summaryrefslogtreecommitdiff
path: root/graphics/asymptote/base
diff options
context:
space:
mode:
Diffstat (limited to 'graphics/asymptote/base')
-rw-r--r--graphics/asymptote/base/bezulate.asy2
-rw-r--r--graphics/asymptote/base/contour.asy31
-rw-r--r--graphics/asymptote/base/palette.asy10
-rw-r--r--graphics/asymptote/base/plain_boxes.asy3
-rw-r--r--graphics/asymptote/base/rationalSimplex.asy71
-rw-r--r--graphics/asymptote/base/simplex.asy54
-rw-r--r--graphics/asymptote/base/three.asy14
7 files changed, 103 insertions, 82 deletions
diff --git a/graphics/asymptote/base/bezulate.asy b/graphics/asymptote/base/bezulate.asy
index 756ee00ac3..e09b86ed25 100644
--- a/graphics/asymptote/base/bezulate.asy
+++ b/graphics/asymptote/base/bezulate.asy
@@ -1,6 +1,6 @@
// Bezier triangulation routines written by Orest Shardt, 2008.
-private real fuzz=sqrtEpsilon;
+private real fuzz=1e-6;
real duplicateFuzz=1e-3; // Work around font errors.
real maxrefinements=10;
diff --git a/graphics/asymptote/base/contour.asy b/graphics/asymptote/base/contour.asy
index f2ee0e78fe..8c6dbba86b 100644
--- a/graphics/asymptote/base/contour.asy
+++ b/graphics/asymptote/base/contour.asy
@@ -176,7 +176,8 @@ private void collect(pair[][][] points, real[] c)
}
// Join path segments.
-private guide[][] connect(pair[][][] points, real[] c, interpolate join)
+private guide[][] connect(picture pic, pair[][][] points, real[] c,
+ interpolate join)
{
// set up return value
guide[][] result=new guide[c.length][];
@@ -189,13 +190,13 @@ private guide[][] connect(pair[][][] points, real[] c, interpolate join)
if(pts.length > 0) {
if(pts.length > 1 && abs(pts[0]-pts[pts.length-1]) < eps) {
guide[] g=sequence(new guide(int i) {
- return pts[i];
+ return (pic.scale.x.T(pts[i].x), pic.scale.y.T(pts[i].y));
},pts.length-1);
g.push(cycle);
gd=join(...g);
} else
gd=join(...sequence(new guide(int i) {
- return pts[i];
+ return (pic.scale.x.T(pts[i].x), pic.scale.y.T(pts[i].y));
},pts.length));
}
resultcnt[i]=gd;
@@ -211,7 +212,7 @@ private guide[][] connect(pair[][][] points, real[] c, interpolate join)
// midpoint: optional array containing values of f at cell midpoints
// c: array of contour values
// join: interpolation operator (e.g. operator -- or operator ..)
-guide[][] contour(pair[][] z, real[][] f,
+guide[][] contour(picture pic=currentpicture, pair[][] z, real[][] f,
real[][] midpoint=new real[][], real[] c,
interpolate join=operator --)
{
@@ -445,7 +446,7 @@ guide[][] contour(pair[][] z, real[][] f,
collect(points,c); // Required to join remaining case1 cycles.
- return connect(points,c,join);
+ return connect(pic,points,c,join);
}
// Return contour guides for a 2D data array on a uniform lattice
@@ -454,8 +455,8 @@ guide[][] contour(pair[][] z, real[][] f,
// a,b: diagonally opposite vertices of rectangular domain
// c: array of contour values
// join: interpolation operator (e.g. operator -- or operator ..)
-guide[][] contour(real[][] f, real[][] midpoint=new real[][],
- pair a, pair b, real[] c,
+guide[][] contour(picture pic=currentpicture, real[][] f,
+ real[][] midpoint=new real[][], pair a, pair b, real[] c,
interpolate join=operator --)
{
int nx=f.length-1;
@@ -473,7 +474,7 @@ guide[][] contour(real[][] f, real[][] midpoint=new real[][],
zi[j]=(xi,interp(a.y,b.y,j/ny));
}
}
- return contour(z,f,midpoint,c,join);
+ return contour(pic,z,f,midpoint,c,join);
}
// return contour guides for a real-valued function
@@ -482,8 +483,8 @@ guide[][] contour(real[][] f, real[][] midpoint=new real[][],
// c: array of contour values
// nx,ny: number of subdivisions in x and y directions (determines accuracy)
// join: interpolation operator (e.g. operator -- or operator ..)
