summaryrefslogtreecommitdiff
path: root/obsolete/systems
diff options
context:
space:
mode:
authorNorbert Preining <norbert@preining.info>2020-04-25 03:01:16 +0000
committerNorbert Preining <norbert@preining.info>2020-04-25 03:01:16 +0000
commit7a7be7eaa67109eac37916ea48662c24ddc570d0 (patch)
treeacbc4c8b8f3b7b6bddfc4e869a2cc46ac3f4cd69 /obsolete/systems
parent18510c8052e3e5b3d9a373c6418289f70d0fc28d (diff)
CTAN sync 202004250301
Diffstat (limited to 'obsolete/systems')
-rw-r--r--obsolete/systems/knuth/unsupported/patgen/patgen.web1978
1 files changed, 0 insertions, 1978 deletions
diff --git a/obsolete/systems/knuth/unsupported/patgen/patgen.web b/obsolete/systems/knuth/unsupported/patgen/patgen.web
deleted file mode 100644
index 3a99986314..0000000000
--- a/obsolete/systems/knuth/unsupported/patgen/patgen.web
+++ /dev/null
@@ -1,1978 +0,0 @@
-% This is PATGEN.WEB in text format, as of October 24, 1996.
-% Version 1.0 was finished in 1983.
-% Version 2.0 major revision for `8-bit TeX' (November 8, 1991).
-% Version 2.1 allows left/right_hypen_min from terminal (April, 1992).
-% Version 2.2 added `close_in(dictionary)' (August, 1996).
-% Version 2.3 avoided division by zero - Karl Berry (October, 1996).
-
-% Here is TeX material that gets inserted after \input webmac
-\def\hang{\hangindent 3em\indent\ignorespaces}
-\def\PASCAL{Pascal}
-
-\def\title{PATGEN}
-\def\contentspagenumber{45} % should be odd
-\def\topofcontents{
- \line{\tenit Appendix\hfil \mainfont\contentspagenumber}
- \vfill
- \null\vskip 40pt
- \centerline{\titlefont {\ttitlefont PAT}tern {\ttitlefont GEN}eration
- program}
- \vskip 8pt
- \centerline{\titlefont for the \TeX 82 hyphenator}
- \vskip 15pt
- \centerline{(Version 2.3, October 1996)}
- \vfill}
-\pageno=\contentspagenumber \advance\pageno by 1
-
-@* Introduction.
-This program takes a list of hyphenated words and generates a set of
-patterns that can be used by the \TeX 82 hyphenation algorithm.
-
-The patterns consist of strings of letters and digits, where a digit
-indicates a `hyphenation value' for some intercharacter position. For
-example, the pattern \.{3t2ion} specifies that if the string \.{tion}
-occurs in a word, we should assign a hyphenation value of 3 to the
-position immediately before the \.{t}, and a value of 2 to the position
-between the \.{t} and the \.{i}.
-
-To hyphenate a word, we find all patterns that match within the word and
-determine the hyphenation values for each intercharacter position. If
-more than one pattern applies to a given position, we take the maximum of
-the values specified (i.e., the higher value takes priority). If the
-resulting hyphenation value is odd, this position is a feasible
-breakpoint; if the value is even or if no value has been specified, we are
-not allowed to break at this position.
-
-In order to find quickly the patterns that match in a given word and to
-compute the associated hyphenation values, the patterns generated by this
-program are compiled by \.{INITEX} into a compact version of a finite
-state machine. For further details, see the \TeX 82 source.
-
-The |banner| string defined here should be changed whenever \.{PATGEN}
-gets modified.
-
-@d banner=='This is PATGEN, Version 2.3' {printed when the program starts}
-
-@ The original version~1 of \.{PATGEN} was written by Frank~M. Liang
-@^Liang, Franklin Mark@>
-in 1982; a major revision (version~2) by Peter Breitenlohner in 1991
-@^Breitenlohner, Peter@>
-is mostly related to the new features of `8-bit \TeX' (version~3 of
-\TeX 82). The differences between versions~1 and~2 fall into several
-categories (all of Liang's algorithms have been left essentially
-unchanged): (1)~enhancements related to 8-bit \TeX, e.g., the
-introduction of 8-bit |ASCII_code| values and of \.{\\lefthyphenmin} and
-\.{\\righthyphenmin}; (2)~a modification of the input and output
-procedures which should make language specific modifications of this
-program unnecessary (information about the external representation of
-all `letters' used by a particular language is obtained from the
-|translate| file); (3)~removal of ANSI standard \PASCAL\ and range check
-violations; (4)~removal of uninitialized variables; (5)~minor
-modifications in order to simplify system-dependent modifications.
-@^range check violations@>
-
-@ This program is written in standard \PASCAL, except where it is
-necessary to use extensions. All places where nonstandard constructions
-are used have been listed in the index under ``system dependencies.''
-@!@^system dependencies@>
-
-The program uses \PASCAL's standard |input| and |output| files to read
-from and write to the user's terminal.
-
-@d print(#)==write(output,#)
-@d print_ln(#)==write_ln(output,#)
-@d get_input(#)==read(input,#)
-@d get_input_ln(#)==
- begin if eoln(input) then read_ln(input);
- read(input,#);
- end
-@#
-@d end_of_PATGEN=9999
-
-@p @<Compiler directives@>@/
-program PATGEN(@!dictionary,@!patterns,@!translate,@!patout);
-label end_of_PATGEN;
-const @<Constants in the outer block@>@/
-type @<Types in the outer block@>@/
-var @<Globals in the outer block@>@/
-procedure initialize; {this procedure gets things started properly}
- var @<Local variables for initialization@>@/
- begin print_ln(banner);@/
- @<Set initial values@>@/
- end;
-
-@ The patterns are generated in a series of sequential passes through the
-dictionary. In each pass, we collect count statistics for a particular
-type of pattern, taking into account the effect of patterns chosen in
-previous passes. At the end of a pass, the counts are examined and new
-patterns are selected.
-
-Patterns are chosen one level at a time, in order of increasing
-hyphenation value. In the sample run shown below, the parameters
-|hyph_start| and |hyph_finish| specify the first and last levels,
-respectively, to be generated.
-
-Patterns at each level are chosen in order of increasing pattern length
-(usually starting with length~2). This is controlled by the parameters
-|pat_start| and |pat_finish| specified at the beginning of each level.
-
-Furthermore patterns of the same length applying to different
-intercharacter positions are chosen in separate passes through the
-dictionary. Since patterns of length $n$ may apply to $n+1$ different
-positions, choosing a set of patterns of lengths $2$ through $n$ for a
-given level requires $(n+1)(n+2)/2-3$ passes through the word list.
-
-At each level, the selection of patterns is controlled by the three
-parameters |good_wt|, |bad_wt|, and |thresh|. A hyphenating pattern will
-be selected if |good*good_wt-bad*bad_wt>=thresh|, where |good| and
-|bad| are the number of times the pattern could and could not be
-hyphenated, respectively, at a particular point. For inhibiting patterns,
-|good| is the number of errors inhibited, and |bad| is the number of
-previously found hyphens inhibited.
-
-@<Globals...@>=
-@!pat_start, @!pat_finish: dot_type;
-@!hyph_start, @!hyph_finish: val_type;
-@!good_wt, @!bad_wt, @!thresh: integer;
-
-@ The proper choice of the parameters to achieve a desired degree of
-hyphenation is discussed in Chapter~4. Below we show part of a sample run
-of \.{PATGEN}, with the user's inputs underlined.
-$$\vbox{\halign{\.{#\hfil}\cr
-$\underline{\smash{\.{ex patgen}}}$\cr
-DICTIONARY : $\underline{\smash{\.{murray.hyf}}}$\cr
-PATTERNS : $\underline{\smash{\.{nul:}}}$\cr
-TRANSLATE : $\underline{\smash{\.{nul:}}}$\cr
-PATOUT : $\underline{\smash{\.{murray.pat}}}$\cr
-This is PATGEN, Version 2.0\cr
-left\_hyphen\_min = 2, right\_hyphen\_min = 3, 26 letters\cr
-0 patterns read in\cr
-pattern trie has 256 nodes, trie\_max = 256, 0 outputs\cr
-hyph\_start, hyph\_finish: $\underline{\.{1 1}}$\cr
-pat\_start, pat\_finish: $\underline{\.{2 3}}$\cr
-good weight, bad weight, threshold: $\underline{\.{1 3 3}}$\cr
-processing dictionary with pat\_len = 2, pat\_dot = 1\cr
-\cr
-0 good, 0 bad, 3265 missed\cr
- 0.00 \%, 0.00 \%, 100.00 \%\cr
-338 patterns, 466 nodes in count trie, triec\_max = 983\cr
-46 good and 152 bad patterns added (more to come)\cr
-finding 715 good and 62 bad hyphens, efficiency = 10.72\cr
-pattern trie has 326 nodes, trie\_max = 509, 2 outputs\cr
-processing dictionary with pat\_len = 2, pat\_dot = 0\cr
-\cr
-\hskip 1.5em ...\cr
-\cr
-1592 nodes and 39 outputs deleted\cr
-total of 220 patterns at hyph\_level 1\cr
-hyphenate word list? $\underline{\smash{\.{y}}}$\cr
-writing pattmp.1\cr
-\cr
-2529 good, 243 bad, 736 missed\cr
- 77.46 \%, 7.44 \%, 22.54 \%\cr}}$$
-
-@ Note that before beginning a pattern selection run, a file of existing
-patterns may be read in. In order for pattern selection to work properly,
-this file should only contain patterns with hyphenation values less than
-|hyph_start|. Each word in the dictionary is hyphenated according to the
-existing set of patterns (including those chosen on previous passes of the
-current run) before pattern statistics are collected.
-
-Also, a hyphenated word list may be written out at the end of a run. This
-list can be read back in as the `dictionary' to continue pattern selection
-from this point. In addition to ordinary hyphens (|'-'|) the new list
-will contain two additional kinds of ``hyphens'' between letters, namely
-hyphens that have been found by previously generated patterns, as well
-as erroneous hyphens that have been inserted by those patterns. These
-are represented by the symbols |'*'| and |'.'|, respectively. The three
-characters |'-'|, |'*'|, and |'.'| are, in fact, just the default values
-used to represent the three kinds of hyphens, the |translate| file may
-specify different characters to be used instead of them.
-
-In addition, a word list can include hyphen weights, both for entire words
-and for individual hyphen positions. (The syntax for this is explained in
-the dictionary processing routines.) Thus common words can be weighted
-more heavily, or, more generally, words can be weighted according to their
-frequency of occurrence, if such information is available. The use of
-hyphen weights combined with an appropriate setting of the pattern
-selection threshold can be used to guarantee hyphenation of certain words
-or certain hyphen positions within a word.
-
-@ Below we show the first few lines of a typical word list,
-before and after generating a level of patterns.
