summaryrefslogtreecommitdiff
path: root/graphics/pgf/contrib
diff options
context:
space:
mode:
Diffstat (limited to 'graphics/pgf/contrib')
-rw-r--r--graphics/pgf/contrib/bodeplot/README.md2
-rw-r--r--graphics/pgf/contrib/bodeplot/bodeplot.dtx1208
-rw-r--r--graphics/pgf/contrib/bodeplot/bodeplot.pdfbin1007326 -> 1062592 bytes
-rw-r--r--graphics/pgf/contrib/customdice/README.md11
-rw-r--r--graphics/pgf/contrib/customdice/customdice.dtx806
-rw-r--r--graphics/pgf/contrib/customdice/customdice.ins13
-rw-r--r--graphics/pgf/contrib/customdice/customdice.pdfbin0 -> 369482 bytes
7 files changed, 1541 insertions, 499 deletions
diff --git a/graphics/pgf/contrib/bodeplot/README.md b/graphics/pgf/contrib/bodeplot/README.md
index 25b8d7e1dd..31ac7a132f 100644
--- a/graphics/pgf/contrib/bodeplot/README.md
+++ b/graphics/pgf/contrib/bodeplot/README.md
@@ -52,4 +52,4 @@ Other new environments and associated commands:
- `\addNyquistZPKPlot[plot-options]{z/{zeros},p/{poles},k/gain,d/delay}`
- `\addNyquistTFPlot[plot-options]{num/{coeff},den/{coeff},d/delay}`
-Limitation: Nichols charts from TF commands are wrapped between 0 and 360 degrees.
+Limitation: TF commands are wrapped between 0 and 360 degrees in `pgf` mode.
diff --git a/graphics/pgf/contrib/bodeplot/bodeplot.dtx b/graphics/pgf/contrib/bodeplot/bodeplot.dtx
index a5cdfbf6db..aad1eb47d6 100644
--- a/graphics/pgf/contrib/bodeplot/bodeplot.dtx
+++ b/graphics/pgf/contrib/bodeplot/bodeplot.dtx
@@ -26,7 +26,8 @@
%
%<*driver>
\documentclass{ltxdoc}
-\usepackage{bodeplot,cprotect}
+\usepackage{cprotect}
+\usepackage[declutter]{bodeplot}
\usepackage[colorlinks]{hyperref}
\usepackage{iftex}
\iftutex % LuaTeX, XeTeX
@@ -38,7 +39,7 @@
\usepackage[scaled]{DejaVuSansMono}
\fi
\usepackage{showexpl}
- \lstset{%
+ \lstset{
explpreset={numbers=none},
language=[LaTeX]Tex,
basicstyle=\ttfamily\tiny,
@@ -66,7 +67,7 @@
%</driver>
% \fi
%
-% \CheckSum{1404}
+% \CheckSum{1723}
%
% \changes{v1.0}{2021/10/25}{Initial release}
% \changes{v1.0.4}{2021/11/05}{Fixed unintended optional argument macro expansion}
@@ -75,11 +76,12 @@
% \changes{v1.0.7}{2022/01/18}{Updated documentation}
% \changes{v1.0.8}{2022/07/06}{Added a new class option `declutter'}
% \changes{v1.1.0}{2022/07/06}{Fixed phase wrapping in gnuplot mode}
+% \changes{v1.1.1}{2022/07/31}{Enable Hz and rad units}
%
% \GetFileInfo{bodeplot.sty}
-% \DoNotIndex{\newcommand,\xdef,\gdef,\def,\edef,\addplot,\approx,\arabic,\opt,\typ,\obj,\else,\if@pgfarg,\fi,\begin,\end,\feature,\footnotesize,\draw,\detokenize,\DeclareOption,\foreach,\ifdim,\ifodd,\Im,\Re,\let,\newif,\nextgroupplot,\noexpand,\expandafter,\unexpanded,\PackageError,\PackageWarning,\relax,\RequirePackage,\tikzset,\pgfmathsetmacro,\pgfmathtruncatemacro,\ProcessOptions}
+% \DoNotIndex{\newcommand,\xdef,\gdef,\def,\edef,\addplot,\approx,\arabic,\opt,\typ,\obj,\else,\if@pgfarg,\if@Hzarg,\if@radarg,\if@declutterarg,\fi,\begin,\end,\feature,\footnotesize,\draw,\detokenize,\DeclareOption,\foreach,\ifdim,\ifodd,\Im,\Re,\let,\newif,\nextgroupplot,\noexpand,\expandafter,\unexpanded,\PackageError,\PackageWarning,\relax,\RequirePackage,\tikzset,\pgfmathsetmacro,\pgfmathtruncatemacro,\ProcessOptions}
%
-% \title{The \textsf{bodeplot} package\thanks{This document corresponds to \textsf{bodeplot}~v1.1.0, dated July 20, 2022.}}
+% \title{The \textsf{bodeplot} package\\version 1.1.1}
% \author{Rushikesh Kamalapurkar \\ \texttt{rlkamalapurkar@gmail.com}}
%
% \maketitle
@@ -87,14 +89,20 @@
% \clearpage
% \section{Introduction}
%
-% Generate Bode, Nyquist, and Nichols plots for transfer functions in the canonical (TF) form \begin{equation}G(s) = e^{-Ts}\frac{b_ms^m+\cdots+b_1s+b_0}{a_ns^n+\cdots+a_1s+a_0}\label{eq:TF}\end{equation} and the zero-pole-gain (ZPK) form \begin{equation}G(s) = Ke^{-Ts}\frac{(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)}.\label{eq:ZPK}\end{equation} In the equations above, $b_m,\cdots,b_0$ and $a_n,\cdots,a_0$ are real coefficients, $T\geq 0$ is the loop delay, $z_1,\cdots,z_m$ and $p_1,\cdots,p_n$ are complex zeros and poles of the transfer function, respectively, and $K\in \Re$ is the loop gain. For transfer functions in the ZPK format in (\ref{eq:ZPK}) \emph{with zero delay}, this package also supports linear and asymptotic approximation of Bode plots. By default, all phase plots use degrees as units. Use the |rad| package option to generate plots in radians.
+% Generate Bode, Nyquist, and Nichols plots for transfer functions in the canonical (TF) form \begin{equation}G(s) = e^{-Ts}\frac{b_ms^m+\cdots+b_1s+b_0}{a_ns^n+\cdots+a_1s+a_0}\label{eq:TF}\end{equation} and the zero-pole-gain (ZPK) form \begin{equation}G(s) = Ke^{-Ts}\frac{(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)}.\label{eq:ZPK}\end{equation} In the equations above, $b_m,\cdots,b_0$ and $a_n,\cdots,a_0$ are real coefficients, $T\geq 0$ is the loop delay, $z_1,\cdots,z_m$ and $p_1,\cdots,p_n$ are complex zeros and poles of the transfer function, respectively, and $K\in \Re$ is the loop gain.
+%
+% For transfer functions in the ZPK format in (\ref{eq:ZPK}) \emph{with zero delay}, this package also supports linear and asymptotic approximation of Bode plots.
+%
+% By default, all phase plots use degrees as units. Use the |rad| package option or the optional argument |tikz/{phase unit=rad}| to generate plots in radians. The |phase unit| key accepts either |rad| or |deg| as inputs and needs to be added to the |tikzpicture| environment that contains the plots.
+%
+% By default, frequency inputs and outputs are in radians per second. Use the |Hz| package option or the optional argument |tikz/{frequency unit=Hz}| to generate plots in hertz. The |frequency unit| key accepts either |rad| or |Hz| as inputs and needs to be added to the |tikzpicture| environment that contains the plots.
% \subsection{External Dependencies}
-% By default, the package uses |gnuplot| to do all the computations. If |gnuplot| is not available, the |pgf| package option can be used to do the calculations using the native |pgf| math engine. Compilation using the |pgf| math engine is typically slower, but the end result should be the identical (other than phase wrapping in the TF format, see limitations below).
+% By default, the package uses |gnuplot| to do all the computations. If |gnuplot| is not available, the |pgf| package option can be used to do the calculations using the native |pgf| math engine. Compilation using the |pgf| math engine is typically slower, but the end result should be the identical (other than phase wrapping in the TF form, see limitations below).
%\subsection{Directory Structure}
% Since version 1.0.8, the |bodeplot| package places all |gnuplot| temporary files in the working directory. The package option |declutter| restores the original behavior where the temporary files are placed in a folder called |gnuplot|.
% \subsection{Limitations}
% \begin{itemize}
-% \item When plotting Nichols charts in TF form, the phase angles are wrapped between 0 and 360$^\circ$. As such, the Nichols charts will have phase wrapping discontinuities. Phase wrapping in Bode plots was fixed in v1.1.0 using |gnuplot|. In |pgf| mode, Bode phase plots, plotted using the TF form, will also show phase wrapping discontinuities.
+% \item In |pgf| mode, Bode phase plots and Nichols charts in TF form wrap angles so that they are always between 0 and 360$^\circ$ or 0 and $2\pi$ radian. As such, these plots will show phase wrapping discontinuities. Since v1.1.1, in |gnuplot| mode, the package uses the |smooth unwrap| filter to correct wrapping discontinuities. As of now, I have not found a way to do this in |pgf| mode, any merge requests or ideas you may have are welcome!
% \item Use of the |declutter| option with other directory management tools such as a |tikzexternalize| prefix is not recommended.
% \end{itemize}
% \clearpage
@@ -114,7 +122,7 @@
\BodeZPK{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
- k/10
+ k/10%
}
{0.01}
{100}
@@ -122,21 +130,28 @@
\hrulefill
-Bode plot in TF format with arrow decoration, transport delay, and color customization (the phase plot will show wrapping if the |pgf| package option is used)
+Same Bode plot over the same frequency range but supplied in Hz, in TF format with arrow decoration, transport delay, unit, and color customization (the phase plot may show wrapping if the |pgf| package option is used)
\begin{LTXexample}[pos=r,width=0.5\textwidth]
\BodeTF[%
samples=1000,
plot/mag/{blue,thick},
plot/ph/{green,thick},
- tikz/{>=latex},
+ tikz/{%
+ >=latex,
+ phase unit=rad,
+ frequency unit=Hz%
+ },
commands/mag/{
- \draw[->](axis cs:1,40) -- (axis cs:10,60);
- \node at (axis cs: 0.8,30) {\tiny Resonant Peak};
+ \draw[->](axis cs:0.1,40) -- (axis cs:{10/(2*pi)},60);
+ \node at (axis cs: 0.08,30) {\tiny Resonant Peak};
}%
]
-{num/{10,2,2.6,0},den/{1,1,100.25},d/0.01}
-{0.01}
-{500}
+{%
+ num/{10,2,2.6,0},
+ den/{1,1,100.25}%
+}
+{0.01/(2*pi)}
+{100/(2*pi)}
\end{LTXexample}
\hrulefill
@@ -154,7 +169,7 @@ Linear approximation with customization
]{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
- k/10
+ k/10%
}
{0.01}
{100}
@@ -164,16 +179,16 @@ Linear approximation with customization
Plot with delay and customization
\begin{LTXexample}[pos=r,hsep=20pt,width=0.5\textwidth]
-\BodeZPK[
+\BodeZPK[%
plot/mag/{blue,thick},
plot/ph/{green,thick},
axes/mag/ytick distance=40,
- axes/ph/ytick distance=90
+ axes/ph/ytick distance=90%
]{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/10,
- d/0.01
+ d/0.01%
}
{0.01}
{100}
@@ -202,7 +217,7 @@ Individual gain and phase plots with more customization
{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
- k/10
+ k/10%
}
\end{BodeMagPlot}
\end{LTXexample}
@@ -225,7 +240,7 @@ Individual gain and phase plots with more customization
{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
- k/10
+ k/10%
}
\end{BodePhPlot}
\end{LTXexample}
@@ -240,7 +255,7 @@ Nichols chart
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
k/10,
- d/0.01
+ d/0.01%
}
{0.001}
{500}
@@ -248,10 +263,14 @@ Nichols chart
\hrulefill
-Same Nichols chart in TF format (shows phase wrapping discontinuity)
+Same Nichols chart in TF format (may show wrapping in |pgf| mode)
\begin{LTXexample}[pos=r,hsep=20pt,width=0.5\textwidth]
\NicholsTF[samples=1000]
-{num/{10,2,2.6,0},den/{1,1,100.25},d/0.01}
+{%
+ num/{10,2,2.6,0},
+ den/{1,1,100.25},
+ d/0.01%
+}
{0.001}
{500}
\end{LTXexample}
@@ -271,13 +290,13 @@ Multiple Nichols charts with customization
\addNicholsZPKChart [red,samples=1000] {%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
- k/10
- };
+ k/10%
+ }
\addNicholsZPKChart [blue,samples=1000] {%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
- k/5
- };
+ k/5%
+ }
\end{NicholsChart}
\end{LTXexample}
@@ -289,7 +308,7 @@ Nyquist plot
{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
- k/10
+ k/10%
}
{-30}
{30}
@@ -311,7 +330,10 @@ Nyquist plot in TF format with arrows
}
}%
]
-{num/{10,2,2.6,0},den/{1,1,100.25}}
+{%
+ num/{10,2,2.6,0},
+ den/{1,1,100.25}%
+}
{-30}
{30}
\end{LTXexample}
@@ -326,13 +348,13 @@ Multiple Nyquist plots with customization
\addNyquistZPKPlot [red,samples=1000] {%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
- k/10
- };
+ k/10%
+ }
\addNyquistZPKPlot [blue,samples=1000] {%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
- k/5
- };
+ k/5%
+ }
\end{NyquistPlot}
\end{LTXexample}
@@ -343,21 +365,21 @@ Nyquist plots with additional commands, using two different macros
\begin{minipage}[t]{0.48\textwidth}
\begin{LTXexample}[pos=t,width=\columnwidth]
\begin{NyquistPlot}[%
- tikz/{%
+ tikz/{
spy using outlines={%
circle,
magnification=3,
connect spies,
size=2cm
- }%
+ }
}%
]
{-30}{30}
\addNyquistZPKPlot [blue,samples=1000] {%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
- k/0.5
- };
+ k/0.5%
+ }
\coordinate (spyon) at (axis cs:0,0);
\coordinate (spyat) at (axis cs:-22,5);
\spy [green] on (spyon) in
@@ -369,25 +391,25 @@ Nyquist plots with additional commands, using two different macros
\begin{LTXexample}[pos=t,width=\columnwidth]
\NyquistZPK[%
plot/{blue,samples=1000},
- tikz/{%
+ tikz/{
spy using outlines={%
circle,
magnification=3,
connect spies,
size=2cm
- }%
+ }
},
- commands/{%
+ commands/{
\coordinate (spyon) at (axis cs:0,0);
\coordinate (spyat) at (axis cs:-22,5);
\spy [green] on (spyon) in
node [fill=white] at (spyat);
}%
-]%
-{
+]
+{%
z/{0,{-0.1,-0.5},{-0.1,0.5}},
p/{{-0.5,-10},{-0.5,10}},
- k/0.5
+ k/0.5%
}
{-30}
{30}
@@ -402,6 +424,8 @@ Nyquist plots with additional commands, using two different macros
% \fi
%
% \section{Usage}
+% \noindent In all the macros described here, the frequency limits supplied by the user are assumed to be in |rad/s| unless either the |Hz| package option is used or the optional argument |tikz/{frequency unit=Hz}| is supplied to the |tikzpicture| environment. All phase plots are getenrated in degrees unless either the |rad| package option is used or the optional argument |tikz/{frequency unit=rad}| is supplied to the |tikzpicture| environment.
+%
% \subsection{Bode plots}
% \DescribeMacro{\BodeZPK}
% |\BodeZPK| \oarg{obj1/typ1/\marg{opt1},obj2/typ2/\marg{opt2},...}\\
@@ -517,7 +541,7 @@ Nyquist plots with additional commands, using two different macros
% For example, given the transfer function in (\ref{eq:ZPKExample}), its linear, asymptotic, and true Bode plots can be superimposed using
%\begin{verbatim}
%\begin{BodeMagPlot}[height=2cm,width=4cm] {0.01} {100}
-% \addBodeZPKPlots[
+% \addBodeZPKPlots[%
% true/{black,thick},
% linear/{red,dashed,thick},
% asymptotic/{blue,dotted,thick}]
@@ -526,7 +550,7 @@ Nyquist plots with additional commands, using two different macros
%\end{BodeMagPlot}
%
%\begin{BodePhPlot}[height=2cm, width=4cm, ytick distance=90] {0.01} {100}
-% \addBodeZPKPlots[
+% \addBodeZPKPlots[%
% true/{black,thick},
% linear/{red,dashed,thick},
% asymptotic/{blue,dotted,thick}]
@@ -537,7 +561,7 @@ Nyquist plots with additional commands, using two different macros
% \begin{figure}
% \begin{center}
% \begin{BodeMagPlot}[height=2cm,width=4cm]{0.01}{100}
-% \addBodeZPKPlots[
+% \addBodeZPKPlots[%
% true/{black,thick},
% linear/{red,dashed,thick},
% asymptotic/{blue,dotted,thick}]
@@ -545,7 +569,7 @@ Nyquist plots with additional commands, using two different macros
% {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}
% \end{BodeMagPlot}
% \begin{BodePhPlot}[height=2cm,width=4cm,ytick distance=90]{0.01}{100}
-% \addBodeZPKPlots[
+% \addBodeZPKPlots[%
% true/{black,thick},
% linear/{red,dashed,thick},
% asymptotic/{blue,dotted,thick}]
@@ -787,15 +811,6 @@ Nyquist plots with additional commands, using two different macros
% \clearpage
% \section{Implementation}
% \subsection{Initialization}
-% \begin{macro}{\pdfstrcmp}
-% The package makes extensive use of the |\pdfstrcmp| macro to parse options. Since that macro is not available in |lualatex|, this code is needed.
-% \begin{macrocode}
-\RequirePackage{ifluatex}%
-\ifluatex
- \let\pdfstrcmp\pdf@strcmp
-\fi
-% \end{macrocode}
-% \end{macro}
% \begin{macro}{\n@mod}
% \begin{macro}{\n@pow}
% \begin{macro}{gnuplot@id}
@@ -805,17 +820,21 @@ Nyquist plots with additional commands, using two different macros
% This code is needed to support both |pgfplots| and |gnuplot| simultaneously. New macros are defined for the |pow| and |mod| functions to address differences between the two math engines. We start by processing the class options.
% \begin{macrocode}
\newif\if@pgfarg\@pgfargfalse
-\DeclareOption{pgf}{%
+\DeclareOption{pgf}{
\@pgfargtrue
}
\newif\if@declutterarg\@declutterargfalse
-\DeclareOption{declutter}{%
+\DeclareOption{declutter}{
\@declutterargtrue
}
\newif\if@radarg\@radargfalse
-\DeclareOption{rad}{%
+\DeclareOption{rad}{
\@radargtrue
}
+\newif\if@hzarg\@hzargfalse
+\DeclareOption{Hz}{
+ \@hzargtrue
+}
\ProcessOptions\relax
% \end{macrocode}
% Then, we define two new macros to unify |pgfplots| and |gnuplot|.
