diff options
Diffstat (limited to 'graphics/pgf/base/doc/pgfmanual-en-library-3d.tex')
-rw-r--r-- | graphics/pgf/base/doc/pgfmanual-en-library-3d.tex | 245 |
1 files changed, 245 insertions, 0 deletions
diff --git a/graphics/pgf/base/doc/pgfmanual-en-library-3d.tex b/graphics/pgf/base/doc/pgfmanual-en-library-3d.tex new file mode 100644 index 0000000000..79bb47a2f7 --- /dev/null +++ b/graphics/pgf/base/doc/pgfmanual-en-library-3d.tex @@ -0,0 +1,245 @@ +% Copyright 2019 by Till Tantau +% +% This file may be distributed and/or modified +% +% 1. under the LaTeX Project Public License and/or +% 2. under the GNU Free Documentation License. +% +% See the file doc/generic/pgf/licenses/LICENSE for more details. + + +\section{Three Dimensional Drawing Library} + +\begin{tikzlibrary}{3d} + This package provides some styles and options for drawing three dimensional + shapes. +\end{tikzlibrary} + + +\subsection{Coordinate Systems} + +\begin{coordinatesystem}{xyz cylindrical} + The |xyz cylindrical| coordinate system allows to you specify a point in + terms of cylindrical coordinates, sometimes also referred to as cylindrical + polar coordinates or polar cylindrical coordinates. It is very similar to + the |canvas polar| and |xy polar| coordinate systems with the difference + that you provide an elevation over the $xy$-plane using the |z| key. + % + \begin{key}{/tikz/cs/angle=\meta{degrees} (initially 0)} + The angle of the coordinate interpreted in the ellipse whose axes are + the $x$-vector and the $y$-vector. + \end{key} + % + \begin{key}{/tikz/cs/radius=\meta{number} (initially 0)} + A factor by which the $x$-vector and $y$-vector are multiplied prior to + forming the ellipse. + \end{key} + % + \begin{key}{/tikz/cs/z=\meta{number} (initially 0)} + Factor by which the $z$-vector is multiplied. + \end{key} + % +\begin{codeexample}[preamble={\usetikzlibrary{3d}}] +\begin{tikzpicture}[->] + \draw (0,0,0) -- (xyz cylindrical cs:radius=1); + \draw (0,0,0) -- (xyz cylindrical cs:radius=1,angle=90); + \draw (0,0,0) -- (xyz cylindrical cs:z=1); +\end{tikzpicture} +\end{codeexample} + % +\end{coordinatesystem} + +\begin{coordinatesystem}{xyz spherical} + The |xyz spherical| coordinate system allows you to specify a point in + terms of spherical coordinates. + % + \begin{key}{/tikz/cs/radius=\meta{number} (initially 0)} + Factor by which the $x$-, $y$-, and $z$-vector are multiplied. + \end{key} + % + \begin{key}{/tikz/cs/latitude=\meta{degrees} (initially 0)} + Angle of the coordinate between the $y$- and $z$-vector, measured from + the $y$-vector. + \end{key} + % + \begin{key}{/tikz/cs/longitude=\meta{degrees} (initially 0)} + Angle of the coordinate between the $x$- and $y$-vector, measured from + the $y$-vector. + \end{key} + % + \begin{key}{/tikz/cs/angle=\meta{degrees} (initially 0)} + Same as |longitude|. + \end{key} + % +\begin{codeexample}[preamble={\usetikzlibrary{3d}}] +\begin{tikzpicture}[->] + \draw (0,0,0) -- (xyz spherical cs:radius=1); + \draw (0,0,0) -- (xyz spherical cs:radius=1,latitude=90); + \draw (0,0,0) -- (xyz spherical cs:radius=1,longitude=90); +\end{tikzpicture} +\end{codeexample} + % +\end{coordinatesystem} + + +\subsection{Coordinate Planes} + +Sometimes drawing with full three dimensional coordinates is not necessary and +it suffices to draw in two dimensions but in a different coordinate plane. The +following options help you to switch to a different plane. + + +\subsubsection{Switching to an arbitrary plane} + +\begin{key}{/tikz/plane origin=\meta{point} (initially {(0,0)})} + Origin of the plane. +\end{key} + +\begin{key}{/tikz/plane x=\meta{point} (initially {(1,0)})} + Unit vector of the $x$-direction in the new plane. +\end{key} + +\begin{key}{/tikz/plane y=\meta{point} (initially {(0,1)})} + Unit vector of the $y$-direction in the new plane. +\end{key} + +\begin{key}{/tikz/canvas is plane} + Perform the transformation into the new canvas plane using the units above. + Note that you have to set the units \emph{before} calling + |canvas is plane|. + % +\begin{codeexample}[preamble={\usetikzlibrary{3d}}] +\begin{tikzpicture}[ + ->, + plane x={(0.707,-0.707)}, + plane y={(0.707,0.707)}, + canvas is plane, +] + \draw (0,0) -- (1,0); + \draw (0,0) -- (0,1); +\end{tikzpicture} +\end{codeexample} + % +\end{key} + + +\subsubsection{Predefined planes} + +\begin{key}{/tikz/canvas is xy plane at z=\meta{dimension}} + A plane with + % + \begin{itemize} + \item |plane origin={(0,0,|\meta{dimension}|)}|, + \item |plane x={(1,0,|\meta{dimension}|)}|, and + \item |plane y={(0,1,|\meta{dimension}|)}|. + \end{itemize} +\end{key} + +\begin{key}{/tikz/canvas is yx plane at z=\meta{dimension}} + A plane with + % + \begin{itemize} + \item |plane origin={(0,0,|\meta{dimension}|)}|, + \item |plane x={(0,1,|\meta{dimension}|)}|, and + \item |plane y={(1,0,|\meta{dimension}|)}|. + \end{itemize} +\end{key} + +\begin{key}{/tikz/canvas is xz plane at y=\meta{dimension}} + A plane with + % + \begin{itemize} + \item |plane origin={(0,|\meta{dimension}|,0)}|, + \item |plane x={(1,|\meta{dimension}|,0)}|, and + \item |plane y={(0,|\meta{dimension}|,1)}|. + \end{itemize} +\end{key} + +\begin{key}{/tikz/canvas is zx plane at y=\meta{dimension}} + A plane with + % + \begin{itemize} + \item |plane origin={(0,|\meta{dimension}|,0)}|, + \item |plane x={(0,|\meta{dimension}|,1)}|, and + \item |plane y={(1,|\meta{dimension}|,0)}|. + \end{itemize} +\end{key} + +\begin{key}{/tikz/canvas is yz plane at x=\meta{dimension}} + A plane with + % + \begin{itemize} + \item |plane origin={(|\meta{dimension}|,0,0)}|, + \item |plane x={(|\meta{dimension}|,1,0)}|, and + \item |plane y={(|\meta{dimension}|,0,1)}|. + \end{itemize} +\end{key} + +\begin{key}{/tikz/canvas is zy plane at x=\meta{dimension}} + A plane with + % + \begin{itemize} + \item |plane origin={(|\meta{dimension}|,0,0)}|, + \item |plane x={(|\meta{dimension}|,0,1)}|, and + \item |plane y={(|\meta{dimension}|,1,0)}|. + \end{itemize} +\end{key} + + +\subsection{Examples} + +\begin{codeexample}[preamble={\usetikzlibrary{3d}}] +\begin{tikzpicture}[z={(10:10mm)},x={(-45:5mm)}] + \def\wave{ + \draw[fill,thick,fill opacity=.2] + (0,0) sin (1,1) cos (2,0) sin (3,-1) cos (4,0) + sin (5,1) cos (6,0) sin (7,-1) cos (8,0) + sin (9,1) cos (10,0)sin (11,-1)cos (12,0); + \foreach \shift in {0,4,8} + { + \begin{scope}[xshift=\shift cm,thin] + \draw (.5,0) -- (0.5,0 |- 45:1cm); + \draw (1,0) -- (1,1); + \draw (1.5,0) -- (1.5,0 |- 45:1cm); + \draw (2.5,0) -- (2.5,0 |- -45:1cm); + \draw (3,0) -- (3,-1); + \draw (3.5,0) -- (3.5,0 |- -45:1cm); + \end{scope} + } + } + \begin{scope}[canvas is zy plane at x=0,fill=blue] + \wave + \node at (6,-1.5) [transform shape] {magnetic field}; + \end{scope} + \begin{scope}[canvas is zx plane at y=0,fill=red] + \draw[help lines] (0,-2) grid (12,2); + \wave + \node at (6,1.5) [rotate=180,xscale=-1,transform shape] {electric field}; + \end{scope} +\end{tikzpicture} +\end{codeexample} + +\begin{codeexample}[preamble={\usetikzlibrary{3d}}] +\begin{tikzpicture} + \begin{scope}[canvas is zy plane at x=0] + \draw (0,0) circle (1cm); + \draw (-1,0) -- (1,0) (0,-1) -- (0,1); + \end{scope} + + \begin{scope}[canvas is zx plane at y=0] + \draw (0,0) circle (1cm); + \draw (-1,0) -- (1,0) (0,-1) -- (0,1); + \end{scope} + + \begin{scope}[canvas is xy plane at z=0] + \draw (0,0) circle (1cm); + \draw (-1,0) -- (1,0) (0,-1) -- (0,1); + \end{scope} +\end{tikzpicture} +\end{codeexample} + + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "pgfmanual-pdftex-version" +%%% End: |