diff options
Diffstat (limited to 'graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex')
-rw-r--r-- | graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex | 95 |
1 files changed, 91 insertions, 4 deletions
diff --git a/graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex b/graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex index cf38bc251e..054dae2eb2 100644 --- a/graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex +++ b/graphics/pstricks/contrib/pst-eucl/doc/pst-eucl-doc.tex @@ -1,4 +1,5 @@ -\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings, +\PassOptionsToPackage{style=dtk}{biblatex} +\documentclass[11pt,english,BCOR10mm,DIV=12,bibliography=totoc,parskip=false,smallheadings, headexclude,footexclude,oneside,english]{pst-doc} \usepackage{pst-eucl} \let\pstEuclideFV\fileversion @@ -14,9 +15,10 @@ \def\Argsans#1{$\langle$#1$\rangle$} \def\DefaultVal#1{(by default #1)} -\usepackage{biblatex} \addbibresource{\jobname.bib} +\lstset{rframe={}} + \title{\texttt{pst-euclide}} \subtitle{A PSTricks package for drawing geometric pictures; v.\pstEuclideFV} @@ -352,8 +354,8 @@ the rule bar and the segment. It does not display the ruler bar as default, and you need to setup \Lkeyword{linestyle} to display it. The star version uses also the star version of the put macro (white background). -\begin{LTXexample}[width=6cm,pos=l] -\begin{pspicture}[showgrid=true](-1,-1)(4,4) +\begin{LTXexample}[pos=t] +\begin{pspicture}[showgrid=true](-2,-2)(5,5) \psset{dotscale=0.5}\psset{PointSymbol=*}\footnotesize \pstGeonode[PosAngle=-90](0.5,1.5){A} \pstGeonode[PosAngle=-90](2.5,1.5){B}\pstLineAB{A}{B} @@ -1267,6 +1269,26 @@ With this package, it becomes possible to draw: \vspace{10pt} +The macro \Lcs{pstCircleABR} draws the circle of given radius length $R$, through two given nodes $A$ and $B$, then outputs the circle center $O$. + +\begin{BDef} +\Lcs{pstCircleABR}\OptArgs\Largb{A}\Largb{B}\Largb{$R$}\Largb{O} +\end{BDef} + +Note that through from $A$ to $B$ and through from $B$ to $A$ will get the figure symmetric to $AB$. +For example, + +\begin{LTXexample}[width=6cm,pos=l] +\begin{pspicture}[showgrid](-3,-3)(3,3)\footnotesize +\psset{unit=0.50cm}\psset{dotscale=0.5}\psset{PointSymbol=*} +\pstGeonode[PosAngle={30,210}](1,0){A}(-2,-1){B} +\pstCircleABR[linecolor=red!80]{A}{B}{\pstDistConst{2.5}}{O_1} +\pstCircleABR[linecolor=blue!80]{B}{A}{\pstDistConst{2.5}}{O_2} +\end{pspicture} +\end{LTXexample} + +\vspace{10pt} + The following example show how to use the more complex distance macros, and the parameter to fill the circle. @@ -1594,6 +1616,71 @@ When they are separated, the radical axis is between of the circles. \end{pspicture} \end{LTXexample} +\subsection{Regular polygons} +For the 3-side and 4-side regular polygon, we provide the macro \Lcs{pstETriangleAB} and \Lcs{pstSquareAB} to draw them. +In general, you can use the macro \Lcs{pstRegularPolygonAB} and \Lcs{pstRegularPolygonOA} to get a n-side regular polygon. + +\begin{BDef} +\Lcs{pstETriangleAB}\OptArgs\Largb{A}\Largb{B}\Largb{C}\\ +\Lcs{pstSquareAB}\OptArgs\Largb{A}\Largb{B}\Largb{C}\Largb{D}\\ +\Lcs{pstRegularPolygonAB}\OptArgs\Largb{$A_0$}\Largb{$A_1$}\Largb{$n$}\Largb{$A_2,A_3,\cdots,A_{n-1}$}\\ +\Lcs{pstRegularPolygonOA}\OptArgs\Largb{$O$}\Largb{$A_0$}\Largb{$n$}\Largb{$A_1,A_2,\cdots,A_{n-1}$} +\end{BDef} + +The macro \Lcs{pstETriangleAB} draw a equilateral triangle on a given side $AB$, and output the third node $C$; +The macro \Lcs{pstSquareAB} draw a square on a given side $AB$, and output the other two nodes $C$, $D$; +The macro \Lcs{pstRegularPolygonAB} draw a n-side regular polygon on a given side $A_0A_1$, and output the other nodes $A_2,A_3,\cdots,A_{n-1}$; +The macro \Lcs{pstRegularPolygonOA} draw a n-side regular polygon with center $O$ and base point $A_0$, and output the other nodes $A_1,A_2,\cdots,A_{n-1}$. + +You can