (AB)$ and $H\in (AB)$\\
+ \midrule
+ \textbf{Miscellaneous} &&\\
+ \midrule
+ \Imeth{line}{distance (pt)} & |d = L.Ab : distance (z.C)| & see \ref{ssub:example_distance_and_projection}\\
+ \Imeth{line}{in\_out (pt)} & |b = L.AB: in_out(z.C)| b=true if $C\in (AB)$ &\\
+ \Imeth{line}{slope ()} & |a = L.AB : slope()| & better is L.AB.slope \\
+ \bottomrule
+ \end{tabular}
+
+ \egroup
+\end{minipage}
% subsubsection table_of_the_methods_from_class_line (end)
Here are a few examples.