-guide[][] contour(real f(real, real), pair a, pair b,
- real[] c, int nx=ngraph, int ny=nx,
+guide[][] contour(picture pic=currentpicture, real f(real, real), pair a,
+ pair b, real[] c, int nx=ngraph, int ny=nx,
interpolate join=operator --)
{
// evaluate function at points and midpoints
@@ -501,7 +502,7 @@ guide[][] contour(real f(real, real), pair a, pair b,
}
}
- return contour(dat,midpoint,a,b,c,join);
+ return contour(pic,dat,midpoint,a,b,c,join);
}
void draw(picture pic=currentpicture, Label[] L=new Label[],
@@ -648,14 +649,14 @@ private void addseg(pair[][] gds, segment seg)
return;
}
-guide[][] contour(real f(pair), pair a, pair b,
+guide[][] contour(picture pic=currentpicture, real f(pair), pair a, pair b,
real[] c, int nx=ngraph, int ny=nx,
interpolate join=operator --)
{
- return contour(new real(real x, real y) {return f((x,y));},a,b,c,nx,ny,join);
+ return contour(pic,new real(real x, real y) {return f((x,y));},a,b,c,nx,ny,join);
}
-guide[][] contour(pair[] z, real[] f, real[] c, interpolate join=operator --)
+guide[][] contour(picture pic=currentpicture, pair[] z, real[] f, real[] c, interpolate join=operator --)
{
if(z.length != f.length)
abort("z and f arrays have different lengths");
@@ -678,5 +679,5 @@ guide[][] contour(pair[] z, real[] f, real[] c, interpolate join=operator --)
collect(points,c);
- return connect(points,c,join);
+ return connect(pic,points,c,join);
}
diff --git a/graphics/asymptote/base/palette.asy b/graphics/asymptote/base/palette.asy
index e3d6218312..9923e5b3aa 100644
--- a/graphics/asymptote/base/palette.asy
+++ b/graphics/asymptote/base/palette.asy
@@ -190,8 +190,8 @@ bounds image(picture pic=currentpicture, pair[] z, real[] f,
real rmax=pic.scale.z.T(bounds.max);
palette=adjust(pic,m,M,rmin,rmax,palette);
- rmin=max(rmin,m);
- rmax=min(rmax,M);
+ rmin=max(rmin,pic.scale.z.T(m));
+ rmax=min(rmax,pic.scale.z.T(M));
// Crop data to allowed range and scale
if(range != Full || pic.scale.z.scale.T != identity ||
@@ -201,6 +201,12 @@ bounds image(picture pic=currentpicture, pair[] z, real[] f,
real M=bounds.max;
f=map(new real(real x) {return T(min(max(x,m),M));},f);
}
+ if(pic.scale.x.scale.T != identity || pic.scale.x.postscale.T != identity ||
+ pic.scale.y.scale.T != identity || pic.scale.y.postscale.T != identity) {
+ scalefcn Tx=pic.scale.x.T;
+ scalefcn Ty=pic.scale.y.T;
+ z=map(new pair(pair z) {return (Tx(z.x),Ty(z.y));},z);
+ }
int[] edges={0,0,1};
int N=palette.length-1;
diff --git a/graphics/asymptote/base/plain_boxes.asy b/graphics/asymptote/base/plain_boxes.asy
index c675ab4cde..50501a4089 100644
--- a/graphics/asymptote/base/plain_boxes.asy
+++ b/graphics/asymptote/base/plain_boxes.asy
@@ -20,7 +20,6 @@ path roundbox(frame dest, frame src=dest, real xmargin=0, real ymargin=xmargin,
pair m=min(src);
pair M=max(src);
pair bound=M-m;
- int sign=filltype == NoFill ? 1 : -1;
real a=bound.x+2*xmargin;
real b=bound.y+2*ymargin;
real ds=0;
@@ -90,7 +89,7 @@ object object(Label L, envelope e, real xmargin=0, real ymargin=xmargin,
L0.position(0);
L0.p(p);
add(F.f,L0);
- F.g=e(F.f,xmargin,ymargin,p,filltype);