-$$\vbox{\halign{\tabskip 1in\.{#\hfil}&\.{#\hfil}\cr
-abil-i-ty& abil*i*ty\cr
-ab-sence& ab*sence\cr
-ab-stract& ab*stract\cr
-ac-a-dem-ic& ac-a-d.em-ic\cr
-ac-cept& ac*cept\cr
-ac-cept-able& ac*cept-able\cr
-ac-cept-ed& ac*cept*ed\cr
-\hskip 1.5em ...&\hskip 1.5em ...\cr
-}}$$
-
-@ We augment \PASCAL 's control structures a bit using |goto|\unskip's
-and the following symbolic labels.
-
-@d exit=10 {go here to leave a procedure}
-@d continue=22 {go here to resume a loop}
-@d done=30 {go here to exit a loop}
-@d found=40 {go here when you've found it}
-@d not_found=41 {go here when you've found something else}
-
-@ Here are some macros for common programming idioms.
-
-@d incr(#)==#:=#+1 {increase a variable by unity}
-@d decr(#)==#:=#-1 {decrease a variable by unity}
-@#
-@d Incr_Decr_end(#)==#
-@d Incr(#)==#:=#+Incr_Decr_end {we use |Incr(a)(b)| to increase \dots}
-@d Decr(#)==#:=#-Incr_Decr_end {\dots\ and |Decr(a)(b)| to decrease
- variable |a| by |b|; this can be optimized for some compilers}
-@#
-@d loop == @+ while true do@+ {repeat over and over until a |goto| happens}
-@d do_nothing == {empty statement}
-@d return==goto exit {terminate a procedure call}
-@f return==nil
-@f loop == xclause
-
-@ In case of serious problems \.{PATGEN} will give up, after issuing an
-error message about what caused the error. Such errors might be
-discovered inside of subroutines inside of subroutines, so a \.{WEB}
-macro called |jump_out| has been introduced. This macro, which transfers
-control to the label |end_of_PATGEN| at the end of the program, contains
-the only non-local |@!goto| statement in \.{PATGEN}. Some \PASCAL\
-compilers do not implement non-local |goto| statements. In such cases
-the |goto end_of_PATGEN| in the definition of |jump_out| should simply
-be replaced by a call on some system procedure that quietly terminates
-the program.
-@^system dependencies@>
-
-An overflow stop occurs if \.{PATGEN}'s tables aren't large enough.
-
-@d jump_out==goto end_of_PATGEN {terminates \.{PATGEN}}
-@#
-@d error(#)==begin print_ln(#); jump_out; end
-@d overflow(#)==error('PATGEN capacity exceeded, sorry [',#,'].')
-@.PATGEN capacity exceeded ...@>
-
-@ @<Compiler directives@>=
-@{@&$C-,A+,D-@} {no range check, catch arithmetic overflow, no debug overhead}
-@^system dependencies@>
-
-@* The character set.
-Since different \PASCAL\ systems may use different character sets, we use
-the name |text_char| to stand for the data type of characters appearing in
-external text files. We also assume that |text_char| consists of the
-elements |chr(first_text_char)| through |chr(last_text_char)|, inclusive.
-The definitions below should be adjusted if necessary.
-@^system dependencies@>
-@^character set dependencies@>
-
-Internally, characters will be represented using the type |ASCII_code|.
-Note, however, that only some of the standard ASCII characters are
-assigned a fixed |ASCII_code|; all other characters are assigned an
-|ASCII_code| dynamically when they are first read from the |translate|
-file specifying the external representation of the `letters' used by a
-particular language. For the sake of generality the standard version of
-this program allows for 256 different |ASCII_code| values, but 128 of
-them would probably suffice for all practical purposes.
-
-@d first_text_char=0 {ordinal number of the smallest element of |text_char|}
-@d last_text_char=255 {ordinal number of the largest element of |text_char|}
-@#
-@d last_ASCII_code=255 {the highest allowed |ASCII_code| value}
-
-@<Types...@>=
-@!text_char=char; {the data type of characters in text files}
-@!ASCII_code=0..last_ASCII_code; {internal representation of input characters}
-@!text_file=text;
-
-@ Some \PASCAL s can store only signed eight-bit quantities (|-128..127|)
-but not unsigned ones (|0..255|) in one byte. If storage is tight we
-must, for such \PASCAL s, either restrict |ASCII_code| to the range
-|0..127| (with some loss of generality) or convert between |ASCII_code|
-and |packed_ASCII_code| and vice versa by subtracting or adding an
-offset. (Or we might define |packed_ASCII_code| as |char| and use
-suitable typecasts for the conversion.) Only the type |packed_ASCII_code|
-will be used for large arrays and the \.{WEB} macros |si| and |so| will
-always be used to convert an |ASCII_code| into a |packed_ASCII_code| and
-vice versa.
-@^system dependencies@>
-
-@d min_packed=0 {change this to `$\\{min\_packed}=-128$' when necessary;
- and don't forget to change the definitions of |si| and |so| below
- accordingly}
-@#
-@d si(#)==# {converts |ASCII_code| to |packed_ASCII_code|}
-@d so(#)==# {converts |packed_ASCII_code| to |ASCII_code|}
-
-@<Types...@>=
-@!packed_ASCII_code=min_packed..last_ASCII_code+min_packed;
-
-@ We want to make sure that the ``constants'' defined in this program
-satisfy all the required relations. Some of them are needed to avoid
-time-consuming checks while processing the dictionary and\slash or to
-prevent range check and array bound violations.
-@^range check violations@>
-
-Here we check that the definitions of |ASCII_code| and
-|packed_ASCII_code| are consistent with those of |si| and |so|.
-
-@<Set init...@>=
-bad:=0;@/
-if last_ASCII_code<127 then bad:=1;
-if (si(0)<>min_packed)or(so(min_packed)<>0) then bad:=2;@/
-@<Check the ``constant'' values for consistency@>@;
-if bad>0 then error('Bad constants---case ',bad:1);
-@.Bad constants@>
-
-@ @<Local variables for init...@>=
-@!bad:integer;
-@!i:text_char;
-@!j:ASCII_code;
-
-@ We convert between |ASCII_code| and the user's external character set by
-means of arrays |xord| and |xchr| that are analogous to \PASCAL's |ord|
-and |chr| functions.
-
-@<Globals...@>=
-@!xord: array [text_char] of ASCII_code;
- {specifies conversion of input characters}
-@!xchr: array [ASCII_code] of text_char;
- {specifies conversion of output characters}
-
-@ The following code initializes the |xchr| array with some of the
-standard ASCII characters.
-
-@<Set init...@>=
-for j:=0 to last_ASCII_code do xchr[j]:=' ';
-xchr["."]:='.';@/
-xchr["0"]:='0'; xchr["1"]:='1'; xchr["2"]:='2'; xchr["3"]:='3';
-xchr["4"]:='4'; xchr["5"]:='5'; xchr["6"]:='6'; xchr["7"]:='7';
-xchr["8"]:='8'; xchr["9"]:='9';@/
-xchr["A"]:='A'; xchr["B"]:='B'; xchr["C"]:='C'; xchr["D"]:='D';
-xchr["E"]:='E'; xchr["F"]:='F'; xchr["G"]:='G'; xchr["H"]:='H';
-xchr["I"]:='I'; xchr["J"]:='J'; xchr["K"]:='K'; xchr["L"]:='L';
-xchr["M"]:='M'; xchr["N"]:='N'; xchr["O"]:='O'; xchr["P"]:='P';
-xchr["Q"]:='Q'; xchr["R"]:='R'; xchr["S"]:='S'; xchr["T"]:='T';
-xchr["U"]:='U'; xchr["V"]:='V'; xchr["W"]:='W'; xchr["X"]:='X';
-xchr["Y"]:='Y'; xchr["Z"]:='Z';@/
-xchr["a"]:='a'; xchr["b"]:='b'; xchr["c"]:='c'; xchr["d"]:='d';
-xchr["e"]:='e'; xchr["f"]:='f'; xchr["g"]:='g'; xchr["h"]:='h';
-xchr["i"]:='i'; xchr["j"]:='j'; xchr["k"]:='k'; xchr["l"]:='l';
-xchr["m"]:='m'; xchr["n"]:='n'; xchr["o"]:='o'; xchr["p"]:='p';
-xchr["q"]:='q'; xchr["r"]:='r'; xchr["s"]:='s'; xchr["t"]:='t';
-xchr["u"]:='u'; xchr["v"]:='v'; xchr["w"]:='w'; xchr["x"]:='x';
-xchr["y"]:='y'; xchr["z"]:='z';
-
-@ The following system-independent code makes the |xord| array contain a
-suitable inverse to the information in |xchr|.
-
-@d invalid_code=0 {|ASCII_code| that should not appear}
-@d tab_char=@'11 {|ord| of tab character; tab characters seem to be
- unavoidable with files from UNIX systems}
-@^system dependencies@>
-@^character set dependencies@>
-
-@<Set init...@>=
-for i:=chr(first_text_char) to chr(last_text_char) do
- xord[i]:=invalid_code;
-for j:=0 to last_ASCII_code do xord[xchr[j]]:=j;
-xord[' ']:=" "; xord[chr(tab_char)]:=" ";
-
-@ So far each invalid |ASCII_code| has been assigned the character |' '|
-and all invalid characters have been assigned |ASCII_code=invalid_code|.
-The |get_ASCII| function, used only while reading the |translate| file,
-returns the |ASCII_code| corresponding to a character, assigning a new
-|ASCII_code| first if necessary.
-
-@d num_ASCII_codes=last_ASCII_code+1 {number of different |ASCII_code| values}
-
-@p function get_ASCII(@!c:text_char):ASCII_code;
-label found;
-var i: ASCII_code;
-begin i:=xord[c];
-if i=invalid_code then
- begin while i<last_ASCII_code do
- begin incr(i);
- if (xchr[i]=' ')and(i<>" ") then goto found;
- end;
- overflow(num_ASCII_codes:1,' characters');
- found: xord[c]:=i; xchr[i]:=c;
- end;
-get_ASCII:=i;
-end;
-
-@ The \TeX 82 hyphenation algorithm operates on `hyphenable words'
-converted temporarily to lower case, i.e., they may consist of up to
-255 different `letters' corresponding to \.{\\lccode}s |1..255|. These
-\.{\\lccode}s could, in principle, be language dependent but this might
-lead to undesirable results when hyphenating multilingual paragraphs.
-No more than 245 different letters can occur in hyphenation patterns
-since the characters |'0'..'9'| and |'.'| play a special r\^^Dole when
-reading patterns. For the purpose of this program each letter is
-represented internally by a unique |internal_code>=2| (|internal_code=1|
-is the |edge_of_word| indicator); |internal_code| values |2..127| will
-probably suffice for all practical purposes, but we allow the range
-|2..last_ASCII_code| for the sake of generality. Syntactically
-|internal_code| and |ASCII_code| are the same, we will use one or the
-other name according to the semantic context.
-
-@d edge_of_word=1 {|internal_code| for start and end of a word}
-
-@<Types...@>=
-@!internal_code=ASCII_code;
-@!packed_internal_code=packed_ASCII_code;
-
-@ Note that an |internal_code| used by this program is in general quite
-different from the |ASCII_code| (or rather \.{\\lccode}) used by \TeX
-82. This program allows the input of characters (from the |dictionary|
-and |patterns| file) corresponding to an |internal_code| in either lower
-or upper case form; the output (to the |patout| and |pattmp| file) will
-always be in lower case form.
-
-Unfortunately there does not (yet?) exist a standardized and widely
-accepted 8-bit character set (or a unique one-to-one translation between
-such sets). On the other hand macro expansion takes place in \TeX 82
-when reading hyphenable words and when reading patterns. Thus the lower
-and upper case versions of all `letters' used by a particular language
-can (and for the sake of portability should) be represented entirely in
-terms of the standard ASCII character set; either directly as characters
-or via macros (or active characters) with or without arguments. The
-macro definitions for such a representation will in general be language
-dependent.
-
-For the purpose of this program the external representation of the lower
-and upper case version of a letter (i.e., |internal_code|) consists of a
-unique sequence of characters (or \\{ASCII\_codes}), the only restriction
-being that no such sequence must be a subsequence of an other one.
-Moreover such sequences must not start with |' '|, |'.'|, |'0'..'9'| or
-with one of the three characters (|'-'|, |'*'|, and |'.'|) representing
-hyphens in the |dictionary| file; a sequence may, however, end with a
-mandatory |' '| as, e.g., the sequence |'\ss '|.
-
-The language dependent values of \.{\\lefthyphenmin} and
-\.{\\righthyphenmin} as well as the external representation of the lower
-and upper case letters and their collating sequence are specified in the
-|translate| file, thus making any language dependent modifications of
-this program unnecessary. If the |translate| file is empty (or does not
-exist) the values \.{\\lefthyphenmin=2} and \.{\\righthyphenmin=3} and
-|internal_code| values |2..27| with the one character external
-representations |'a'..'z'| and |'A'..'Z'| will be used as defaults.
-
-Incidentally this program can be used to convert a |dictionary| and
-|patterns| file from one (``upper case'') to another (``lower case'')
-external representation of letters.
-
-@ When reading the |dictionary| (and |patterns|) file sequences of
-characters must be recognized and converted to their corresponding
-|internal_code|. This conversion is part of \.{PATGEN}s inner loop and
-@^inner loop@>
-must therefore be done as efficient as possible. Thus we will
-mostly bypass the conversion from character to |ASCII_code| and convert
-directly to the corresponding |internal_code| using the |xclass|
-and |xint| arrays. Six types of characters are distinguished by their
-|xclass|:
-
-\yskip\hang |space_class| character |' '| terminates a pattern or word.
-
-\yskip\hang |digit_class| characters |'0'..'9'| are hyphen values for a
-pattern or hyphen weights for a word; their |xint| is the corresponding
-numeric value |0..9|.
-
-\yskip\hang |hyf_class| characters (|'.'|, |'-'|, and |'*'|) are `dots'
-and indicate hyphens in a word; their |xint| is the corresponding
-numeric value |err_hyf..found_hyf|.
-
-\yskip\hang |letter_class| characters represent a letter; their |xint|
-is the corresponding |internal_code|.
-
-\yskip\hang |escape_class| characters indicate the start of a
-multi-character sequence representing a letter.
-
-\yskip\hang |invalid_class| characters should not occur except as part
-of multi-character sequences.
-
-@d space_class=0 {the character |' '|}
-@d digit_class=1 {the characters |'0'..'9'|}
-@d hyf_class=2 {the `hyphen' characters (|'.'|, |'-'|, and |'*'|)}
-@d letter_class=3 {characters representing a letter}
-@d escape_class=4 {characters that start a multi-character sequence
- representing a letter}
-@d invalid_class=5 {characters that normally should not occur}
-@#
-@d no_hyf=0 {no hyphen}
-@d err_hyf=1 {erroneous hyphen}
-@d is_hyf=2 {hyphen}
-@d found_hyf=3 {found hyphen}
-
-@<Types...@>=
-@!class_type=space_class..invalid_class; {class of a character}
-@!digit=0..9; {a hyphen weight (or word weight)}
-@!hyf_type=no_hyf..found_hyf; {type of a hyphen}
-
-@ In addition we will use the |xext|, |xdig|, and |xdot| arrays to
-convert from the internal representation to the corresponding
-characters.
-
-@<Globals...@>=
-@!xclass: array [text_char] of class_type;
- {specifies the class of a character}
-@!xint: array [text_char] of internal_code;
- {specifies the |internal_code| for a character}
-@!xdig: array [0..9] of text_char;
- {specifies conversion of output characters}
-@!xext: array [internal_code] of text_char;
- {specifies conversion of output characters}
-@!xhyf: array [err_hyf..found_hyf] of text_char;
- {specifies conversion of output characters}
-
-@ @<Set init...@>=
-for i:=chr(first_text_char) to chr(last_text_char) do
- begin xclass[i]:=invalid_class; xint[i]:=0;
- end;
-xclass[' ']:=space_class;
-for j:=0 to last_ASCII_code do xext[j]:=' ';
-xext[edge_of_word]:='.';
-for j:=0 to 9 do
- begin xdig[j]:=xchr[j+"0"];
- xclass[xdig[j]]:=digit_class; xint[xdig[j]]:=j;
- end;
-xhyf[err_hyf]:='.'; xhyf[is_hyf]:='-'; xhyf[found_hyf]:='*';
- {default representation for hyphens}
-
-@ We assume that words use only the letters |cmin+1| through |cmax|.
-This allows us to save some time on trie operations that involve
-searching for packed transitions belonging to a particular state.
-
-@d cmin=edge_of_word
-
-@<Globals...@>=
-@!cmax: internal_code; {largest |internal_code| or |ASCII_code|}
-
-@* Data structures.
-The main data structure used in this program is a dynamic packed trie.
-In fact we use two of them, one for the set of patterns selected so far,
-and one for the patterns being considered in the current pass.
-
-For a pattern $p_1\ldots p_k$, the information associated with that
-pattern is accessed by setting |@t$t_1$@>:=trie_root+@t$p_1$@>| and
-then, for |1<i<=k|, setting |@t$t_i$@>:=trie_link(@t$t_{i-1}$@>)+
-@t$p_i$@>|; the pattern information is then stored in a location addressed
-by |@t$t_k$@>|. Since all trie nodes are packed into a single array, in
-order to distinguish nodes belonging to different trie families, a special
-field is provided such that |trie_char@t$(t_i)=si(p_i)$@>| for all |i|.
-
-In addition the trie must support dynamic insertions and deletions. This
-is done by maintaining a doubly linked list of unoccupied cells and
-repacking trie families as necessary when insertions are made.
-
-Each trie node consists of three fields: the character |trie_char|, and
-the two link fields |trie_link| and |trie_back|. In addition there is a
-separate boolean array |trie_base_used|. When a node is unoccupied,
-|trie_char=min_packed| and the link fields point to the next and previous
-unoccupied nodes, respectively, in the doubly linked list. When a node is
-occupied, |trie_link| points to the next trie family, and |trie_back|
-(renamed |trie_outp|) contains the output associated with this transition.
-The |trie_base_used| bit indicates that some family has been packed at
-this base location, and is used to prevent two families from being packed
-at the same location.
-
-@ The sizes of the pattern tries may have to be adjusted depending
-on the particular application (i.e., the parameter settings and the
-size of the dictionary). The sizes below were sufficient to generate
-the original set of english \TeX 82 hyphenation patterns (file
-\.{hyphen.tex}).
-
-@<Constants...@>=
-@!trie_size=55000; {space for pattern trie}
-@!triec_size=26000; {space for pattern count trie, must be less than
- |trie_size| and greater than the number of occurrences of any pattern in
- the dictionary}
-@!max_ops=4080; {size of output hash table, should be a multiple of 510}
-@!max_val=10; {maximum number of levels$+1$, also used to denote bad patterns}
-@!max_dot=15; {maximum pattern length, also maximum length of external
- representation of a `letter'}
-@!max_len=50; {maximum word length}
-@!max_buf_len=80; {maximum length of input lines, must be at least |max_len|}
-
-@ @<Check the ``constant'' values for consistency@>=
-if (triec_size<4096)or(trie_size<triec_size) then bad:=3;
-if max_ops>trie_size then bad:=4;
-if max_val>10 then bad:=5;
-if max_buf_len<max_len then bad:=6;
-
-@ @<Types...@>=
-@!q_index=1..last_ASCII_code; {number of transitions in a state}
-@!val_type=0..max_val; {hyphenation values}
-@!dot_type=0..max_dot; {dot positions}
-@!op_type=0..max_ops; {index into output hash table}
-@!word_index=0..max_len; {index into |word|}
-@!trie_pointer=0..trie_size;
-@!triec_pointer=0..triec_size;@/
-@!op_word=packed record dot: dot_type; val: val_type; op: op_type end;
-
-@ Trie is actually stored with its components in separate packed arrays,
-in order to save space and time (although this depends on the computer's
-word size and the size of the trie pointers).
-
-@<Globals...@>=
-@!trie_c: packed array[trie_pointer] of packed_internal_code;
-@!trie_l, @!trie_r: packed array[trie_pointer] of trie_pointer;
-@!trie_taken: packed array[trie_pointer] of boolean;
-@!triec_c: packed array[triec_pointer] of packed_internal_code;
-@!triec_l, @!triec_r: packed array[triec_pointer] of triec_pointer;
-@!triec_taken: packed array[triec_pointer] of boolean;
-@!ops: array[op_type] of op_word; {output hash table}
-
-@ When some trie state is being worked on, an unpacked version of the
-state is kept in positions |1..qmax| of the global arrays |trieq_c|,
-|trieq_l|, and |trieq_r|. The character fields need not be in any
-particular order.
-
-@<Globals...@>=
-@!trieq_c: array[q_index] of internal_code; {character fields of a
- single trie state}
-@!trieq_l, @!trieq_r: array[q_index] of trie_pointer; {link fields}
-@!qmax: q_index; {number of transitions in an unpacked state}
-@!qmax_thresh: q_index; {controls density of first-fit packing}
-
-@ Trie fields are accessed using the following macros.
-
-@d trie_char(#)==trie_c[#]
-@d trie_link(#)==trie_l[#]
-@d trie_back(#)==trie_r[#]
-@d trie_outp(#)==trie_r[#]
-@d trie_base_used(#)==trie_taken[#]
-@#
-@d triec_char(#)==triec_c[#]
-@d triec_link(#)==triec_l[#]
-@d triec_back(#)==triec_r[#]
-@d triec_good(#)==triec_l[#]
-@d triec_bad(#)==triec_r[#]
-@d triec_base_used(#)==triec_taken[#]
-@#
-@d q_char(#)==trieq_c[#]
-@d q_link(#)==trieq_l[#]
-@d q_back(#)==trieq_r[#]
-@d q_outp(#)==trieq_r[#]
-@#
-@d hyf_val(#)==ops[#].val
-@d hyf_dot(#)==ops[#].dot
-@d hyf_nxt(#)==ops[#].op
-
-@* Routines for pattern trie.
-The pattern trie holds the set of patterns chosen prior to the current
-pass, including bad or ``hopeless'' patterns at the current level that
-occur too few times in the dictionary to be of use. Each transition of
-the trie includes an output field pointing to the hyphenation information
-associated with this transition.
-
-@<Globals...@>=
-@!trie_max: trie_pointer; {maximum occupied trie node}
-@!trie_bmax: trie_pointer; {maximum base of trie family}
-@!trie_count: trie_pointer; {number of occupied trie nodes, for space usage
- statistics}
-@!op_count: op_type; {number of outputs in hash table}
-
-@ Initially, the dynamic packed trie has just one state, namely the root,
-with all transitions present (but with null links). This is convenient
-because the root will never need to be repacked and also we won't have to
-check that the base is nonnegative when packing other states.
-Moreover in many cases we need not check for a vanishing link field:
-if |trie_link(t)=0| then a subsequent test for
-|trie_char(trie_link(t)+c)=si(c)| will always fail due to |trie_root=1|.
-
-@d trie_root=1
-
-@p procedure init_pattern_trie;
-var c: internal_code; @!h: op_type;
-begin for c:=0 to last_ASCII_code do
- begin trie_char(trie_root+c):=si(c); {indicates node occupied;
- fake for |c=0|}
- trie_link(trie_root+c):=0;
- trie_outp(trie_root+c):=0;
- trie_base_used(trie_root+c):=false;
- end;
- trie_base_used(trie_root):=true;
- trie_bmax:=trie_root;
- trie_max:=trie_root+last_ASCII_code;
- trie_count:=num_ASCII_codes;@/
- qmax_thresh:=5;@/
- trie_link(0):=trie_max+1;
- trie_back(trie_max+1):=0;@/
- {|trie_link(0)| is used as the head of the doubly linked list of
- unoccupied cells}
- for h:=1 to max_ops do hyf_val(h):=0; {clear output hash table}
- op_count:=0;
-end;
-
-@ The |first_fit| procedure finds a hole in the packed trie into which the
-state in |trieq_c|, |trieq_l|, and |trieq_r| will fit. This is normally
-done by going through the linked list of unoccupied cells and testing if
-the state will fit at each position. However if a state has too many
-transitions (and is therefore unlikely to fit among existing
-transitions) we don't bother and instead just pack it immediately to the
-right of the occupied region (starting at |trie_max+1|).
-
-@p function first_fit: trie_pointer;
-label found, not_found;
-var s, @!t: trie_pointer; @!q: q_index;
-begin @<Set |s| to the trie base location at which this state should be
- packed@>;
- for q:=1 to qmax do {pack it}
- begin t:=s+q_char(q);@/
- trie_link(trie_back(t)):=trie_link(t);
- trie_back(trie_link(t)):=trie_back(t); {link around
- filled cell}
- trie_char(t):=si(q_char(q));
- trie_link(t):=q_link(q);
- trie_outp(t):=q_outp(q);
- if t>trie_max then trie_max:=t;
- end;
- trie_base_used(s):=true;
- first_fit:=s
-end;
-
-@ The threshold for large states is initially 5 transitions. If more than
-one level of patterns is being generated, the threshold is set to 7 on
-subsequent levels because the pattern trie will be sparser after bad
-patterns are deleted (see |delete_bad_patterns|).
-
-@<Set |s| to the trie base location at which this state should be packed@>=
-if qmax>qmax_thresh then t:=trie_back(trie_max+1) @+else t:=0;
-loop begin t:=trie_link(t); s:=t-q_char(1); {get next unoccupied cell}
- @<Ensure |trie| linked up to |s+num_ASCII_codes|@>;
- if trie_base_used(s) then goto not_found;
- for q:=qmax downto 2 do {check if state fits here}
- if trie_char(s+q_char(q))<>min_packed then goto not_found;
- goto found;
- not_found: end;
-found:
-
-@ The trie is only initialized (as a doubly linked list of empty cells) as
-far as necessary. Here we extend the initialization if necessary, and
-check for overflow.
-
-@<Ensure |trie| linked up to |s+num_ASCII_codes|@>=
-if s>trie_size-num_ASCII_codes then
- overflow(trie_size:1,' pattern trie nodes');
-while trie_bmax<s do
- begin incr(trie_bmax);
- trie_base_used(trie_bmax):=false;
- trie_char(trie_bmax+last_ASCII_code):=min_packed;
- trie_link(trie_bmax+last_ASCII_code):=trie_bmax+num_ASCII_codes;
- trie_back(trie_bmax+num_ASCII_codes):=trie_bmax+last_ASCII_code;
- end
-
-@ The |unpack| procedure finds all transitions associated with the state
-with base |s|, puts them into the arrays |trieq_c|, |trieq_l|, and
-|trieq_r|, and sets |qmax| to one more than the number of transitions
-found. Freed cells are put at the beginning of the free list.
-
-@p procedure unpack(@!s: trie_pointer);
-var c: internal_code; @!t: trie_pointer;
-begin qmax:=1;
-for c:=cmin to cmax do {search for transitions belonging to this state}
- begin t:=s+c;
- if so(trie_char(t))=c then {found one}
- begin q_char(qmax):=c;
- q_link(qmax):=trie_link(t);
- q_outp(qmax):=trie_outp(t);
- incr(qmax);@/
- {now free trie node}
- trie_back(trie_link(0)):=t;
- trie_link(t):=trie_link(0);
- trie_link(0):=t;
- trie_back(t):=0;
- trie_char(t):=min_packed;
- end;
- end;
-trie_base_used(s):=false;
-end;
-
-@ The function |new_trie_op| returns the `opcode' for the output
-consisting of hyphenation value~|v|, hyphen position |d|, and next output
-|n|. The hash function used by |new_trie_op| is based on the idea that
-313/510 is an approximation to the golden ratio [cf.\ {\sl The Art of
-Computer Programming \bf3} (1973), 510--512]; but the choice is
-comparatively unimportant in this particular application.
-
-@p function new_trie_op(@!v: val_type; @!d: dot_type; @!n: op_type): op_type;
-label exit;
-var h: op_type;
-begin h:=((n+313*d+361*v) mod max_ops)+1; {trial hash location}
-loop begin if hyf_val(h)=0 then {empty position found}
- begin incr(op_count);
- if op_count=max_ops then overflow(max_ops:1,' outputs');
- hyf_val(h):=v; hyf_dot(h):=d; hyf_nxt(h):=n; new_trie_op:=h; return;
- end;
- if (hyf_val(h)=v) and (hyf_dot(h)=d) and
- (hyf_nxt(h)=n) then {already in hash table}
- begin new_trie_op:=h; return;
- end;
- if h>1 then decr(h) @+else h:=max_ops; {try again}
- end;
-exit: end;
-
-@ @<Globals...@>=
-@!pat: array[dot_type] of internal_code; {current pattern}
-@!pat_len: dot_type; {pattern length}
-
-@ Now that we have provided the necessary routines for manipulating the
-dynamic packed trie, here is a procedure that inserts a pattern of length
-|pat_len|, stored in the |pat| array, into the pattern trie. It also adds
-a new output.
-
-@p procedure insert_pattern(@!val: val_type; @!dot: dot_type);
-var i: dot_type; @!s, @!t: trie_pointer;
-begin i:=1;
- s:=trie_root+pat[i]; t:=trie_link(s);
- while (t>0) and (i<pat_len) do {follow existing trie}
- begin incr(i); Incr(t)(pat[i]);
- if so(trie_char(t))<>pat[i] then
- @<Insert critical transition, possibly repacking@>;
- s:=t; t:=trie_link(s);
- end;
- q_link(1):=0; q_outp(1):=0; qmax:=1;
- while i<pat_len do {insert rest of pattern}
- begin incr(i); q_char(1):=pat[i];
- t:=first_fit;
- trie_link(s):=t;
- s:=t+pat[i];
- incr(trie_count);
- end;
- trie_outp(s):=new_trie_op(val,dot,trie_outp(s));
-end;
-
-@ We have accessed a transition not in the trie. We insert it, repacking
-the state if necessary.
-
-@<Insert critical transition, possibly repacking@>=
-begin if trie_char(t)=min_packed then
- begin {we're lucky, no repacking needed}
- trie_link(trie_back(t)):=trie_link(t);
- trie_back(trie_link(t)):=trie_back(t);@/
- trie_char(t):=si(pat[i]);
- trie_link(t):=0;
- trie_outp(t):=0;
- if t>trie_max then trie_max:=t;
- end
-else begin {whoops, have to repack}
- unpack(t-pat[i]);@/
- q_char(qmax):=pat[i];
- q_link(qmax):=0;
- q_outp(qmax):=0;@/
- t:=first_fit;
- trie_link(s):=t;
- Incr(t)(pat[i]);
- end;
-incr(trie_count);
-end
-
-@* Routines for pattern count trie.
-The pattern count trie is used to store the set of patterns considered in
-the current pass, along with the counts of good and bad instances. The
-fields of this trie are the same as the pattern trie, except that there is
-no output field, and leaf nodes are also used to store counts
-(|triec_good| and |triec_bad|). Except where noted, the following
-routines are analogous to the pattern trie routines.
-
-@<Globals...@>=
-@!triec_max, @!triec_bmax, @!triec_count: triec_pointer; {same as for pattern
- trie}
-@!triec_kmax: triec_pointer; {shows growth of trie during pass}
-@!pat_count: integer; {number of patterns in count trie}
-
-@ [See |init_pattern_trie|.] The variable |triec_kmax| always contains
-the size of the count trie rounded up to the next multiple of 4096, and is
-used to show the growth of the trie during each pass.
-
-@d triec_root=1
-
-@p procedure init_count_trie;
-var c: internal_code;
-begin for c:=0 to last_ASCII_code do
- begin triec_char(triec_root+c):=si(c);@/
- triec_link(triec_root+c):=0;
- triec_back(triec_root+c):=0;
- triec_base_used(triec_root+c):=false;
- end;
- triec_base_used(triec_root):=true;
- triec_bmax:=triec_root; triec_max:=triec_root+last_ASCII_code;
- triec_count:=num_ASCII_codes; triec_kmax:=4096;@/
- triec_link(0):=triec_max+1; triec_back(triec_max+1):=0;@/
- pat_count:=0;
-end;
-
-@ [See |first_fit|.]
-
-@p function firstc_fit: triec_pointer;
-label found, not_found;
-var a, @!b: triec_pointer; @!q: q_index;
-begin @<Set |b| to the count trie base location at which this state should
- be packed@>;
- for q:=1 to qmax do {pack it}
- begin a:=b+q_char(q);@/
- triec_link(triec_back(a)):=triec_link(a);
- triec_back(triec_link(a)):=triec_back(a);@/
- triec_char(a):=si(q_char(q));
- triec_link(a):=q_link(q);
- triec_back(a):=q_back(q);
- if a>triec_max then triec_max:=a;
- end;
- triec_base_used(b):=true;
- firstc_fit:=b
-end;
-
-@ The threshold for attempting a first-fit packing is 3 transitions, which
-is lower than for the pattern trie because speed is more important here.
-
-@<Set |b| to the count trie base location...@>=
-if qmax>3 then a:=triec_back(triec_max+1) @+else a:=0;
-loop begin a:=triec_link(a); b:=a-q_char(1);@/
- @<Ensure |triec| linked up to |b+num_ASCII_codes|@>;
- if triec_base_used(b) then goto not_found;
- for q:=qmax downto 2 do
- if triec_char(b+q_char(q))<>min_packed then goto not_found;
- goto found;
- not_found: end;
-found:
-
-@ @<Ensure |triec| linked up to |b+num_ASCII_codes|@>=
-if b>triec_kmax-num_ASCII_codes then
- begin if triec_kmax=triec_size then
- overflow(triec_size:1,' count trie nodes');
- print(triec_kmax div 1024:1, 'K ');
- if triec_kmax>triec_size-4096 then triec_kmax:=triec_size
- else Incr(triec_kmax)(4096);
- end;
-while triec_bmax<b do
- begin incr(triec_bmax);
- triec_base_used(triec_bmax):=false;
- triec_char(triec_bmax+last_ASCII_code):=min_packed;
- triec_link(triec_bmax+last_ASCII_code):=triec_bmax+num_ASCII_codes;
- triec_back(triec_bmax+num_ASCII_codes):=triec_bmax+last_ASCII_code;
- end
-
-@ [See |unpack|.]
-
-@p procedure unpackc(@!b: triec_pointer);
-var c: internal_code; @!a: triec_pointer;
-begin qmax:=1;
-for c:=cmin to cmax do {search for transitions belonging to this state}
- begin a:=b+c;
- if so(triec_char(a))=c then {found one}
- begin q_char(qmax):=c;
- q_link(qmax):=triec_link(a);
- q_back(qmax):=triec_back(a);
- incr(qmax);@/
- triec_back(triec_link(0)):=a;
- triec_link(a):=triec_link(0);
- triec_link(0):=a; triec_back(a):=0;
- triec_char(a):=min_packed;
- end;
- end;
-triec_base_used(b):=false;
-end;
-
-@ [See |insert_pattern|.] Patterns being inserted into the count trie are
-always substrings of the current word, so they are contained in the array
-|word| with length |pat_len| and finishing position |fpos|.
-
-@p function insertc_pat(@!fpos: word_index): triec_pointer;
-var spos: word_index; @!a, @!b: triec_pointer;
-begin spos:=fpos-pat_len; {starting position of pattern}
- incr(spos); b:=triec_root+word[spos]; a:=triec_link(b);
- while (a>0) and (spos<fpos) do {follow existing trie}
- begin incr(spos); Incr(a)(word[spos]);
- if so(triec_char(a))<>word[spos] then
- @<Insert critical count transition, possibly repacking@>;
- b:=a; a:=triec_link(a);
- end;
- q_link(1):=0; q_back(1):=0; qmax:=1;
- while spos<fpos do {insert rest of pattern}
- begin incr(spos); q_char(1):=word[spos];
- a:=firstc_fit;
- triec_link(b):=a;
- b:=a+word[spos];
- incr(triec_count);
- end;
- insertc_pat:=b;
- incr(pat_count);
-end;
-
-@ @<Insert critical count transition, possibly repacking@>=
-begin if triec_char(a)=min_packed then {lucky}
- begin triec_link(triec_back(a)):=triec_link(a);
- triec_back(triec_link(a)):=triec_back(a);
- triec_char(a):=si(word[spos]);
- triec_link(a):=0;
- triec_back(a):=0;
- if a>triec_max then triec_max:=a;
- end
-else begin {have to repack}
- unpackc(a-word[spos]);@/
- q_char(qmax):=word[spos];
- q_link(qmax):=0;
- q_back(qmax):=0;
- a:=firstc_fit;
- triec_link(b):=a;
- Incr(a)(word[spos]);
- end;
-incr(triec_count);
-end
-
-@* Input and output.
-For some \PASCAL\ systems output files must be closed before the program
-terminates; it may also be necessary to close input files. Since
-standard \PASCAL\ does not provide for this, we use \.{WEB} macros and
-will say |close_out(f)| resp.\ |close_in(f)|; these macros should not
-produce errors or system messages, even if a file could not be opened
-successfully.
-@^system dependencies@>
-
-@d close_out(#)==close(#) {close an output file}
-@d close_in(#)==do_nothing {close an input file}
-
-@<Globals...@>=
-@!dictionary, @!patterns, @!translate, @!patout, @!pattmp: text_file;
-
-@ When reading a line from one of the input files (|dictionary|,
-|patterns|, or |translate|) the characters read from that line (padded
-with blanks if necessary) are to be placed into the |buf| array. Reading
-lines from the |dictionary| file should be as efficient as possible
-since this is part of \.{PATGEN}'s ``inner loop''. Standard \PASCAL,
-unfortunately, does not provide for this; consequently the \.{WEB} macro
-|read_buf| defined below should be optimized if possible. For many
-\PASCAL's this can be done with |read_ln(f,buf)| where |buf| is declared
-as \PASCAL\ string (i.e., as \&{packed} \&{array} |[1..any]| \&{of}
-|char|), for others a string type with dynamic length can be used.
-@^inner loop@>@^system dependencies@>
-
-@d read_buf(#)== {reads a line from input file |#| into |buf| array}
- begin buf_ptr:=0;
- while not eoln(#) do
- begin if (buf_ptr>=max_buf_len) then bad_input('Line too long');
-@.Line too long@>
- incr(buf_ptr); read(#,buf[buf_ptr]);
- end;
- read_ln(#);
- while buf_ptr<max_buf_len do
- begin incr(buf_ptr); buf[buf_ptr]:=' ';
- end;
- end
-
-@<Globals...@>=
-@!buf: array[1..max_buf_len] of text_char; {array to hold lines of input}
-@!buf_ptr: 0..max_buf_len; {index into |buf|}
-
-@ When an error is caused by bad input data we say |bad_input(#)| in
-order to disply the contents of the |buf| array before terminating with
-an error message.
-
-@d print_buf== {print contents of |buf| array}
- begin buf_ptr:=0;
- repeat incr(buf_ptr); print(buf[buf_ptr]);
- until buf_ptr=max_buf_len;
- print_ln(' ');
- end
-@d bad_input(#)==begin print_buf; error(#); end
-
-@ The |translate| file may specify the values of \.{\\lefthyphenmin} and
-\.{\\righthyphenmin} as well as the external representation and
-collating sequence of the `letters' used by the language. In addition
-replacements may be specified for the characters |'-'|, |'*'|, and |'.'|
-representing hyphens in the word list. If the |translate| file is empty
-(or does not exist) default values will be used.
-
-@p procedure read_translate;
-label done;
-var c: text_char;
-@!n: integer;
-@!j: ASCII_code;
-@!bad: boolean;
-@!lower: boolean;
-@!i: dot_type; @!s, @!t: trie_pointer;
-begin imax:=edge_of_word;
-reset(translate);
-if eof(translate) then
- @<Set up default character translation tables@>
-else begin read_buf(translate); @<Set up hyphenation data@>;
- cmax:=last_ASCII_code-1;
- while not eof(translate) do @<Set up representation(s) for a letter@>;
- end;
-close_in(translate);
-print_ln('left_hyphen_min = ',left_hyphen_min:1,
- ', right_hyphen_min = ',right_hyphen_min:1,
- ', ',imax-edge_of_word:1,' letters');
-cmax:=imax;
-end;
-
-@ @<Globals...@>=
-@!imax: internal_code; {largest |internal_code| assigned so far}
-@!left_hyphen_min, @!right_hyphen_min: dot_type;
-
-@ @<Set up default...@>=
-begin left_hyphen_min:=2; right_hyphen_min:=3;
-for j:="A" to "Z" do
- begin incr(imax);
- c:=xchr[j+"a"-"A"]; xclass[c]:=letter_class; xint[c]:=imax;
- xext[imax]:=c;
- c:=xchr[j]; xclass[c]:=letter_class; xint[c]:=imax;
- end;
-end
-
-@ The first line of the |translate| file must contain the values
-of \.{\\lefthyphenmin} and \.{\\righthyphenmin} in columns 1--2 and
-3--4. In addition columns~5, 6, and~7 may (optionally) contain
-replacements for the default characters |'.'|, |'-'|, and |'*'|
-respectively, representing hyphens in the word list.
-If the values specified for \.{\\lefthyphenmin} and \.{\\righthyphenmin}
-are invalid (e.g., blank) new values are read from the terminal.
-
-@<Set up hyphenation...@>=
-bad:=false;
-if buf[1]=' ' then n:=0
-else if xclass[buf[1]]=digit_class then n:=xint[buf[1]]@+
-else bad:=true;
-if xclass[buf[2]]=digit_class then n:=10*n+xint[buf[2]]@+
-else bad:=true;
-if (n>=1)and(n<max_dot) then left_hyphen_min:=n@+else bad:=true;
-if buf[3]=' ' then n:=0
-else if xclass[buf[3]]=digit_class then n:=xint[buf[3]]@+
-else bad:=true;
-if xclass[buf[4]]=digit_class then n:=10*n+xint[buf[4]]@+
-else bad:=true;
-if (n>=1)and(n<max_dot) then right_hyphen_min:=n@+
-else bad:=true;
-if bad then
- begin bad:=false;
- repeat print('left_hyphen_min, right_hyphen_min: '); get_input(n1,n2);@/
- if (n1>=1)and(n1<max_dot)and(n2>=1)and(n2<max_dot) then
- begin left_hyphen_min:=n1; right_hyphen_min:=n2;
- end
- else begin n1:=0;
- print_ln('Specify 1<=left_hyphen_min,right_hyphen_min<=',
- max_dot-1:1,' !');
- end;
- until n1>0;
- end;
-for j:=err_hyf to found_hyf do
- begin if buf[j+4]<>' ' then xhyf[j]:=buf[j+4];
- if xclass[xhyf[j]]=invalid_class then xclass[xhyf[j]]:=hyf_class@+
- else bad:=true;
- end;
-xclass['.']:=hyf_class; {in case the default has been changed}
-if bad then bad_input('Bad hyphenation data')
-@.Bad hyphenation data@>
-
-@ Each following line is either a comment or specifies the external
-representations for one `letter' used by the language. Comment lines
-start with two equal characters (e.g., are blank) and are ignored.
-Other lines contain the external representation of the lower case
-version and an arbitrary number of `upper case versions' of a letter
-preceded and separated by a delimiter and followed by two consecutive
-delimiters; the delimiter may be any character not occuring in either
-version.
-
-@<Set up repres...@>=
-begin read_buf(translate); buf_ptr:=1; lower:=true;
-while not bad do {lower and then upper case version}
- begin pat_len:=0;
- repeat if buf_ptr<max_buf_len then incr(buf_ptr) @+ else bad:=true;
- if buf[buf_ptr]=buf[1] then
- if pat_len=0 then goto done
- else begin if lower then
- begin if imax=last_ASCII_code then
- begin print_buf; overflow(num_ASCII_codes:1,' letters');
- end;
- incr(imax); xext[imax]:=xchr[pat[pat_len]];
- end;
- c:=xchr[pat[1]];
- if pat_len=1 then
- begin if xclass[c]<>invalid_class then bad:=true;
- xclass[c]:=letter_class; xint[c]:=imax;
- end
- else @<Insert a letter into pattern trie@>;
- end
- else if pat_len=max_dot then bad:=true
- else begin incr(pat_len); pat[pat_len]:=get_ASCII(buf[buf_ptr]);
- end;
- until (buf[buf_ptr]=buf[1])or bad;
- lower:=false;
- end;
-done: if bad then bad_input('Bad representation');
-@.Bad representation@>
-end
-
-@ When the (lower or upper case) external representation of a letter
-consists of more than one character and the corresponding |ASCII_code|
-values have been placed into the |pat| array we store them in
-the pattern trie. [See |insert_pattern|.] Since this `external subtrie'
-starts at |trie_link(trie_root)| it does not interfere with normal
-patterns. The output field of leaf nodes contains the |internal_code|
-and the link field distinguishes between lower and upper case letters.
-
-@<Insert a letter...@>=
-begin if xclass[c]=invalid_class then xclass[c]:=escape_class;
-if xclass[c]<>escape_class then bad:=true;
-i:=0; s:=trie_root; t:=trie_link(s);
-while (t>trie_root) and (i<pat_len) do {follow existing trie}
- begin incr(i); Incr(t)(pat[i]);
- if so(trie_char(t))<>pat[i] then
- @<Insert critical transition, possibly repacking@>
- else if trie_outp(t)>0 then bad:=true;
- s:=t; t:=trie_link(s);
- end;
-if t>trie_root then bad:=true;
-q_link(1):=0; q_outp(1):=0; qmax:=1;
-while i<pat_len do {insert rest of pattern}
- begin incr(i); q_char(1):=pat[i];
- t:=first_fit;
- trie_link(s):=t;
- s:=t+pat[i];
- incr(trie_count);
- end;
-trie_outp(s):=imax;
-if not lower then trie_link(s):=trie_root;
-end
-
-@ The |get_letter| \.{WEB} macro defined here will be used in
-|read_word| and |read_patterns| to obtain the |internal_code|
-corresponding to a letter externally represented by a multi-character
-sequence (starting with an |escape_class| character).
-
-@d get_letter(#)==
- begin t:=trie_root;
- loop begin t:=trie_link(t)+xord[c];
- if so(trie_char(t))<>xord[c] then bad_input('Bad representation');
-@.Bad representation@>
- if trie_outp(t)<>0 then
- begin #:=trie_outp(t); goto done;
- end;
- if buf_ptr=max_buf_len then c:=' '
- else begin incr(buf_ptr); c:=buf[buf_ptr];
- end;
- end;
- done: end
-
-@ In order to prepare for the output phase we store all but the last of
-the \\{ASCII\_codes} of the external representation of each `lower case
-letter' in the pattern count trie which is no longer used at that time.
-The recursive |find_letters| procedure traverses the `external subtrie'.
-
-@p procedure find_letters(@!b: trie_pointer; @!i: dot_type);@/
- {traverse subtries of family |b|; |i| is current depth in trie}
-var c: ASCII_code; {a local variable that must be saved on recursive calls}
-@!a: trie_pointer; {does not need to be saved}
-@!j: dot_type; {loop index}
-@!l: triec_pointer;
-begin if i=1 then init_count_trie;
-for c:=cmin to last_ASCII_code do {find transitions belonging to this family}
- begin a:=b+c;
- if so(trie_char(a))=c then {found one}
- begin pat[i]:=c;
- if trie_outp(a)=0 then find_letters(trie_link(a),i+1)
- else if trie_link(a)=0 then {this is a lower case letter}
- @<Insert external representation for a letter into count trie@>;
- end;
- end;
-end;
-
-@ Starting from |triec_root+trie_outp(a)| we proceed through link fields
-and store all \\{ASCII\_codes} except the last one in the count trie;
-the last character has already been stored in the |xext| array.
-
-@<Insert external...@>=
-begin l:=triec_root+trie_outp(a);
-for j:=1 to i-1 do
- begin if triec_max=triec_size then
- overflow(triec_size:1,' count trie nodes');
- incr(triec_max); triec_link(l):=triec_max; l:=triec_max;
- triec_char(l):=si(pat[j]);
- end;
-triec_link(l):=0;
-end
-
-@ During the output phase we will say |write_letter(i)(f)| and
-|write(f,xext[i])| to write the lower case external representation of
-the letter with internal code |i| to file |f|: |xext[i]| is the last
-character of the external representation whereas the \.{WEB} macro
-|write_letter| defined here writes all preceding characters (if any).
-
-@d write_letter_end(#)==while l>0 do
- begin write(#,xchr[so(triec_char(l))]); l:=triec_link(l);
- end
-@d write_letter(#)==l:=triec_link(triec_root+#); write_letter_end
-
-@* Routines for traversing pattern tries.
-At the end of a pass, we traverse the count trie using the following
-recursive procedure, selecting good and bad patterns and inserting them
-into the pattern trie.
-
-@p procedure traverse_count_trie(@!b: triec_pointer; @!i: dot_type);@/
-{traverse subtries of family |b|; |i| is current depth in trie}
-var c: internal_code; {a local variable that must be saved on recursive calls}
- @!a: triec_pointer; {does not need to be saved}
-begin
-for c:=cmin to cmax do {find transitions belonging to this family}
- begin a:=b+c;
- if so(triec_char(a))=c then {found one}
- begin pat[i]:=c;
- if i<pat_len then traverse_count_trie(triec_link(a),i+1)
- else @<Decide what to do with this pattern@>;
- end;
- end;
-end;
-
-@ When we have come to the end of a pattern, |triec_good(a)| and
-|triec_bad(a)| contain the number of times this pattern helps or hinders
-the cause. We use the counts to determine if this pattern should be
-selected, or if it is hopeless, or if we can't decide yet. In the latter
-case, we set |more_to_come| true to indicate that there might still be
-good patterns extending the current type of patterns.
-
-@<Decide what to do...@>=
-if good_wt*triec_good(a)<thresh then {hopeless pattern}
-begin insert_pattern(max_val,pat_dot);
- incr(bad_pat_count)
-end else
-if good_wt*triec_good(a)-bad_wt*triec_bad(a)>=thresh then {good pattern}
-begin insert_pattern(hyph_level,pat_dot);
- incr(good_pat_count);
- Incr(good_count)(triec_good(a));
- Incr(bad_count)(triec_bad(a));
-end else
- more_to_come:=true
-
-@ Some global variables are used to accumulate statistics about the
-performance of a pass.
-
-@<Globals...@>=
-@!good_pat_count, @!bad_pat_count: integer; {number of patterns added at end
- of pass}
-@!good_count, @!bad_count, @!miss_count: integer; {hyphen counts}
-@!level_pattern_count: integer; {number of good patterns at level}
-@!more_to_come: boolean;
-
-@ The recursion in |traverse_count_trie| is initiated by the following
-procedure, which also prints some statistics about the patterns chosen.
-The ``efficiency'' is an estimate of pattern effectiveness.
-
-@d bad_eff==(thresh/good_wt)
-
-@p procedure collect_count_trie;
-begin good_pat_count:=0; bad_pat_count:=0;
- good_count:=0; bad_count:=0;
- more_to_come:=false;
- traverse_count_trie(triec_root,1); @/
- print(good_pat_count:1,' good and ',
- bad_pat_count:1,' bad patterns added');
- Incr(level_pattern_count)(good_pat_count);
- if more_to_come then print_ln(' (more to come)') @+else print_ln(' ');
- print('finding ',good_count:1,' good and ',bad_count:1,' bad hyphens');
- if good_pat_count>0 then
- print_ln(', efficiency = ',
- good_count/(good_pat_count+bad_count/bad_eff):1:2)
- else print_ln(' ');
- print_ln('pattern trie has ',trie_count:1,' nodes, ',@|
- 'trie_max = ',trie_max:1,', ',op_count:1,' outputs');
-end;
-
-@ At the end of a level, we traverse the pattern trie and delete bad
-patterns by removing their outputs. If no output remains, the node is
-also deleted.
-
-@p function delete_patterns(@!s: trie_pointer): trie_pointer;@/
-{delete bad patterns in subtrie |s|, return 0 if entire subtrie freed,
- otherwise |s|}
-var c: internal_code; @!t: trie_pointer; @!all_freed: boolean;
- {must be saved on recursive calls}
- @!h, @!n: op_type; {do not need to be saved}
-begin all_freed:=true;
- for c:=cmin to cmax do {find transitions belonging to this family}
- begin t:=s+c;
- if so(trie_char(t))=c then
- begin @<Link around bad outputs@>;
- if trie_link(t)>0 then
- trie_link(t):=delete_patterns(trie_link(t));
- if (trie_link(t)>0) or (trie_outp(t)>0) or (s=trie_root) then
- all_freed:=false
- else
- @<Deallocate this node@>;
- end;
- end;
- if all_freed then {entire state is freed}
- begin trie_base_used(s):=false;
- s:=0;
- end;
- delete_patterns:=s;
-end;
-
-@ @<Link around bad outputs@>=
-begin h:=0;
- hyf_nxt(0):=trie_outp(t);
- n:=hyf_nxt(0);
- while n>0 do
- begin if hyf_val(n)=max_val then hyf_nxt(h):=hyf_nxt(n)
- else h:=n;
- n:=hyf_nxt(h);
- end;
- trie_outp(t):=hyf_nxt(0);
-end
-
-@ Cells freed by |delete_patterns| are put at the end of the free list.
-
-@<Deallocate this node@>=
-begin trie_link(trie_back(trie_max+1)):=t;
- trie_back(t):=trie_back(trie_max+1);
- trie_link(t):=trie_max+1;
- trie_back(trie_max+1):=t;
- trie_char(t):=min_packed;@/
- decr(trie_count);
-end
-
-@ The recursion in |delete_patterns| is initiated by the following
-procedure, which also prints statistics about the number of nodes deleted,
-and zeros bad outputs in the hash table. Note that the hash table may
-become somewhat disorganized when more levels are added, but this defect
-isn't serious.
-
-@p procedure delete_bad_patterns;
-var old_op_count: op_type;
- @!old_trie_count: trie_pointer;
- @!t: trie_pointer; @!h: op_type;
-begin old_op_count:=op_count;
- old_trie_count:=trie_count;@/
- t:=delete_patterns(trie_root);
- for h:=1 to max_ops do
- if hyf_val(h)=max_val then
- begin hyf_val(h):=0; decr(op_count);
- end;
- print_ln(old_trie_count-trie_count:1,' nodes and ',@|
- old_op_count-op_count:1,' outputs deleted');
- qmax_thresh:=7; {pattern trie will be sparser because of deleted
- patterns}
-end;
-
-@ After all patterns have been generated, we will traverse the pattern
-trie and output all patterns. Note that if a pattern appears more than
-once, only the maximum value at each position will be output.
-
-@p procedure output_patterns(@!s: trie_pointer; @!pat_len: dot_type);@/
-{output patterns in subtrie |s|; |pat_len| is current depth in trie}
-var c: internal_code; {must be saved on recursive calls}
-@!t: trie_pointer; @!h: op_type; @!d: dot_type;@/
-@!l: triec_pointer; {for |write_letter|}
-begin for c:=cmin to cmax do
- begin t:=s+c;
- if so(trie_char(t))=c then
- begin pat[pat_len]:=c;
- h:=trie_outp(t);
- if h>0 then @<Output this pattern@>;
- if trie_link(t)>0 then output_patterns(trie_link(t),pat_len+1);
- end;
- end;
-end;
-
-@ @<Output this pattern@>=
-begin for d:=0 to pat_len do hval[d]:=0;
- repeat d:=hyf_dot(h);
- if hval[d]<hyf_val(h) then hval[d]:=hyf_val(h);
- h:=hyf_nxt(h);
- until h=0;
- if hval[0]>0 then write(patout,xdig[hval[0]]);
- for d:=1 to pat_len do
- begin write_letter(pat[d])(patout); write(patout,xext[pat[d]]);
- if hval[d]>0 then write(patout,xdig[hval[d]]);
- end;
- write_ln(patout);
-end
-
-@* Dictionary processing routines.
-The procedures in this section are the ``inner loop'' of the pattern
-generation process. To speed the program up, key parts of these routines
-could be coded in machine language.
-@^inner loop@>
-
-@<Globals...@>=
-@!word: array[word_index] of internal_code; {current word}
-@!dots: array[word_index] of hyf_type; {current hyphens}
-@!dotw: array[word_index] of digit; {dot weights}
-@!hval: array[word_index] of val_type; {hyphenation values}
-@!no_more: array[word_index] of boolean; {positions `knocked out'}
-@!wlen: word_index; {length of current word}
-@!word_wt: digit; {global word weight}
-@!wt_chg: boolean; {indicates |word_wt| has changed}
-
-@ The words in the |dictionary| consist of the `letters' used by the
-language. ``Dots'' between letters can be one of four possibilities:
-|'-'| indicating a hyphen, |'*'| indicating a found hyphen, |'.'|
-indicating an error, or nothing; these are represented internally by the
-four values |is_hyf|, |found_hyf|, |err_hyf|, and |no_hyf| respectively.
-When reading a word we will, however, convert |err_hyf| into |no_hyf|
-and |found_hyf| into |is_hyf| thus ignoring whether a hyphen has or
-has not been found by a previous set of patterns.
-
-@<Prepare to read dictionary@>=
-xclass['.']:=invalid_class; {in case the default has been changed}
-xclass[xhyf[err_hyf]]:=hyf_class; xint[xhyf[err_hyf]]:=no_hyf;
-xclass[xhyf[is_hyf]]:=hyf_class; xint[xhyf[is_hyf]]:=is_hyf;
-xclass[xhyf[found_hyf]]:=hyf_class; xint[xhyf[found_hyf]]:=is_hyf;
-
-@ Furthermore single-digit word weights are allowed. A digit at
-the beginning of a word indicates a global word weight that is to be
-applied to all following words (until the next global word weight). A
-digit at some intercharacter position indicates a weight for that position
-only.
-
-The |read_word| procedure scans a line of input representing a word,
-and places the letters into the array |word|, with |word[1]=word[wlen]=
-edge_of_word|. The dot appearing between |word[dpos]| and |word[dpos+1]|
-is placed in |dots[dpos]|, and the corresponding dot weight in
-|dotw[dpos]|.
-
-@p procedure read_word;
-label done, found;
-var c: text_char;
-@!t: trie_pointer;
-begin read_buf(dictionary);
-word[1]:=edge_of_word; wlen:=1; buf_ptr:=0;
-repeat incr(buf_ptr); c:=buf[buf_ptr];
- case xclass[c] of
- space_class: goto found;
- digit_class:
- if wlen=1 then {global word weight}
- begin if xint[c]<>word_wt then wt_chg:=true;
- word_wt:=xint[c];
- end
- else dotw[wlen]:=xint[c]; {dot weight}
- hyf_class: dots[wlen]:=xint[c]; {record the dot |c|}
- letter_class: {record the letter |c|}
- begin incr(wlen);
- if wlen=max_len then
- begin print_buf; overflow('word length=',max_len:1);
- end;
- word[wlen]:=xint[c]; dots[wlen]:=no_hyf; dotw[wlen]:=word_wt;
- end;
- escape_class: {record a multi-character sequence starting with |c|}
- begin incr(wlen);
- if wlen=max_len then
- begin print_buf; overflow('word length=',max_len:1);
- end;
- get_letter(word[wlen]); dots[wlen]:=no_hyf; dotw[wlen]:=word_wt;
- end;
- invalid_class: bad_input('Bad character');
-@.Bad character@>
- end;
-until buf_ptr=max_buf_len;
-found: incr(wlen); word[wlen]:=edge_of_word;
-end;
-
-@ Here is a procedure that uses the existing patterns to hyphenate the
-current word. The hyphenation value applying between the characters
-|word[dpos]| and |word[dpos+1]| is stored in |hval[dpos]|.
-
-In addition, |no_more[dpos]| is set to |true| if this position is
-``knocked out'' by either a good or bad pattern at this level. That is,
-if the pattern with current length and hyphen position is a superstring of
-either a good or bad pattern at this level, then we don't need to collect
-count statistics for the pattern because it can't possibly be chosen in
-this pass. Thus we don't even need to insert such patterns into the count
-trie, which saves a good deal of space.
-
-@p procedure hyphenate;
-label done;
-var spos, @!dpos, @!fpos: word_index;
- @!t: trie_pointer; @!h: op_type; @!v: val_type;
-begin
-for spos:=wlen-hyf_max downto 0 do
- begin no_more[spos]:=false; hval[spos]:=0;
- fpos:=spos+1; t:=trie_root+word[fpos];
- repeat h:=trie_outp(t);
- while h>0 do @<Store output |h| in the |hval| and
- |no_more| arrays, and advance |h|@>;
- t:=trie_link(t);
- if t=0 then goto done;
- incr(fpos); Incr(t)(word[fpos]);
- until so(trie_char(t))<>word[fpos];
- done:
- end;
-end;
-
-@ In order to avoid unnecessary test (and range check violations) the
-globals |hyf_min|, |hyf_max|, and |hyf_len| are set up such that only
-positions from |hyf_min| up to |wlen-hyf_max| of the |word| array need
-to be checked, and that words with |wlen<hyf_len| need not to be checked
-at all.
-
-@<Globals...@>=
-@!hyf_min, @!hyf_max, @!hyf_len: word_index; {limits for legal hyphens}
-
-@ @<Prepare to read dictionary@>=
-hyf_min:=left_hyphen_min+1; hyf_max:=right_hyphen_min+1;
-hyf_len:=hyf_min+hyf_max;
-
-@ @<Store output |h| in the |hval| and |no_more| arrays, and advance |h|@>=
-begin dpos:=spos+hyf_dot(h);
- v:=hyf_val(h);
- if (v<max_val) and (hval[dpos]<v) then hval[dpos]:=v;
- if (v>=hyph_level) then {check if position knocked out}
- if ((fpos-pat_len)<=(dpos-pat_dot))and((dpos-pat_dot)<=spos) then
- no_more[dpos]:=true;
- h:=hyf_nxt(h);
-end
-
-@ The |change_dots| procedure updates the |dots| array representing the
-printing values of the hyphens. Initially, hyphens (and correctly
-found hyphens) in the word list are represented by |is_hyf| whereas
-non-hyphen positions (and erroneous hyphens) are represented by |no_hyf|. A
-Here these values are increased by one for each hyphen found by the
-current patterns, thus changing |no_hyf| into |err_hyf| and |is_hyf|
-into |found_hyf|. The routine also collects statistics about the number
-of good, bad, and missed hyphens.
-
-@d incr_wt(#)==Incr(#)(dotw[dpos])
-
-@p procedure change_dots;
-var dpos: word_index;
-begin for dpos:=wlen-hyf_max downto hyf_min do
- begin if odd(hval[dpos]) then incr(dots[dpos]);
- if dots[dpos]=found_hyf then incr_wt(good_count)
- else if dots[dpos]=err_hyf then incr_wt(bad_count)
- else if dots[dpos]=is_hyf then incr_wt(miss_count);
- end;
-end;
-
-@ The following procedure outputs the word as hyphenated by the current
-patterns, including any word weights. Hyphens inhibited by the values of
-\.{\\lefthyphenmin} and \.{\\righthyphenmin} are output as well.
-
-@p procedure output_hyphenated_word;
-var dpos: word_index;@/
-@!l: triec_pointer; {for |write_letter|}
-begin if wt_chg then {output global word weight}
- begin write(pattmp,xdig[word_wt]); wt_chg:=false
- end;
-for dpos:=2 to wlen-2 do
- begin write_letter(word[dpos])(pattmp); write(pattmp,xext[word[dpos]]);
- if dots[dpos]<>no_hyf then write(pattmp,xhyf[dots[dpos]]);
- if dotw[dpos]<>word_wt then write(pattmp,xdig[dotw[dpos]]);
- end;
-write_letter(word[wlen-1])(pattmp); write_ln(pattmp,xext[word[wlen-1]]);
-end;
-
-@ For each dot position in the current word, the |do_word| routine first
-checks to see if we need to consider it. It might be knocked out or a dot
-we don't care about. That is, when considering hyphenating patterns, for
-example, we don't need to count hyphens already found. If a relevant dot
-is found, we increment the count in the count trie for the corresponding
-pattern, inserting it first if necessary. At this point of the program
-range check violations may occur if these counts are incremented beyond
-|triec_max|; it would, however, be too expensive to prevent this.
-@^range check violations@>
-
-@p procedure do_word;
-label continue, done;
-var spos, @!dpos, @!fpos: word_index; @!a: triec_pointer;
- @!goodp: boolean;
-begin for dpos:=wlen-dot_max downto dot_min do
- begin spos:=dpos-pat_dot;
- fpos:=spos+pat_len;
- @<Check this dot position and |goto continue| if don't care@>;
- incr(spos); a:=triec_root+word[spos];
- while spos<fpos do
- begin {follow existing count trie}
- incr(spos);
- a:=triec_link(a)+word[spos];
- if so(triec_char(a))<>word[spos] then
- begin {insert new count pattern}
- a:=insertc_pat(fpos);
- goto done;
- end;
- end;
- done: if goodp then incr_wt(triec_good(a))
- @+else incr_wt(triec_bad(a));
- continue:
- end;
-end;
-
-@ The globals |good_dot| and |bad_dot| will be set to |is_hyf| and
-|no_hyf|, or |err_hyf| and |found_hyf|, depending on whether the current
-level is odd or even, respectively. The globals |dot_min|, |dot_max|,
-and |dot_len| are analogous to |hyf_min|, |hyf_max|, and |hyf_len|
-defined earlier.
-
-@<Globals...@>=
-@!good_dot, @!bad_dot: hyf_type; {good and bad hyphens at current level}
-@!dot_min, @!dot_max, @!dot_len: word_index; {limits for legal dots}
-
-@ @<Prepare to read dictionary@>=
-if procesp then
- begin dot_min:=pat_dot; dot_max:=pat_len-pat_dot;
- if dot_min<hyf_min then dot_min:=hyf_min;
- if dot_max<hyf_max then dot_max:=hyf_max;
- dot_len:=dot_min+dot_max;
- if odd(hyph_level) then
- begin good_dot:=is_hyf; bad_dot:=no_hyf;
- end
- else begin good_dot:=err_hyf; bad_dot:=found_hyf;
- end;
- end;
-
-@ If the dot position |dpos| is out of bounds, knocked out, or a ``don't
-care'', we skip this position. Otherwise we set the flag |goodp|
-indicating whether this is a good or bad dot.
-
-@<Check this dot position...@>=
-if no_more[dpos] then goto continue;
-if dots[dpos]=good_dot then goodp:=true else
-if dots[dpos]=bad_dot then goodp:=false else goto continue;
-
-@ If |hyphp| is set to |true|, |do_dictionary| will write out a copy of
-the dictionary as hyphenated by the current set of patterns. If |procesp|
-is set to |true|, |do_dictionary| will collect pattern statistics for
-patterns with length |pat_len| and hyphen position |pat_dot|, at level
-|hyph_level|.
-
-@<Globals...@>=
-@!procesp, @!hyphp: boolean;
-@!pat_dot: dot_type; {hyphen position, measured from beginning of pattern}
-@!hyph_level: val_type; {hyphenation level}
-@!filnam: packed array[1..8] of char; {for |pattmp|}
-
-@ The following procedure makes a pass through the word list, and also
-prints out statistics about number of hyphens found and storage used by
-the count trie.
-
-@p procedure do_dictionary;
-begin good_count:=0; bad_count:=0; miss_count:=0;
- word_wt:=1; wt_chg:=false;
- reset(dictionary);@/
- @<Prepare to read dictionary@>@;@/
- if procesp then
- begin init_count_trie;
- print_ln('processing dictionary with pat_len = ',pat_len:1,
- ', pat_dot = ',pat_dot:1);
- end;
- if hyphp then
- begin filnam:='pattmp. ';
- filnam[8]:=xdig[hyph_level];
- rewrite(pattmp,filnam);
- print_ln('writing pattmp.', xdig[hyph_level]);
- end;
- @<Process words until end of file@>;@/
- close_in(dictionary);@/
- print_ln(' ');
- print_ln(good_count:1,' good, ',bad_count:1,' bad, ',
- miss_count:1,' missed');
- if (good_count+miss_count)>0 then
- print_ln((100*good_count/(good_count+miss_count)):1:2,' %, ',
- (100*bad_count/(good_count+miss_count)):1:2,' %, ',
- (100*miss_count/(good_count+miss_count)):1:2,' %');
- if procesp then
- print_ln(pat_count:1,' patterns, ',triec_count:1,
- ' nodes in count trie, ','triec_max = ',triec_max:1);
- if hyphp then close_out(pattmp);
-end;
-
-@ @<Process words...@>=
-while not eof(dictionary) do
- begin read_word;
- if wlen>=hyf_len then {short words are never hyphenated}
- begin hyphenate; change_dots;
- end;
- if hyphp then if wlen>2 then output_hyphenated_word;
- {empty words are ignored}
- if procesp then if wlen>=dot_len then do_word;
- end
-
-@* Reading patterns.
-Before beginning a run, we can read in a file of existing patterns. This
-is useful for extending a previous pattern selection run to get some more
-levels. (Since these runs are quite time-consuming, it is convenient to
-choose patterns one level at a time, pausing to look at the results of the
-previous level, and possibly amending the dictionary.)
-
-@p procedure read_patterns;
-label done, found;
-var c: text_char;
-@!d: digit;
-@!i: dot_type;
-@!t: trie_pointer;
-begin xclass['.']:=letter_class; xint['.']:=edge_of_word;
-level_pattern_count:=0; max_pat:=0;
-reset(patterns);
-while not eof(patterns) do
- begin read_buf(patterns);
- incr(level_pattern_count);@/
- @<Get pattern and dots and |goto found|@>;
- found: @<Insert pattern@>;
- end;
-close_in(patterns);
-print_ln(level_pattern_count:1,' patterns read in');@/
-print_ln('pattern trie has ',trie_count:1,' nodes, ',@|
- 'trie_max = ',trie_max:1,', ',op_count:1,' outputs');
-end;
-
-@ The global variable |max_pat| keeps track of the largest hyphenation
-value found in any pattern.
-
-@<Globals...@>=
-@!max_pat: val_type;
-
-@ When a new pattern has been input into |buf|, we extract the letters of
-the pattern, and insert the hyphenation values (digits) into the |hval|
-array.
-
-@<Get pattern...@>=
-pat_len:=0; buf_ptr:=0; hval[0]:=0;
-repeat incr(buf_ptr); c:=buf[buf_ptr];
- case xclass[c] of
- space_class: goto found;
- digit_class:
- begin d:=xint[c];
- if d>=max_val then bad_input('Bad hyphenation value');
-@.Bad hyphenation value@>
- if d>max_pat then max_pat:=d;
- hval[pat_len]:=d;
- end;
- letter_class:
- begin incr(pat_len); hval[pat_len]:=0; pat[pat_len]:=xint[c];
- end;
- escape_class: {record a multi-character sequence starting with |c|}
- begin incr(pat_len); hval[pat_len]:=0; get_letter(pat[pat_len]);
- end;
- hyf_class, invalid_class: bad_input('Bad character');
-@.Bad character@>
- end;
-until buf_ptr=max_buf_len
-
-@ Then we insert the pattern for each non-vanishing hyphenation value.
-In addition we check that |edge_of_word| (i.e., |'.'|) occurs only as
-first or last character; otherwise we would have to perform a time
-consuming test for the end of a word in the |hyphenate| procedure.
-
-@<Insert pattern@>=
-if pat_len>0 then {avoid spurious patterns}
- for i:=0 to pat_len do
- begin if hval[i]<>0 then insert_pattern(hval[i],i);
- if i>1 then if i<pat_len then if pat[i]=edge_of_word then
- bad_input('Bad edge_of_word');
-@.Bad edge_of_word@>
- end
-
-@* The main program.
-This is where \.{PATGEN} actually starts. We initialize the pattern trie,
-get |hyph_level| and |pat_len| limits from the terminal, and generate
-patterns.
-
-@p begin initialize;
-init_pattern_trie;
-read_translate;
-read_patterns;
-procesp:=true; hyphp:=false;@/
-repeat print('hyph_start, hyph_finish: '); get_input(n1,n2);@/
- if (n1>=1)and(n1<max_val)and(n2>=1)and(n2<max_val) then
- begin hyph_start:=n1; hyph_finish:=n2;
- end
- else begin n1:=0;
- print_ln('Specify 1<=hyph_start,hyph_finish<=',max_val-1:1,' !');
- end;
-until n1>0;
-hyph_level:=max_pat; {in case |hyph_finish<hyph_start|}
-for i:=hyph_start to hyph_finish do
- begin hyph_level:=i; level_pattern_count:=0;
- if hyph_level>hyph_start then print_ln(' ')
- else if hyph_start<=max_pat then
- print_ln('Largest hyphenation value ',max_pat:1,
- ' in patterns should be less than hyph_start');@/
-@.Largest hyphenation value@>
- repeat print('pat_start, pat_finish: '); get_input(n1,n2);@/
- if (n1>=1)and(n1<=n2)and(n2<=max_dot) then
- begin pat_start:=n1; pat_finish:=n2;
- end
- else begin n1:=0;
- print_ln('Specify 1<=pat_start<=pat_finish<=',max_dot:1,' !');
- end;
- until n1>0;
- repeat print('good weight, bad weight, threshold: ');
- get_input(n1,n2,n3);@/
- if (n1>=1)and(n2>=1)and(n3>=1) then
- begin good_wt:=n1; bad_wt:=n2; thresh:=n3;
- end
- else begin n1:=0;
- print_ln('Specify good weight, bad weight, threshold>=1 !');
- end;
- until n1>0;
- @<Generate a level@>;
- delete_bad_patterns;
- print_ln('total of ',level_pattern_count:1,
- ' patterns at hyph_level ',hyph_level:1);
- end;
-find_letters(trie_link(trie_root),1); {prepare for output}
-rewrite(patout);
-output_patterns(trie_root,1);
-close_out(patout);@/
-@<Make final pass to hyphenate word list@>;
-end_of_PATGEN:
-end.
-
-@ The patterns of a given length (at a given level) are chosen with dot
-positions ordered in an ``organ-pipe'' fashion. For example, for
-|pat_len=4| we choose patterns for different dot positions in the order 2,
-1, 3, 0, 4. The variable |dot1| controls this iteration in a clever
-manner.
-
-@<Globals...@>=
-@!n1, @!n2, @!n3: integer; {accumulators}
-@!i: val_type; {loop index: hyphenation level}
-@!j: dot_type; {loop index: pattern length}
-@!k: dot_type; {loop index: hyphen position}
-@!dot1: dot_type;
-@!more_this_level: array[dot_type] of boolean;
-
-@ The array |more_this_level| remembers which positions are permanently
-``knocked out''. That is, if there aren't any possible good patterns
-remaining at a certain dot position, we don't need to consider longer
-patterns at this level containing that position.
-
-@<Generate a level@>=
-for k:=0 to max_dot do more_this_level[k]:=true;
-for j:=pat_start to pat_finish do
- begin pat_len:=j; pat_dot:=pat_len div 2; dot1:=pat_dot*2;
- repeat pat_dot:=dot1-pat_dot; dot1:=pat_len*2-dot1-1;
- if more_this_level[pat_dot] then
- begin do_dictionary; collect_count_trie;
- more_this_level[pat_dot]:=more_to_come;
- end;
- until pat_dot=pat_len;
- for k:=max_dot downto 1 do
- if not more_this_level[k-1] then more_this_level[k]:=false;
- end
-
-@ When all patterns have been found, the user has a chance to see what
-they do. The resulting \.{pattmp} file can be used as the new
-`dictionary' if we want to continue pattern generation from this point.
-
-@<Make final pass to hyphenate word list@>=
-procesp:=false; hyphp:=true;@/
-print('hyphenate word list? ');
-get_input_ln(buf[1]);
-if (buf[1]='Y') or (buf[1]='y') then do_dictionary
-
-@* System-dependent changes.
-This section should be replaced, if necessary, by changes to the program
-that are necessary to make \.{PATGEN} work at a particular installation.
-It is usually best to design your change file so that all changes to
-previous sections preserve the section numbering; then everybody's version
-will be consistent with the printed program. More extensive changes,
-which introduce new sections, can be inserted here; then only the index
-itself will get a new section number.
-@^system dependencies@>
-
-@* Index.
-Pointers to error messages appear here together with the section numbers
-where each ident\-i\-fier is used.