@@ -823,8 +842,8 @@ Nyquist plots with additional commands, using two different macros
\newcommand{\n@mod}[2]{(#1)-(floor((#1)/(#2))*(#2))}
\if@pgfarg
\newcommand{\n@pow}[2]{(#1)^(#2)}
- \pgfplotsset{%
- trig format plots=rad%
+ \pgfplotsset{
+ trig format plots=rad
}
\else
\newcommand{\n@pow}[2]{(#1)**(#2)}
@@ -834,20 +853,16 @@ Nyquist plots with additional commands, using two different macros
\newcounter{gnuplot@id}
\setcounter{gnuplot@id}{0}
\if@declutterarg
- \tikzset{%
- gnuplot@prefix/.style={%
- id=\arabic{gnuplot@id},
- prefix=gnuplot/\jobname
- }%
- }
+ \edef\bodeplot@prefix{gnuplot/\jobname}
\else
- \tikzset{%
- gnuplot@prefix/.style={%
- id=\arabic{gnuplot@id},
- prefix=\jobname
- }%
- }
+ \edef\bodeplot@prefix{\jobname}
\fi
+ \tikzset{
+ gnuplot@prefix/.style={
+ id=\arabic{gnuplot@id},
+ prefix=\bodeplot@prefix
+ }
+ }
% \end{macrocode}
% If the operating system is not Windows, and if the |declutter| option is not passed, we create the |gnuplot| folder if it does not already exist. \changes{v1.0.2}{2021/11/01}{Fixed issue \#1}
% \begin{macrocode}
@@ -865,8 +880,8 @@ Nyquist plots with additional commands, using two different macros
% \begin{macro}{bode@style}
% Default axis properties for all plot macros are collected in this |pgf| style.
% \begin{macrocode}
-\pgfplotsset{%
- bode@style/.style = {%
+\pgfplotsset{
+ bode@style/.style = {
label style={font=\footnotesize},
tick label style={font=\footnotesize},
grid=both,
@@ -877,25 +892,84 @@ Nyquist plots with additional commands, using two different macros
scale only axis,
samples=200,
width=5cm,
- }%
+ log basis x=10
+ }
}
% \end{macrocode}
% \end{macro}
-% \begin{macro}{ph@filter}
-% \begin{macro}{ph@x@filter}
-% These macros create |pgf| filters to convert plots from radians to degrees.
+% \begin{macro}{freq@filter}
+% \begin{macro}{freq@label}
+% \begin{macro}{freq@scale}
+% \begin{macro}{ph@scale}
+% \begin{macro}{ph@x@label}
+% \begin{macro}{ph@y@label}
+% These macros handle the |Hz| and |rad| class options and two new |pgf| keys named |frequency unit| and |phase unit| for conversion of frequency and phase units, respectively. \changes{v1.1.1}{2022/07/31}{New macros to enable `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
+\pgfplotsset{freq@filter/.style = {}}
+\def\freq@scale{1}
+\pgfplotsset{freq@label/.style = {xlabel = {Frequency (rad/s)}}}
+\pgfplotsset{ph@x@label/.style = {xlabel={Phase (deg)}}}
+\pgfplotsset{ph@y@label/.style = {ylabel={Phase (deg)}}}
+\def\ph@scale{180/pi}
\if@radarg
- \pgfplotsset{ph@filter/.style = {ytick distance=pi/4, ylabel={Phase (rad)}}}%
- \pgfplotsset{ph@x@filter/.style = {xlabel={Phase (rad)}}}%
-\else
- \pgfplotsset{ph@filter/.style = {y filter/.expression={y*180/pi}, ytick distance=45, ylabel={Phase (deg)}}}%
- \pgfplotsset{ph@x@filter/.style = {x filter/.expression={x*180/pi}, xlabel={Phase (deg)}}}%
+ \pgfplotsset{ph@y@label/.style = {ylabel={Phase (rad)}}}
+ \pgfplotsset{ph@x@label/.style = {xlabel={Phase (rad)}}}
+ \def\ph@scale{1}
\fi
+\if@hzarg
+ \def\freq@scale{2*pi}
+ \pgfplotsset{freq@label/.style = {xlabel = {Frequency (Hz)}}}
+ \if@pgfarg
+ \pgfplotsset{freq@filter/.style = {x filter/.expression={x-log10(2*pi)}}}
+ \fi
+\fi
+\tikzset{
+ phase unit/.initial={deg},
+ phase unit/.default={deg},
+ phase unit/.is choice,
+ phase unit/deg/.code={
+ \renewcommand{\ph@scale}{180/pi}
+ \pgfplotsset{ph@x@label/.style = {xlabel={Phase (deg)}}}
+ \pgfplotsset{ph@y@label/.style = {ylabel={Phase (deg)}}}
+ },
+ phase unit/rad/.code={
+ \renewcommand{\ph@scale}{1}
+ \pgfplotsset{ph@y@label/.style = {ylabel={Phase (rad)}}}
+ \pgfplotsset{ph@x@label/.style = {xlabel={Phase (rad)}}}
+ },
+ frequency unit/.initial={rad},
+ frequency unit/.default={rad},
+ frequency unit/.is choice,
+ frequency unit/Hz/.code={
+ \renewcommand{\freq@scale}{2*pi}
+ \pgfplotsset{freq@label/.style = {xlabel = {Frequency (Hz)}}}
+ \if@pgfarg
+ \pgfplotsset{freq@filter/.style = {x filter/.expression={x-log10(2*pi)}}}
+ \fi
+ },
+ frequency unit/rad/.code={
+ \renewcommand{\freq@scale}{1}
+ \pgfplotsset{freq@label/.style = {xlabel = {Frequency (rad/s)}}}
+ }
+}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{get@interval@start}
+% \begin{macro}{get@interval@end}
+% Internal macros to extract start and end frequency limits from domain specifications.\changes{v1.1.1}{2022/07/31}{New macros to enable `Hz' and `rad' units for frequency and phase, respectively}
+% \begin{macrocode}
+\def\get@interval@start#1:#2\@nil{#1}
+\def\get@interval@end#1:#2\@nil{#2}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \subsection{Parametric function generators for poles, zeros, gains, and delays.}
+% All calculations are carried out assuming that frequeny inputs are in |rad/s|. Magnitude outputs are in |dB| and phase outputs are in degrees or radians, depending on the value of |\ph@scale|.
% \begin{macro}{\MagK}
% \begin{macro}{\MagKAsymp}
% \begin{macro}{\MagKLin}
@@ -907,7 +981,7 @@ Nyquist plots with additional commands, using two different macros
\newcommand*{\MagK}[2]{(20*log10(abs(#1)))}
\newcommand*{\MagKAsymp}{\MagK}
\newcommand*{\MagKLin}{\MagK}
-\newcommand*{\PhK}[2]{(#1<0?-pi:0)}
+\newcommand*{\PhK}[2]{((#1<0?-pi:0)*\ph@scale)}
\newcommand*{\PhKAsymp}{\PhK}
\newcommand*{\PhKLin}{\PhK}
% \end{macrocode}
@@ -922,7 +996,7 @@ Nyquist plots with additional commands, using two different macros
% True magnitude and phase parametric functions for a pure delay $G(s)=e^{-Ts}$. The macros take two arguments corresponding to real and imaginary part of the gain to facilitate code reuse between delays, gains, poles, and zeros, but only real gains are supported. The second argument, if supplied, is ignored.
% \begin{macrocode}
\newcommand*{\MagDel}[2]{0}
-\newcommand*{\PhDel}[2]{-#1*t}
+\newcommand*{\PhDel}[2]{(-#1*t*\ph@scale)}
% \end{macrocode}
% \end{macro}
% \end{macro}
@@ -950,15 +1024,15 @@ Nyquist plots with additional commands, using two different macros
% \end{macrocode}
% Parametric function for the true phase of a complex pole.
% \begin{macrocode}
-\newcommand*{\PhPole}[2]{(#1 > 0 ? (#2 > 0 ?
- (\n@mod{-atan2((t - (#2)),-(#1))}{2*pi}) :
- (-atan2((t - (#2)),-(#1)))) :
- (-atan2((t - (#2)),-(#1))))}
+\newcommand*{\PhPole}[2]{((#1 > 0 ? (#2 > 0 ?
+ (\n@mod{-atan2((t - (#2)),-(#1))}{2*pi}) :
+ (-atan2((t - (#2)),-(#1)))) :
+ (-atan2((t - (#2)),-(#1))))*\ph@scale)}
% \end{macrocode}
% Parametric function for linear approximation of the phase of a complex pole.
% \begin{macrocode}
-\newcommand*{\PhPoleLin}[2]{%
- (abs(#1)+abs(#2) == 0 ? -pi/2 :
+\newcommand*{\PhPoleLin}[2]{
+ ((abs(#1)+abs(#2) == 0 ? -pi/2 :
(t < (sqrt(\n@pow{#1}{2} + \n@pow{#2}{2}) /
(\n@pow{10}{sqrt(\n@pow{#1}{2}/(\n@pow{#1}{2} + \n@pow{#2}{2}))})) ?
(-atan2(-(#2),-(#1))) :
@@ -969,13 +1043,13 @@ Nyquist plots with additional commands, using two different macros
(\n@pow{10}{sqrt(\n@pow{#1}{2}/(\n@pow{#1}{2} +
\n@pow{#2}{2}))}))))*((#2>0?(#1>0?3*pi/2:-pi/2):-pi/2) + atan2(-(#2),-(#1)))/
(log10(\n@pow{10}{sqrt((4*\n@pow{#1}{2})/
- (\n@pow{#1}{2} + \n@pow{#2}{2}))}))))))}
+ (\n@pow{#1}{2} + \n@pow{#2}{2}))}))))))*\ph@scale)}
% \end{macrocode}
% Parametric function for asymptotic approximation of the phase of a complex pole.
% \begin{macrocode}
-\newcommand*{\PhPoleAsymp}[2]{(t < (sqrt(\n@pow{#1}{2} + \n@pow{#2}{2})) ?
+\newcommand*{\PhPoleAsymp}[2]{((t < (sqrt(\n@pow{#1}{2} + \n@pow{#2}{2})) ?
(-atan2(-(#2),-(#1))) :
- (#2>0?(#1>0?3*pi/2:-pi/2):-pi/2))}
+ (#2>0?(#1>0?3*pi/2:-pi/2):-pi/2))*\ph@scale)}
% \end{macrocode}
% \end{macro}
% \end{macro}
@@ -1027,15 +1101,15 @@ Nyquist plots with additional commands, using two different macros
% \end{macrocode}
% Then, we have true, linear, and asymptotic phase plots for the canonical second order transfer function.
% \begin{macrocode}
-\newcommand*{\PhCSPoles}[2]{(-atan2((2*(#1)*(#2)*t),(\n@pow{#2}{2}
- - \n@pow{t}{2})))}
-\newcommand*{\PhCSPolesLin}[2]{(t < (#2 / (\n@pow{10}{abs(#1)})) ?
+\newcommand*{\PhCSPoles}[2]{((-atan2((2*(#1)*(#2)*t),(\n@pow{#2}{2}
+ - \n@pow{t}{2})))*\ph@scale)}
+\newcommand*{\PhCSPolesLin}[2]{((t < (#2 / (\n@pow{10}{abs(#1)})) ?
0 :
- (t >= (#2 * (\n@pow{10}{abs(#1)})) ?
+ (t >= (#2 * (\n@pow{10}{abs(#1)})) ?
(#1>0 ? -pi : pi) :
- (#1>0 ? (-pi*(log10(t*(\n@pow{10}{#1})/#2))/(2*#1)) :
- (pi*(log10(t*(\n@pow{10}{abs(#1)})/#2))/(2*abs(#1))))))}
-\newcommand*{\PhCSPolesAsymp}[2]{(#1>0?(t<#2?0:-pi):(t<#2?0:pi))}
+ (#1>0 ? (-pi*(log10(t*(\n@pow{10}{#1})/#2))/(2*#1)) :
+ (pi*(log10(t*(\n@pow{10}{abs(#1)})/#2))/(2*abs(#1))))))*\ph@scale)}
+\newcommand*{\PhCSPolesAsymp}[2]{((#1>0?(t<#2?0:-pi):(t<#2?0:pi))*\ph@scale)}
% \end{macrocode}
% Plots of the inverse function $G(s)=s^2+2\zeta\omega_n s+\omega_n^2$ are defined to be negative of plots of poles. The |0-| is necessary due to a bug in |gnuplot| (fixed in version 5.4, patchlevel 3).
% \begin{macrocode}
@@ -1062,11 +1136,11 @@ Nyquist plots with additional commands, using two different macros
% \begin{macro}{\MagCSZerosPeak}
% These macros are used to add a resonant peak to linear and asymptotic plots of canonical second order poles and zeros. Since the plots are parametric, a separate |\draw| command is needed to add a vertical arrow.
% \begin{macrocode}
-\newcommand*{\MagCSPolesPeak}[3][]{%
+\newcommand*{\MagCSPolesPeak}[3][]{
\draw[#1,->] (axis cs:{#3},{-40*log10(#3)}) --
(axis cs:{#3},{-40*log10(#3)-20*log10(2*abs(#2))})
}
-\newcommand*{\MagCSZerosPeak}[3][]{%
+\newcommand*{\MagCSZerosPeak}[3][]{
\draw[#1,->] (axis cs:{#3},{40*log10(#3)}) --
(axis cs:{#3},{40*log10(#3)+20*log10(2*abs(#2))})
}
@@ -1087,21 +1161,21 @@ Nyquist plots with additional commands, using two different macros
% \begin{macro}{\PhSOZerosLin}
% Consider a general second order transfer function $G(s) = \frac{1}{s^2 + a s + b}$. We start with true, linear, and asymptotic magnitude plots for this transfer function.
% \begin{macrocode}
-\newcommand*{\MagSOPoles}[2]{%
+\newcommand*{\MagSOPoles}[2]{
(-20*log10(sqrt(\n@pow{#2 - \n@pow{t}{2}}{2} + \n@pow{#1*t}{2})))}
-\newcommand*{\MagSOPolesLin}[2]{%
+\newcommand*{\MagSOPolesLin}[2]{
(t < sqrt(abs(#2)) ? -20*log10(abs(#2)) : - 40*log10(t))}
\newcommand*{\MagSOPolesAsymp}{\MagSOPolesLin}
% \end{macrocode}
% Then, we have true, linear, and asymptotic phase plots for the general second order transfer function.
% \begin{macrocode}
-\newcommand*{\PhSOPoles}[2]{(-atan2((#1)*t,((#2) - \n@pow{t}{2})))}
-\newcommand*{\PhSOPolesLin}[2]{(#2>0 ?
+\newcommand*{\PhSOPoles}[2]{((-atan2((#1)*t,((#2) - \n@pow{t}{2})))*\ph@scale)}
+\newcommand*{\PhSOPolesLin}[2]{((#2>0 ?
\PhCSPolesLin{(#1/(2*sqrt(#2)))}{(sqrt(#2))} :
- (#1>0 ? -pi : pi))}
-\newcommand*{\PhSOPolesAsymp}[2]{(#2>0 ?
+ (#1>0 ? -pi : pi))*\ph@scale)}
+\newcommand*{\PhSOPolesAsymp}[2]{((#2>0 ?
\PhCSPolesAsymp{(#1/(2*sqrt(#2)))}{(sqrt(#2))} :
- (#1>0 ? -pi : pi))}
+ (#1>0 ? -pi : pi))*\ph@scale)}
% \end{macrocode}
% Plots of the inverse function $G(s)=s^2+as+b$ are defined to be negative of plots of poles. The |0-| is necessary due to a bug in |gnuplot| (fixed in version 5.4, patchlevel 3).
% \begin{macrocode}
@@ -1128,12 +1202,12 @@ Nyquist plots with additional commands, using two different macros
% \begin{macro}{\MagSOZerosPeak}
% These macros are used to add a resonant peak to linear and asymptotic plots of general second order poles and zeros. Since the plots are parametric, a separate |\draw| command is needed to add a vertical arrow.
% \begin{macrocode}
-\newcommand*{\MagSOPolesPeak}[3][]{%
+\newcommand*{\MagSOPolesPeak}[3][]{
\draw[#1,->] (axis cs:{sqrt(abs(#3))},{-20*log10(abs(#3))}) --
(axis cs:{sqrt(abs(#3))},{-20*log10(abs(#3)) -
20*log10(abs(#2/sqrt(abs(#3))))});
}
-\newcommand*{\MagSOZerosPeak}[3][]{%
+\newcommand*{\MagSOZerosPeak}[3][]{
\draw[#1,->] (axis cs:{sqrt(abs(#3))},{20*log10(abs(#3))}) --
(axis cs:{sqrt(abs(#3))},{20*log10(abs(#3)) +
20*log10(abs(#2/sqrt(abs(#3))))});
@@ -1146,176 +1220,260 @@ Nyquist plots with additional commands, using two different macros
% \begin{macro}{\BodeZPK}
% This macro takes lists of complex poles and zeros of the form |{re,im}|, and values of gain and delay as inputs and constructs parametric functions for the Bode magnitude and phase plots. This is done by adding together the parametric functions generated by the macros for individual zeros, poles, gain, and delay, described above. The parametric functions are then plotted in a |tikzpicture| environment using the |\addplot| macro. Unless the package is loaded with the option |pgf|, the parametric functions are evaluated using |gnuplot|. \changes{v1.0.1}{2021/10/29}{Pass arbitrary TikZ commands as options.}
% \begin{macrocode}
-\newcommand{\BodeZPK}[4][approx/true]{%
-% \end{macrocode}
-% Most of the work is done by the |\parse@opt| and the |\build@ZPK@plot| macros, described in the 'Internal macros' section. The former is used to parse the optional arguments and the latter to extract poles, zeros, gain, and delay from the first mandatory argument and to generate macros |\func@mag| and |\func@ph| that hold the magnitude and phase parametric functions.
-% \begin{macrocode}
- \parse@opt{#1}%
- \gdef\func@mag{}%
- \gdef\func@ph{}%
- \build@ZPK@plot{\func@mag}{\func@ph}{\opt@approx}{#2}%
+\newcommand{\BodeZPK}[4][approx/true]{
% \end{macrocode}
-% The |\noexpand| macros below are needed to so that only the macro |\opt@group| is expanded. \changes{v1.0.3}{2021/11/03}{Added Tikz option}
+% Most of the work is done by the |\parse@opt| and the |\build@ZPK@plot| macros, described in the 'Internal macros' section. The former is used to parse the optional arguments and the latter to extract poles, zeros, gain, and delay from the first mandatory argument and to generate macros |\func@mag| and |\func@ph| that hold the magnitude and phase parametric functions. The |\noexpand| macros below are needed to so that only the macro |\opt@group| is expanded. \changes{v1.0.3}{2021/11/03}{Added Tikz option}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
- \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]%
- \noexpand\begin{groupplot}[%
+ \parse@opt{#1}
+ \gdef\func@mag{}
+ \gdef\func@ph{}
+ \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]}
+ \temp@cmd
+ \build@ZPK@plot{\func@mag}{\func@ph}{\opt@approx}{#2}
+ \edef\temp@cmd{\noexpand\begin{groupplot}[
bode@style,
- xmin={#3},
- xmax={#4},
- domain=#3:#4,
+ xmin=#3,
+ xmax=#4,
+ domain=#3*\freq@scale:#4*\freq@scale,
height=2.5cm,
xmode=log,
group style = {group size = 1 by 2,vertical sep=0.25cm},
\opt@group
- ]%
- }%
- \temp@cmd
+ ]}
+ \temp@cmd
% \end{macrocode}
-% To ensure frequency tick marks on magnitude and the phase plots are always aligned, we use the |groupplot| library. The |\expandafter| chain below is used to expand macros in the plot and group optional arguments.
+% To ensure frequency tick marks on magnitude and the phase plots are always aligned, we use the |groupplot| library. The |\noexpand| and |\unexpanded\expandafter| macros below are used to expand macros in the plot and group optional arguments.
