summaryrefslogtreecommitdiff
path: root/macros/latex-dev/required/l3kernel/l3fp.dtx
diff options
context:
space:
mode:
Diffstat (limited to 'macros/latex-dev/required/l3kernel/l3fp.dtx')
-rw-r--r--macros/latex-dev/required/l3kernel/l3fp.dtx66
1 files changed, 38 insertions, 28 deletions
diff --git a/macros/latex-dev/required/l3kernel/l3fp.dtx b/macros/latex-dev/required/l3kernel/l3fp.dtx
index 0a883b7cdf..045f66200a 100644
--- a/macros/latex-dev/required/l3kernel/l3fp.dtx
+++ b/macros/latex-dev/required/l3kernel/l3fp.dtx
@@ -49,7 +49,7 @@
% }^^A
% }
%
-% \date{Released 2025-01-14}
+% \date{Released 2025-01-18}
%
% \maketitle
%
@@ -59,8 +59,8 @@
% separate exponent. The module implements expandably a wide set of
% arithmetic, trigonometric, and other operations on decimal floating point
% numbers, to be used within floating point expressions. \emph{Floating point
-% expressions} (\enquote{\meta{fp expr}}) support the following operations with their usual
-% precedence.
+% expressions} (\enquote{\meta{fp expr}}) support the following operations with
+% their usual precedence.
% \begin{itemize}
% \item Basic arithmetic: addition $x+y$, subtraction $x-y$,
% multiplication $x*y$, division $x/y$, square root~$\sqrt{x}$,
@@ -108,7 +108,8 @@
% towards $+\infty$ if $t>0$ and towards $-\infty$ if $t<0$.
% \end{itemize}
% And \emph{(not yet)} modulo, and \enquote{quantize}.
-% \item Random numbers: $\operatorname{rand}()$, $\operatorname{randint}(m,n)$.
+% \item Random numbers: $\operatorname{rand}()$,
+% $\operatorname{randint}(m,n)$.
% \item Constants: \texttt{pi}, \texttt{deg} (one degree in radians).
% \item Dimensions, automatically expressed in points, \emph{e.g.},
% \texttt{pc} is~$12$.
@@ -124,9 +125,9 @@
% as |1.234e-34|, or |-.0001|), or as a stored floating point variable,
% which is automatically replaced by its current value.
% A \enquote{floating point} is a floating point number or a tuple thereof. See
-% section~\ref{sec:l3fp:fp-floats} for a description of what a floating point is,
-% section~\ref{sec:l3fp:fp-precedence} for details about how an expression is
-% parsed, and section~\ref{sec:l3fp:fp-operations} to know what the various
+% section~\ref{sec:l3fp:fp-floats} for a description of what a floating point
+% is, section~\ref{sec:l3fp:fp-precedence} for details about how an expression
+% is parsed, and section~\ref{sec:l3fp:fp-operations} to know what the various
% operations do. Some operations may raise exceptions (error messages),
% described in section~\ref{sec:l3fp:fp-exceptions}.
%
@@ -257,7 +258,8 @@
% integers are expressed without a decimal separator. The values
% $\pm\infty$ and \nan{} trigger an \enquote{invalid operation}
% exception.
-% For a tuple, each item is converted using \cs{fp_eval:n} and they are combined as
+% For a tuple, each item is converted using \cs{fp_eval:n} and they are
+% combined as
% |(|\meta{fp_1}\verb*|, |\meta{fp_2}\verb*|, |\ldots{}\meta{fp_n}|)|
% if $n>1$ and |(|\meta{fp_1}|,)| or |()| for fewer items.
% This function is identical to \cs{fp_to_decimal:n}.
@@ -288,7 +290,8 @@
% integers are expressed without a decimal separator. The values
% $\pm\infty$ and~\nan{} trigger an \enquote{invalid operation}
% exception.
-% For a tuple, each item is converted using \cs{fp_to_decimal:n} and they are combined as
+% For a tuple, each item is converted using \cs{fp_to_decimal:n} and they are
+% combined as
% |(|\meta{fp_1}\verb*|, |\meta{fp_2}\verb*|, |\ldots{}\meta{fp_n}|)|
% if $n>1$ and |(|\meta{fp_1}|,)| or |()| for fewer items.
% \end{function}
@@ -340,7 +343,8 @@
% The values $\pm\infty$ and~\nan{} trigger an \enquote{invalid
% operation} exception. Normal category codes apply: thus the |e| is
% category code~$11$ (a letter).
-% For a tuple, each item is converted using \cs{fp_to_scientific:n} and they are combined as
+% For a tuple, each item is converted using \cs{fp_to_scientific:n} and they
+% are combined as
% |(|\meta{fp_1}\verb*|, |\meta{fp_2}\verb*|, |\ldots{}\meta{fp_n}|)|
% if $n>1$ and |(|\meta{fp_1}|,)| or |()| for fewer items.
% \end{function}
@@ -364,7 +368,8 @@
% |0|, |-0|, \texttt{inf}, \texttt{-inf}, and~\texttt{nan}
% respectively. Normal category codes apply and thus \texttt{inf} or
% \texttt{nan}, if produced, are made up of letters.
-% For a tuple, each item is converted using \cs{fp_to_tl:n} and they are combined as
+% For a tuple, each item is converted using \cs{fp_to_tl:n} and they are
+% combined as
% |(|\meta{fp_1}\verb*|, |\meta{fp_2}\verb*|, |\ldots{}\meta{fp_n}|)|
% if $n>1$ and |(|\meta{fp_1}|,)| or |()| for fewer items.
% \end{function}
@@ -380,7 +385,8 @@
% exponent. Non-significant trailing zeros are trimmed. Integers are
% expressed without a decimal separator. The values $\pm\infty$
% and~\nan{} trigger an \enquote{invalid operation} exception.
-% For a tuple, each item is converted using \cs{fp_to_decimal:n} and they are combined as
+% For a tuple, each item is converted using \cs{fp_to_decimal:n} and they are
+% combined as
% |(|\meta{fp_1}\verb*|, |\meta{fp_2}\verb*|, |\ldots{}\meta{fp_n}|)|
% if $n>1$ and |(|\meta{fp_1}|,)| or |()| for fewer items.
% This function is identical to \cs{fp_to_decimal:N}.
@@ -995,7 +1001,8 @@
% valid floating point numbers. Note that the latter could be mistaken
% with the difference of \enquote{\texttt{e}} and $1$. To avoid
% confusions, the base of natural logarithms cannot be input as |e| and
-% should be input as \texttt{exp(1)} or \cs[module = fp]{c_e_fp} (which is faster).
+% should be input as \texttt{exp(1)} or \cs[module = fp]{c_e_fp} (which is
+% faster).
%
% Special numbers are input as follows:
% \begin{itemize}
@@ -1024,7 +1031,8 @@
% \item Unary |+|, |-|, |!|.
% \item Implicit multiplication by juxtaposition (\texttt{2pi})
% when neither factor is in parentheses.
-% \item Binary |*| and |/|, implicit multiplication by juxtaposition with parentheses (for instance \texttt{3(4+5)}).
+% \item Binary |*| and |/|, implicit multiplication by juxtaposition with
+% parentheses (for instance \texttt{3(4+5)}).
% \item Binary |+| and |-|.
% \item Comparisons |>=|, |!=|, |<?|, \emph{etc}.
% \item Logical \texttt{and}, denoted by |&&|.
@@ -1061,9 +1069,10 @@
% \cs{fp_eval:n} \{ \meta{operand_1} |?| \meta{operand_2} |:| \meta{operand_3} \}
% \end{syntax}
% The ternary operator |?:| results in \meta{operand_2} if
-% \meta{operand_1} is true (not $\pm 0$), and \meta{operand_3} if \meta{operand_1}
-% is false ($\pm 0$). All three \meta{operands} are evaluated in all
-% cases; they may be tuples. The operator is right associative, hence
+% \meta{operand_1} is true (not $\pm 0$), and \meta{operand_3} if
+% \meta{operand_1} is false ($\pm 0$). All three \meta{operands} are
+% evaluated in all cases; they may be tuples. The operator is right
+% associative, hence
% \begin{verbatim}
% \fp_eval:n
% {
@@ -1262,11 +1271,11 @@
% \cs{fp_eval:n} \{ |round| |(| \meta{fp expr_1} , \meta{fp expr_2} , \meta{fp expr_3} |)| \}
% \end{syntax}
% Only |round| accepts a third argument.
