summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex
diff options
context:
space:
mode:
authorNorbert Preining <norbert@preining.info>2024-03-27 03:02:20 +0000
committerNorbert Preining <norbert@preining.info>2024-03-27 03:02:20 +0000
commit31fa8cd73bab8480d38dae3a89ca578f337d6bbd (patch)
treeba550e99e0cb15dbf5405369d536b12b051c5155 /macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex
parent904f56f2c26edc7eb11d5a27579bccbeca29c618 (diff)
CTAN sync 202403270302
Diffstat (limited to 'macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex')
-rw-r--r--macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex261
1 files changed, 156 insertions, 105 deletions
diff --git a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex
index 2aa2ce6537..741938eb66 100644
--- a/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex
+++ b/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-line.tex
@@ -5,7 +5,7 @@
\subsection{Attributes of a line} % (fold)
\label{sub:attributes_of_a_line}
-Writing |L.AB = line: new (z.A,z.B)| creates an object of the class \tkzname{line} (the notation is arbitrary for the moment). Geometrically it is, as much ,the line passing through the points $A$ and $B$ as the segment $[AB]$. Thus we can use the midpoint of |L.AB| which is, of course, the midpoint of the segment $[AB]$. This medium is obtained with |L.AB.mid|. Note that |L.AB.pa = z.A| and |L.AB.pb = z.B|. Finally, if a line $L$ is the result of a method, you can obtain the points with |z.A,z.B = get_points (L)| or with the previous remark.
+Writing |L.AB = line: new (z.A,z.B)| creates an object of the class \tkzname{line} (the notation is arbitrary for the moment). Geometrically, it represents both the line passing through the points $A$ and $B$ as the segment $[AB]$. Thus, we can use the midpoint of |L.AB|, which is, of course, the midpoint of the segment $[AB]$. This medium is obtained with |L.AB.mid|. Note that |L.AB.pa = z.A| and |L.AB.pb = z.B|. Finally, if a line $L$ is the result of a method, you can obtain the points with |z.A,z.B = get_points (L)| or with the previous remark.
\begin{mybox}
Creation |L.AB = line : new ( z.A , z.B ) |
@@ -26,15 +26,15 @@ The attributes are :
\Iattr{line}{pb} & Second point of the segment & \\
\Iattr{line}{type} & Type is 'line' & |L.AB.type = 'line'| \\
\Iattr{line}{mid} & Middle of the segment& |z.M = L.AB.mid|\\
-\Iattr{line}{slope} & Slope of the line & see (\ref{ssub:example_class_line})\\
-\Iattr{line}{length} &|l = L.AB.length|&see (\ref{sub:transfer_from_lua_to_tex} ; \ref{ssub:example_class_line})\\
-\Iattr{line}{north\_pa} & &See (\ref{ssub:example_class_line}) \\
+\Iattr{line}{slope} & Slope of the line & Refer to (\ref{ssub:example_class_line})\\
+\Iattr{line}{length} &|l = L.AB.length|&Refer to (\ref{sub:transfer_from_lua_to_tex} ; \ref{ssub:example_class_line})\\
+\Iattr{line}{north\_pa} & &Refer to (\ref{ssub:example_class_line}) \\
\Iattr{line}{north\_pb} & &\\
\Iattr{line}{south\_pa} & &\\
-\Iattr{line}{south\_pb} & &See (\ref{ssub:example_class_line}) \\
+\Iattr{line}{south\_pb} & &Refer to (\ref{ssub:example_class_line}) \\
\Iattr{line}{east} & &\\
\Iattr{line}{west} & &\\
-\Iattr{line}{vec} & |V.AB = L.AB.vec|& defines $\overrightarrow{AB}$ See (\ref{sec:class_vector})\\
+\Iattr{line}{vec} & |V.AB = L.AB.vec|& defines $\overrightarrow{AB}$ Refer to (\ref{sec:class_vector})\\
\bottomrule
\end{tabular}
\egroup
@@ -42,7 +42,7 @@ The attributes are :
\subsubsection{Example: attributes of class line} % (fold)
\label{ssub:example_class_line}
\begin{minipage}{.5\textwidth}
-\begin{verbatim}
+\begin{Verbatim}
\begin{tkzelements}
scale = .5
z.a = point: new (1, 1)
@@ -66,7 +66,7 @@ The attributes are :
\tkzLabelSegment[sloped](a,b){ab = \tkzUseLua{len}}
\tkzLabelSegment[above=12pt,sloped](a,b){slope of (ab) = \tkzUseLua{sl}}
\end{tikzpicture}
-\end{verbatim}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{.5\textwidth}\begin{tkzelements}
scale = .5
@@ -101,14 +101,14 @@ len = L.ab.length
\subsubsection{Method \Imeth{line}{new} and line attributes}
\label{ssub:example_line_attributes}
-Notation |L| or |L.AB| or |L.euler|. The notation is actually free.