% \begin{macrocode}
- \edef\temp@mag@cmd{\noexpand\nextgroupplot[ytick distance=20, ylabel={Gain (dB)}, xmajorticks=false, \optmag@axes]
- \noexpand\addplot[variable=t, thick, \optmag@plot]}
- \edef\temp@ph@cmd{\noexpand\nextgroupplot[ph@filter, xlabel={Frequency (rad/s)}, \optph@axes]
- \noexpand\addplot[variable=t, thick, \optph@plot]}
+ \edef\temp@mag@cmd{\noexpand\nextgroupplot [ylabel={Gain (dB)}, xmajorticks=false, \optmag@axes]
+ \noexpand\addplot [freq@filter, variable=t, thick, \optmag@plot]}
+ \edef\temp@ph@cmd{\noexpand\nextgroupplot [ph@y@label, freq@label, \optph@axes]
+ \noexpand\addplot [freq@filter, variable=t, thick, \optph@plot]}
+ \if@pgfarg
+ \temp@mag@cmd {\func@mag};
+ \optmag@commands
+ \temp@ph@cmd {\func@ph};
+ \optph@commands
+ \else
% \end{macrocode}
-% In |gnuplot| mode, we increment the |gnuplot@id| counter before every plot to make sure that new and reusable |.gnuplot| and |.table| files are generated for every plot.
+% In |gnuplot| mode, we increment the |gnuplot@id| counter before every plot to make sure that new and reusable |.gnuplot| and |.table| files are generated for every plot. We use |raw gnuplot| to make sure that the tables generated by |gnuplot| use the correct phase and frequency units as supplied by the user.
% \begin{macrocode}
- \if@pgfarg\else
- \edef\temp@mag@cmd{\noexpand\stepcounter{gnuplot@id} \unexpanded\expandafter{\temp@mag@cmd} gnuplot[gnuplot@prefix]}
- \edef\temp@ph@cmd{\noexpand\stepcounter{gnuplot@id} \unexpanded\expandafter{\temp@ph@cmd} gnuplot[gnuplot@prefix]}
+ \stepcounter{gnuplot@id}
+ \temp@mag@cmd gnuplot [raw gnuplot, gnuplot@prefix]
+ { set table $meta;
+ set dummy t;
+ set logscale x 10;
+ set xrange [#3*\freq@scale:#4*\freq@scale];
+ set samples \pgfkeysvalueof{/pgfplots/samples};
+ plot \func@mag;
+ set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
+ plot "$meta" using ($1/(\freq@scale)):($2);
+ };
+ \optmag@commands
+ \stepcounter{gnuplot@id}
+ \temp@ph@cmd gnuplot [raw gnuplot, gnuplot@prefix]
+ { set table $meta;
+ set dummy t;
+ set logscale x 10;
+ set xrange [#3*\freq@scale:#4*\freq@scale];
+ set samples \pgfkeysvalueof{/pgfplots/samples};
+ plot \func@ph;
+ set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
+ plot "$meta" using ($1/(\freq@scale)):($2);
+ };
+ \optph@commands
\fi
- \temp@mag@cmd {\func@mag};
- \optmag@commands
- \temp@ph@cmd {\func@ph};
- \optph@commands
\end{groupplot}
\end{tikzpicture}
}
% \end{macrocode}
% \end{macro}
% \begin{macro}{\BodeTF}
-% Implementation of this macro is very similar to the |\BodeZPK| macro above. The only difference is the lack of linear and asymptotic plots and slightly different parsing of the mandatory arguments. \changes{v1.0.3}{2021/11/03}{Added Tikz option} \changes{v1.1.0}{2022/07/06}{Fixed phase wrapping in gnuplot mode}
+% Implementation of this macro is very similar to the |\BodeZPK| macro above. The only difference is the lack of linear and asymptotic plots and slightly different parsing of the mandatory arguments. \changes{v1.0.3}{2021/11/03}{Added Tikz option} \changes{v1.1.0}{2022/07/06}{Fixed phase wrapping in gnuplot mode}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newcommand{\BodeTF}[4][]{%
- \parse@opt{#1}%
- \gdef\func@mag{}%
- \gdef\func@ph{}%
- \build@TF@plot{\func@mag}{\func@ph}{#2}%
- \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]%
- \noexpand\begin{groupplot}[%
+\newcommand{\BodeTF}[4][]{
+ \parse@opt{#1}
+ \gdef\func@mag{}
+ \gdef\func@ph{}
+ \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]}
+ \temp@cmd
+ \build@TF@plot{\func@mag}{\func@ph}{#2}
+ \edef\temp@cmd{\noexpand\begin{groupplot}[
bode@style,
- xmin={#3},
- xmax={#4},
- domain=#3:#4,
+ xmin=#3,
+ xmax=#4,
+ domain=#3*\freq@scale:#4*\freq@scale,
height=2.5cm,
xmode=log,
group style = {group size = 1 by 2,vertical sep=0.25cm},
\opt@group
- ]%
- }%
- \temp@cmd
- \edef\temp@mag@cmd{\noexpand\nextgroupplot[ytick distance=20, ylabel={Gain (dB)}, xmajorticks=false, \optmag@axes]
- \noexpand\addplot[variable=t, thick, \optmag@plot]}
- \edef\temp@ph@cmd{\noexpand\nextgroupplot[ph@filter, xlabel={Frequency (rad/s)}, \optph@axes]
- \noexpand\addplot[variable=t, thick, \optph@plot]}
- \if@pgfarg\else
- \edef\temp@mag@cmd{\noexpand\stepcounter{gnuplot@id} \unexpanded\expandafter{\temp@mag@cmd} gnuplot[gnuplot@prefix]}
- \edef\temp@ph@cmd{\noexpand\stepcounter{gnuplot@id} \unexpanded\expandafter{\temp@ph@cmd} gnuplot[gnuplot@prefix]}
- \fi
- \temp@mag@cmd {\func@mag};
- \optmag@commands
+ ]}
+ \temp@cmd
+ \edef\temp@mag@cmd{\noexpand\nextgroupplot [ylabel={Gain (dB)}, xmajorticks=false, \optmag@axes]
+ \noexpand\addplot [freq@filter, variable=t, thick, \optmag@plot]}
+ \edef\temp@ph@cmd{\noexpand\nextgroupplot [ph@y@label, freq@label, \optph@axes]
+ \noexpand\addplot [freq@filter, variable=t, thick, \optph@plot]}
\if@pgfarg
- \temp@ph@cmd {\n@mod{\func@ph}{2*pi}};
+ \temp@mag@cmd {\func@mag};
+ \optmag@commands
+ \temp@ph@cmd {\n@mod{\func@ph}{2*pi*\ph@scale}};
+ \optph@commands
\else
- \temp@ph@cmd {'+' using (t):\func@ph smooth unwrap};
+ \stepcounter{gnuplot@id}
+ \temp@mag@cmd gnuplot [raw gnuplot, gnuplot@prefix]
+ { set table $meta;
+ set dummy t;
+ set logscale x 10;
+ set xrange [#3*\freq@scale:#4*\freq@scale];
+ set samples \pgfkeysvalueof{/pgfplots/samples};
+ plot \func@mag;
+ set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
+ plot "$meta" using ($1/(\freq@scale)):($2);
+ };
+ \optmag@commands
+ \stepcounter{gnuplot@id}
+ \temp@ph@cmd gnuplot [raw gnuplot, gnuplot@prefix]
+ { set table $meta;
+ set dummy t;
+ set logscale x 10;
+ set trange [#3*\freq@scale:#4*\freq@scale];
+ set samples \pgfkeysvalueof{/pgfplots/samples};
+ plot '+' using (t) : ((\func@ph)/(\ph@scale)) smooth unwrap;
+ set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
+ plot "$meta" using ($1/(\freq@scale)):($2*\ph@scale);
+ };
+ \optph@commands
\fi
- \optph@commands
\end{groupplot}
\end{tikzpicture}
}
% \end{macrocode}
% \end{macro}
% \begin{macro}{\addBodeZPKPlots}
-% This macro is designed to issues multiple |\addplot| macros for the same set of poles, zeros, gain, and delay. All of the work is done by the |\build@ZPK@plot| macro. \changes{v1.0.1}{2021/10/29}{Improved optional argument handling.}
+% This macro is designed to issues multiple |\addplot| macros for the same set of poles, zeros, gain, and delay. All of the work is done by the |\build@ZPK@plot| macro. \changes{v1.0.1}{2021/10/29}{Improved optional argument handling.}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newcommand{\addBodeZPKPlots}[3][true/{}]{%
- \foreach \approx/\opt in {#1} {%
- \gdef\plot@macro{}%
- \gdef\temp@macro{}%
- \ifnum\pdfstrcmp{#2}{phase}=0
- \build@ZPK@plot{\temp@macro}{\plot@macro}{\approx}{#3}%
+\newcommand{\addBodeZPKPlots}[3][true/{}]{
+ \foreach \approx/\opt in {#1} {
+ \gdef\plot@macro{}
+ \gdef\temp@macro{}
+ \ifnum\pdf@strcmp{#2}{phase}=0
+ \build@ZPK@plot{\temp@macro}{\plot@macro}{\approx}{#3}
\else
- \build@ZPK@plot{\plot@macro}{\temp@macro}{\approx}{#3}%
+ \build@ZPK@plot{\plot@macro}{\temp@macro}{\approx}{#3}
\fi
+ \edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
+ \edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
+ \edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
- \edef\temp@cmd{\noexpand\addplot[variable=t,thick,\opt]}%
+ \edef\temp@cmd{\noexpand\addplot [freq@filter, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, thick, \opt]}
\temp@cmd {\plot@macro};
\else
- \stepcounter{gnuplot@id}%
- \edef\temp@cmd{\noexpand\addplot[variable=t,thick,\opt]}
- \temp@cmd gnuplot[gnuplot@prefix] {\plot@macro};
+ \stepcounter{gnuplot@id}
+ \edef\temp@cmd{\noexpand\addplot [variable=t, thick, \opt]}
+ \temp@cmd gnuplot [raw gnuplot, gnuplot@prefix]
+ { set table $meta;
+ set dummy t;
+ set logscale x 10;
+ set xrange [\domain@start*\freq@scale:\domain@end*\freq@scale];
+ set samples \pgfkeysvalueof{/pgfplots/samples};
+ plot \plot@macro;
+ set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
+ plot "$meta" using ($1/(\freq@scale)):($2);
+ };
\fi
- }%
+ }
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\addBodeTFPlot}
-% This macro is designed to issues a single |\addplot| macros for the set of coefficients and delay. All of the work is done by the |\build@TF@plot| macro. \changes{v1.1.0}{2022/07/06}{Fixed phase wrapping in gnuplot mode}
+% This macro is designed to issues a single |\addplot| macros for the set of coefficients and delay. All of the work is done by the |\build@TF@plot| macro. \changes{v1.1.0}{2022/07/06}{Fixed phase wrapping in gnuplot mode}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newcommand{\addBodeTFPlot}[3][thick]{%
- \gdef\plot@macro{}%
- \gdef\temp@macro{}%
- \ifnum\pdfstrcmp{#2}{phase}=0
- \build@TF@plot{\temp@macro}{\plot@macro}{#3}%
+\newcommand{\addBodeTFPlot}[3][thick]{
+ \gdef\plot@macro{}
+ \gdef\temp@macro{}
+ \ifnum\pdf@strcmp{#2}{phase}=0
+ \build@TF@plot{\temp@macro}{\plot@macro}{#3}
\else
- \build@TF@plot{\plot@macro}{\temp@macro}{#3}%
+ \build@TF@plot{\plot@macro}{\temp@macro}{#3}
\fi
+ \edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
+ \edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
+ \edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
- \ifnum\pdfstrcmp{#2}{phase}=0
- \addplot[variable=t,#1]{\n@mod{\plot@macro}{2*pi}};
+ \ifnum\pdf@strcmp{#2}{phase}=0
+ \addplot [freq@filter, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1]{\n@mod{\plot@macro}{2*pi}};
\else
- \addplot[variable=t,#1]{\plot@macro};
+ \addplot [freq@filter, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1]{\plot@macro};
\fi
\else
- \stepcounter{gnuplot@id}%
- \ifnum\pdfstrcmp{#2}{phase}=0
- \addplot[variable=t,#1] gnuplot[gnuplot@prefix] {'+' using (t):\plot@macro smooth unwrap}
+ \stepcounter{gnuplot@id}
+ \ifnum\pdf@strcmp{#2}{phase}=0
+ \addplot [variable=t, #1] gnuplot [raw gnuplot, gnuplot@prefix]
+ { set table $meta;
+ set dummy t;
+ set logscale x 10;
+ set trange [\domain@start*\freq@scale:\domain@end*\freq@scale];
+ set samples \pgfkeysvalueof{/pgfplots/samples};
+ plot '+' using (t) : ((\plot@macro)/(\ph@scale)) smooth unwrap;
+ set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
+ plot "$meta" using ($1/(\freq@scale)):($2*\ph@scale);
+ };
\else
- \addplot[variable=t,#1] gnuplot[gnuplot@prefix] {\plot@macro};
+ \addplot [variable=t, #1] gnuplot [raw gnuplot, gnuplot@prefix]
+ { set table $meta;
+ set dummy t;
+ set logscale x 10;
+ set xrange [\domain@start*\freq@scale:\domain@end*\freq@scale];
+ set samples \pgfkeysvalueof{/pgfplots/samples};
+ plot \plot@macro;
+ set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
+ plot "$meta" using ($1/(\freq@scale)):($2);
+ };
\fi
\fi
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\addBodeComponentPlot}
-% This macro is designed to issue a single |\addplot| macro capable of plotting linear combinations of the basic components described in Section \ref{sec:BasicComponents}. The only work to do here is to handle the |pgf| package option.
+% This macro is designed to issue a single |\addplot| macro capable of plotting linear combinations of the basic components described in Section \ref{sec:BasicComponents}. The only work to do here is to handle the |pgf| package option.\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newcommand{\addBodeComponentPlot}[2][thick]{%
+\newcommand{\addBodeComponentPlot}[2][thick]{
+ \edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
+ \edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
+ \edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
- \addplot[variable=t,#1]{#2};
+ \addplot [freq@filter, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1] {#2};
\else
- \stepcounter{gnuplot@id}%
- \addplot[variable=t,#1] gnuplot[gnuplot@prefix] {#2};
+ \stepcounter{gnuplot@id}
+ \addplot [variable=t, #1] gnuplot [raw gnuplot, gnuplot@prefix]
+ { set table $meta;
+ set dummy t;
+ set logscale x 10;
+ set xrange [\domain@start*\freq@scale:\domain@end*\freq@scale];
+ set samples \pgfkeysvalueof{/pgfplots/samples};
+ plot #2;
+ set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
+ plot "$meta" using ($1/(\freq@scale)):($2);
+ };
\fi
}
% \end{macrocode}
%\end{macro}
% \begin{environment}{BodePhPlot}
-% An environment to host phase plot macros that pass parametric functions to |\addplot| macros. Uses the defaults specified in |bode@style| to create a shortcut that includes the |tikzpicture| and |semilogaxis| environments.\changes{v1.1.0}{2022/07/20}{Added separate environments for phase and magnitude plots}
+% An environment to host phase plot macros that pass parametric functions to |\addplot| macros. Uses the defaults specified in |bode@style| to create a shortcut that includes the |tikzpicture| and |semilogaxis| environments.\changes{v1.1.0}{2022/07/20}{Added separate environments for phase and magnitude plots}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newenvironment{BodePhPlot}[3][]{%
- \parse@env@opt{#1}%
+\newenvironment{BodePhPlot}[3][]{
+ \parse@env@opt{#1}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]
- \noexpand\begin{semilogxaxis}[%
- ph@filter,
+ \noexpand\begin{semilogxaxis}[
+ ph@y@label,
+ freq@label,
bode@style,
xmin={#2},
xmax={#3},
domain=#2:#3,
height=2.5cm,
- xlabel={Frequency (rad/s)},
\unexpanded\expandafter{\opt@axes}
- ]%
+ ]
}
\temp@cmd
}{
@@ -1325,22 +1483,21 @@ Nyquist plots with additional commands, using two different macros
% \end{macrocode}
% \end{environment}
% \begin{environment}{BodeMagPlot}
-% An environment to host magnitude plot macros that pass parametric functions to |\addplot| macros. Uses the defaults specified in |bode@style| to create a shortcut that includes the |tikzpicture| and |semilogaxis| environments.\changes{v1.1.0}{2022/07/20}{Added separate environments for phase and magnitude plots}
+% An environment to host magnitude plot macros that pass parametric functions to |\addplot| macros. Uses the defaults specified in |bode@style| to create a shortcut that includes the |tikzpicture| and |semilogaxis| environments.\changes{v1.1.0}{2022/07/20}{Added separate environments for phase and magnitude plots}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newenvironment{BodeMagPlot}[3][]{%
- \parse@env@opt{#1}%
+\newenvironment{BodeMagPlot}[3][]{
+ \parse@env@opt{#1}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]
- \noexpand\begin{semilogxaxis}[%
+ \noexpand\begin{semilogxaxis}[
bode@style,
+ freq@label,
xmin={#2},
xmax={#3},
domain=#2:#3,
height=2.5cm,
- xlabel={Frequency (rad/s)},
ylabel={Gain (dB)},
- ytick distance=40,
\unexpanded\expandafter{\opt@axes}
- ]%
+ ]
}
\temp@cmd
}{
@@ -1350,21 +1507,20 @@ Nyquist plots with additional commands, using two different macros
% \end{macrocode}
% \end{environment}
% \begin{environment}{BodePlot}
-% Same as |BodeMagPlot|. The |BodePlot| environment is deprecated as of v1.1.0, please use the |BodePhPlot| and |BodeMagPlot| environments instead.\changes{v1.0.3}{2021/11/03}{Added tikz option to environments}\changes{v1.1.0}{2022/02/20}{Deprecated BodePlot environment}
+% Same as |BodeMagPlot|. The |BodePlot| environment is deprecated as of v1.1.0, please use the |BodePhPlot| and |BodeMagPlot| environments instead.\changes{v1.0.3}{2021/11/03}{Added tikz option to environments}\changes{v1.1.0}{2022/02/20}{Deprecated BodePlot environment}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newenvironment{BodePlot}[3][]{%
- \PackageWarning{bodeplot}{Since v1.1.0, the BodePlot environment returns phase plots in radian units only. Please use the BodePhPlot environment if degree units are needed.}%
- \parse@env@opt{#1}%
+\newenvironment{BodePlot}[3][]{
+ \parse@env@opt{#1}
\edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]
- \noexpand\begin{semilogxaxis}[%
+ \noexpand\begin{semilogxaxis}[
bode@style,
+ freq@label,
xmin={#2},
xmax={#3},
domain=#2:#3,
height=2.5cm,
- xlabel={Frequency (rad/s)},
\unexpanded\expandafter{\opt@axes}
- ]%
+ ]
}
\temp@cmd
}{
@@ -1377,18 +1533,18 @@ Nyquist plots with additional commands, using two different macros
% \begin{macro}{\add@feature}
% This is an internal macro to add a basic component (pole, zero, gain, or delay), described using one of the macros in Section \ref{sec:BasicComponents} (input |#2|), to a parametric function stored in a global macro (input |#1|). The basic component value (input |#3|) is a complex number of the form |{re,im}|. If the imaginary part is missing, it is assumed to be zero. Implementation made possible by \href{https://tex.stackexchange.com/a/619637/110602}{this StackExchange answer}.
% \begin{macrocode}
-\newcommand*{\add@feature}[3]{%
- \ifcat$\detokenize\expandafter{#1}$%
- \xdef#1{\unexpanded\expandafter{#1 0+#2}}%
+\newcommand*{\add@feature}[3]{
+ \ifcat$\detokenize\expandafter{#1}$
+ \xdef#1{\unexpanded\expandafter{#1 0+#2}}
\else
- \xdef#1{\unexpanded\expandafter{#1+#2}}%
+ \xdef#1{\unexpanded\expandafter{#1+#2}}
\fi
- \foreach \y [count=\n] in #3 {%
- \xdef#1{\unexpanded\expandafter{#1}{\y}}%
- \xdef\Last@LoopValue{\n}%
- }%
- \ifnum\Last@LoopValue=1%
- \xdef#1{\unexpanded\expandafter{#1}{0}}%
+ \foreach \y [count=\n] in #3 {
+ \xdef#1{\unexpanded\expandafter{#1}{\y}}
+ \xdef\Last@LoopValue{\n}
+ }
+ \ifnum\Last@LoopValue=1
+ \xdef#1{\unexpanded\expandafter{#1}{0}}
\fi
}
% \end{macrocode}
@@ -1396,256 +1552,257 @@ Nyquist plots with additional commands, using two different macros
% \begin{macro}{\build@ZPK@plot}
% This is an internal macro to build parametric Bode magnitude and phase plots by concatenating basic component (pole, zero, gain, or delay) macros (Section \ref{sec:BasicComponents}) to global magnitude and phase macros (inputs |#1| and |#2|). The |\add@feature| macro is used to do the concatenation. The basic component macros are inferred from a |feature/{values}| list, where |feature| is one of |z|,|p|,|k|, and |d|, for zeros, poles, gain, and delay, respectively, and |{values}| is a comma separated list of comma separated lists (complex numbers of the form |{re,im}|). If the imaginary part is missing, it is assumed to be zero.
% \begin{macrocode}
-\newcommand{\build@ZPK@plot}[4]{%
- \foreach \feature/\values in {#4} {%
- \ifnum\pdfstrcmp{\feature}{z}=0
- \foreach \z in \values {%
- \ifnum\pdfstrcmp{#3}{linear}=0
- \add@feature{#2}{\PhZeroLin}{\z}%
- \add@feature{#1}{\MagZeroLin}{\z}%
+\newcommand{\build@ZPK@plot}[4]{
+ \foreach \feature/\values in {#4} {
+ \ifnum\pdf@strcmp{\feature}{z}=0
+ \foreach \z in \values {
+ \ifnum\pdf@strcmp{#3}{linear}=0
+ \add@feature{#2}{\PhZeroLin}{\z}
+ \add@feature{#1}{\MagZeroLin}{\z}
\else
- \ifnum\pdfstrcmp{#3}{asymptotic}=0
- \add@feature{#2}{\PhZeroAsymp}{\z}%
- \add@feature{#1}{\MagZeroAsymp}{\z}%
+ \ifnum\pdf@strcmp{#3}{asymptotic}=0
+ \add@feature{#2}{\PhZeroAsymp}{\z}
+ \add@feature{#1}{\MagZeroAsymp}{\z}
\else
- \add@feature{#2}{\PhZero}{\z}%
- \add@feature{#1}{\MagZero}{\z}%
+ \add@feature{#2}{\PhZero}{\z}
+ \add@feature{#1}{\MagZero}{\z}
\fi
\fi
- }%
+ }
\fi
- \ifnum\pdfstrcmp{\feature}{p}=0
- \foreach \p in \values {%
- \ifnum\pdfstrcmp{#3}{linear}=0
- \add@feature{#2}{\PhPoleLin}{\p}%
- \add@feature{#1}{\MagPoleLin}{\p}%
+ \ifnum\pdf@strcmp{\feature}{p}=0
+ \foreach \p in \values {
+ \ifnum\pdf@strcmp{#3}{linear}=0
+ \add@feature{#2}{\PhPoleLin}{\p}
+ \add@feature{#1}{\MagPoleLin}{\p}
\else
- \ifnum\pdfstrcmp{#3}{asymptotic}=0
- \add@feature{#2}{\PhPoleAsymp}{\p}%
- \add@feature{#1}{\MagPoleAsymp}{\p}%
+ \ifnum\pdf@strcmp{#3}{asymptotic}=0
+ \add@feature{#2}{\PhPoleAsymp}{\p}
+ \add@feature{#1}{\MagPoleAsymp}{\p}
\else
- \add@feature{#2}{\PhPole}{\p}%
- \add@feature{#1}{\MagPole}{\p}%
+ \add@feature{#2}{\PhPole}{\p}
+ \add@feature{#1}{\MagPole}{\p}
\fi
\fi
- }%
+ }
\fi
- \ifnum\pdfstrcmp{\feature}{k}=0
- \ifnum\pdfstrcmp{#3}{linear}=0
- \add@feature{#2}{\PhKLin}{\values}%
- \add@feature{#1}{\MagKLin}{\values}%
+ \ifnum\pdf@strcmp{\feature}{k}=0
+ \ifnum\pdf@strcmp{#3}{linear}=0
+ \add@feature{#2}{\PhKLin}{\values}
+ \add@feature{#1}{\MagKLin}{\values}
\else
- \ifnum\pdfstrcmp{#3}{asymptotic}=0
- \add@feature{#2}{\PhKAsymp}{\values}%
- \add@feature{#1}{\MagKAsymp}{\values}%
+ \ifnum\pdf@strcmp{#3}{asymptotic}=0
+ \add@feature{#2}{\PhKAsymp}{\values}
+ \add@feature{#1}{\MagKAsymp}{\values}
\else
- \add@feature{#2}{\PhK}{\values}%
- \add@feature{#1}{\MagK}{\values}%
+ \add@feature{#2}{\PhK}{\values}
+ \add@feature{#1}{\MagK}{\values}
\fi
\fi
\fi
- \ifnum\pdfstrcmp{\feature}{d}=0
- \ifnum\pdfstrcmp{#3}{linear}=0
- \PackageError {bodeplot} {Linear approximation for pure delays is not
+ \ifnum\pdf@strcmp{\feature}{d}=0
+ \ifnum\pdf@strcmp{#3}{linear}=0
+ \PackageError {bodeplot} {Linear approximation for pure delays is not
supported.} {Plot the true Bode plot using `true' instead of `linear'.}
\else
- \ifnum\pdfstrcmp{#3}{asymptotic}=0
- \PackageError {bodeplot} {Asymptotic approximation for pure delays is not
+ \ifnum\pdf@strcmp{#3}{asymptotic}=0
+ \PackageError {bodeplot} {Asymptotic approximation for pure delays is not
supported.} {Plot the true Bode plot using `true' instead of `asymptotic'.}
\else
\ifdim\values pt < 0pt
\PackageError {bodeplot} {Delay needs to be a positive number.}
\fi
- \add@feature{#2}{\PhDel}{\values}%
- \add@feature{#1}{\MagDel}{\values}%
+ \add@feature{#2}{\PhDel}{\values}
+ \add@feature{#1}{\MagDel}{\values}
\fi
\fi
\fi
- }%
+ }
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\build@TF@plot}
-% This is an internal macro to build parametric Bode magnitude and phase functions by computing the magnitude and the phase given numerator and denominator coefficients and delay (input |#3|). The functions are assigned to user-supplied global magnitude and phase macros (inputs |#1| and |#2|). \changes{v1.0.8}{2022/07/05}{Included phase due to delay in wrapping.}
+% This is an internal macro to build parametric Bode magnitude and phase functions by computing the magnitude and the phase given numerator and denominator coefficients and delay (input |#3|). The functions are assigned to user-supplied global magnitude and phase macros (inputs |#1| and |#2|). \changes{v1.0.8}{2022/07/05}{Included phase due to delay in wrapping.}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newcommand{\build@TF@plot}[3]{%
- \gdef\num@real{0}%
- \gdef\num@im{0}%
- \gdef\den@real{0}%
- \gdef\den@im{0}%
- \gdef\loop@delay{0}%
- \foreach \feature/\values in {#3} {%
- \ifnum\pdfstrcmp{\feature}{num}=0
- \foreach \numcoeff [count=\numpow] in \values {%
- \xdef\num@degree{\numpow}%
- }%
- \foreach \numcoeff [count=\numpow] in \values {%
- \pgfmathtruncatemacro{\currentdegree}{\num@degree-\numpow}%
+\newcommand{\build@TF@plot}[3]{
+ \gdef\num@real{0}
+ \gdef\num@im{0}
+ \gdef\den@real{0}
+ \gdef\den@im{0}
+ \gdef\loop@delay{0}
+ \foreach \feature/\values in {#3} {
+ \ifnum\pdf@strcmp{\feature}{num}=0
+ \foreach \numcoeff [count=\numpow] in \values {
+ \xdef\num@degree{\numpow}
+ }
+ \foreach \numcoeff [count=\numpow] in \values {
+ \pgfmathtruncatemacro{\currentdegree}{\num@degree-\numpow}
\ifnum\currentdegree = 0
- \xdef\num@real{\num@real+\numcoeff}%
+ \xdef\num@real{\num@real+\numcoeff}
\else
\ifodd\currentdegree
\xdef\num@im{\num@im+(\numcoeff*(\n@pow{-1}{(\currentdegree-1)/2})*%
- (\n@pow{t}{\currentdegree}))}%
+ (\n@pow{t}{\currentdegree}))}
\else
\xdef\num@real{\num@real+(\numcoeff*(\n@pow{-1}{(\currentdegree)/2})*%
- (\n@pow{t}{\currentdegree}))}%
+ (\n@pow{t}{\currentdegree}))}
\fi
\fi
- }%
+ }
\fi
- \ifnum\pdfstrcmp{\feature}{den}=0
- \foreach \dencoeff [count=\denpow] in \values {%
- \xdef\den@degree{\denpow}%
- }%
- \foreach \dencoeff [count=\denpow] in \values {%
- \pgfmathtruncatemacro{\currentdegree}{\den@degree-\denpow}%
+ \ifnum\pdf@strcmp{\feature}{den}=0
+ \foreach \dencoeff [count=\denpow] in \values {
+ \xdef\den@degree{\denpow}
+ }
+ \foreach \dencoeff [count=\denpow] in \values {
+ \pgfmathtruncatemacro{\currentdegree}{\den@degree-\denpow}
\ifnum\currentdegree = 0
- \xdef\den@real{\den@real+\dencoeff}%
+ \xdef\den@real{\den@real+\dencoeff}
\else
\ifodd\currentdegree
\xdef\den@im{\den@im+(\dencoeff*(\n@pow{-1}{(\currentdegree-1)/2})*%
- (\n@pow{t}{\currentdegree}))}%
+ (\n@pow{t}{\currentdegree}))}
\else
\xdef\den@real{\den@real+(\dencoeff*(\n@pow{-1}{(\currentdegree)/2})*%
- (\n@pow{t}{\currentdegree}))}%
+ (\n@pow{t}{\currentdegree}))}
\fi
\fi
- }%
+ }
\fi
- \ifnum\pdfstrcmp{\feature}{d}=0
- \xdef\loop@delay{\values}%
+ \ifnum\pdf@strcmp{\feature}{d}=0
+ \xdef\loop@delay{\values}
\fi
- }%
- \xdef#2{(atan2((\num@im),(\num@real))-atan2((\den@im),%
- (\den@real))-\loop@delay*t)}%
+ }
+ \xdef#2{((atan2((\num@im),(\num@real))-atan2((\den@im),%
+ (\den@real))-\loop@delay*t)*(\ph@scale))}
\xdef#1{(20*log10(sqrt((\n@pow{\num@real}{2})+(\n@pow{\num@im}{2})))-%
- 20*log10(sqrt((\n@pow{\den@real}{2})+(\n@pow{\den@im}{2}))))}%
+ 20*log10(sqrt((\n@pow{\den@real}{2})+(\n@pow{\den@im}{2}))))}
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\parse@opt}
% Parses options supplied to the main Bode macros. A |for| loop over tuples of the form |\obj/\typ/\opt| with a long list of nested if-else statements does the job. If the input |\obj| is |plot|, |axes|, |group|, |approx|, or |tikz| the corresponding |\opt| are passed, unexpanded, to the |\addplot| macro, the |\nextgroupplot| macro, the |groupplot| environment, the |\build@ZPK@plot| macro, and the |tikzpicture| environment, respectively. If |\obj| is |commands|, the corresponding |\opt| are stored, unexpanded, in the macros |\optph@commands| and |\optmag@commands|, to be executed in appropriate |axis| environments. \changes{v1.0.3}{2021/11/03}{Added Tikz option} \changes{v1.0.5}{2021/11/15}{Fixed a bug}
% \begin{macrocode}
-\newcommand{\parse@opt}[1]{%
- \gdef\optmag@axes{}%
- \gdef\optph@axes{}%
- \gdef\optph@plot{}%
- \gdef\optmag@plot{}%
- \gdef\opt@group{}%
- \gdef\opt@approx{}%
- \gdef\optph@commands{}%
- \gdef\optmag@commands{}%
- \gdef\opt@tikz{}%
- \foreach \obj/\typ/\opt in {#1} {%
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\obj}}{plot}=0
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\typ}}{mag}=0
- \xdef\optmag@plot{\unexpanded\expandafter{\opt}}%
+\newcommand{\parse@opt}[1]{
+ \gdef\optmag@axes{}
+ \gdef\optph@axes{}
+ \gdef\optph@plot{}
+ \gdef\optmag@plot{}
+ \gdef\opt@group{}
+ \gdef\opt@approx{}
+ \gdef\optph@commands{}
+ \gdef\optmag@commands{}
+ \gdef\opt@tikz{}
+ \foreach \obj/\typ/\opt in {#1} {
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{plot}=0
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\typ}}{mag}=0
+ \xdef\optmag@plot{\unexpanded\expandafter{\opt}}
\else
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\typ}}{ph}=0
- \xdef\optph@plot{\unexpanded\expandafter{\opt}}%
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\typ}}{ph}=0
+ \xdef\optph@plot{\unexpanded\expandafter{\opt}}
\else
- \xdef\optmag@plot{\unexpanded\expandafter{\opt}}%
- \xdef\optph@plot{\unexpanded\expandafter{\opt}}%
+ \xdef\optmag@plot{\unexpanded\expandafter{\opt}}
+ \xdef\optph@plot{\unexpanded\expandafter{\opt}}
\fi
\fi
\else
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\obj}}{axes}=0
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\typ}}{mag}=0
- \xdef\optmag@axes{\unexpanded\expandafter{\opt}}%
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{axes}=0
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\typ}}{mag}=0
+ \xdef\optmag@axes{\unexpanded\expandafter{\opt}}
\else
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\typ}}{ph}=0
- \xdef\optph@axes{\unexpanded\expandafter{\opt}}%
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\typ}}{ph}=0
+ \xdef\optph@axes{\unexpanded\expandafter{\opt}}
\else
- \xdef\optmag@axes{\unexpanded\expandafter{\opt}}%
- \xdef\optph@axes{\unexpanded\expandafter{\opt}}%
+ \xdef\optmag@axes{\unexpanded\expandafter{\opt}}
+ \xdef\optph@axes{\unexpanded\expandafter{\opt}}
\fi
\fi
\else
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\obj}}{group}=0
- \xdef\opt@group{\unexpanded\expandafter{\opt}}%
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{group}=0
+ \xdef\opt@group{\unexpanded\expandafter{\opt}}
\else
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\obj}}{approx}=0
- \xdef\opt@approx{\unexpanded\expandafter{\opt}}%
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{approx}=0
+ \xdef\opt@approx{\unexpanded\expandafter{\opt}}
\else
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\obj}}{commands}=0
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\typ}}{ph}=0
- \xdef\optph@commands{\unexpanded\expandafter{\opt}}%
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{commands}=0
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\typ}}{ph}=0
+ \xdef\optph@commands{\unexpanded\expandafter{\opt}}
\else
- \xdef\optmag@commands{\unexpanded\expandafter{\opt}}%
+ \xdef\optmag@commands{\unexpanded\expandafter{\opt}}
\fi
\else
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\obj}}{tikz}=0
- \xdef\opt@tikz{\unexpanded\expandafter{\opt}}%
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{tikz}=0
+ \xdef\opt@tikz{\unexpanded\expandafter{\opt}}
\else
\xdef\optmag@plot{\unexpanded\expandafter{\optmag@plot},
- \unexpanded\expandafter{\obj}}%
+ \unexpanded\expandafter{\obj}}
\xdef\optph@plot{\unexpanded\expandafter{\optph@plot},
- \unexpanded\expandafter{\obj}}%
+ \unexpanded\expandafter{\obj}}
\fi
\fi
\fi
\fi
\fi
\fi
- }%
+ }
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\parse@env@opt}
% Parses options supplied to the Bode, Nyquist, and Nichols environments. A |for| loop over tuples of the form |\obj/\opt|, processed using nested if-else statements does the job. The input |\obj| should either be |axes| or |tikz|, and the corresponding |\opt| are passed, unexpanded, to the |axis| environment and the |tikzpicture| environment, respectively. \changes{v1.0.3}{2021/11/03}{Added tikz option to environments}
% \begin{macrocode}
-\newcommand{\parse@env@opt}[1]{%
- \gdef\opt@axes{}%
- \gdef\opt@tikz{}%
- \foreach \obj/\opt in {#1} {%
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\obj}}{axes}=0
- \xdef\opt@axes{\unexpanded\expandafter{\opt}}%
+\newcommand{\parse@env@opt}[1]{
+ \gdef\opt@axes{}
+ \gdef\opt@tikz{}
+ \foreach \obj/\opt in {#1} {
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{axes}=0
+ \xdef\opt@axes{\unexpanded\expandafter{\opt}}
\else
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\obj}}{tikz}=0
- \xdef\opt@tikz{\unexpanded\expandafter{\opt}}%
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{tikz}=0
+ \xdef\opt@tikz{\unexpanded\expandafter{\opt}}
\else
\xdef\opt@axes{\unexpanded\expandafter{\opt@axes},
- \unexpanded\expandafter{\obj}}%
+ \unexpanded\expandafter{\obj}}
\fi
\fi
- }%
+ }
}
% \end{macrocode}
% \end{macro}
% \subsection{Nyquist plots}
% \subsubsection{User macros}
% \begin{macro}{\NyquistZPK}
-% Converts magnitude and phase parametric functions built using |\build@ZPK@plot| into real part and imaginary part parametric functions. A plot of these is the Nyquist plot. The parametric functions are then plotted in a |tikzpicture| environment using the |\addplot| macro. Unless the package is loaded with the option |pgf|, the parametric functions are evaluated using |gnuplot|. A large number of samples is typically needed to get a smooth plot because frequencies near 0 result in plot points that are very close to each other. Linear frequency sampling is unnecessarily fine near zero and very coarse for large $\omega$. Logarithmic sampling makes it worse, perhaps inverse logarithmic sampling will help, pull requests to fix that are welcome! \changes{v1.0.3}{2021/11/03}{Added commands and tikz options}
+% Converts magnitude and phase parametric functions built using |\build@ZPK@plot| into real part and imaginary part parametric functions. A plot of these is the Nyquist plot. The parametric functions are then plotted in a |tikzpicture| environment using the |\addplot| macro. Unless the package is loaded with the option |pgf|, the parametric functions are evaluated using |gnuplot|. A large number of samples is typically needed to get a smooth plot because frequencies near 0 result in plot points that are very close to each other. Linear frequency sampling is unnecessarily fine near zero and very coarse for large $\omega$. Logarithmic sampling makes it worse, perhaps inverse logarithmic sampling will help, pull requests to fix that are welcome! \changes{v1.0.3}{2021/11/03}{Added commands and tikz options}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newcommand{\NyquistZPK}[4][]{%
- \parse@N@opt{#1}%
- \gdef\func@mag{}%
- \gdef\func@ph{}%
- \build@ZPK@plot{\func@mag}{\func@ph}{}{#2}%
- \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]%
- \noexpand\begin{axis}[%
+\newcommand{\NyquistZPK}[4][]{
+ \parse@N@opt{#1}
+ \gdef\func@mag{}
+ \gdef\func@ph{}
+ \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]}
+ \temp@cmd
+ \build@ZPK@plot{\func@mag}{\func@ph}{}{#2}
+ \edef\temp@cmd{\noexpand\begin{axis}[
bode@style,
- domain=#3:#4,
+ domain=#3*\freq@scale:#4*\freq@scale,
height=5cm,
xlabel={$\Re$},
ylabel={$\Im$},
samples=500,
\unexpanded\expandafter{\opt@axes}
- ]%
- }%
- \temp@cmd
+ ]}
+ \temp@cmd
\addplot [only marks,mark=+,thick,red] (-1 , 0);
- \edef\temp@cmd{\noexpand\addplot[variable=t, thick, \unexpanded\expandafter{\opt@plot}]}%
+ \edef\temp@cmd{\noexpand\addplot [variable=t, thick, \unexpanded\expandafter{\opt@plot}]}
\if@pgfarg
- \temp@cmd ( {\n@pow{10}{((\func@mag)/20)}*cos(\func@ph)},
- {\n@pow{10}{((\func@mag)/20)}*sin(\func@ph)} );
+ \temp@cmd ( {\n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale))},
+ {\n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))} );
\opt@commands
\else
- \stepcounter{gnuplot@id}%
- \temp@cmd gnuplot[parametric,gnuplot@prefix] {%
- \n@pow{10}{((\func@mag)/20)}*cos(\func@ph),
- \n@pow{10}{((\func@mag)/20)}*sin(\func@ph)};
+ \stepcounter{gnuplot@id}
+ \temp@cmd gnuplot [parametric, gnuplot@prefix] {
+ \n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale)),
+ \n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))
+ };
\opt@commands
\fi
\end{axis}
@@ -1654,36 +1811,37 @@ Nyquist plots with additional commands, using two different macros
% \end{macrocode}
% \end{macro}
% \begin{macro}{\NyquistTF}
-% Implementation of this macro is very similar to the |\NyquistZPK| macro above. The only difference is a slightly different parsing of the mandatory arguments via |\build@TF@plot|. \changes{v1.0.3}{2021/11/03}{Added commands and tikz options}
+% Implementation of this macro is very similar to the |\NyquistZPK| macro above. The only difference is a slightly different parsing of the mandatory arguments via |\build@TF@plot|. \changes{v1.0.3}{2021/11/03}{Added commands and tikz options}\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newcommand{\NyquistTF}[4][]{%
- \parse@N@opt{#1}%
- \gdef\func@mag{}%
- \gdef\func@ph{}%
- \build@TF@plot{\func@mag}{\func@ph}{#2}%
- \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]%
- \noexpand\begin{axis}[%
+\newcommand{\NyquistTF}[4][]{
+ \parse@N@opt{#1}
+ \gdef\func@mag{}
+ \gdef\func@ph{}
+ \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]}
+ \temp@cmd
+ \build@TF@plot{\func@mag}{\func@ph}{#2}
+ \edef\temp@cmd{\noexpand\begin{axis}[
bode@style,
- domain=#3:#4,
+ domain=#3*\freq@scale:#4*\freq@scale,
height=5cm,
xlabel={$\Re$},
ylabel={$\Im$},
samples=500,
\unexpanded\expandafter{\opt@axes}
- ]%
- }%
- \temp@cmd
- \addplot [only marks,mark=+,thick,red] (-1 , 0);
- \edef\temp@cmd{\noexpand\addplot[variable=t, thick, \unexpanded\expandafter{\opt@plot}]}%
+ ]}
+ \temp@cmd
+ \addplot [only marks, mark=+, thick, red] (-1 , 0);
+ \edef\temp@cmd{\noexpand\addplot [variable=t, thick, \unexpanded\expandafter{\opt@plot}]}
\if@pgfarg
- \temp@cmd ( {\n@pow{10}{((\func@mag)/20)}*cos(\func@ph)},
- {\n@pow{10}{((\func@mag)/20)}*sin(\func@ph)} );
+ \temp@cmd ( {\n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale))},
+ {\n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))} );
\opt@commands
\else
- \stepcounter{gnuplot@id}%
- \temp@cmd gnuplot[parametric,gnuplot@prefix]{%
- \n@pow{10}{((\func@mag)/20)}*cos(\func@ph),
- \n@pow{10}{((\func@mag)/20)}*sin(\func@ph)};
+ \stepcounter{gnuplot@id}
+ \temp@cmd gnuplot [parametric, gnuplot@prefix] {
+ \n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale)),
+ \n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))
+ };
\opt@commands
\fi
\end{axis}
@@ -1692,39 +1850,47 @@ Nyquist plots with additional commands, using two different macros
% \end{macrocode}
% \end{macro}
% \begin{macro}{\addNyquistZPKPlot}
-% Adds Nyquist plot of a transfer function in ZPK form. This macro is designed to pass two parametric function to an |\addplot| macro. The parametric functions for phase (|\func@ph|) and magnitude (|\func@mag|) are built using the |\build@ZPK@plot| macro, converted to real and imaginary parts and passed to |\addplot| commands.
+% Adds Nyquist plot of a transfer function in ZPK form. This macro is designed to pass two parametric function to an |\addplot| macro. The parametric functions for phase (|\func@ph|) and magnitude (|\func@mag|) are built using the |\build@ZPK@plot| macro, converted to real and imaginary parts and passed to |\addplot| commands.\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newcommand{\addNyquistZPKPlot}[2][]{%
- \gdef\func@mag{}%
- \gdef\func@ph{}%
- \build@ZPK@plot{\func@mag}{\func@ph}{}{#2}%
+\newcommand{\addNyquistZPKPlot}[2][]{
+ \gdef\func@mag{}
+ \gdef\func@ph{}
+ \build@ZPK@plot{\func@mag}{\func@ph}{}{#2}
+ \edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
+ \edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
+ \edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
- \addplot[variable=t,#1] ( {\n@pow{10}{((\func@mag)/20)}*cos(\func@ph)},
- {\n@pow{10}{((\func@mag)/20)}*sin(\func@ph)} );
+ \addplot [domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1] ( {\n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale))},
+ {\n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))} );
\else
- \stepcounter{gnuplot@id}%
- \addplot[variable=t,#1] gnuplot[parametric,gnuplot@prefix]{%
- \n@pow{10}{((\func@mag)/20)}*cos(\func@ph),
- \n@pow{10}{((\func@mag)/20)}*sin(\func@ph)};
+ \stepcounter{gnuplot@id}
+ \addplot [domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1] gnuplot [parametric, gnuplot@prefix] {
+ \n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale)),
+ \n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))
+ };
\fi
}
% \end{macrocode}
%\end{macro}
% \begin{macro}{\addNyquistTFPlot}
-% Adds Nyquist plot of a transfer function in TF form. This macro is designed to pass two parametric function to an |\addplot| macro. The parametric functions for phase (|\func@ph|) and magnitude (|\func@mag|) are built using the |\build@TF@plot| macro, converted to real and imaginary parts and passed to |\addplot| commands.
+% Adds Nyquist plot of a transfer function in TF form. This macro is designed to pass two parametric function to an |\addplot| macro. The parametric functions for phase (|\func@ph|) and magnitude (|\func@mag|) are built using the |\build@TF@plot| macro, converted to real and imaginary parts and passed to |\addplot| commands.\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newcommand{\addNyquistTFPlot}[2][]{%
- \gdef\func@mag{}%
- \gdef\func@ph{}%
- \build@TF@plot{\func@mag}{\func@ph}{#2}%
+\newcommand{\addNyquistTFPlot}[2][]{
+ \gdef\func@mag{}
+ \gdef\func@ph{}
+ \build@TF@plot{\func@mag}{\func@ph}{#2}
+ \edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
+ \edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
+ \edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
- \addplot[variable=t,#1] ( {\n@pow{10}{((\func@mag)/20)}*cos(\func@ph)},
- {\n@pow{10}{((\func@mag)/20)}*sin(\func@ph)} );
+ \addplot [domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1] ( {\n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale))},
+ {\n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))} );
\else
- \stepcounter{gnuplot@id}%
- \addplot[variable=t,#1] gnuplot[parametric,gnuplot@prefix]{%
- \n@pow{10}{((\func@mag)/20)}*cos(\func@ph),
- \n@pow{10}{((\func@mag)/20)}*sin(\func@ph)};
+ \stepcounter{gnuplot@id}
+ \addplot [domain=\domain@start*\freq@scale:\domain@end*\freq@scale, variable=t, #1] gnuplot [parametric, gnuplot@prefix]{
+ \n@pow{10}{((\func@mag)/20)}*cos((\func@ph)/(\ph@scale)),
+ \n@pow{10}{((\func@mag)/20)}*sin((\func@ph)/(\ph@scale))
+ };
\fi
}
% \end{macrocode}
@@ -1732,21 +1898,21 @@ Nyquist plots with additional commands, using two different macros
%\begin{macro}{NyquistPlot}
% An environment to host |\addNyquist...| macros that pass parametric functions to |\addplot|. Uses the defaults specified in |bode@style| to create a shortcut that includes the |tikzpicture| and |axis| environments. \changes{v1.0.3}{2021/11/03}{Added tikz option to environments}
% \begin{macrocode}
-\newenvironment{NyquistPlot}[3][]{%
- \parse@env@opt{#1}%
- \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]%
- \noexpand\begin{axis}[%
+\newenvironment{NyquistPlot}[3][]{
+ \parse@env@opt{#1}
+ \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]
+ \noexpand\begin{axis}[
bode@style,
height=5cm,
domain=#2:#3,
xlabel={$\Re$},
ylabel={$\Im$},
\unexpanded\expandafter{\opt@axes}
- ]%
- }%
+ ]
+ }
\temp@cmd
\addplot [only marks,mark=+,thick,red] (-1 , 0);
-}{%
+}{
\end{axis}
\end{tikzpicture}
}
@@ -1756,31 +1922,31 @@ Nyquist plots with additional commands, using two different macros
% \begin{macro}{\parse@N@opt}
% Parses options supplied to the main Nyquist and Nichols macros. A |for| loop over tuples of the form |\obj/\opt|, processed using nested if-else statements does the job. If the input |\obj| is |plot|, |axes|, or |tikz| then the corresponding |\opt| are passed, unexpanded, to the |\addplot| macro, the |axis| environment, and the |tikzpicture| environment, respectively. \changes{v1.0.3}{2021/11/03}{Added commands and tikz options}
% \begin{macrocode}
-\newcommand{\parse@N@opt}[1]{%
- \gdef\opt@axes{}%
- \gdef\opt@plot{}%
- \gdef\opt@commands{}%
+\newcommand{\parse@N@opt}[1]{
+ \gdef\opt@axes{}
+ \gdef\opt@plot{}
+ \gdef\opt@commands{}
\gdef\opt@tikz{}
- \foreach \obj/\opt in {#1} {%
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\obj}}{axes}=0
- \xdef\opt@axes{\unexpanded\expandafter{\opt}}%
+ \foreach \obj/\opt in {#1} {
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{axes}=0
+ \xdef\opt@axes{\unexpanded\expandafter{\opt}}
\else
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\obj}}{plot}=0
- \xdef\opt@plot{\unexpanded\expandafter{\opt}}%
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{plot}=0
+ \xdef\opt@plot{\unexpanded\expandafter{\opt}}
\else
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\obj}}{commands}=0
- \xdef\opt@commands{\unexpanded\expandafter{\opt}}%
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{commands}=0
+ \xdef\opt@commands{\unexpanded\expandafter{\opt}}
\else
- \ifnum\pdfstrcmp{\unexpanded\expandafter{\obj}}{tikz}=0
- \xdef\opt@tikz{\unexpanded\expandafter{\opt}}%
+ \ifnum\pdf@strcmp{\unexpanded\expandafter{\obj}}{tikz}=0
+ \xdef\opt@tikz{\unexpanded\expandafter{\opt}}
\else
\xdef\opt@plot{\unexpanded\expandafter{\opt@plot},
- \unexpanded\expandafter{\obj}}%
+ \unexpanded\expandafter{\obj}}
\fi
\fi
\fi
\fi
- }%
+ }
}
% \end{macrocode}
% \end{macro}
@@ -1793,107 +1959,153 @@ Nyquist plots with additional commands, using two different macros
% \changes{v1.0.3}{2021/11/03}{Added tikz option to environments}
% \begin{macro}{\addNicholsZPKChart}
% \begin{macro}{\addNicholsTFChart}
-% These macros and the |NicholsChart| environment generate Nichols charts, and they are implemented similar to their Nyquist counterparts.
+% These macros and the |NicholsChart| environment generate Nichols charts, and they are implemented similar to their Nyquist counterparts.\changes{v1.1.1}{2022/07/31}{Enabled `Hz' and `rad' units for frequency and phase, respectively}
% \begin{macrocode}
-\newcommand{\NicholsZPK}[4][]{%
- \parse@N@opt{#1}%
- \gdef\func@mag{}%
- \gdef\func@ph{}%
- \build@ZPK@plot{\func@mag}{\func@ph}{}{#2}%
- \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]%
- \noexpand\begin{axis}[%
- ph@x@filter,
+\newcommand{\NicholsZPK}[4][]{
+ \parse@N@opt{#1}
+ \gdef\func@mag{}
+ \gdef\func@ph{}
+ \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]}
+ \temp@cmd
+ \build@ZPK@plot{\func@mag}{\func@ph}{}{#2}
+ \edef\temp@cmd{\noexpand\begin{axis}[
+ ph@x@label,
bode@style,
- domain=#3:#4,
+ domain=#3*\freq@scale:#4*\freq@scale,
height=5cm,
ylabel={Gain (dB)},
samples=500,
\unexpanded\expandafter{\opt@axes}
- ]%
- }%
- \temp@cmd
- \edef\temp@cmd{\noexpand\addplot[variable=t,thick,\opt@plot]}%
+ ]}
+ \temp@cmd
+ \edef\temp@cmd{\noexpand\addplot [variable=t,thick,\opt@plot]}
\if@pgfarg
\temp@cmd ( {\func@ph} , {\func@mag} );
\opt@commands
\else
- \stepcounter{gnuplot@id}%
- \temp@cmd gnuplot[parametric,gnuplot@prefix]
- { \func@ph , \func@mag };
+ \stepcounter{gnuplot@id}
+ \temp@cmd gnuplot [raw gnuplot, gnuplot@prefix]
+ { set table $meta;
+ set logscale x 10;
+ set dummy t;
+ set samples \pgfkeysvalueof{/pgfplots/samples};
+ set trange [#3*\freq@scale:#4*\freq@scale];
+ plot '+' using (\func@mag) : ((\func@ph)/(\ph@scale));
+ unset logscale x;
+ set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
+ plot "$meta" using ($2*\ph@scale):($1);
+ };
\opt@commands
\fi
\end{axis}
\end{tikzpicture}
}
-\newcommand{\NicholsTF}[4][]{%
- \parse@N@opt{#1}%
- \gdef\func@mag{}%
- \gdef\func@ph{}%
- \build@TF@plot{\func@mag}{\func@ph}{#2}%
- \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]%
- \noexpand\begin{axis}[%
- ph@x@filter,
+\newcommand{\NicholsTF}[4][]{
+ \parse@N@opt{#1}
+ \gdef\func@mag{}
+ \gdef\func@ph{}
+ \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]}
+ \temp@cmd
+ \build@TF@plot{\func@mag}{\func@ph}{#2}
+ \edef\temp@cmd{\noexpand\begin{axis}[
+ ph@x@label,
bode@style,
- domain=#3:#4,
+ domain=#3*\freq@scale:#4*\freq@scale,
height=5cm,
ylabel={Gain (dB)},
samples=500,
\unexpanded\expandafter{\opt@axes}
- ]%
- }%
- \temp@cmd
- \edef\temp@cmd{\noexpand\addplot[variable=t,thick,\opt@plot]}%
+ ]}
+ \temp@cmd
+ \edef\temp@cmd{\noexpand\addplot [variable=t,thick, \opt@plot]}
\if@pgfarg
- \temp@cmd ( {\n@mod{\func@ph}{2*pi}} , {\func@mag} );
+ \temp@cmd ( {\n@mod{\func@ph}{2*pi*\ph@scale}} , {\func@mag} );
\opt@commands
\else
- \stepcounter{gnuplot@id}%
- \temp@cmd gnuplot[parametric,gnuplot@prefix]
- { \n@mod{\func@ph}{2*pi} , \func@mag };
+ \stepcounter{gnuplot@id}
+ \temp@cmd gnuplot [raw gnuplot, gnuplot@prefix]
+ { set table $meta1;
+ set logscale x 10;
+ set dummy t;
+ set samples \pgfkeysvalueof{/pgfplots/samples};
+ set trange [#3*\freq@scale:#4*\freq@scale];
+ plot '+' using (\func@mag) : ((\func@ph)/(\ph@scale));
+ unset logscale x;
+ set table $meta2;
+ plot "$meta1" using ($1):($2) smooth unwrap;
+ set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
+ plot "$meta2" using ($2*\ph@scale):($1);
+ };
\opt@commands
\fi
\end{axis}
\end{tikzpicture}
}
-\newenvironment{NicholsChart}[3][]{%
- \parse@env@opt{#1}%
- \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]%
- \noexpand\begin{axis}[%
- ph@x@filter,
+\newenvironment{NicholsChart}[3][]{
+ \parse@env@opt{#1}
+ \edef\temp@cmd{\noexpand\begin{tikzpicture} [\unexpanded\expandafter{\opt@tikz}]
+ \noexpand\begin{axis}[
+ ph@x@label,
bode@style,
domain=#2:#3,
height=5cm,
ylabel={Gain (dB)},
\unexpanded\expandafter{\opt@axes}
- ]%
- }%
+ ]
+ }
\temp@cmd
}{
\end{axis}
\end{tikzpicture}
}
-\newcommand{\addNicholsZPKChart}[2][]{%
- \gdef\func@mag{}%
- \gdef\func@ph{}%
- \build@ZPK@plot{\func@mag}{\func@ph}{}{#2}%
+\newcommand{\addNicholsZPKChart}[2][]{
+ \gdef\func@mag{}
+ \gdef\func@ph{}
+ \build@ZPK@plot{\func@mag}{\func@ph}{}{#2}
+ \edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
+ \edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
+ \edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
- \addplot[variable=t,#1] ( {\func@ph} , {\func@mag} );
+ \addplot [variable=t, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, #1] ( {\func@ph} , {\func@mag} );
\else
- \stepcounter{gnuplot@id}%
- \addplot[variable=t,#1] gnuplot[parametric,gnuplot@prefix]
- {\func@ph , \func@mag};
+ \stepcounter{gnuplot@id}
+ \addplot [#1] gnuplot [raw gnuplot, gnuplot@prefix]
+ { set table $meta;
+ set logscale x 10;
+ set dummy t;
+ set samples \pgfkeysvalueof{/pgfplots/samples};
+ set trange [\domain@start*\freq@scale:\domain@end*\freq@scale];
+ plot '+' using (\func@mag) : ((\func@ph)/(\ph@scale));
+ unset logscale x;
+ set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
+ plot "$meta" using ($2*\ph@scale):($1);
+ };
\fi
}
-\newcommand{\addNicholsTFChart}[2][]{%
- \gdef\func@mag{}%
- \gdef\func@ph{}%
- \build@TF@plot{\func@mag}{\func@ph}{#2}%
+\newcommand{\addNicholsTFChart}[2][]{
+ \gdef\func@mag{}
+ \gdef\func@ph{}
+ \build@TF@plot{\func@mag}{\func@ph}{#2}
+ \edef\supplied@domain{\pgfkeysvalueof{/pgfplots/domain}}
+ \edef\domain@start{\expandafter\get@interval@start\supplied@domain\@nil}
+ \edef\domain@end{\expandafter\get@interval@end\supplied@domain\@nil}
\if@pgfarg
- \addplot[variable=t,#1] ( {\n@mod{\func@ph}{2*pi}} , {\func@mag} );
+ \addplot [variable=t, domain=\domain@start*\freq@scale:\domain@end*\freq@scale, #1] ( {\n@mod{\func@ph}{2*pi*\ph@scale}} , {\func@mag} );
\else
- \stepcounter{gnuplot@id}%
- \addplot[variable=t,#1] gnuplot[gnuplot@prefix]
- {\n@mod{\func@ph}{2*pi} , \func@mag};
+ \stepcounter{gnuplot@id}
+ \addplot [#1] gnuplot [raw gnuplot, gnuplot@prefix]
+ { set table $meta1;
+ set logscale x 10;
+ set dummy t;
+ set samples \pgfkeysvalueof{/pgfplots/samples};
+ set trange [\domain@start*\freq@scale:\domain@end*\freq@scale];
+ plot '+' using (\func@mag) : ((\func@ph)/(\ph@scale));
+ unset logscale x;
+ set table $meta2;
+ plot "$meta1" using ($1):($2) smooth unwrap;
+ set table "\bodeplot@prefix\arabic{gnuplot@id}.table";
+ plot "$meta2" using ($2*\ph@scale):($1);
+ };
\fi
}
% \end{macrocode}
diff --git a/graphics/pgf/contrib/bodeplot/bodeplot.pdf b/graphics/pgf/contrib/bodeplot/bodeplot.pdf
index 1660b2dc51..e47b655740 100644
--- a/graphics/pgf/contrib/bodeplot/bodeplot.pdf
+++ b/graphics/pgf/contrib/bodeplot/bodeplot.pdf
Binary files differ
diff --git a/graphics/pgf/contrib/customdice/README.md b/graphics/pgf/contrib/customdice/README.md
new file mode 100644
index 0000000000..a898f330ce
--- /dev/null
+++ b/graphics/pgf/contrib/customdice/README.md
@@ -0,0 +1,11 @@
+# customdice: LaTeX package for drawing customisable dice
+
+`customdice` is a package for LaTeX, LuaLaTeX and XeTeX that provides functionality for drawing dice. The aim is to provide highly-customisable but simple-to-use commands, allowing:
+
+- adding custom text to dice faces;
+- control over colouring;
+- control over sizing.
+
+By [Peter Rowlett](https://github.com/prowlett/).
+
+The package is licenced under [Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)](https://creativecommons.org/licenses/by-sa/4.0/).
diff --git a/graphics/pgf/contrib/customdice/customdice.dtx b/graphics/pgf/contrib/customdice/customdice.dtx
new file mode 100644
index 0000000000..ac44ae9fd9
--- /dev/null
+++ b/graphics/pgf/contrib/customdice/customdice.dtx
@@ -0,0 +1,806 @@
+%\iffalse meta-comment
+%Copyright (c) 2022 Peter Rowlett
+%
+%The package is licenced under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/
+%\fi
+%\title{customdice v1.0}
+%\author{Peter Rowlett}
+%\maketitle
+%
+%\centerline{\Huge\layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+% \layoutdice{\dice[black,white]{1}}{\dice[black,white]{2}}{\dice[black,white]{3}}{\dice[black,white]{4}}{\dice[black,white]{5}}{\dice[black,white]{6}}
+% \layoutdice{\dice[violet,white]{1}}{\dice[violet,white]{2}}{\dice[violet,white]{3}}{\dice[violet,white]{4}}{\dice[violet,white]{5}}{\dice[violet,white]{6}}
+% \layoutdice{\bigdotdice[white,red]}{\bigdotdice[white,orange]}{\bigdotdice[white,yellow]}{\bigdotdice[white,green]}{\bigdotdice[white,blue]}{\bigdotdice[white,violet]}
+% \layoutdice{\textdice[yellow,black]{1}}{\textdice[yellow,black]{\rotatebox{180}{2}}}{\textdice[yellow,black]{\rotatebox{90}{3}}}{\textdice[yellow,black]{4}}{\textdice[yellow,black]{5}}{\rotatebox{180}{\textdicebot[yellow,black]{6}}}
+% \layoutdice{\textdice[white,blue]{\(\aleph\)}}{\rotatebox{90}{\textdicebot[white,blue]{8}}}{\textdice[white,blue]{\(\xi\)}}{\textdicebot[white,blue]{\(\infty\)}}{\rotatebox{-90}{\textdice[white,blue]{\(\mathbb{R}\)}}}{\textdicebot[white,blue]{\(\forall\)}}}\bigskip
+%
+%\verb|customdice| is a package for \LaTeX\, Lua\LaTeX\ and Xe\TeX\ that provides functionality for drawing dice. The aim is to provide highly-customisable but simple-to-use commands, allowing: \begin{itemize}
+% \item adding custom text to dice faces;
+% \item control over colouring;
+% \item control over sizing.
+%\end{itemize}
+%
+%The package is licenced under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy of this license, visit \url{http://creativecommons.org/licenses/by-sa/4.0/}
+%
+%\tableofcontents
+%
+%
+%\section{Motivation}
+%
+%I've long struggled to find a dice package I fully like. I have been using epsdice, but it only offers white or black standard dice and I found I wanted to draw dice with other text on the faces so I wrote this package which draws the dice in TikZ and offers lots of customisation around what is displayed on the dice face, colour and size.
+%
+%\section{Basic usage}
+%
+%\subsection{Standard dice}
+%
+%Standard dice faces are created using \verb|\dice{num}| where \(\textrm{num}\in\{1,2,3,4,5,6\}\).
+%
+%For example
+%
+%\begin{verbatim}
+%\dice{1} \dice{2} \dice{3} \dice{4} \dice{5} \dice{6}\end{verbatim}
+%
+%produces output like this:
+%
+%\centerline{\Huge \dice{1} \dice{2} \dice{3} \dice{4} \dice{5} \dice{6}}
+%
+%\subsection{Big dot dice}
+%
+%The command \verb|\bigdotdice| produces a dice face with one big dot in the centre.
+%
+%For example
+%
+%\begin{verbatim}
+%\bigdotdice\end{verbatim}
+%
+%produces output like this:
+%
+%\centerline{\Huge \bigdotdice}
+%
+%\subsection{Text on dice}
+%
+%The command \verb|\textdice{text}| produces a dice face with \verb|text| on it.
+%
+%For example
+%
+%\begin{verbatim}
+%\textdice{7}
+%\textdice{P}
+%\textdice{\(\aleph\)}\end{verbatim}
+%
+%produces output like this:
+%
+%\centerline{\Huge \textdice{7} \textdice{P} \textdice{\(\aleph\)}}\bigskip
+%
+%Sometimes when drawing text on dice, there may be ambiguity about which way up a character goes. For this reason a second command \verb|\textdicebot{text}| is provided which draws a small line under \verb|text| (`bot' is to indicate `bottom line').
+%
+%For example
+%
+%\begin{verbatim}
+%\textdicebot{\(\cup\)}
+%\textdicebot{\(\cap\)}
+%\textdicebot{\sffamily W}\end{verbatim}
+%
+%produces output like this:
+%
+%\centerline{\Huge \textdicebot{\(\cup\)} \textdicebot{\(\cap\)} \textdicebot{\sffamily W}}
+%
+%\subsection{Layout dice}
+%
+%A command \verb|\layoutdice{face1}{face2}{face3}{face4}{face5}{face6}| takes six inputs and places them on an expanded net of a dice cube. Important: this command takes six inputs in numerical order and displays those inputs where they would sit on a standard die with \setdicebaseline{0.35}\Largedice{1}\setdicebaseline{0.02} oriented at the top of the diagram.
+%
+%For example
+%
+%\begin{verbatim}
+%\layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+%\layoutdice{\dice{6}}{\dice{5}}{\dice{3}}{\dice{4}}{\dice{2}}{\dice{1}}
+%\layoutdice{\textdice{A}}{\textdice{B}}{\textdice{C}}{\textdice{D}}{\textdice{E}}{\textdice{F}}\end{verbatim}
+%
+%produces output like this:
+%
+%\centerline{\Huge \layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+% \layoutdice{\dice{6}}{\dice{5}}{\dice{3}}{\dice{4}}{\dice{2}}{\dice{1}}
+% \layoutdice{\textdice{A}}{\textdice{B}}{\textdice{C}}{\textdice{D}}{\textdice{E}}{\textdice{F}}}
+%
+%\subsection{Colour}
+%
+%By default, dice are black on white. This can be changed by passing a pair of colour names \verb|[background,foreground]| to any of the commands above.
+%
+%For example
+%
+%\begin{verbatim}
+%\dice[black,white]{3}
+%\dice[violet,white]{5}
+%\dice[yellow,black]{6}
+%\bigdotdice[white,blue]
+%\textdice[gray,green]{\(\aleph\)}
+%\textdicebot[magenta,blue]{\sffamily W}\end{verbatim}
+%
+%produces output like this:
+%
+%\centerline{\Huge \dice[black,white]{3} \dice[violet,white]{5} \dice[yellow,black]{6} \bigdotdice[white,blue] \textdice[gray,green]{\(\aleph\)} \textdicebot[magenta,blue]{\sffamily W}}\bigskip
+%
+%Any defined colour name can be used, including ones you defined yourself. For example,
+%
+%\begin{verbatim}
+%\usepackage{xcolor}
+%\definecolor{airforceblue}{rgb}{0.36, 0.54, 0.66} % latexcolor.com
+%\definecolor{papayawhip}{rgb}{1.0, 0.94, 0.84} % latexcolor.com
+%\dice[airforceblue,papayawhip]{5}\end{verbatim}
+%
+%produces output like this:
+%
+%\centerline{\Huge \definecolor{airforceblue}{rgb}{0.36, 0.54, 0.66}
+% \definecolor{papayawhip}{rgb}{1.0, 0.94, 0.84}
+% \dice[airforceblue,papayawhip]{5}}
+%
+%\newpage
+%
+%\subsection{Size}
+%
+%The dice size responds to the current font size, as demonstrated below. (Actually, most of the example output in this document is done within \verb|\Huge| for visibility.)\bigskip
+%
+%\begin{tabular}{rl}
+% \verb|\tiny| & {\tiny\layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+% \layoutdice{\dice[black,white]{1}}{\dice[black,white]{2}}{\dice[black,white]{3}}{\dice[black,white]{4}}{\dice[black,white]{5}}{\dice[black,white]{6}}
+% \layoutdice{\dice[violet,white]{1}}{\dice[violet,white]{2}}{\dice[violet,white]{3}}{\dice[violet,white]{4}}{\dice[violet,white]{5}}{\dice[violet,white]{6}}
+% \layoutdice{\bigdotdice[white,red]}{\bigdotdice[white,orange]}{\bigdotdice[white,yellow]}{\bigdotdice[white,green]}{\bigdotdice[white,blue]}{\bigdotdice[white,violet]}
+% \layoutdice{\textdice[yellow,black]{1}}{\textdice[yellow,black]{\rotatebox{180}{2}}}{\textdice[yellow,black]{\rotatebox{90}{3}}}{\textdice[yellow,black]{4}}{\textdice[yellow,black]{5}}{\rotatebox{180}{\textdicebot[yellow,black]{6}}}
+% \layoutdice{\textdice[white,blue]{\(\aleph\)}}{\rotatebox{90}{\textdicebot[white,blue]{8}}}{\textdice[white,blue]{\(\xi\)}}{\textdicebot[white,blue]{\(\infty\)}}{\rotatebox{-90}{\textdice[white,blue]{\(\mathbb{R}\)}}}{\textdicebot[white,blue]{\(\forall\)}}}\\
+% \verb|\scriptsize| & {\scriptsize\layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+% \layoutdice{\dice[black,white]{1}}{\dice[black,white]{2}}{\dice[black,white]{3}}{\dice[black,white]{4}}{\dice[black,white]{5}}{\dice[black,white]{6}}
+% \layoutdice{\dice[violet,white]{1}}{\dice[violet,white]{2}}{\dice[violet,white]{3}}{\dice[violet,white]{4}}{\dice[violet,white]{5}}{\dice[violet,white]{6}}
+% \layoutdice{\bigdotdice[white,red]}{\bigdotdice[white,orange]}{\bigdotdice[white,yellow]}{\bigdotdice[white,green]}{\bigdotdice[white,blue]}{\bigdotdice[white,violet]}
+% \layoutdice{\textdice[yellow,black]{1}}{\textdice[yellow,black]{\rotatebox{180}{2}}}{\textdice[yellow,black]{\rotatebox{90}{3}}}{\textdice[yellow,black]{4}}{\textdice[yellow,black]{5}}{\rotatebox{180}{\textdicebot[yellow,black]{6}}}
+% \layoutdice{\textdice[white,blue]{\(\aleph\)}}{\rotatebox{90}{\textdicebot[white,blue]{8}}}{\textdice[white,blue]{\(\xi\)}}{\textdicebot[white,blue]{\(\infty\)}}{\rotatebox{-90}{\textdice[white,blue]{\(\mathbb{R}\)}}}{\textdicebot[white,blue]{\(\forall\)}}}\\
+% \verb|\footnotesize| & {\footnotesize\layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+% \layoutdice{\dice[black,white]{1}}{\dice[black,white]{2}}{\dice[black,white]{3}}{\dice[black,white]{4}}{\dice[black,white]{5}}{\dice[black,white]{6}}
+% \layoutdice{\dice[violet,white]{1}}{\dice[violet,white]{2}}{\dice[violet,white]{3}}{\dice[violet,white]{4}}{\dice[violet,white]{5}}{\dice[violet,white]{6}}
+% \layoutdice{\bigdotdice[white,red]}{\bigdotdice[white,orange]}{\bigdotdice[white,yellow]}{\bigdotdice[white,green]}{\bigdotdice[white,blue]}{\bigdotdice[white,violet]}
+% \layoutdice{\textdice[yellow,black]{1}}{\textdice[yellow,black]{\rotatebox{180}{2}}}{\textdice[yellow,black]{\rotatebox{90}{3}}}{\textdice[yellow,black]{4}}{\textdice[yellow,black]{5}}{\rotatebox{180}{\textdicebot[yellow,black]{6}}}
+% \layoutdice{\textdice[white,blue]{\(\aleph\)}}{\rotatebox{90}{\textdicebot[white,blue]{8}}}{\textdice[white,blue]{\(\xi\)}}{\textdicebot[white,blue]{\(\infty\)}}{\rotatebox{-90}{\textdice[white,blue]{\(\mathbb{R}\)}}}{\textdicebot[white,blue]{\(\forall\)}}}\\
+% \verb|\small| & {\small\layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+% \layoutdice{\dice[black,white]{1}}{\dice[black,white]{2}}{\dice[black,white]{3}}{\dice[black,white]{4}}{\dice[black,white]{5}}{\dice[black,white]{6}}
+% \layoutdice{\dice[violet,white]{1}}{\dice[violet,white]{2}}{\dice[violet,white]{3}}{\dice[violet,white]{4}}{\dice[violet,white]{5}}{\dice[violet,white]{6}}
+% \layoutdice{\bigdotdice[white,red]}{\bigdotdice[white,orange]}{\bigdotdice[white,yellow]}{\bigdotdice[white,green]}{\bigdotdice[white,blue]}{\bigdotdice[white,violet]}
+% \layoutdice{\textdice[yellow,black]{1}}{\textdice[yellow,black]{\rotatebox{180}{2}}}{\textdice[yellow,black]{\rotatebox{90}{3}}}{\textdice[yellow,black]{4}}{\textdice[yellow,black]{5}}{\rotatebox{180}{\textdicebot[yellow,black]{6}}}
+% \layoutdice{\textdice[white,blue]{\(\aleph\)}}{\rotatebox{90}{\textdicebot[white,blue]{8}}}{\textdice[white,blue]{\(\xi\)}}{\textdicebot[white,blue]{\(\infty\)}}{\rotatebox{-90}{\textdice[white,blue]{\(\mathbb{R}\)}}}{\textdicebot[white,blue]{\(\forall\)}}}\\
+% \verb|\normalsize| & {\normalsize\layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+% \layoutdice{\dice[black,white]{1}}{\dice[black,white]{2}}{\dice[black,white]{3}}{\dice[black,white]{4}}{\dice[black,white]{5}}{\dice[black,white]{6}}
+% \layoutdice{\dice[violet,white]{1}}{\dice[violet,white]{2}}{\dice[violet,white]{3}}{\dice[violet,white]{4}}{\dice[violet,white]{5}}{\dice[violet,white]{6}}
+% \layoutdice{\bigdotdice[white,red]}{\bigdotdice[white,orange]}{\bigdotdice[white,yellow]}{\bigdotdice[white,green]}{\bigdotdice[white,blue]}{\bigdotdice[white,violet]}
+% \layoutdice{\textdice[yellow,black]{1}}{\textdice[yellow,black]{\rotatebox{180}{2}}}{\textdice[yellow,black]{\rotatebox{90}{3}}}{\textdice[yellow,black]{4}}{\textdice[yellow,black]{5}}{\rotatebox{180}{\textdicebot[yellow,black]{6}}}
+% \layoutdice{\textdice[white,blue]{\(\aleph\)}}{\rotatebox{90}{\textdicebot[white,blue]{8}}}{\textdice[white,blue]{\(\xi\)}}{\textdicebot[white,blue]{\(\infty\)}}{\rotatebox{-90}{\textdice[white,blue]{\(\mathbb{R}\)}}}{\textdicebot[white,blue]{\(\forall\)}}}\\
+% \verb|\large| & {\large\layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+% \layoutdice{\dice[black,white]{1}}{\dice[black,white]{2}}{\dice[black,white]{3}}{\dice[black,white]{4}}{\dice[black,white]{5}}{\dice[black,white]{6}}
+% \layoutdice{\dice[violet,white]{1}}{\dice[violet,white]{2}}{\dice[violet,white]{3}}{\dice[violet,white]{4}}{\dice[violet,white]{5}}{\dice[violet,white]{6}}
+% \layoutdice{\bigdotdice[white,red]}{\bigdotdice[white,orange]}{\bigdotdice[white,yellow]}{\bigdotdice[white,green]}{\bigdotdice[white,blue]}{\bigdotdice[white,violet]}
+% \layoutdice{\textdice[yellow,black]{1}}{\textdice[yellow,black]{\rotatebox{180}{2}}}{\textdice[yellow,black]{\rotatebox{90}{3}}}{\textdice[yellow,black]{4}}{\textdice[yellow,black]{5}}{\rotatebox{180}{\textdicebot[yellow,black]{6}}}
+% \layoutdice{\textdice[white,blue]{\(\aleph\)}}{\rotatebox{90}{\textdicebot[white,blue]{8}}}{\textdice[white,blue]{\(\xi\)}}{\textdicebot[white,blue]{\(\infty\)}}{\rotatebox{-90}{\textdice[white,blue]{\(\mathbb{R}\)}}}{\textdicebot[white,blue]{\(\forall\)}}}\\
+% \verb|\Large| & {\Large\layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+% \layoutdice{\dice[black,white]{1}}{\dice[black,white]{2}}{\dice[black,white]{3}}{\dice[black,white]{4}}{\dice[black,white]{5}}{\dice[black,white]{6}}
+% \layoutdice{\dice[violet,white]{1}}{\dice[violet,white]{2}}{\dice[violet,white]{3}}{\dice[violet,white]{4}}{\dice[violet,white]{5}}{\dice[violet,white]{6}}
+% \layoutdice{\bigdotdice[white,red]}{\bigdotdice[white,orange]}{\bigdotdice[white,yellow]}{\bigdotdice[white,green]}{\bigdotdice[white,blue]}{\bigdotdice[white,violet]}
+% \layoutdice{\textdice[yellow,black]{1}}{\textdice[yellow,black]{\rotatebox{180}{2}}}{\textdice[yellow,black]{\rotatebox{90}{3}}}{\textdice[yellow,black]{4}}{\textdice[yellow,black]{5}}{\rotatebox{180}{\textdicebot[yellow,black]{6}}}
+% \layoutdice{\textdice[white,blue]{\(\aleph\)}}{\rotatebox{90}{\textdicebot[white,blue]{8}}}{\textdice[white,blue]{\(\xi\)}}{\textdicebot[white,blue]{\(\infty\)}}{\rotatebox{-90}{\textdice[white,blue]{\(\mathbb{R}\)}}}{\textdicebot[white,blue]{\(\forall\)}}}\\
+% \verb|\LARGE| & {\LARGE\layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+% \layoutdice{\dice[black,white]{1}}{\dice[black,white]{2}}{\dice[black,white]{3}}{\dice[black,white]{4}}{\dice[black,white]{5}}{\dice[black,white]{6}}
+% \layoutdice{\dice[violet,white]{1}}{\dice[violet,white]{2}}{\dice[violet,white]{3}}{\dice[violet,white]{4}}{\dice[violet,white]{5}}{\dice[violet,white]{6}}
+% \layoutdice{\bigdotdice[white,red]}{\bigdotdice[white,orange]}{\bigdotdice[white,yellow]}{\bigdotdice[white,green]}{\bigdotdice[white,blue]}{\bigdotdice[white,violet]}
+% \layoutdice{\textdice[yellow,black]{1}}{\textdice[yellow,black]{\rotatebox{180}{2}}}{\textdice[yellow,black]{\rotatebox{90}{3}}}{\textdice[yellow,black]{4}}{\textdice[yellow,black]{5}}{\rotatebox{180}{\textdicebot[yellow,black]{6}}}
+% \layoutdice{\textdice[white,blue]{\(\aleph\)}}{\rotatebox{90}{\textdicebot[white,blue]{8}}}{\textdice[white,blue]{\(\xi\)}}{\textdicebot[white,blue]{\(\infty\)}}{\rotatebox{-90}{\textdice[white,blue]{\(\mathbb{R}\)}}}{\textdicebot[white,blue]{\(\forall\)}}}\\
+% \verb|\huge| & {\huge\layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+% \layoutdice{\dice[black,white]{1}}{\dice[black,white]{2}}{\dice[black,white]{3}}{\dice[black,white]{4}}{\dice[black,white]{5}}{\dice[black,white]{6}}
+% \layoutdice{\dice[violet,white]{1}}{\dice[violet,white]{2}}{\dice[violet,white]{3}}{\dice[violet,white]{4}}{\dice[violet,white]{5}}{\dice[violet,white]{6}}
+% \layoutdice{\bigdotdice[white,red]}{\bigdotdice[white,orange]}{\bigdotdice[white,yellow]}{\bigdotdice[white,green]}{\bigdotdice[white,blue]}{\bigdotdice[white,violet]}
+% \layoutdice{\textdice[yellow,black]{1}}{\textdice[yellow,black]{\rotatebox{180}{2}}}{\textdice[yellow,black]{\rotatebox{90}{3}}}{\textdice[yellow,black]{4}}{\textdice[yellow,black]{5}}{\rotatebox{180}{\textdicebot[yellow,black]{6}}}
+% \layoutdice{\textdice[white,blue]{\(\aleph\)}}{\rotatebox{90}{\textdicebot[white,blue]{8}}}{\textdice[white,blue]{\(\xi\)}}{\textdicebot[white,blue]{\(\infty\)}}{\rotatebox{-90}{\textdice[white,blue]{\(\mathbb{R}\)}}}{\textdicebot[white,blue]{\(\forall\)}}}\\
+% \verb|\Huge| & {\Huge\layoutdice{\dice{1}}{\dice{2}}{\dice{3}}{\dice{4}}{\dice{5}}{\dice{6}}
+% \layoutdice{\dice[black,white]{1}}{\dice[black,white]{2}}{\dice[black,white]{3}}{\dice[black,white]{4}}{\dice[black,white]{5}}{\dice[black,white]{6}}
+% \layoutdice{\dice[violet,white]{1}}{\dice[violet,white]{2}}{\dice[violet,white]{3}}{\dice[violet,white]{4}}{\dice[violet,white]{5}}{\dice[violet,white]{6}}
+% \layoutdice{\bigdotdice[white,red]}{\bigdotdice[white,orange]}{\bigdotdice[white,yellow]}{\bigdotdice[white,green]}{\bigdotdice[white,blue]}{\bigdotdice[white,violet]}
+% \layoutdice{\textdice[yellow,black]{1}}{\textdice[yellow,black]{\rotatebox{180}{2}}}{\textdice[yellow,black]{\rotatebox{90}{3}}}{\textdice[yellow,black]{4}}{\textdice[yellow,black]{5}}{\rotatebox{180}{\textdicebot[yellow,black]{6}}}
+% \layoutdice{\textdice[white,blue]{\(\aleph\)}}{\rotatebox{90}{\textdicebot[white,blue]{8}}}{\textdice[white,blue]{\(\xi\)}}{\textdicebot[white,blue]{\(\infty\)}}{\rotatebox{-90}{\textdice[white,blue]{\(\mathbb{R}\)}}}{\textdicebot[white,blue]{\(\forall\)}}}\\
+%\end{tabular}\bigskip
+%
+% More detail on customising sizes is given in the advanced usage section \ref{sec:advancedsize}.