+ F.g=e(F.f,xmargin,ymargin,p,filltype,above);
return F;
}
diff --git a/graphics/asymptote/base/rationalSimplex.asy b/graphics/asymptote/base/rationalSimplex.asy
index 6070c7cbdb..3a376ba2dd 100644
--- a/graphics/asymptote/base/rationalSimplex.asy
+++ b/graphics/asymptote/base/rationalSimplex.asy
@@ -38,6 +38,7 @@ struct simplex {
rational[] xStandard;
rational cost;
rational[] d;
+ bool dual=false;
int m,n;
int J;
@@ -72,7 +73,7 @@ struct simplex {
int iterate(rational[][] E, int N, int[] Bindices) {
while(true) {
- // Find first negative entry in bottom (reduced cost) row
+ // Bland's rule: first negative entry in reduced cost (bottom) row enters
rational[] Em=E[m];
for(J=1; J <= N; ++J)
if(Em[J] < 0) break;
@@ -96,7 +97,7 @@ struct simplex {
rational r=E[i][0]/u;
if(r <= t && (r < t || Bindices[i] < Bindices[I])) {
t=r; I=i;
- } // Bland's rule: exiting variable has smallest minimizing index
+ } // Bland's rule: exiting variable has smallest minimizing subscript
}
}
if(I == -1)
@@ -113,8 +114,7 @@ struct simplex {
int iterateDual(rational[][] E, int N, int[] Bindices) {
while(true) {
- // Find first negative entry in zeroth (basic variable) column
- rational[] Em=E[m];
+ // Bland's rule: negative variable with smallest subscript exits
int I;
for(I=0; I < m; ++I) {
if(E[I][0] < 0) break;
@@ -123,23 +123,30 @@ struct simplex {
if(I == m)
break;
+ for(int i=I+1; i < m; ++i) {
+ if(E[i][0] < 0 && Bindices[i] < Bindices[I])
+ I=i;
+ }
+
+ rational[] Em=E[m];
+ rational[] EI=E[I];
int J=0;
rational t;
for(int j=1; j <= N; ++j) {
- rational u=E[I][j];
+ rational u=EI[j];
if(u < 0) {
- t=-E[m][j]/u;
+ t=-Em[j]/u;
J=j;
break;
}
}
for(int j=J+1; j <= N; ++j) {
- rational u=E[I][j];
+ rational u=EI[j];
if(u < 0) {
- rational r=-E[m][j]/u;
+ rational r=-Em[j]/u;
if(r <= t && (r < t || j < J)) {
t=r; J=j;
- } // Bland's rule: exiting variable has smallest minimizing index
+ } // Bland's rule: smallest minimizing subscript enters
}
}
if(J == 0)
@@ -159,8 +166,7 @@ struct simplex {
// b is a vector of length m, and c is a vector of length n.
// Can set phase1=false if the last m columns of A form the identity matrix.
void operator init(rational[] c, rational[][] A, rational[] b,
- bool phase1=true, bool dual=false) {
- if(dual) phase1=false;
+ bool phase1=true) {
// Phase 1
m=A.length;
if(m == 0) {case=INFEASIBLE; return;}
@@ -245,7 +251,7 @@ struct simplex {
simplexPhase1(c,A,b,Bindices);
iterate(E,n+k,Bindices);
-
+
if(Em[0] != 0) {
simplexTableau(E,Bindices);
case=INFEASIBLE;
@@ -280,7 +286,7 @@ struct simplex {
for(int i=0; i < m; ++i) {
int k=Bindices[i];
if(k > n) continue;
- Bindices[ip]=k;
+ Bindices[ip]=k;
cB[ip]=c[k-1];
rational[] Dip=D[ip];
rational[] Ei=E[i];
@@ -322,12 +328,14 @@ struct simplex {
case=(dual ? iterateDual : iterate)(D,n,Bindices);
simplexTableau(D,Bindices);
- x=new rational[n];
- for(int j=0; j < n; ++j)
- x[j]=0;
+ if(case != INFEASIBLE) {
+ x=new rational[n];
+ for(int j=0; j < n; ++j)
+ x[j]=0;
- for(int k=0; k < m; ++k)
- x[Bindices[k]-1]=D[k][0];
+ for(int k=0; k < m; ++k)
+ x[Bindices[k]-1]=D[k][0];
+ }