+The notation can be |L| or |L.AB| or |L.euler|. The notation is actually free.
|L.AB| can also represent the segment.
With | L.AB = line : new (z.A,z.B)|, a line is defined.
\begin{minipage}{0.5\textwidth}
-\begin{tkzexample}[latex=0cm,small,code only]
+\begin{Verbatim}
\begin{tkzelements}
z.A = point : new (1,1)
z.B = point : new (3,2)
@@ -124,7 +124,7 @@ With | L.AB = line : new (z.A,z.B)|, a line is defined.
\tkzMarkRightAngle(B,A,C)
\tkzMarkSegments(A,C A,B A,D)
\end{tikzpicture}
-\end{tkzexample}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{0.5\textwidth}
\begin{tkzelements}
@@ -150,7 +150,7 @@ With | L.AB = line : new (z.A,z.B)|, a line is defined.
\newpage
\subsection{Methods of the class line} % (fold)
\label{sub:methods_from_class_line}
-Here's the list of methods for the \tkzNameObj{line} object. The results are either reals, points, lines, circles or triangles. The triangles obtained are similar to the triangles defined below.
+Here's the list of methods for the \tkzNameObj{line} object. The results can be real numbers, points, lines, circles or triangles. The triangles obtained are similar to the triangles defined below.
\begin{minipage}{\textwidth}
\bgroup
@@ -161,46 +161,56 @@ Here's the list of methods for the \tkzNameObj{line} object. The results are eit
\toprule
\textbf{Methods} & \textbf{Comments} & \\
\midrule
-\Imeth{line}{new(pt, pt)} & |L.AB = line : new(z.A,z.B)| line $(AB)$& see (\ref{ssub:altshiller})\\
+\Igfct{line}{new(pt, pt)} & |L.AB = line : new(z.A,z.B)| & Create line $(AB)$ ; Refer to (\ref{ssub:altshiller})\\
\midrule
\textbf{Points} &&\\
\midrule
-\Imeth{line}{gold\_ratio ()} & |z.C = L.AB : gold_ratio()| & see (\ref{sub:gold_ratio_with_segment} ; \ref{sub:the_figure_pappus_circle} ; \ref{sub:bankoff_circle}) \\
-\Imeth{line}{normalize ()} & |z.C = L.AB : normalize()| & AC =1 and $C\in (AB)$ see (\ref{ssub:normalize}) \\
-\Imeth{line}{normalize\_inv ()} & |z.C = L.AB : normalize_inv()| & CB =1 and $C\in (AB)$ \\
- \Imeth{line}{barycenter (r,r)} & |z.C = L.AB : barycenter (1,2)| & see (\ref{ssub:barycenter_with_a_line})\\
- \Imeth{line}{point (r)} & |z.C = L.AB : point (2)| & $\overrightarrow{AC} = 2\overrightarrow{AB}$ See (\ref{sub:ellipse} ; \ref{ssub:method_point})\\
-\Imeth{line}{midpoint ()} & |z.M = L.AB : midpoint ()| & better is |z.M = L.AB.mid| \\
-\Imeth{line}{harmonic\_int (pt)} & |z.D = L.AB : harmonic_int (z.C)| & See (\ref{sub:bankoff_circle})\\
-\Imeth{line}{harmonic\_ext (pt)} & |z.D = L.AB : harmonic_ext (z.C)| & See (\ref{sub:bankoff_circle})\\
-\Imeth{line}{harmonic\_both (r)} & |z.C,z.D = L.AB : harmonic_both|($\varphi$) & \ref{sub:harmonic_division_with_tkzphi}\\
-\Imeth{line}{square ()} & |S.AB = L.AB : square () | & create a square |S.AB|.\footnote{ |_,_,z.C,z.D = get_points(S.AB)|}\\