use the parameters \Lkeyword{linestyle}, \Lkeyword{linecolor}, \Lkeyword{linewidth} +to control the line style; and use the parameters \Lkeyword{PointName}, \Lkeyword{PosAngle}, +\Lkeyword{PointSymbol} to control the point nodes; and use the parameters \Lkeyword{CurveType}, +\Lkeyword{fillstyle}, \Lkeyword{fillcolor} to control the polygon style. + +For the last output point list in macro \Lcs{pstRegularPolygonAB} and \Lcs{pstRegularPolygonOA}, if you do not enter a complete point list, +the remaining points will be automatically named. + +Note that draw regular polygon with side from $A$ to $B$ and side from $B$ to $A$ will get the figure symmetric to $AB$. +Here are some examples. + +\begin{LTXexample}[width=6cm,pos=l] +\begin{pspicture}[showgrid](-1,-2)(3,2) +\psset{unit=0.40cm}\footnotesize\psset{PointSymbol=none,PointNameSep=0.22cm} +\pstGeonode[PosAngle={180,0},PointSymbol=*](0,0){A}(5,0){B} +\pstETriangleAB[linecolor=red!60,PosAngle=90,PointSymbol=*]{A}{B}{C} +\pstETriangleAB[linecolor=blue!60,PosAngle=-90,PointSymbol=*,fillstyle=solid,fillcolor=blue!20]{B}{A}{C'} +\pstSquareAB[linecolor=red!60,PosAngle={90,90},PointSymbol=*]{A}{B}{C}{D} +\pstSquareAB[linecolor=blue!60,PosAngle={-90,-90},PointSymbol=*,fillstyle=solid,fillcolor=blue!20,opacity=0.2]{B}{A}{C'}{D'} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6cm,pos=l] +\begin{pspicture}[showgrid](-3,-3)(3,3) +\psset{unit=0.40cm}\footnotesize\psset{PointSymbol=none,PointNameSep=0.22cm} +\pstGeonode[PosAngle={180,0},PointSymbol=*](0,0){O}(5,0){A} +\pstRegularPolygonOA[CurveType=polygon,linecolor=red!60,PointSymbol=*,PosAngle={120,240}]{O}{A}{3}{C,D} +\pstRegularPolygonOA[CurveType=polygon,linecolor=green!60,PointSymbol=*,PosAngle={-90,0,90}]{O}{A}{4}{C,D,E} +\pstRegularPolygonOA[CurveType=polygon,linecolor=blue!60,PointSymbol=*,PosAngle={65,110,135,180,225,250,305},PointName={A_1,A_2,A_3,A_4,A_5,A_6,A_7}]{O}{A}{8}{A1,A2,A3,A4,A5,A6,A7} +\pstRegularPolygonOA[CurveType=polygon,linecolor=cyan!60,PointSymbol=*,PosAngle={20,15,60,75,110,130,150,180,200,220,240,260,290,310,330,350},PointName={A_1,A_2,A_3,A_4,A_5,A_6,A_7,A_8,A_9,A_{10},A_{11},A_{12},A_{13},A_{14},A_{15},A_{16}}]{O}{A}{17}{A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6cm,pos=l] +\begin{pspicture}[showgrid](-3,-4)(3,4) +\psset{unit=0.40cm}\footnotesize\psset{PointSymbol=none,PointNameSep=0.22cm} +\pstGeonode[PosAngle={180,0},PointSymbol=*](0,0){A}(2,0){B} +\pstRegularPolygonAB[CurveType=polygon,linecolor=red!60,PointSymbol=*,PosAngle={90,90,90}]{A}{B}{3}{C,D,E} +\pstRegularPolygonAB[CurveType=polygon,linecolor=red!60,PointSymbol=*,PosAngle={90,90}]{A}{B}{4}{C,D,E} +\pstRegularPolygonAB[CurveType=polygon,linecolor=red!60,PointSymbol=*,PosAngle={-10,40,80,115,150,200}]{A}{B}{8}{C,D,E} +\pstRegularPolygonAB[CurveType=polygon,linecolor=red!60,PointSymbol=*,PosAngle={290,310,330,350,10,30,45,65,85,115,135,155,170,190,210},PointName={B_2,B_3,B_4,B_5,B_6,B_7,B_8,B_9,B_{10},B_{11},B_{12},B_{13},B_{14},B_{15},B_{16}}]{A}{B}{17}{B2} +\psset{CodeFig=true,CodeFigColor=gray,CodeFigStyle=solid} +\pstRegularPolygonAB[CurveType=polygon,linecolor=blue!60,PointSymbol=*,PosAngle={-90,-90}]{B}{A}{3}{C,D,E} +\pstRegularPolygonAB[CurveType=polygon,linecolor=blue!60,PointSymbol=*,PosAngle={-90,-90}]{B}{A}{4}{C,D,E} +\pstRegularPolygonAB[CurveType=polygon,linecolor=blue!60,PointSymbol=*,PosAngle={140,190,240,-60,-40,10},PointName={A_2,A_3,A_4,A_5,A_6,A_7}]{B}{A}{8}{A2,A3,A4,A5,A6,A7} +\pstRegularPolygonAB[CurveType=polygon,linecolor=blue!60,PointSymbol=*,PosAngle={140,160,180,200,220,240,260,280,300,320,340,360,20,40,60},PointName={A_2,A_3,A_4,A_5,A_6,A_7,A_8,A_9,A_{10},A_{11},A_{12},A_{13},A_{14},A_{15},A_{16}}]{B}{A}{17}{A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16} +\end{pspicture} +\end{LTXexample} + \subsection{Generic curve} It is possible to generate a set of points using a loop, and to give |