summaryrefslogtreecommitdiff
path: root/graphics/epix/plots.cc
diff options
context:
space:
mode:
Diffstat (limited to 'graphics/epix/plots.cc')
-rw-r--r--graphics/epix/plots.cc613
1 files changed, 613 insertions, 0 deletions
diff --git a/graphics/epix/plots.cc b/graphics/epix/plots.cc
new file mode 100644
index 0000000000..5f619dbe40
--- /dev/null
+++ b/graphics/epix/plots.cc
@@ -0,0 +1,613 @@
+/*
+ * plots.cc: Plotting functions
+ *
+ * This file is part of ePiX, a C++ library for creating high-quality
+ * figures in LaTeX
+ *
+ * Version 1.2.0-2
+ * Last Change: September 26, 2007
+ */
+
+/*
+ * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
+ * Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
+ * Department of Mathematics and Computer Science
+ * College of the Holy Cross
+ * Worcester, MA, 01610-2395, USA
+ */
+
+/*
+ * ePiX is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * ePiX is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ * License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with ePiX; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#include "constants.h"
+#include "errors.h"
+
+#include "triples.h"
+#include "functions.h"
+
+#include "camera.h"
+#include "map.h"
+#include "domain.h"
+
+#include "path.h"
+
+#include "markers.h"
+#include "curves.h"
+
+#include "deriv.h"
+#include "plot_algorithms.h"
+#include "plots.h"
+
+namespace ePiX {
+
+ typedef std::list<domain>::const_iterator dolci;
+
+ // f:R -> R^3
+ void plot(P f(double), double t_min, double t_max, unsigned int num_pts)
+ {
+ plot_map_dom(path_map(f), domain(t_min, t_max, num_pts));
+ }
+
+ // f:R -> R x R x R
+ void plot(double f1(double), double f2(double), double f3(double),
+ double t_min, double t_max, unsigned int num_pts)
+ {
+ plot_map_dom(column_1var(f1,f2,f3), domain(t_min, t_max, num_pts));
+ }
+
+ // f:R -> R
+ void plot(double f(double), double t_min, double t_max, unsigned int num_pts)
+ {
+ plot(id, f, zero, t_min, t_max, num_pts);
+ }
+
+ void plot(const Deriv& f, double t_min, double t_max, unsigned int num_pts)
+ {
+ plot_map_dom(f, domain(t_min, t_max, num_pts));
+ }
+
+ void plot(const Integral& f, double t_min, double t_max,
+ unsigned int num_pts)
+ {
+ plot_map_dom(f, domain(t_min, t_max, num_pts));
+ }
+
+ // f: R -> R x R
+ void plot(double f1(double), double f2(double),
+ double t_min, double t_max, unsigned int num_pts)
+ {
+ plot(f1, f2, zero, t_min, t_max, num_pts);
+ }
+
+ void polarplot (double f(double), double t_min, double t_max,
+ unsigned int num_pts)
+ {
+ plot_map_dom(column_1var(f, id, zero, cylindrical),
+ domain(t_min, t_max, num_pts));
+ }
+
+ // surfaces
+ // f:R^2 -> R x R x R
+ void plot(double f1(double u1, double u2),
+ double f2(double u1, double u2),
+ double f3(double u1, double u2),
+ const P& min, const P& max, const mesh& coarse, const mesh& fine)
+ {
+ plot_map_dom(column_2var(f1,f2,f3), domain(min, max, coarse, fine));
+ }
+
+ void plot(double f1(double u1, double u2),
+ double f2(double u1, double u2),
+ double f3(double u1, double u2),
+ const domain& R)