+\Imeth{line}{gold\_ratio ()} & |z.C=L.AB : gold_ratio()| & Refer to (\ref{sub:gold_ratio_with_segment} ; \ref{sub:the_figure_pappus_circle} ; \ref{sub:bankoff_circle}) \\
+\Imeth{line}{normalize ()} & |z.C=L.AB : normalize()| & AC =1 and $C\in (AB)$ Refer to (\ref{ssub:normalize}) \\
+\Imeth{line}{normalize\_inv ()} & |z.C=L.AB : normalize_inv()| & CB=1 and $C\in (AB)$ \\
+\Imeth{line}{barycenter (r,r)} & |z.C=L.AB : barycenter (1,2)| & Refer to (\ref{ssub:barycenter_with_a_line})\\
+\Imeth{line}{point (r)} & |z.C=L.AB : point (2)| & $\overrightarrow{AC} = 2\overrightarrow{AB}$ Refer to (\ref{sub:ellipse} ; \ref{ssub:method_point})\\
+\Imeth{line}{midpoint ()} & |z.M=L.AB : midpoint ()| & better is |z.M = L.AB.mid| \\
+\Imeth{line}{harmonic\_int (pt)} & |z.D=L.AB : harmonic_int (z.C)| & Refer to (\ref{sub:bankoff_circle})\\
+\Imeth{line}{harmonic\_ext (pt)} & |z.D=L.AB : harmonic_ext (z.C)| & Refer to (\ref{sub:bankoff_circle})\\
+\Imeth{line}{harmonic\_both (r)} & |z.C,z.D=L.AB : harmonic_both|($\varphi$) & \ref{sub:harmonic_division_with_tkzphi}\\
+\Imeth{line}{\_east(d)} & |z.M=L.AB : _east(2)| & |BM = 2| $A,B,M$ aligned \\
+\Imeth{line}{\_west(d)} & |z.M=L.AB : _east(2)| & |BM = 2| $A,B,M$ aligned \\
+\Imeth{line}{\_north\_pa(d)} &|z.M=L.AB: _north_pa(2)| &|AM=2| $AM\perp AB$ ; $\overrightarrow{AB},\overrightarrow{AM}$ counterclockwise \\
+\Imeth{line}{\_south\_pa(d)} &|z.M=L.AB:_south_pa(2)| &|AM=2|; $AM\perp AB$ ; $\overrightarrow{AB},\overrightarrow{AM}$ clockwise \\
+\Imeth{line}{\_north\_pb(d)} &|z.M=L.AB:_north_pb(2)| &|BM=2|; $BM\perp BA$ ; $\overrightarrow{BA},\overrightarrow{BM}$ clockwise \\
+\Imeth{line}{\_south\_pb(d)} &|z.M=L.AB:_south_pb(2)| &|BM=2|; $BM\perp BA$ ; $\overrightarrow{AB},\overrightarrow{AM}$ counterclockwise \\
+\Imeth{line}{report(d,pt)} &|z.M=L.AB:report(2,z.N)| &|MN=2|; $AB\parallel MN$ ; Refer to ex. (\ref{ssub:method_report})\\
\midrule
\textbf{Lines} &&\\
\midrule
-\Imeth{line}{ll\_from ( pt )} & |L.CD = L.AB : ll_from (z.C)| & $(CD) \parallel (AB)$ \\
-\Imeth{line}{ortho\_from ( pt )} & |L.CD = L.AB : ortho_from (z.C)|& $(CD) \perp (AB)$\\
-\Imeth{line}{mediator ()}&|L.uv = L.AB : mediator ()| & $(u,v)$ mediator of $(A,B)$\\
+\Imeth{line}{ll\_from ( pt )} &|L.CD=L.AB: ll_from(z.C)| &$(CD) \parallel (AB)$ \\
+\Imeth{line}{ortho\_from ( pt )} &|L.CD=L.AB: ortho_from(z.C)|&$(CD) \perp (AB)$\\
+\Imeth{line}{mediator ()}&|L.uv=L.AB: mediator()| & $(u,v)$mediator of $(A,B)$\\
\midrule
\textbf{Triangles}&&\\
\midrule
-\Imeth{line}{equilateral (<swap>)} & |T.ABC = L.AB : equilateral ()| & $(\overrightarrow{AB},\overrightarrow{AC})>0$ or $<0$ with swap \footnote{Triangles are defined in the direct sense of rotation, unless the "swap" option is present.} \\