-% Evaluates $\meta{fp expr_1}=x$ and $\meta{fp expr_2}=n$ and $\meta{fp expr_3}=t$ then rounds
-% $x$~to $n$~places. If $n$~is an integer, this rounds~$x$ to a
-% multiple of~$10^{-n}$; if $n=+\infty$, this always yields~$x$; if
-% $n=-\infty$, this yields one of $\pm 0$, $\pm\infty$, or~\nan{}; if
-% $n=\nan{}$, this yields \nan{}; if
+% Evaluates $\meta{fp expr_1}=x$ and $\meta{fp expr_2}=n$ and $\meta{fp
+% expr_3}=t$ then rounds $x$~to $n$~places. If $n$~is an integer, this
+% rounds~$x$ to a multiple of~$10^{-n}$; if $n=+\infty$, this always
+% yields~$x$; if $n=-\infty$, this yields one of $\pm 0$, $\pm\infty$,
+% or~\nan{}; if $n=\nan{}$, this yields \nan{}; if
% $n$~is neither $\pm\infty$ nor an integer, then an \enquote{invalid
% operation} exception is raised. When \meta{fp expr_2} is omitted,
% $n=0$, \emph{i.e.}, \meta{fp expr_1} is rounded to an integer. The
@@ -1277,8 +1286,8 @@
% as follows. If $t$ is \texttt{nan} (or not given) the even
% multiple is chosen (\enquote{ties to even}), if $t=\pm 0$ the
% multiple closest to $0$ is chosen (\enquote{ties to zero}),
-% if $t$ is positive/negative the multiple closest to $\infty$/$-\infty$ is chosen
-% (\enquote{ties towards positive/negative infinity}).
+% if $t$ is positive/negative the multiple closest to $\infty$/$-\infty$
+% is chosen (\enquote{ties towards positive/negative infinity}).
% \item |floor| yields the largest
% multiple of~$10^{-n}$ smaller or equal to~$x$ (\enquote{round
% towards negative infinity});
@@ -1459,8 +1468,8 @@
% \cs{fp_eval:n} \{ |sqrt(| \meta{fp expr} |)| \}
% \end{syntax}
% Computes the square root of the \meta{fp expr}. The \enquote{invalid
-% operation} is raised when the \meta{fp expr} is negative or is a tuple; no other
-% exception can occur. Special values yield $\sqrt{-0} = -0$,
+% operation} is raised when the \meta{fp expr} is negative or is a tuple; no
+% other exception can occur. Special values yield $\sqrt{-0} = -0$,
% $\sqrt{+0} = +0$, $\sqrt{+\infty} = +\infty$ and
% $\sqrt{\text{\nan{}}}=\text{\nan{}}$.
% \end{function}
@@ -1502,8 +1511,9 @@
%
% \begin{variable}[tested = m3fp-parse001]{inf, nan}
% The special values $+\infty$, $-\infty$, and \nan{} are represented
-% as \texttt{inf}, \texttt{-inf} and \texttt{nan} (see \cs[module = fp]{c_inf_fp},
-% \cs[module = fp]{c_minus_inf_fp} and \cs[module = fp]{c_nan_fp}).
+% as \texttt{inf}, \texttt{-inf} and \texttt{nan} (see
+% \cs[module = fp]{c_inf_fp}, \cs[module = fp]{c_minus_inf_fp} and
+% \cs[module = fp]{c_nan_fp}).
% \end{variable}
%
% \begin{variable}[tested = m3fp-parse001]{pi}