+%
+%\newpage
+%
+%For convenience, a series of commands are defined for each dice type based on the standard LaTeX size names. While e.g. \verb|\dice{num}| uses the current font size, e.g. \verb|\Largedice{num}| is always \verb|\Large|.
+%
+%\begin{center}
+% \begin{tabular}{rl}
+% \textbf{Command} & \textbf{Example output}\\
+% \verb|\tinydice| & \tinydice{5}\\
+% \verb|\scriptsizedice| & \scriptsizedice{5}\\
+% \verb|\footnotesizedice| & \footnotesizedice{5}\\
+% \verb|\smalldice| & \smalldice{5}\\
+% \verb|\normalsizedice| & \normalsizedice{5}\\
+% \verb|\largedice| & \largedice{5}\\
+% \verb|\Largedice| & \Largedice{5}\\
+% \verb|\LARGEdice| & \LARGEdice{5}\\
+% \verb|\hugedice| & \hugedice{5}\\
+% \verb|\Hugedice| & \Hugedice{5}\\
+% \verb|\tinybigdotdice| & \tinybigdotdice\\
+% \verb|\scriptsizebigdotdice| & \scriptsizebigdotdice\\
+% \verb|\footnotesizebigdotdice| & \footnotesizebigdotdice\\
+% \verb|\smallbigdotdice| & \smallbigdotdice\\
+% \verb|\normalsizebigdotdice| & \normalsizebigdotdice\\
+% \verb|\largebigdotdice| & \largebigdotdice\\
+% \verb|\Largebigdotdice| & \Largebigdotdice\\
+% \verb|\LARGEbigdotdice| & \LARGEbigdotdice\\
+% \verb|\hugebigdotdice| & \hugebigdotdice\\
+% \verb|\Hugebigdotdice| & \Hugebigdotdice\\
+% \verb|\tinytextdice| & \tinytextdice{Q}\\
+% \verb|\scriptsizetextdice| & \scriptsizetextdice{Q}\\
+% \verb|\footnotesizetextdice| & \footnotesizetextdice{Q}\\
+% \verb|\smalltextdice| & \smalltextdice{Q}\\
+% \verb|\normalsizetextdice| & \normalsizetextdice{Q}\\
+% \verb|\largetextdice| & \largetextdice{Q}\\
+% \verb|\Largetextdice| & \Largetextdice{Q}\\
+% \verb|\LARGEtextdice| & \LARGEtextdice{Q}\\
+% \verb|\hugetextdice| & \hugetextdice{Q}\\
+% \verb|\Hugetextdice| & \Hugetextdice{Q}\\
+% \verb|\tinytextdicebot| & \tinytextdicebot{\sffamily d}\\
+% \verb|\scriptsizetextdicebot| & \scriptsizetextdicebot{\sffamily d}\\
+% \verb|\footnotesizetextdicebot| & \footnotesizetextdicebot{\sffamily d}\\
+% \verb|\smalltextdicebot| & \smalltextdicebot{\sffamily d}\\
+% \verb|\normalsizetextdicebot| & \normalsizetextdicebot{\sffamily d}\\
+% \verb|\largetextdicebot| & \largetextdicebot{\sffamily d}\\
+% \verb|\Largetextdicebot| & \Largetextdicebot{\sffamily d}\\
+% \verb|\LARGEtextdicebot| & \LARGEtextdicebot{\sffamily d}\\
+% \verb|\hugetextdicebot| & \hugetextdicebot{\sffamily d}\\
+% \verb|\Hugetextdicebot| & \Hugetextdicebot{\sffamily d}\\
+% \end{tabular}
+%\end{center}
+%
+%\section{Advanced usage notes}
+%
+%\subsection{Dependencies}
+%
+%customdice uses TikZ and etoolbox.
+%
+%\subsection{Rotated text}
+%
+%You can rotate what is displayed on the face using \verb|\rotatebox{}| from the \verb|rotating| package.
+%
+%For example
+%
+%\begin{verbatim}
+%\usepackage{rotating}
+%\textdice[yellow,black]{\rotatebox{180}{2}}
+%\textdice[white,blue]{\rotatebox{90}{\(\mathbb{R}\)}}\end{verbatim}
+%
+%produces output like this:
+%
+%\centerline{\Huge \textdice[yellow,black]{\rotatebox{180}{2}} \textdice[white,blue]{\rotatebox{90}{\(\mathbb{R}\)}}}
+%
+%Sometimes you might need to rotate the whole box, for example when using \verb|\dicetextbot|.
+%
+%For example compare
+%
+%\begin{verbatim}
+%\usepackage{rotating}
+%\textdicebot{\rotatebox{180}{\sffamily d}}
+%
+%\rotatebox{180}{\textdicebot{\sffamily d}}\end{verbatim}
+%
+%which produces output like this:
+%
+%\centerline{\Huge \textdicebot{\rotatebox{180}{\sffamily d}}}
+%
+%\centerline{\Huge \rotatebox{180}{\textdicebot{\sffamily d}}}
+%
+%The first has rotated the `d' but not the underline, so it appears to be a `P'.
+%
+%\subsection{Size}\label{sec:advancedsize}
+%
+%\subsubsection{Size and inline display}
+%
+%The size of the die face is 1.65ex square, which is about the height of capital letters in whatever font size is currently being used. This should mean inline use works well, as demonstrated below.
+%
+%\begin{tabular}{rll}
+% \verb|\tiny| & {\tiny O\dice{1}E} & {\sffamily\tiny O\dice{1}E}\\
+% \verb|\scriptsize| & {\scriptsize T\dice{2}O} & {\sffamily\scriptsize T\dice{2}O}\\
+% \verb|\footnotesize| & {\footnotesize THR\dice{3}E} & {\sffamily\footnotesize THR\dice{3}E}\\
+% \verb|\small| & {\small F\dice{4}UR} & {\sffamily\small F\dice{4}UR}\\
+% \verb|\normalsize| & {\normalsize F\dice{5}VE} & {\sffamily\normalsize F\dice{5}VE}\\
+% \verb|\large| & {\large S\dice{6}X} & {\sffamily\large S\dice{6}X}\\
+% \verb|\Large| & {\Large O\dice{1}E} & {\sffamily\Large O\dice{1}E}\\
+% \verb|\LARGE| & {\LARGE T\dice{2}O} & {\sffamily\LARGE T\dice{2}O}\\
+% \verb|\huge| & {\huge THR\dice{3}E} & {\sffamily\huge THR\dice{3}E}\\
+% \verb|\Huge| & {\Huge F\dice{4}UR} & {\sffamily\Huge F\dice{4}UR}\\
+%\end{tabular}\bigskip
+%
+%You may find that you prefer your dice larger than the surrounding text, like this \Largetextdice{A} is done using \verb|\Largetextdice{A}|. The dice are designed to sit on the baseline of the current text size via a parameter called \verb|\customdicebaseline| which is by default \verb|0.02| and is passed to TikZ in \verb|\begin{tikzpicture}[baseline=\customdicebaseline ex]|. If you enlarge the size of the dice to be bigger than the surrounding text you may find they appear to sit above the line. If you prefer them to be centred vertically with the surrounding text you will need to adjust this parameter (by trial and error). Do this using \verb|\setdicebaseline{num}|. For example, setting \verb|\setdicebaseline{0.35}| should make \verb|\Largetextdice{A}| appear centred vertically on the line of text again, like this \setdicebaseline{0.35}\Largetextdice{A} now does.
+%
+%\setdicebaseline{0.02}
+%
+%\subsubsection{Changing the basic size}
+%
+%The size of the die face is 1.65ex square. All other sizes within the die face are defined in relation to this basic unit, and you can change it and them using \verb|\setdicefacesize{num}| where \verb|num| is a number that is interpreted as a number of ex.
+%
+%For example,
+%
+%\begin{verbatim}
+%\Huge
+%\dice{5}
+%\setdicefacesize{3}
+%\dice{5}
+%\setdicefacesize{10}
+%\dice{5}
+%\setdicefacesize{20}
+%\dice{5}\end{verbatim}
+%
+%produces output like this:
+%
+%\centerline{\Huge \dice{5} %
+% \setdicefacesize{3}%
+% \dice{5} %
+% \setdicefacesize{10}%
+% \dice{5} %
+% \setdicefacesize{20}%
+% \dice{5}}
+%
+%\setdicefacesize{1.65}
+%
+%\newpage
+%
+%\subsubsection{Changing all the sizes}
+%
+%This is a list of all the sizes used by the package, set by the two commands \verb|\setdicebaseline| and \verb|\setdicefacesize|.
+%
+%\noindent\begin{tabularx}{\linewidth}{lXlll}
+% \textbf{Parameter} & \textbf{Description} & \textbf{Units} & \textbf{Set by} & \textbf{Default}\\\hline
+% \verb|\customdicebaseline| & Controls where the dice sits in relation to surrounding text. & ex & \verb|\setdicebaseline| & 0.02\\\hline
+% \verb|\customdicefacesize| & Side length of the dice face square. & ex & \verb|\setdicefacesize| & 1.65\\\hline
+% \verb|\customdicehalfway| & Half way across the dice face, distance from the edge to the centre dot on the standard dice face. Also the centre of the text in \verb|\dicetext| and \verb|\dicetextbot|. & ex & \verb|\setdicefacesize| & 0.825\\\hline
+% \verb|\customdicelower| & Distance from the edge to the `lower' dots (at the bottom or the left of the standard dice face). & ex & \verb|\setdicefacesize| & 0.4\\\hline
+% \verb|\customdiceupper| & Distance from the edge to the `upper' dots (at the top or the right of the standard dice face). & ex & \verb|\setdicefacesize| & 1.25\\\hline
+% \verb|\customdicedotsize| & Size of the standard dice dots. & ex & \verb|\setdicefacesize| & 0.12\\\hline
+% \verb|\customdicebigdotsize| & Size of the bigdot dice dots. & ex & \verb|\setdicefacesize| & 0.45\\\hline
+% \verb|\customdicecornerrounding| & Controls the rounding on the corners. & ex & \verb|\setdicefacesize| & 0.2\\\hline
+% \verb|\customdiceborderthickness| & Thickness of the dice face border. & ex & \verb|\setdicefacesize| & 0.1\\\hline
+% \verb|\customdicetextscale| & Scaling of the text on the dice faces in \verb|\dicetext| and \verb|\dicetextbot|. & none & \verb|\setdicefacesize| & 0.6\\
+%\end{tabularx}
+%
+%Note that \verb|\textdicebot| draws an underline of thickness \verb|\customdiceborderthickness| from
+%\verb|(\customdicelower,\customdicecornerrounding)| to \verb|(\customdiceupper,\customdicecornerrounding)|.
+%
+%These parameters are all commands, so if you have a good reason to adjust one of them you can do so using \verb|\renewcommand|, for example \verb|\renewcommand{\customdicehalfway}{1.1}| changes {\Large\textdice{a}} to \renewcommand{\customdicehalfway}{1.1}{\Large\textdice{a}}\renewcommand{\customdicehalfway}{0.825}. Note that calling \verb|\setdicebaseline|/\verb|\setdicefacesize| will reset the relevant commands.
+%
+%
+%\subsubsection{Text doesn't fit?}
+%
+%There is nothing to stop text running off the side of the die. For example \verb|\textdice{Hello}| just puts `Hello' centred at \verb|(\customdicehalfway,\customdicehalfway)|, like this:
+%
+%\centerline{\Huge\textdice{Hello}}
+%
+%In some circumstances, it may be possible to squeeze some overflowing text onto the die face by adjusting \verb|\customdicetextscale|. For example, \verb|\renewcommand{\customdicetextscale}{0.4}| converts \setdicebaseline{0.35} \Largetextdice{101} to \renewcommand{\customdicetextscale}{0.4}\Largetextdice{101}.
+%\setdicebaseline{0.02}
+%
+%It is possible to overdo this and make the text illegible, of course, like the `Hello World' here: {\renewcommand{\customdicetextscale}{0.1}\textdice{Hello World}}.
+%
+%\renewcommand{\customdicetextscale}{0.6}
+%
+%Note that calling \verb|\setdicefacesize| will reset \verb|\customdicetextscale| relative to the new \verb|\customdicefacesize|.
+%
+%\subsection{Arbitrary drawing on dice faces}
+%
+%The commands \verb|\dice|, \verb|\bigdotdice|, \verb|\textdice| and \verb|\textdicedot| all start an environment called \verb|customdiceenv| and do some drawing on it. \verb|customdiceenv| is really a \verb|tikzpicture| with baseline set to \verb|\customdicebaseline ex| and the dice face outline drawn from \verb|(0ex,0ex)| to \\
+%\verb|(\customdicefacesize ex,\customdicefacesize ex)|. You can call \verb|customdiceenv| directly and within this environment, any other TikZ commands should work.
+%
+%For example
+%
+%\begin{verbatim}
+%\usetikzlibrary{shapes.geometric}
+%\begin{customdiceenv}
+%\node[isosceles triangle,draw,inner sep=0.2ex] at (0.65ex,0.825ex) {};
+%\end{customdiceenv}\end{verbatim}
+%
+%produces output like this:
+%
+%\centerline{\Huge \begin{customdiceenv}
+% \node[isosceles triangle,draw,inner sep=0.2ex] at (0.65ex,0.825ex) {};
+%\end{customdiceenv}}\bigskip
+%
+%\verb|customdiceenv| has one optional parameter which is a pair of colours, defaulting to \verb|white,black|. Note that what you draw isn't automatically coloured, though within \verb|customdiceenv| you can access the foreground colour as \verb|\customdicefg| and the background colour as \verb|\customdicebg|.
+%
+%You can also access other package parameters, such as the different sizes. To help stay within the confines of the dice face, it might be helpful to make use of \verb|\customdiceupper|, \verb|\customdicelower| and \verb|\customdicehalfway|.
+%
+%For example
+%
+%\begin{verbatim}
+%\begin{customdiceenv}[pink,violet]
+%\draw[very thick,->,\customdicefg] (\customdiceupper ex,\customdicelower ex) --
+%(\customdicelower ex,\customdiceupper ex);
+%\end{customdiceenv}\end{verbatim}
+%
+%produces output like this:
+%
+%\centerline{\Huge \begin{customdiceenv}[pink,violet]
+% \draw[very thick,->,\customdicefg] (\customdiceupper ex,\customdicelower ex) -- (\customdicelower ex,\customdiceupper ex);
+%\end{customdiceenv}}
+%
+%\section{Is it `die' or `dice'?}
+%
+%Gosh, I don't know! Technically singular is `die' and plural is `dice', but common usage has typically drifted far from this and language evolves. I'm not sure I've used these terms correctly or consistently in this document. All commands use `dice'.
+%\iffalse
+%<*documentation>
+\documentclass[a4paper]{article}
+\usepackage{a4wide}
+\usepackage{customdice}
+\usepackage{rotating}
+\usepackage{amsfonts}
+\usepackage{ltablex}
+\usepackage{doc}
+\usepackage{hyperref}
+\usetikzlibrary{shapes.geometric}
+\begin{document}
+\DocInput{customdice.dtx}
+\end{document}
+%</documentation>
+%\fi
+%\iffalse
+%<*customdice>
+\ProvidesPackage{customdice}[2022/07/31 customdice 1.0]
+
+\RequirePackage{tikz}
+\RequirePackage{etoolbox}
+
+\makeatletter
+\@ifundefined{customdicecoldefault}{}
+{\PackageWarning{customdice}{command `customdicecoldefault' already defined}}
+\@ifundefined{customdicebg}{}
+{\PackageWarning{customdice}{command `customdicebg' already defined}}
+\@ifundefined{customdicefg}{}
+{\PackageWarning{customdice}{command `customdicefg' already defined}}
+\@ifundefined{customdicebaseline}{}
+{\PackageWarning{customdice}{command `customdicebaseline' already defined}}
+\@ifundefined{setdicebaseline}{}
+{\PackageWarning{customdice}{command `setdicebaseline' already defined}}
+\@ifundefined{customdicefacesize}{}
+{\PackageWarning{customdice}{command `customdicefacesize' already defined}}
+\@ifundefined{customdicehalfway}{}
+{\PackageWarning{customdice}{command `customdicehalfway' already defined}}
+\@ifundefined{customdicelower}{}
+{\PackageWarning{customdice}{command `customdicelower' already defined}}
+\@ifundefined{customdiceupper}{}
+{\PackageWarning{customdice}{command `customdiceupper' already defined}}
+\@ifundefined{customdicedotsize}{}
+{\PackageWarning{customdice}{command `customdicedotsize' already defined}}
+\@ifundefined{customdicebigdotsize}{}
+{\PackageWarning{customdice}{command `customdicebigdotsize' already defined}}
+\@ifundefined{customdicecornerrounding}{}
+{\PackageWarning{customdice}{command `customdicecornerrounding' already defined}}
+\@ifundefined{customdiceborderthickness}{}
+{\PackageWarning{customdice}{command `customdiceborderthickness' already defined}}
+\@ifundefined{customdicetextscale}{}
+{\PackageWarning{customdice}{command `customdicetextscale' already defined}}
+\@ifundefined{setdicefacesize}{}
+{\PackageWarning{customdice}{command `setdicefacesize' already defined}}
+\@ifundefined{dice}{}
+{\PackageWarning{customdice}{command `dice' already defined}}
+\@ifundefined{bigdotdice}{}
+{\PackageWarning{customdice}{command `bigdotdice' already defined}}
+\@ifundefined{textdice}{}
+{\PackageWarning{customdice}{command `textdice' already defined}}
+\@ifundefined{textdicebot}{}
+{\PackageWarning{customdice}{command `textdicebot' already defined}}
+\@ifundefined{layoutdice}{}
+{\PackageWarning{customdice}{command `layoutdice' already defined}}
+\@ifundefined{tinydice}{}
+{\PackageWarning{customdice}{command `tinydice' already defined}}
+\@ifundefined{scriptsizedice}{}
+{\PackageWarning{customdice}{command `scriptsizedice' already defined}}
+\@ifundefined{footnotesizedice}{}
+{\PackageWarning{customdice}{command `footnotesizedice' already defined}}
+\@ifundefined{smalldice}{}
+{\PackageWarning{customdice}{command `smalldice' already defined}}
+\@ifundefined{normalsizedice}{}
+{\PackageWarning{customdice}{command `normalsizedice' already defined}}
+\@ifundefined{largedice}{}
+{\PackageWarning{customdice}{command `largedice' already defined}}
+\@ifundefined{Largedice}{}
+{\PackageWarning{customdice}{command `Largedice' already defined}}
+\@ifundefined{LARGEdice}{}
+{\PackageWarning{customdice}{command `LARGEdice' already defined}}
+\@ifundefined{hugedice}{}
+{\PackageWarning{customdice}{command `hugedice' already defined}}
+\@ifundefined{Hugedice}{}
+{\PackageWarning{customdice}{command `Hugedice' already defined}}
+\@ifundefined{tinybigdotdice}{}
+{\PackageWarning{customdice}{command `tinybigdotdice' already defined}}
+\@ifundefined{scriptsizebigdotdice}{}
+{\PackageWarning{customdice}{command `scriptsizebigdotdice' already defined}}
+\@ifundefined{footnotesizebigdotdice}{}
+{\PackageWarning{customdice}{command `footnotesizebigdotdice' already defined}}
+\@ifundefined{smallbigdotdice}{}
+{\PackageWarning{customdice}{command `smallbigdotdice' already defined}}
+\@ifundefined{normalsizebigdotdice}{}
+{\PackageWarning{customdice}{command `normalsizebigdotdice' already defined}}
+\@ifundefined{largebigdotdice}{}
+{\PackageWarning{customdice}{command `largebigdotdice' already defined}}
+\@ifundefined{Largebigdotdice}{}
+{\PackageWarning{customdice}{command `Largebigdotdice' already defined}}
+\@ifundefined{LARGEbigdotdice}{}
+{\PackageWarning{customdice}{command `LARGEbigdotdice' already defined}}
+\@ifundefined{hugebigdotdice}{}
+{\PackageWarning{customdice}{command `hugebigdotdice' already defined}}
+\@ifundefined{Hugebigdotdice}{}
+{\PackageWarning{customdice}{command `Hugebigdotdice' already defined}}
+\@ifundefined{tinytextdice}{}
+{\PackageWarning{customdice}{command `tinytextdice' already defined}}
+\@ifundefined{scriptsizetextdice}{}
+{\PackageWarning{customdice}{command `scriptsizetextdice' already defined}}
+\@ifundefined{footnotesizetextdice}{}
+{\PackageWarning{customdice}{command `footnotesizetextdice' already defined}}
+\@ifundefined{smalltextdice}{}
+{\PackageWarning{customdice}{command `smalltextdice' already defined}}
+\@ifundefined{normalsizetextdice}{}
+{\PackageWarning{customdice}{command `normalsizetextdice' already defined}}
+\@ifundefined{largetextdice}{}
+{\PackageWarning{customdice}{command `largetextdice' already defined}}
+\@ifundefined{Largetextdice}{}
+{\PackageWarning{customdice}{command `Largetextdice' already defined}}
+\@ifundefined{LARGEtextdice}{}
+{\PackageWarning{customdice}{command `LARGEtextdice' already defined}}
+\@ifundefined{hugetextdice}{}
+{\PackageWarning{customdice}{command `hugetextdice' already defined}}
+\@ifundefined{Hugetextdice}{}
+{\PackageWarning{customdice}{command `Hugetextdice' already defined}}
+\@ifundefined{tinytextdicebot}{}
+{\PackageWarning{customdice}{command `tinytextdicebot' already defined}}
+\@ifundefined{scriptsizetextdicebot}{}
+{\PackageWarning{customdice}{command `scriptsizetextdicebot' already defined}}
+\@ifundefined{footnotesizetextdicebot}{}
+{\PackageWarning{customdice}{command `footnotesizetextdicebot' already defined}}
+\@ifundefined{smalltextdicebot}{}
+{\PackageWarning{customdice}{command `smalltextdicebot' already defined}}
+\@ifundefined{normalsizetextdicebot}{}
+{\PackageWarning{customdice}{command `normalsizetextdicebot' already defined}}
+\@ifundefined{largetextdicebot}{}
+{\PackageWarning{customdice}{command `largetextdicebot' already defined}}
+\@ifundefined{Largetextdicebot}{}
+{\PackageWarning{customdice}{command `Largetextdicebot' already defined}}
+\@ifundefined{LARGEtextdicebot}{}
+{\PackageWarning{customdice}{command `LARGEtextdicebot' already defined}}
+\@ifundefined{hugetextdicebot}{}
+{\PackageWarning{customdice}{command `hugetextdicebot' already defined}}
+\@ifundefined{Hugetextdicebot}{}
+{\PackageWarning{customdice}{command `Hugetextdicebot' already defined}}
+\makeatother
+
+% sizes
+\newcommand{\customdicecoldefault}{f40fc2340eb940fc8a170db0f81d7139} % using a UUID so we are extremely unlikely to clash with any user-specified colour name
+\global\let\customdicebg\customdicecoldefault
+\global\let\customdicefg\customdicecoldefault
+\newcommand{\customdicebaseline}{0.02}
+\newcommand{\setdicebaseline}[1]{%
+ \renewcommand{\customdicebaseline}{#1}%
+}
+\newcommand{\customdicefacesize}{1.65}
+\newcommand{\customdicehalfway}{0.825}
+\newcommand{\customdicelower}{0.4}
+\newcommand{\customdiceupper}{1.25}
+\newcommand{\customdicedotsize}{0.12}
+\newcommand{\customdicebigdotsize}{0.45}
+\newcommand{\customdicecornerrounding}{0.2}
+\newcommand{\customdiceborderthickness}{0.1}
+\newcommand{\customdicetextscale}{0.6}
+\newcommand{\setdicefacesize}[1]{%
+ \renewcommand{\customdicefacesize}{#1}%
+ \pgfmathsetmacro{\customdicehalfway}{#1/2}%
+ \pgfmathsetmacro{\customdicelower}{#1*0.425/1.65}%
+ \pgfmathsetmacro{\customdiceupper}{#1*1.25/1.65}%
+ \pgfmathsetmacro{\customdicedotsize}{#1*0.12/1.65}%
+ \pgfmathsetmacro{\customdicebigdotsize}{#1*0.45/1.65}%
+ \pgfmathsetmacro{\customdicecornerrounding}{#1*0.2/1.65}%
+ \pgfmathsetmacro{\customdiceborderthickness}{#1*0.1/1.65}%
+ \pgfmathsetmacro{\customdicetextscale}{#1*0.6/1.65}%
+}
+
+% main dice environment
+\newenvironment{customdiceenv}[1][white,black]{%
+ \foreach \colour in {#1}{%
+ \ifdefequal{\customdicebg}{\customdicecoldefault}{\global\let\customdicebg\colour}{\global\let\customdicefg\colour}%
+ }%
+ \begin{tikzpicture}[baseline=\customdicebaseline ex]
+ \draw[rounded corners=\customdicecornerrounding ex,darkgray,fill=\customdicebg,line width=\customdiceborderthickness ex] (0ex,0ex) rectangle (\customdicefacesize ex,\customdicefacesize ex);
+}{\end{tikzpicture}%
+ \global\let\customdicebg\customdicecoldefault%
+ \global\let\customdicefg\customdicecoldefault%
+}
+
+% \dice draws standard dice
+\newcommand{\dice}[2][white,black]{%
+ \begin{customdiceenv}[#1]
+ \ifnumequal{#2}{1}{
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdicehalfway ex,\customdicehalfway ex) {};
+ }{\ifnumequal{#2}{2}{
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdicelower ex,\customdiceupper ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdiceupper ex,\customdicelower ex) {};
+ }{\ifnumequal{#2}{3}{
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdicelower ex,\customdicelower ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdicehalfway ex,\customdicehalfway ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdiceupper ex,\customdiceupper ex) {};
+ }{\ifnumequal{#2}{4}{
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdicelower ex,\customdicelower ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdicelower ex,\customdiceupper ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdiceupper ex,\customdicelower ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdiceupper ex,\customdiceupper ex) {};
+ }{\ifnumequal{#2}{5}{
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdicelower ex,\customdicelower ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdicelower ex,\customdiceupper ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdicehalfway ex,\customdicehalfway ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdiceupper ex,\customdicelower ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdiceupper ex,\customdiceupper ex) {};
+ }{\ifnumequal{#2}{6}{
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdicelower ex,\customdicelower ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdicelower ex,\customdicehalfway ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdicelower ex,\customdiceupper ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdiceupper ex,\customdicelower ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdiceupper ex,\customdicehalfway ex) {};
+ \node[circle,fill=\customdicefg,inner sep=\customdicedotsize ex] at (\customdiceupper ex,\customdiceupper ex) {};
+ }{}}}}}}
+ \end{customdiceenv}%
+}
+
+% \bigdotdice draws dice with a big dot
+\newcommand{\bigdotdice}[1][white,black]{%
+ \begin{customdiceenv}[#1]
+ \node[circle,fill=\customdicefg,inner sep=\customdicebigdotsize ex] at (\customdicehalfway ex,\customdicehalfway ex) {};
+ \end{customdiceenv}%
+}
+
+% \textdice puts text on a dice face
+\newcommand{\textdice}[2][white,black]{%
+ \begin{customdiceenv}[#1]
+ \node[\customdicefg,inner sep=0,scale=\customdicetextscale] at (\customdicehalfway ex,\customdicehalfway ex) {#2};
+ \end{customdiceenv}%
+}
+
+% \textdicebot puts underlined text on a dice face
+\newcommand{\textdicebot}[2][white,black]{%
+ \begin{customdiceenv}[#1]
+ \node[\customdicefg,inner sep=0,scale=\customdicetextscale] at (\customdicehalfway ex,\customdicehalfway ex) {#2};
+ \draw[line width=\customdiceborderthickness ex,\customdicefg] (\customdicelower ex,\customdicecornerrounding ex) --(\customdiceupper ex,\customdicecornerrounding ex);
+ \end{customdiceenv}%
+}
+
+% draws a dice net
+\newcommand{\layoutdice}[6]{%
+ \setlength{\tabcolsep}{0pt}%
+ \renewcommand{\arraystretch}{0}%
+ \begin{tabular}{ccc}
+ ~ & #1 & ~\\
+ #4 & #2 & #3\\
+ ~ & #6 & ~\\
+ ~ & #5 & ~\\
+ \end{tabular}%
+}
+
+% for convenience, passes \sizecommand as {\size\command}
+\newcommand{\tinydice}[2][white,black]{%
+ {\tiny\dice[#1]{#2}}
+}
+\newcommand{\scriptsizedice}[2][white,black]{%
+ {\scriptsize\dice[#1]{#2}}
+}
+\newcommand{\footnotesizedice}[2][white,black]{%
+ {\footnotesize\dice[#1]{#2}}
+}
+\newcommand{\smalldice}[2][white,black]{%
+ {\small\dice[#1]{#2}}
+}
+\newcommand{\normalsizedice}[2][white,black]{%
+ {\normalsize\dice[#1]{#2}}
+}
+\newcommand{\largedice}[2][white,black]{%
+ {\large\dice[#1]{#2}}
+}
+\newcommand{\Largedice}[2][white,black]{%
+ {\Large\dice[#1]{#2}}
+}
+\newcommand{\LARGEdice}[2][white,black]{%
+ {\LARGE\dice[#1]{#2}}
+}
+\newcommand{\hugedice}[2][white,black]{%
+ {\huge\dice[#1]{#2}}
+}
+\newcommand{\Hugedice}[2][white,black]{%
+ {\Huge\dice[#1]{#2}}
+}
+\newcommand{\tinybigdotdice}[1][white,black]{%
+ {\tiny\bigdotdice[#1]}
+}
+\newcommand{\scriptsizebigdotdice}[1][white,black]{%
+ {\scriptsize\bigdotdice[#1]}
+}
+\newcommand{\footnotesizebigdotdice}[1][white,black]{%
+ {\footnotesize\bigdotdice[#1]}
+}
+\newcommand{\smallbigdotdice}[1][white,black]{%
+ {\small\bigdotdice[#1]}
+}
+\newcommand{\normalsizebigdotdice}[1][white,black]{%
+ {\normalsize\bigdotdice[#1]}
+}
+\newcommand{\largebigdotdice}[1][white,black]{%
+ {\large\bigdotdice[#1]}
+}
+\newcommand{\LARGEbigdotdice}[1][white,black]{%
+ {\LARGE\bigdotdice[#1]}
+}
+\newcommand{\Largebigdotdice}[1][white,black]{%
+ {\Large\bigdotdice[#1]}
+}
+\newcommand{\hugebigdotdice}[1][white,black]{%
+ {\huge\bigdotdice[#1]}
+}
+\newcommand{\Hugebigdotdice}[1][white,black]{%
+ {\Huge\bigdotdice[#1]}
+}
+\newcommand{\tinytextdice}[2][white,black]{%
+ {\tiny\textdice[#1]{#2}}
+}
+\newcommand{\scriptsizetextdice}[2][white,black]{%
+ {\scriptsize\textdice[#1]{#2}}
+}
+\newcommand{\footnotesizetextdice}[2][white,black]{%
+ {\footnotesize\textdice[#1]{#2}}
+}
+\newcommand{\smalltextdice}[2][white,black]{%
+ {\small\textdice[#1]{#2}}
+}
+\newcommand{\normalsizetextdice}[2][white,black]{%
+ {\normalsize\textdice[#1]{#2}}
+}
+\newcommand{\largetextdice}[2][white,black]{%
+ {\large\textdice[#1]{#2}}
+}
+\newcommand{\Largetextdice}[2][white,black]{%
+ {\Large\textdice[#1]{#2}}
+}
+\newcommand{\LARGEtextdice}[2][white,black]{%
+ {\LARGE\textdice[#1]{#2}}
+}
+\newcommand{\hugetextdice}[2][white,black]{%
+ {\huge\textdice[#1]{#2}}
+}
+\newcommand{\Hugetextdice}[2][white,black]{%
+ {\Huge\textdice[#1]{#2}}
+}
+\newcommand{\tinytextdicebot}[2][white,black]{%
+ {\tiny\textdicebot[#1]{#2}}
+}
+\newcommand{\scriptsizetextdicebot}[2][white,black]{%
+ {\scriptsize\textdicebot[#1]{#2}}
+}
+\newcommand{\footnotesizetextdicebot}[2][white,black]{%
+ {\footnotesize\textdicebot[#1]{#2}}
+}
+\newcommand{\smalltextdicebot}[2][white,black]{%
+ {\small\textdicebot[#1]{#2}}
+}
+\newcommand{\normalsizetextdicebot}[2][white,black]{%
+ {\normalsize\textdicebot[#1]{#2}}
+}
+\newcommand{\largetextdicebot}[2][white,black]{%
+ {\large\textdicebot[#1]{#2}}
+}
+\newcommand{\Largetextdicebot}[2][white,black]{%
+ {\Large\textdicebot[#1]{#2}}
+}
+\newcommand{\LARGEtextdicebot}[2][white,black]{%
+ {\LARGE\textdicebot[#1]{#2}}
+}
+\newcommand{\hugetextdicebot}[2][white,black]{%
+ {\huge\textdicebot[#1]{#2}}
+}
+\newcommand{\Hugetextdicebot}[2][white,black]{%
+ {\Huge\textdicebot[#1]{#2}}
+}
+%</customdice>
+%\fi \ No newline at end of file
diff --git a/graphics/pgf/contrib/customdice/customdice.ins b/graphics/pgf/contrib/customdice/customdice.ins
new file mode 100644
index 0000000000..90cc3459d9
--- /dev/null
+++ b/graphics/pgf/contrib/customdice/customdice.ins
@@ -0,0 +1,13 @@
+\input{docstrip.tex}
+\keepsilent
+\usedir{tex/latex/customdice}
+\preamble
+Copyright (c) 2022 Peter Rowlett
+
+The package is licenced under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/
+\endpreamble
+\askforoverwritefalse
+\generate{
+ \file{customdice.sty}{\from{customdice.dtx}{customdice}}
+}
+\endbatchfile
diff --git a/graphics/pgf/contrib/customdice/customdice.pdf b/graphics/pgf/contrib/customdice/customdice.pdf
new file mode 100644
index 0000000000..4b7f9b0a21
--- /dev/null
+++ b/graphics/pgf/contrib/customdice/customdice.pdf
Binary files differ