-\Imeth{line}{isosceles (an<,swap>)} & |T.ABC = L.AB : isosceles (math.pi/6)|& \\
-\Imeth{line}{two\_angles (an,an)} & |T.ABC = L.AB : two_angles (an,an)|&note \footnote{The given side is between the two angles} see ( ) \\
-\Imeth{line}{school ()} & Angle measurements are 30°,60° and 90°. & \\
+\Imeth{line}{equilateral (<swap>)} & |T.ABC=L.AB:equilateral()| & $(\overrightarrow{AB},\overrightarrow{AC})>0$ or $<0$ with swap \footnote{Triangles are defined in the direct sense of rotation, unless the "swap" option is present.} \\
+\Imeth{line}{isosceles (an<,swap>)}&|T.ABC=L.AB:isosceles(math.pi/6)|&\\
+\Imeth{line}{two\_angles (an,an)} &|T.ABC=L.AB:two_angles(an,an)|&note \footnote{The given side is between the two angles} Refer to (\ref{ssub:triangle_with_two__angles}) \\
+\Imeth{line}{school ()} & 30°,60°, 90° & \\
\Imeth{line}{sss (r,r)} & $AC=r$ $BC=r$ & \\
\Imeth{line}{as (r,an)} & $AC =r$ $\widehat{BAC} = an$& \\
\Imeth{line}{sa (r,an)} & $AC =r$ $\widehat{ABC} = an$& \\
\midrule
\textbf{Sacred triangles}&&\\
\midrule
-\Imeth{line}{gold (<swap>)} & |T.ABC = L.AB : gold ()| & right in $B$ and $AC = \varphi \times AB $ \\
-\Imeth{line}{euclide (<swap>)} & |T.ABC = L.AB : euclide ()| & $AB=AC$ and $(\overrightarrow{AB},\overrightarrow{AC}) = \pi/5$ \\
-\Imeth{line}{golden (<swap>)} & |T.ABC = L.AB : golden ()| &
+\Imeth{line}{gold (<swap>)} &|T.ABC=L.AB:gold()| & right in $B$ and $AC = \varphi \times AB $ \\
+\Imeth{line}{euclide (<swap>)} &|T.ABC=L.AB:euclide()| &$AB=AC$ ; $(\overrightarrow{AB},\overrightarrow{AC}) = \pi/5$ \\
+\Imeth{line}{golden (<swap>)} &|T.ABC=L.AB:golden()| &
$(\overrightarrow{AB},\overrightarrow{AC}) = 2\times \pi/5$ \\
\Imeth{line}{divine ()} & & \\
-\Imeth{line}{egyptian ()} & & \\
+\Imeth{line}{egyptian ()} & & \\
\Imeth{line}{cheops ()} & & \\
+\midrule
+\textbf{Squares}&&\\
+\midrule
+\Imeth{line}{square ()} &|S.AB=L.AB : square () | & create a square |S.AB|.\footnote{ |_,_,z.C,z.D = get_points(S.AB)|}\\
\bottomrule
\end{tabular}
\egroup
@@ -229,7 +239,7 @@ Here's the list of methods for the \tkzNameObj{line} object. The results are eit
\midrule
\textbf{Miscellaneous} &&\\
\midrule
-\Imeth{line}{distance (pt)} & |d = L.Ab : distance (z.C)| & see \ref{ssub:example_distance_and_projection}\\
+\Imeth{line}{distance (pt)} & |d = L.Ab : distance (z.C)| & Refer to \ref{ssub:example_distance_and_projection}\\
\Imeth{line}{in\_out (pt)} & |b = L.AB: in_out(z.C)| & b=true if $C\in (AB)$ \\
\Imeth{line}{slope ()} & |a = L.AB : slope()| & better is L.AB.slope \\
\Imeth{line}{in\_out\_segment (pt)} & |b = L.AB : in_out_segment(z.C)| & b=true if $C\in [AB$] \\
@@ -238,8 +248,46 @@ Here's the list of methods for the \tkzNameObj{line} object. The results are eit
\egroup
\end{minipage}
-\vspace{1 em}
-Here are a few examples.