+ {
+ plot_map_dom(column_2var(f1,f2,f3), R);
+ }
+
+ // f:R^2 -> R
+ void plot(double f(double u1, double u2),
+ const P& p1, const P& p2, const mesh& coarse, const mesh& fine)
+ {
+ plot(proj1, proj2, f, p1, p2, coarse, fine);
+ }
+
+ // f:R^2 -> R^3
+ void plot(P f(double u1, double u2), const domain& R)
+ {
+ plot_map_dom(surface_map(f), R);
+ }
+
+ void plot(P f(double u1, double u2), const domain_list& R)
+ {
+ surface_map phi(f);
+
+ for (dolci p=R.m_list.begin(); p != R.m_list.end(); ++p)
+ plot_map_dom(phi, *p);
+ }
+
+
+ // f:R^3 -> R^3
+ void plot(P f(double, double, double), const domain& R)
+ {
+ plot_map_dom(space_map(f), R);
+ }
+
+ void plot(P f(double, double, double), const domain_list& R)
+ {
+ space_map phi(f);
+
+ for (dolci p=R.m_list.begin(); p != R.m_list.end(); ++p)
+ plot_map_dom(phi, *p);
+ }
+
+
+ // Derivatives and integrals
+ void plot_deriv(double f(double t), double a, double b,
+ unsigned int num_pts)
+ {
+ plot_function(Deriv(f), a, b, num_pts);
+ }
+
+ void plot_int(double f(double), double a, double b,
+ unsigned int num_pts)
+ {
+ plot_function(Integral(f, a), a, b, num_pts);
+ }
+
+ void plot_int(double f(double), double x0, double a, double b,
+ unsigned int num_pts)
+ {
+ plot_function(Integral(f, x0), a, b, num_pts);
+ }
+
+ // tuples of real-valued plot arguments
+ void tan_line(double f1(double t), double f2(double t), double t0)
+ {
+ Line(P(f1(t0), f2(t0)),
+ P(f1(t0), f2(t0)) + P(deriv(f1, t0), deriv(f2, t0)));
+ }
+
+ void tan_line(double f(double t), double t0)
+ {
+ Line(P(t0, f(t0)), P(t0, f(t0)) + P(1, deriv(f, t0)));
+ }
+
+ void envelope(double f1(double t), double f2(double t),
+ double t_min, double t_max, unsigned int num_pts)
+ {
+ const double step((t_max - t_min)/num_pts);
+ double t(t_min);
+
+ for (unsigned int i=0; i <= num_pts; ++i, t += step)
+ Line(P(f1(t), f2(t)),
+ P(f1(t), f2(t)) + P(deriv(f1, t), deriv(f2, t)));
+ }
+
+ void envelope(double f(double t), double t_min, double t_max,
+ unsigned int num_pts)
+ {
+ const double step((t_max - t_min)/num_pts);
+ double t(t_min);
+
+ for (unsigned int i=0; i <= num_pts; ++i, t += step)
+ Line(P(t, f(t)), P(t, f(t)) + P(1, deriv(f, t)));
+ }
+
+ // P-valued plot argument
+ void tan_line(P f(double t), double t0)
+ {
+ Line(f(t0), f(t0) + deriv(f, t0));
+ }
+
+ void envelope(P f(double t), double t_min, double t_max,
+ unsigned int num_pts)
+ {
+ const double step((t_max - t_min)/num_pts);
+ double t(t_min);
+
+ for (unsigned int i=0; i <= num_pts; ++i, t += step)
+ Line(f(t), f(t) + deriv(f, t));
+ }
+
+ // Tangent field along parametrized path
+ void tan_field(double f1(double), double f2(double), double t_min,
+ double t_max, unsigned int num_pts)
+ {
+ const double step((t_max - t_min)/num_pts);
+ double t(t_min);
+
+ for (unsigned int i=0; i <= num_pts; ++i, t += step)
+ arrow(P(f1(t), f2(t)), P(f1(t), f2(t)) +
+ step*P(deriv(f1, t), deriv(f2, t)));
+ }
+
+ // P-valued plot argument
+ void tan_field(P f(double), double t_min, double t_max,
+ unsigned int num_pts)
+ {
+ const double step((t_max - t_min)/num_pts);
+ double t(t_min);
+
+ for (unsigned int i=0; i <= num_pts; ++i, t += step)
+ arrow(f(t), f(t) + step*deriv(f, t));
+ }
+
+ // Slope, dart, and vector fields
+
+ // utility functions
+ // vector, dart, and slope fields
+ void field_element(const P& tail, const P& head, epix_field_type TYPE,
+ double head_scale=1.0)
+ {
+ switch(TYPE) {
+
+ case VECTOR:
+ arrow(tail, head, head_scale);
+ break;
+
+ case DART:
+ dart(tail, head);
+ break;
+
+ case SLOPE:
+ line(tail, head, 0, 1);
+ break;
+
+ default:
+ ; // do nothing
+ } // end of switch(TYPE)
+ } // end of field_element
+
+
+ void draw_field(P F(double, double, double), P p, P q,
+ unsigned int n1, unsigned int n2,
+ epix_field_type TYPE, double scale)
+ {
+ P diagonal(q-p);
+ int perp_count(0);
+ P jump1, jump2;
+
+ if (fabs(diagonal|E_1) < EPIX_EPSILON)
+ {
+ ++perp_count;
+ jump1 = E_2&diagonal;
+ jump2 = E_3&diagonal;
+
+ }
+ if (fabs(diagonal|E_2) < EPIX_EPSILON)
+ {
+ ++perp_count;
+ jump1 = E_3&diagonal;
+ jump2 = E_1&diagonal;
+ }
+ if (fabs(diagonal|E_3) < EPIX_EPSILON)
+ {
+ ++perp_count;
+ jump1 = E_1&diagonal;
+ jump2 = E_2&diagonal;
+ }
+
+ if (perp_count == 0)
+ {
+ epix_warning("Projecting corners of vector field plot");
+ jump1 = E_1&diagonal;
+ jump2 = E_2&diagonal;
+ p %= E_3; // project corners to (x1, x2)-plane
+ q %= E_3;
+ }
+
+ // grid line spacing
+ jump1 *= 1.0/n1;
+ jump2 *= 1.0/n2;
+
+ const double d1(norm(jump1));
+ const double d2(norm(jump2));
+
+ for (unsigned int i=0; i <= n1; ++i)
+ for (unsigned int j=0; j <= n2; ++j)
+ {
+ P base(p + (i*jump1 + j*jump2));
+ P vect(F(base.x1(), base.x2(), base.x3()));
+
+ if (norm(camera(base+vect) - camera(base)) < EPIX_EPSILON)
+ marker(base, BBOX);
+
+ else if (TYPE == VECTOR)
+ field_element(base, base + vect, VECTOR, scale);
+
+ else
+ {
+ // N.B. May not work if page export bolloxes aspect ratio
+ double object_len(norm(camera(base+vect)-camera(base)));
+ pair dX(pair(d1, d2));
+
+ // Hardwired constant 0.4: Segment 80% of shorter grid length
+ double minimum((dX.x1() > dX.x2()) ? 0.4*dX.x2() : 0.4*dX.x1());
+
+ if ( object_len > EPIX_EPSILON) // not projected to zero
+ vect *= minimum/object_len;
+
+ // scale affects length of element, not head size
+ field_element(base - scale*vect, base + scale*vect, TYPE);
+ }
+ }
+ } // end of draw_field F(x, y, z)
+
+
+ void draw_field(P F(double, double), P p, P q,
+ unsigned int n1, unsigned int n2,
+ epix_field_type TYPE, double scale)
+ {
+ P diagonal(q-p);
+ P jump1(E_1&diagonal);
+ P jump2(E_2&diagonal);
+ p %= E_3; // project corners to (x1, x2)-plane
+ q %= E_3;
+
+ // grid line spacing
+ jump1 *= 1.0/n1;
+ jump2 *= 1.0/n2;
+
+ const double d1(norm(jump1));
+ const double d2(norm(jump2));
+
+ for (unsigned int i=0; i <= n1; ++i)
+ for (unsigned int j=0; j <= n2; ++j)
+ {
+ P base(p + (i*jump1 + j*jump2));
+ P vect(F(base.x1(), base.x2()));
+
+ if (norm(camera(base+vect) - camera(base)) < EPIX_EPSILON)
+ marker(base, BBOX);
+
+ // scale affects head size
+ else if (TYPE == VECTOR)
+ field_element(base, base + vect, VECTOR, scale);
+
+ else
+ {
+ // see caution above
+ double object_len(norm(camera(base+vect)-camera(base)));
+ pair dX(pair(d1, d2));
+ // Hardwired constant 0.4: Segment 80% of shorter grid length
+ double minimum((dX.x1() > dX.x2()) ? 0.4*dX.x2() : 0.4*dX.x1());
+ if ( object_len > EPIX_EPSILON) // not projected to zero
+ vect *= minimum/object_len;
+
+ // scale affects length of element, not head size
+ field_element(base - scale*vect, base + scale*vect, TYPE);
+ }
+ }
+ } // end of draw_field F(x, y)
+
+
+ // planar fields
+ void slope_field(P F(double, double), const P& p, const P& q,
+ unsigned int n1, unsigned int n2, double scale)
+ {
+ draw_field(F, p, q, n1, n2, SLOPE, scale);
+ }
+
+ void dart_field(P F(double, double), const P& p, const P& q,
+ unsigned int n1, unsigned int n2, double scale)
+ {
+ draw_field(F, p, q, n1, n2, DART, scale);
+ }
+
+ void vector_field(P F(double, double), const P& p, const P& q,
+ unsigned int n1, unsigned int n2, double scale)
+ {
+ draw_field(F, p, q, n1, n2, VECTOR, scale);
+ }
+
+ void slope_field(P F(double, double), const domain& R, double scale)
+ {
+ draw_field(F, R.corner1(), R.corner2(),
+ R.coarse_n1(), R.coarse_n2(),
+ SLOPE, scale);
+ }
+
+ void dart_field(P F(double, double), const domain& R, double scale)
+ {
+ draw_field(F, R.corner1(), R.corner2(),
+ R.coarse_n1(), R.coarse_n2(),
+ DART, scale);
+ }
+
+ void vector_field(P F(double, double), const domain& R, double scale)
+ {
+ draw_field(F, R.corner1(), R.corner2(),
+ R.coarse_n1(), R.coarse_n2(),
+ VECTOR, scale);
+ }
+
+ // spatial fields
+ void slope_field(P F(double, double, double), const P& p, const P& q,
+ unsigned int n1, unsigned int n2, double scale)
+ {
+ draw_field(F, p, q, n1, n2, SLOPE, scale);
+ }
+
+ void dart_field(P F(double, double, double), const P& p, const P& q,
+ unsigned int n1, unsigned int n2, double scale)
+ {
+ draw_field(F, p, q, n1, n2, DART, scale);
+ }
+
+ void vector_field(P F(double, double, double), const P& p, const P& q,
+ unsigned int n1, unsigned int n2, double scale)
+ {
+ draw_field(F, p, q, n1, n2, VECTOR, scale);
+ }
+
+ // spatial fields over a domain
+ void slope_field(P F(double, double, double), const domain& R,
+ double scale)
+ {
+ P p(R.corner1()), q(R.corner2());
+ double height(q.x3() - p.x3());
+ q -= height*E_3; // p.x3() == q.x3()
+
+ // horizontal/vertical subdivisions
+ unsigned int i_max(R.coarse_n1()), j_max(R.coarse_n2());
+ unsigned int k_max((R.dx3() > 0) ? R.coarse_n3() : 0);
+ for (unsigned int k = 0; k <= k_max; ++k)
+ draw_field(F, p + (k*R.step3())*E_3, q + (k*R.step3())*E_3,
+ i_max, j_max, SLOPE, scale);
+ }
+
+ void dart_field(P F(double, double, double), const domain& R,
+ double scale)
+ {
+ P p(R.corner1()), q(R.corner2());
+ double height(q.x3() - p.x3());
+ q -= height*E_3; // p.x3() == q.x3()
+
+ unsigned int i_max(R.coarse_n1()), j_max(R.coarse_n2());
+ unsigned int k_max((R.dx3() > 0) ? R.coarse_n3() : 0);
+
+ for (unsigned int k = 0; k <= k_max; ++k)
+ draw_field(F, p + (k*R.step3())*E_3, q + (k*R.step3())*E_3,
+ i_max, j_max, DART, scale);
+ }
+
+ void vector_field(P F(double, double, double), const domain& R,
+ double scale)
+ {
+ P p(R.corner1()), q(R.corner2());
+ double height(q.x3() - p.x3());
+ q -= height*E_3; // p.x3() == q.x3()
+
+ unsigned int i_max(R.coarse_n1()), j_max(R.coarse_n2());
+ unsigned int k_max((R.dx3() > 0) ? R.coarse_n3() : 0);
+
+ for (unsigned int k = 0; k <= k_max; ++k)
+ draw_field(F, p + (k*R.step3())*E_3, q + (k*R.step3())*E_3,
+ i_max, j_max, VECTOR, scale);
+ }
+
+ // Solutions of ODE systems
+ // start at time 0
+ void ode_plot (P F(double, double), const P& start,
+ double t_max, unsigned int n)
+ {
+ euler_plot(surface_map(F), start, 0, t_max, n);
+ }
+
+ void ode_plot (P F(double, double, double), const P& start,
+ double t_max, unsigned int num_pts)
+ {
+ euler_plot(space_map(F), start, 0, t_max, num_pts);
+ }
+
+ // arbitrary start time
+ void ode_plot (P F(double, double), const P& start,
+ double t_min, double t_max, unsigned int num_pts)
+ {
+ euler_plot(surface_map(F), start, t_min, t_max, num_pts);
+ }
+
+ void ode_plot (P F(double, double, double), const P& start,
+ double t_min, double t_max, unsigned int num_pts)
+ {
+ euler_plot(space_map(F), start, t_min, t_max, num_pts);
+ }
+
+
+ // flow x0 under field for specified time
+ P flow (P F(double, double), const P& start, double t_max,
+ unsigned int n)
+ {
+ return euler_flow(surface_map(F), start, t_max, n);
+ }
+
+ P flow (P F(double, double, double), const P& start, double t_max,
+ unsigned int n)
+ {
+ return euler_flow(space_map(F), start, t_max, n);
+ }
+
+
+ void riemann_sum(double f(double), double a, double b,
+ unsigned int n, epix_integral_type TYPE)
+ {
+ const double dx((b-a)/n);
+
+ for (unsigned int i=0; i < n; ++i)
+ {
+ double x(a + i*dx);
+
+ switch (TYPE) {
+
+ case LEFT:
+ rect(P(x, f(x)), P(x+dx,0));
+ break;
+
+ case RIGHT:
+ rect(P(x, 0), P(x+dx, f(x+dx)));
+ break;
+
+ case UPPER:
+ rect(P(x, 0), P(x+dx, sup(f, x, x+dx)));
+ break;
+
+ case LOWER:
+ rect(P(x, 0), P(x+dx, inf(f, x, x+dx)));
+ break;
+
+ case TRAP:
+ quad(P(x, 0), P(x+dx, 0), P(x+dx, f(x+dx)), P(x, f(x)));
+ break;
+
+ case MIDPT:
+ rect(P(x, 0), P(x+dx, f(x+0.5*dx)));
+ break;
+
+ default:
+ ;
+
+ } // end of switch(TYPE)
+ }
+ } // end of riemann_sum()
+
+
+ // Jay Belanger's shaded plotting functions -- December 1, 2002
+ // Re-implemented using paths, July 16, 2004
+ // " for Version 1.2, June 2007
+ void shadeplot(double f1(double), double f2(double),
+ double t_min, double t_max, unsigned int num_pts)
+ {
+ // build contour
+ path boundary(f1, t_min, t_max, num_pts);
+ path graph2(f2, t_min, t_max, num_pts);
+
+ path right_edge(P(t_max, f1(t_max)), P(t_max, f2(t_max)));
+ path left_edge(P(t_min, f2(t_min)), P(t_min, f1(t_min)));
+
+ boundary += right_edge;
+ boundary -= graph2;
+ boundary += left_edge;
+
+ boundary.close().fill();
+ boundary.draw();
+ } // end of shadeplot
+
+ void shadeplot(double f(double), double t_min, double t_max,
+ unsigned int num_pts)
+ {
+ shadeplot(f, zero, t_min, t_max, num_pts);
+ }
+} // end of namespace