summaryrefslogtreecommitdiff
path: root/graphics/pgf/base/doc/pgfmanual-en-library-3d.tex
diff options
context:
space:
mode:
Diffstat (limited to 'graphics/pgf/base/doc/pgfmanual-en-library-3d.tex')
-rw-r--r--graphics/pgf/base/doc/pgfmanual-en-library-3d.tex245
1 files changed, 245 insertions, 0 deletions
diff --git a/graphics/pgf/base/doc/pgfmanual-en-library-3d.tex b/graphics/pgf/base/doc/pgfmanual-en-library-3d.tex
new file mode 100644
index 0000000000..79bb47a2f7
--- /dev/null
+++ b/graphics/pgf/base/doc/pgfmanual-en-library-3d.tex
@@ -0,0 +1,245 @@
+% Copyright 2019 by Till Tantau
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License and/or
+% 2. under the GNU Free Documentation License.
+%
+% See the file doc/generic/pgf/licenses/LICENSE for more details.
+
+
+\section{Three Dimensional Drawing Library}
+
+\begin{tikzlibrary}{3d}
+ This package provides some styles and options for drawing three dimensional
+ shapes.
+\end{tikzlibrary}
+
+
+\subsection{Coordinate Systems}
+
+\begin{coordinatesystem}{xyz cylindrical}
+ The |xyz cylindrical| coordinate system allows to you specify a point in
+ terms of cylindrical coordinates, sometimes also referred to as cylindrical
+ polar coordinates or polar cylindrical coordinates. It is very similar to
+ the |canvas polar| and |xy polar| coordinate systems with the difference
+ that you provide an elevation over the $xy$-plane using the |z| key.
+ %
+ \begin{key}{/tikz/cs/angle=\meta{degrees} (initially 0)}
+ The angle of the coordinate interpreted in the ellipse whose axes are
+ the $x$-vector and the $y$-vector.
+ \end{key}
+ %
+ \begin{key}{/tikz/cs/radius=\meta{number} (initially 0)}
+ A factor by which the $x$-vector and $y$-vector are multiplied prior to
+ forming the ellipse.
+ \end{key}
+ %
+ \begin{key}{/tikz/cs/z=\meta{number} (initially 0)}
+ Factor by which the $z$-vector is multiplied.
+ \end{key}
+ %
+\begin{codeexample}[preamble={\usetikzlibrary{3d}}]
+\begin{tikzpicture}[->]
+ \draw (0,0,0) -- (xyz cylindrical cs:radius=1);
+ \draw (0,0,0) -- (xyz cylindrical cs:radius=1,angle=90);
+ \draw (0,0,0) -- (xyz cylindrical cs:z=1);
+\end{tikzpicture}
+\end{codeexample}
+ %
+\end{coordinatesystem}
+
+\begin{coordinatesystem}{xyz spherical}
+ The |xyz spherical| coordinate system allows you to specify a point in
+ terms of spherical coordinates.
+ %
+ \begin{key}{/tikz/cs/radius=\meta{number} (initially 0)}
+ Factor by which the $x$-, $y$-, and $z$-vector are multiplied.
+ \end{key}
+ %
+ \begin{key}{/tikz/cs/latitude=\meta{degrees} (initially 0)}
+ Angle of the coordinate between the $y$- and $z$-vector, measured from
+ the $y$-vector.
+ \end{key}
+ %
+ \begin{key}{/tikz/cs/longitude=\meta{degrees} (initially 0)}
+ Angle of the coordinate between the $x$- and $y$-vector, measured from
+ the $y$-vector.
+ \end{key}
+ %
+ \begin{key}{/tikz/cs/angle=\meta{degrees} (initially 0)}
+ Same as |longitude|.
+ \end{key}
+ %
+\begin{codeexample}[preamble={\usetikzlibrary{3d}}]
+\begin{tikzpicture}[->]
+ \draw (0,0,0) -- (xyz spherical cs:radius=1);
+ \draw (0,0,0) -- (xyz spherical cs:radius=1,latitude=90);
+ \draw (0,0,0) -- (xyz spherical cs:radius=1,longitude=90);
+\end{tikzpicture}
+\end{codeexample}
+ %
+\end{coordinatesystem}
+
+
+\subsection{Coordinate Planes}
+
+Sometimes drawing with full three dimensional coordinates is not necessary and
+it suffices to draw in two dimensions but in a different coordinate plane. The
+following options help you to switch to a different plane.
+
+
+\subsubsection{Switching to an arbitrary plane}
+
+\begin{key}{/tikz/plane origin=\meta{point} (initially {(0,0)})}
+ Origin of the plane.
+\end{key}
+
+\begin{key}{/tikz/plane x=\meta{point} (initially {(1,0)})}
+ Unit vector of the $x$-direction in the new plane.
+\end{key}
+
+\begin{key}{/tikz/plane y=\meta{point} (initially {(0,1)})}
+ Unit vector of the $y$-direction in the new plane.
+\end{key}
+
+\begin{key}{/tikz/canvas is plane}
+ Perform the transformation into the new canvas plane using the units above.
+ Note that you have to set the units \emph{before} calling
+ |canvas is plane|.