+\subsubsection{Method report} % (fold)
+\label{ssub:method_report}
+
+|report (d,pt)| If the point is absent, the transfer is made from the first point that defines the line.
+
+\begin{minipage}{.5\textwidth}
+ \begin{Verbatim}
+ \begin{tkzelements}
+ z.A = point : new (1,-1)
+ z.B = point : new (5,0)
+ L.AB = line : new ( z.A , z.B )
+ z.M = point : new (2,3)
+ z.N = L.AB : report (3,z.M)
+ z.O = L.AB : report (3)
+ \end{tkzelements}
+ \begin{tikzpicture}
+ \tkzGetNodes
+ \tkzDrawSegments(A,B M,N)
+ \tkzDrawPoints(A,B,M,N,O)
+ \tkzLabelPoints(A,B,M,N,O)
+ \end{tikzpicture}
+ \end{Verbatim}
+\end{minipage}
+\begin{minipage}{.5\textwidth}
+ \begin{tkzelements}
+z.A = point : new (1,-1)
+z.B = point : new (5,0)
+L.AB = line : new ( z.A , z.B )
+z.M = point : new (2,3)
+z.N = L.AB : report (3,z.M)
+z.O = L.AB : report (3)
+\end{tkzelements}
+\begin{tikzpicture}
+\tkzGetNodes
+\tkzDrawSegments(A,B M,N)
+\tkzDrawPoints(A,B,M,N,O)
+\tkzLabelPoints(A,B,M,N,O)
+\end{tikzpicture}
+\end{minipage}
+% subsubsection method_report (end)
\subsubsection{Triangle with two\_angles} % (fold)
\label{ssub:triangle_with_two__angles}
@@ -247,7 +295,7 @@ Here are a few examples.
The angles are on either side of the given segment
\begin{minipage}{.4\textwidth}
-\begin{verbatim}
+\begin{Verbatim}
\begin{tkzelements}
z.A = point : new ( 0 , 0 )
z.B = point : new ( 4 , 0 )
@@ -262,7 +310,7 @@ The angles are on either side of the given segment
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)
\end{tikzpicture}
-\end{verbatim}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{.6\textwidth}
\begin{tkzelements}
@@ -290,9 +338,8 @@ The angles are on either side of the given segment
In the following example, a small difficulty arises. The given lengths are not affected by scaling, so it's necessary to use the \Igfct{math}{value (r) } function, which will modify the lengths according to the scale.
\begin{minipage}{.4\textwidth}
-\begin{verbatim}
+\begin{Verbatim}
\begin{tkzelements}
- scale =1.25
z.A = point : new ( 0 , 0 )
z.B = point : new ( 5 , 0 )
L.AB = line : new ( z.A , z.B )
@@ -306,18 +353,18 @@ In the following example, a small difficulty arises. The given lengths are not a
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)
\end{tikzpicture}
-\end{verbatim}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{.6\textwidth}
\begin{tkzelements}
- scale =1.25
z.A = point : new ( 0 , 0 )
z.B = point : new ( 5 , 0 )
L.AB = line : new ( z.A , z.B )
T.ABC = L.AB : sss (value(3),value(4))
z.C = T.ABC.pc
\end{tkzelements}
-\hspace{\fill} \begin{tikzpicture}[gridded]
+\hspace{\fill}
+ \begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawPolygons(A,B,C)
\tkzDrawPoints(A,B,C)
@@ -333,9 +380,9 @@ In the following example, a small difficulty arises. The given lengths are not a
In some cases, two solutions are possible.
\begin{minipage}{.4\textwidth}
-\begin{verbatim}
+\begin{Verbatim}
\begin{tkzelements}
- scale =1.2
+ scale =1
z.A = point : new ( 0 , 0 )
z.B = point : new ( 5 , 0 )
L.AB = line : new ( z.A , z.B )
@@ -349,15 +396,15 @@ In some cases, two solutions are possible.