if(case == UNBOUNDED) {
d=new rational[n];
@@ -366,21 +374,21 @@ struct simplex {
ai[j]=Ai[j];
}
}
-
+
int k=0;
bool phase1=false;
- bool dual=count == m && all(c >= 0);
+ dual=count == m && all(c >= 0);
for(int i=0; i < m; ++i) {
rational[] ai=a[i];
for(int j=0; j < k; ++j)
ai[n+j]=0;
+ int si=s[i];
if(k < count)
- ai[n+k]=-s[i];
+ ai[n+k]=-si;
for(int j=k+1; j < count; ++j)
ai[n+j]=0;
- int si=s[i];
if(si == 0) phase1=true;
else {
++k;
@@ -391,21 +399,20 @@ struct simplex {
for(int j=0; j < n+count; ++j)
ai[j]=-ai[j];
}
- } else if(si*bi > 0) {
- if(dual && si == 1) {
- b[i]=-bi;
- s[i]=-1;
- for(int j=0; j < n+count; ++j)
- ai[j]=-ai[j];
- } else
- phase1=true;
- }
+ } else if(dual && si == 1) {
+ b[i]=-bi;
+ s[i]=-1;
+ for(int j=0; j < n+count; ++j)
+ ai[j]=-ai[j];
+ } else if(si*bi > 0)
+ phase1=true;
}
}
+ if(dual) phase1=false;
rational[] C=concat(c,array(count,rational(0)));
simplexInit(C,a,b,count);
- operator init(C,a,b,phase1,dual);
+ operator init(C,a,b,phase1);
if(case != INFEASIBLE) {
xStandard=copy(x);
diff --git a/graphics/asymptote/base/simplex.asy b/graphics/asymptote/base/simplex.asy
index c27b3236be..e6d0410b23 100644
--- a/graphics/asymptote/base/simplex.asy
+++ b/graphics/asymptote/base/simplex.asy
@@ -8,6 +8,7 @@ struct simplex {
int case;
real[] x;
real cost;
+ bool dual=false;
int m,n;
int J;
@@ -43,7 +44,7 @@ struct simplex {
int iterate(real[][] E, int N, int[] Bindices) {
while(true) {
- // Find first negative entry in bottom (reduced cost) row
+ // Bland's rule: first negative entry in reduced cost (bottom) row enters
real[] Em=E[m];
for(J=1; J <= N; ++J)
if(Em[J] < 0) break;
@@ -67,7 +68,7 @@ struct simplex {
real r=E[i][0]/u;
if(r <= t && (r < t || Bindices[i] < Bindices[I])) {
t=r; I=i;
- } // Bland's rule: exiting variable has smallest minimizing index
+ } // Bland's rule: exiting variable has smallest minimizing subscript
}
}
if(I == -1)
@@ -82,8 +83,7 @@ struct simplex {
int iterateDual(real[][] E, int N, int[] Bindices) {
while(true) {
- // Find first negative entry in zeroth (basic variable) column
- real[] Em=E[m];
+ // Bland's rule: negative variable with smallest subscript exits
int I;
for(I=0; I < m; ++I) {
if(E[I][0] < 0) break;
@@ -92,23 +92,30 @@ struct simplex {
if(I == m)
break;
+ for(int i=I+1; i < m; ++i) {
+ if(E[i][0] < 0 && Bindices[i] < Bindices[I])
+ I=i;
+ }
+
+ real[] Em=E[m];
+ real[] EI=E[I];
int J=0;
real t;
for(int j=1; j <= N; ++j) {
- real u=E[I][j];
+ real u=EI[j];
if(u < -EpsilonA) {
- t=-E[m][j]/u;
+ t=-Em[j]/u;
J=j;
break;
}
}
for(int j=J+1; j <= N; ++j) {
- real u=E[I][j];
+ real u=EI[j];
if(u < -EpsilonA) {
- real r=-E[m][j]/u;
- if(r <= t && (r < t || j < J)) {
+ real r=-Em[j]/u;
+ if(r < t) {
t=r; J=j;
- } // Bland's rule: exiting variable has smallest minimizing index
+ } // Bland's rule: smallest minimizing subscript enters
}
}
if(J == 0)
@@ -125,9 +132,7 @@ struct simplex {
// where A is an m x n matrix, x is a vector of n non-negative numbers,
// b is a vector of length m, and c is a vector of length n.
// Can set phase1=false if the last m columns of A form the identity matrix.
- void operator init(real[] c, real[][] A, real[] b, bool phase1=true,
- bool dual=false) {
- if(dual) phase1=false;
+ void operator init(real[] c, real[][] A, real[] b, bool phase1=true) {
static real epsilon=sqrt(realEpsilon);
real normA=norm(A);
real epsilonA=100.0*realEpsilon*normA;
@@ -324,11 +329,11 @@ struct simplex {
real[] ai=a[i];
for(int j=0; j < k; ++j)
ai[n+j]=0;
+ int si=s[i];
if(k < count)
- ai[n+k]=-s[i];
+ ai[n+k]=-si;
for(int j=k+1; j < count; ++j)
ai[n+j]=0;
- int si=s[i];
if(si == 0) phase1=true;
else {
++k;
@@ -339,19 +344,18 @@ struct simplex {
for(int j=0; j < n+count; ++j)
ai[j]=-ai[j];
}
- } else if(si*bi > 0) {
- if(dual && si == 1) {
- b[i]=-bi;
- s[i]=-1;
- for(int j=0; j < n+count; ++j)
- ai[j]=-ai[j];
- } else
- phase1=true;
- }
+ } else if(dual && si == 1) {
+ b[i]=-bi;
+ s[i]=-1;
+ for(int j=0; j < n+count; ++j)
+ ai[j]=-ai[j];
+ } else if(si*bi > 0)
+ phase1=true;
}
}
- operator init(concat(c,array(count,0.0)),a,b,phase1,dual);
+ if(dual) phase1=false;
+ operator init(concat(c,array(count,0.0)),a,b,phase1);
if(case == OPTIMAL && count > 0)
x.delete(n,n+count-1);
diff --git a/graphics/asymptote/base/three.asy b/graphics/asymptote/base/three.asy
index d7a20b516c..5fc0d2f109 100644
--- a/graphics/asymptote/base/three.asy
+++ b/graphics/asymptote/base/three.asy
@@ -2582,7 +2582,7 @@ string embed3D(string prefix, string label=prefix, string text=label,
if(script == "") script=defaultembed3Dscript;
if(P.infinity) {
- if(viewplanesize==0) {
+ if(viewplanesize == 0) {
triple lambda=max3(f)-min3(f);
pair margin=viewportmargin((lambda.x,lambda.y));
viewplanesize=(max(lambda.x+2*margin.x,lambda.y+2*margin.y))/P.zoom;
@@ -2634,6 +2634,7 @@ struct scene
pair viewportmargin;
transform3 T=identity4;
picture pic2;
+ bool keepAspect=true;
void operator init(frame f, real width, real height,
projection P=currentprojection) {
@@ -2649,6 +2650,7 @@ struct scene
projection P=currentprojection) {
real xsize3=pic.xsize3, ysize3=pic.ysize3, zsize3=pic.zsize3;
bool warn=true;
+ this.keepAspect=keepAspect;
if(xsize3 == 0 && ysize3 == 0 && zsize3 == 0) {
xsize3=ysize3=zsize3=max(xsize,ysize);
@@ -2678,7 +2680,7 @@ struct scene
bool scale=xsize != 0 || ysize != 0;
bool scaleAdjust=scale && this.P.autoadjust;
- bool noAdjust=(this.P.absolute || !scaleAdjust);
+ bool noAdjust=this.P.absolute || !scaleAdjust;
if(pic.bounds3.exact && noAdjust)
this.P.bboxonly=false;
@@ -2801,9 +2803,11 @@ object embed(string prefix=outprefix(), string label=prefix,
triple m=min3(S.f);
triple M=max3(S.f);
triple lambda=M-m;
- S.viewportmargin=viewportmargin((lambda.x,lambda.y));
- S.width=ceil(lambda.x+2*S.viewportmargin.x);
- S.height=ceil(lambda.y+2*S.viewportmargin.y);
+ if(S.keepAspect) {
+ S.viewportmargin=viewportmargin((lambda.x,lambda.y));
+ S.width=ceil(lambda.x+2*S.viewportmargin.x);
+ S.height=ceil(lambda.y+2*S.viewportmargin.y);
+ }
orthoshift=(-0.5(m.x+M.x),-0.5*(m.y+M.y),0);
S.f=shift(orthoshift)*S.f; // Eye will be at (0,0,0)
inv=inverse(modelview);