+ %
+\begin{codeexample}[preamble={\usetikzlibrary{3d}}]
+\begin{tikzpicture}[
+ ->,
+ plane x={(0.707,-0.707)},
+ plane y={(0.707,0.707)},
+ canvas is plane,
+]
+ \draw (0,0) -- (1,0);
+ \draw (0,0) -- (0,1);
+\end{tikzpicture}
+\end{codeexample}
+ %
+\end{key}
+
+
+\subsubsection{Predefined planes}
+
+\begin{key}{/tikz/canvas is xy plane at z=\meta{dimension}}
+ A plane with
+ %
+ \begin{itemize}
+ \item |plane origin={(0,0,|\meta{dimension}|)}|,
+ \item |plane x={(1,0,|\meta{dimension}|)}|, and
+ \item |plane y={(0,1,|\meta{dimension}|)}|.
+ \end{itemize}
+\end{key}
+
+\begin{key}{/tikz/canvas is yx plane at z=\meta{dimension}}
+ A plane with
+ %
+ \begin{itemize}
+ \item |plane origin={(0,0,|\meta{dimension}|)}|,
+ \item |plane x={(0,1,|\meta{dimension}|)}|, and
+ \item |plane y={(1,0,|\meta{dimension}|)}|.
+ \end{itemize}
+\end{key}
+
+\begin{key}{/tikz/canvas is xz plane at y=\meta{dimension}}
+ A plane with
+ %
+ \begin{itemize}
+ \item |plane origin={(0,|\meta{dimension}|,0)}|,
+ \item |plane x={(1,|\meta{dimension}|,0)}|, and
+ \item |plane y={(0,|\meta{dimension}|,1)}|.
+ \end{itemize}
+\end{key}
+
+\begin{key}{/tikz/canvas is zx plane at y=\meta{dimension}}
+ A plane with
+ %
+ \begin{itemize}
+ \item |plane origin={(0,|\meta{dimension}|,0)}|,
+ \item |plane x={(0,|\meta{dimension}|,1)}|, and
+ \item |plane y={(1,|\meta{dimension}|,0)}|.
+ \end{itemize}
+\end{key}
+
+\begin{key}{/tikz/canvas is yz plane at x=\meta{dimension}}
+ A plane with
+ %
+ \begin{itemize}
+ \item |plane origin={(|\meta{dimension}|,0,0)}|,
+ \item |plane x={(|\meta{dimension}|,1,0)}|, and
+ \item |plane y={(|\meta{dimension}|,0,1)}|.
+ \end{itemize}
+\end{key}
+
+\begin{key}{/tikz/canvas is zy plane at x=\meta{dimension}}
+ A plane with
+ %
+ \begin{itemize}
+ \item |plane origin={(|\meta{dimension}|,0,0)}|,
+ \item |plane x={(|\meta{dimension}|,0,1)}|, and
+ \item |plane y={(|\meta{dimension}|,1,0)}|.
+ \end{itemize}
+\end{key}
+
+
+\subsection{Examples}
+
+\begin{codeexample}[preamble={\usetikzlibrary{3d}}]
+\begin{tikzpicture}[z={(10:10mm)},x={(-45:5mm)}]
+ \def\wave{
+ \draw[fill,thick,fill opacity=.2]
+ (0,0) sin (1,1) cos (2,0) sin (3,-1) cos (4,0)
+ sin (5,1) cos (6,0) sin (7,-1) cos (8,0)
+ sin (9,1) cos (10,0)sin (11,-1)cos (12,0);
+ \foreach \shift in {0,4,8}
+ {
+ \begin{scope}[xshift=\shift cm,thin]
+ \draw (.5,0) -- (0.5,0 |- 45:1cm);
+ \draw (1,0) -- (1,1);
+ \draw (1.5,0) -- (1.5,0 |- 45:1cm);
+ \draw (2.5,0) -- (2.5,0 |- -45:1cm);
+ \draw (3,0) -- (3,-1);
+ \draw (3.5,0) -- (3.5,0 |- -45:1cm);
+ \end{scope}
+ }
+ }
+ \begin{scope}[canvas is zy plane at x=0,fill=blue]
+ \wave
+ \node at (6,-1.5) [transform shape] {magnetic field};
+ \end{scope}
+ \begin{scope}[canvas is zx plane at y=0,fill=red]
+ \draw[help lines] (0,-2) grid (12,2);
+ \wave
+ \node at (6,1.5) [rotate=180,xscale=-1,transform shape] {electric field};
+ \end{scope}
+\end{tikzpicture}
+\end{codeexample}
+
+\begin{codeexample}[preamble={\usetikzlibrary{3d}}]
+\begin{tikzpicture}
+ \begin{scope}[canvas is zy plane at x=0]
+ \draw (0,0) circle (1cm);
+ \draw (-1,0) -- (1,0) (0,-1) -- (0,1);
+ \end{scope}
+
+ \begin{scope}[canvas is zx plane at y=0]
+ \draw (0,0) circle (1cm);
+ \draw (-1,0) -- (1,0) (0,-1) -- (0,1);
+ \end{scope}
+
+ \begin{scope}[canvas is xy plane at z=0]
+ \draw (0,0) circle (1cm);
+ \draw (-1,0) -- (1,0) (0,-1) -- (0,1);
+ \end{scope}
+\end{tikzpicture}
+\end{codeexample}
+
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "pgfmanual-pdftex-version"
+%%% End: