summaryrefslogtreecommitdiff
path: root/graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex
diff options
context:
space:
mode:
Diffstat (limited to 'graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex')
-rw-r--r--graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex95
1 files changed, 91 insertions, 4 deletions
diff --git a/graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex b/graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex
index cf38bc251e..054dae2eb2 100644
--- a/graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex
+++ b/graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex
@@ -1,4 +1,5 @@
-\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings,
+\PassOptionsToPackage{style=dtk}{biblatex}
+\documentclass[11pt,english,BCOR10mm,DIV=12,bibliography=totoc,parskip=false,smallheadings,
headexclude,footexclude,oneside,english]{pst-doc}
\usepackage{pst-eucl}
\let\pstEuclideFV\fileversion
@@ -14,9 +15,10 @@
\def\Argsans#1{$\langle$#1$\rangle$}
\def\DefaultVal#1{(by default #1)}
-\usepackage{biblatex}
\addbibresource{\jobname.bib}
+\lstset{rframe={}}
+
\title{\texttt{pst-euclide}}
\subtitle{A PSTricks package for drawing geometric pictures; v.\pstEuclideFV}
@@ -352,8 +354,8 @@ the rule bar and the segment.
It does not display the ruler bar as default, and you need to setup \Lkeyword{linestyle}
to display it. The star version uses also the star version of the put macro (white background).
-\begin{LTXexample}[width=6cm,pos=l]
-\begin{pspicture}[showgrid=true](-1,-1)(4,4)
+\begin{LTXexample}[pos=t]
+\begin{pspicture}[showgrid=true](-2,-2)(5,5)
\psset{dotscale=0.5}\psset{PointSymbol=*}\footnotesize
\pstGeonode[PosAngle=-90](0.5,1.5){A}
\pstGeonode[PosAngle=-90](2.5,1.5){B}\pstLineAB{A}{B}
@@ -1267,6 +1269,26 @@ With this package, it becomes possible to draw:
\vspace{10pt}
+The macro \Lcs{pstCircleABR} draws the circle of given radius length $R$, through two given nodes $A$ and $B$, then outputs the circle center $O$.
+
+\begin{BDef}
+\Lcs{pstCircleABR}\OptArgs\Largb{A}\Largb{B}\Largb{$R$}\Largb{O}
+\end{BDef}
+
+Note that through from $A$ to $B$ and through from $B$ to $A$ will get the figure symmetric to $AB$.
+For example,
+
+\begin{LTXexample}[width=6cm,pos=l]
+\begin{pspicture}[showgrid](-3,-3)(3,3)\footnotesize
+\psset{unit=0.50cm}\psset{dotscale=0.5}\psset{PointSymbol=*}
+\pstGeonode[PosAngle={30,210}](1,0){A}(-2,-1){B}
+\pstCircleABR[linecolor=red!80]{A}{B}{\pstDistConst{2.5}}{O_1}
+\pstCircleABR[linecolor=blue!80]{B}{A}{\pstDistConst{2.5}}{O_2}
+\end{pspicture}
+\end{LTXexample}
+
+\vspace{10pt}
+
The following example show how to use the more complex distance macros,
and the parameter to fill the circle.
@@ -1594,6 +1616,71 @@ When they are separated, the radical axis is between of the circles.
\end{pspicture}
\end{LTXexample}
+\subsection{Regular polygons}
+For the 3-side and 4-side regular polygon, we provide the macro \Lcs{pstETriangleAB} and \Lcs{pstSquareAB} to draw them.
+In general, you can use the macro \Lcs{pstRegularPolygonAB} and \Lcs{pstRegularPolygonOA} to get a n-side regular polygon.
+
+\begin{BDef}
+\Lcs{pstETriangleAB}\OptArgs\Largb{A}\Largb{B}\Largb{C}\\
+\Lcs{pstSquareAB}\OptArgs\Largb{A}\Largb{B}\Largb{C}\Largb{D}\\
+\Lcs{pstRegularPolygonAB}\OptArgs\Largb{$A_0$}\Largb{$A_1$}\Largb{$n$}\Largb{$A_2,A_3,\cdots,A_{n-1}$}\\
+\Lcs{pstRegularPolygonOA}\OptArgs\Largb{$O$}\Largb{$A_0$}\Largb{$n$}\Largb{$A_1,A_2,\cdots,A_{n-1}$}
+\end{BDef}
+
+The macro \Lcs{pstETriangleAB} draw a equilateral triangle on a given side $AB$, and output the third node $C$;
+The macro \Lcs{pstSquareAB} draw a square on a given side $AB$, and output the other two nodes $C$, $D$;
+The macro \Lcs{pstRegularPolygonAB} draw a n-side regular polygon on a given side $A_0A_1$, and output the other nodes $A_2,A_3,\cdots,A_{n-1}$;
+The macro \Lcs{pstRegularPolygonOA} draw a n-side regular polygon with center $O$ and base point $A_0$, and output the other nodes $A_1,A_2,\cdots,A_{n-1}$.
+
+You can use the parameters \Lkeyword{linestyle}, \Lkeyword{linecolor}, \Lkeyword{linewidth}
+to control the line style; and use the parameters \Lkeyword{PointName}, \Lkeyword{PosAngle},
+\Lkeyword{PointSymbol} to control the point nodes; and use the parameters \Lkeyword{CurveType},
+\Lkeyword{fillstyle}, \Lkeyword{fillcolor} to control the polygon style.
+
+For the last output point list in macro \Lcs{pstRegularPolygonAB} and \Lcs{pstRegularPolygonOA}, if you do not enter a complete point list,
+the remaining points will be automatically named.
+
+Note that draw regular polygon with side from $A$ to $B$ and side from $B$ to $A$ will get the figure symmetric to $AB$.
+Here are some examples.
+
+\begin{LTXexample}[width=6cm,pos=l]
+\begin{pspicture}[showgrid](-1,-2)(3,2)
+\psset{unit=0.40cm}\footnotesize\psset{PointSymbol=none,PointNameSep=0.22cm}
+\pstGeonode[PosAngle={180,0},PointSymbol=*](0,0){A}(5,0){B}
+\pstETriangleAB[linecolor=red!60,PosAngle=90,PointSymbol=*]{A}{B}{C}
+\pstETriangleAB[linecolor=blue!60,PosAngle=-90,PointSymbol=*,fillstyle=solid,fillcolor=blue!20]{B}{A}{C'}
+\pstSquareAB[linecolor=red!60,PosAngle={90,90},PointSymbol=*]{A}{B}{C}{D}
+\pstSquareAB[linecolor=blue!60,PosAngle={-90,-90},PointSymbol=*,fillstyle=solid,fillcolor=blue!20,opacity=0.2]{B}{A}{C'}{D'}
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6cm,pos=l]
+\begin{pspicture}[showgrid](-3,-3)(3,3)
+\psset{unit=0.40cm}\footnotesize\psset{PointSymbol=none,PointNameSep=0.22cm}
+\pstGeonode[PosAngle={180,0},PointSymbol=*](0,0){O}(5,0){A}
+\pstRegularPolygonOA[CurveType=polygon,linecolor=red!60,PointSymbol=*,PosAngle={120,240}]{O}{A}{3}{C,D}
+\pstRegularPolygonOA[CurveType=polygon,linecolor=green!60,PointSymbol=*,PosAngle={-90,0,90}]{O}{A}{4}{C,D,E}
+\pstRegularPolygonOA[CurveType=polygon,linecolor=blue!60,PointSymbol=*,PosAngle={65,110,135,180,225,250,305},PointName={A_1,A_2,A_3,A_4,A_5,A_6,A_7}]{O}{A}{8}{A1,A2,A3,A4,A5,A6,A7}
+\pstRegularPolygonOA[CurveType=polygon,linecolor=cyan!60,PointSymbol=*,PosAngle={20,15,60,75,110,130,150,180,200,220,240,260,290,310,330,350},PointName={A_1,A_2,A_3,A_4,A_5,A_6,A_7,A_8,A_9,A_{10},A_{11},A_{12},A_{13},A_{14},A_{15},A_{16}}]{O}{A}{17}{A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16}
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6cm,pos=l]
+\begin{pspicture}[showgrid](-3,-4)(3,4)
+\psset{unit=0.40cm}\footnotesize\psset{PointSymbol=none,PointNameSep=0.22cm}
+\pstGeonode[PosAngle={180,0},PointSymbol=*](0,0){A}(2,0){B}
+\pstRegularPolygonAB[CurveType=polygon,linecolor=red!60,PointSymbol=*,PosAngle={90,90,90}]{A}{B}{3}{C,D,E}
+\pstRegularPolygonAB[CurveType=polygon,linecolor=red!60,PointSymbol=*,PosAngle={90,90}]{A}{B}{4}{C,D,E}
+\pstRegularPolygonAB[CurveType=polygon,linecolor=red!60,PointSymbol=*,PosAngle={-10,40,80,115,150,200}]{A}{B}{8}{C,D,E}
+\pstRegularPolygonAB[CurveType=polygon,linecolor=red!60,PointSymbol=*,PosAngle={290,310,330,350,10,30,45,65,85,115,135,155,170,190,210},PointName={B_2,B_3,B_4,B_5,B_6,B_7,B_8,B_9,B_{10},B_{11},B_{12},B_{13},B_{14},B_{15},B_{16}}]{A}{B}{17}{B2}
+\psset{CodeFig=true,CodeFigColor=gray,CodeFigStyle=solid}
+\pstRegularPolygonAB[CurveType=polygon,linecolor=blue!60,PointSymbol=*,PosAngle={-90,-90}]{B}{A}{3}{C,D,E}
+\pstRegularPolygonAB[CurveType=polygon,linecolor=blue!60,PointSymbol=*,PosAngle={-90,-90}]{B}{A}{4}{C,D,E}
+\pstRegularPolygonAB[CurveType=polygon,linecolor=blue!60,PointSymbol=*,PosAngle={140,190,240,-60,-40,10},PointName={A_2,A_3,A_4,A_5,A_6,A_7}]{B}{A}{8}{A2,A3,A4,A5,A6,A7}
+\pstRegularPolygonAB[CurveType=polygon,linecolor=blue!60,PointSymbol=*,PosAngle={140,160,180,200,220,240,260,280,300,320,340,360,20,40,60},PointName={A_2,A_3,A_4,A_5,A_6,A_7,A_8,A_9,A_{10},A_{11},A_{12},A_{13},A_{14},A_{15},A_{16}}]{B}{A}{17}{A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16}
+\end{pspicture}
+\end{LTXexample}
+
\subsection{Generic curve}
It is possible to generate a set of points using a loop, and to give