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D)
- \tkzLabelAngle(C,B,A){$\pi/3$}
+ \tkzLabelAngle[teal](C,B,A){$\pi/6$}
\tkzLabelSegment[below left](A,C){$7$}
\tkzLabelSegment[below left](A,D){$7$}
\end{tikzpicture}
-\end{verbatim}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{.6\textwidth}
\begin{tkzelements}
- scale =1.2
+ scale =1
z.A = point : new ( 0 , 0 )
z.B = point : new ( 5 , 0 )
L.AB = line : new ( z.A , z.B )
@@ -371,7 +418,7 @@ In some cases, two solutions are possible.
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D)
- \tkzLabelAngle(C,B,A){$\pi/3$}
+ \tkzLabelAngle[teal](C,B,A){$\pi/6$}
\tkzLabelSegment[below left](A,C){$7$}
\tkzLabelSegment[below left](A,D){$7$}
\end{tikzpicture}
@@ -398,7 +445,7 @@ The side lengths are proportional to the lengths given in the table. They depend
\end{tabular}
\begin{minipage}{.4\textwidth}
-\begin{verbatim}
+\begin{Verbatim}
\begin{tkzelements}
z.A = point : new ( 0 , 0 )
z.B = point : new ( 4 , 0 )
@@ -422,7 +469,7 @@ The side lengths are proportional to the lengths given in the table. They depend
\tkzDrawPoints(A,...,H)
\tkzLabelPoints(A,...,H)
\end{tikzpicture}
-\end{verbatim}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{.6\textwidth}
\begin{tkzelements}
@@ -462,7 +509,7 @@ This method exists for all objects except quadrilaterals.
\begin{minipage}{.4\textwidth}
-\begin{verbatim}
+\begin{Verbatim}
\begin{tkzelements}
z.A = point : new (-1,-1)
z.B = point : new (1,1)
@@ -477,7 +524,7 @@ This method exists for all objects except quadrilaterals.
\tkzDrawPoints(A,B,I,J,K)
\tkzLabelPoints(A,B,I,J,K)
\end{tikzpicture}
-\end{verbatim}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{.6\textwidth}
\begin{tkzelements}
@@ -502,22 +549,22 @@ This method exists for all objects except quadrilaterals.
\begin{minipage}{.4\textwidth}
- \begin{verbatim}
- \begin{tkzelements}
- z.a = point: new (1, 1)
- z.b = point: new (5, 4)
- L.ab = line : new (z.a,z.b)
- z.c = L.ab : normalize ()
- \end{tkzelements}
+\begin{Verbatim}
+\begin{tkzelements}
+ z.a = point: new (1, 1)
+ z.b = point: new (5, 4)
+ L.ab = line : new (z.a,z.b)
+ z.c = L.ab : normalize ()
+\end{tkzelements}
- \begin{tikzpicture}[gridded]
- \tkzGetNodes
- \tkzDrawSegments(a,b)
- \tkzDrawCircle(a,c)
- \tkzDrawPoints(a,b,c)
- \tkzLabelPoints(a,b,c)
- \end{tikzpicture}
- \end{verbatim}
+\begin{tikzpicture}[gridded]
+\tkzGetNodes
+\tkzDrawSegments(a,b)
+\tkzDrawCircle(a,c)
+\tkzDrawPoints(a,b,c)
+\tkzLabelPoints(a,b,c)
+\end{tikzpicture}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{.6\textwidth}
\begin{tkzelements}
@@ -543,7 +590,7 @@ This method exists for all objects except quadrilaterals.
\label{ssub:barycenter_with_a_line}
\begin{minipage}{.4\textwidth}
-\begin{verbatim}
+\begin{Verbatim}
\begin{tkzelements}
z.A = point : new ( 0 , -1 )
z.B = point : new ( 4 , 2 )
@@ -556,7 +603,7 @@ This method exists for all objects except quadrilaterals.
\tkzDrawPoints(A,B,G)
\tkzLabelPoints(A,B,G)
\end{tikzpicture}
-\end{verbatim}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{.6\textwidth}
\begin{tkzelements}
@@ -577,7 +624,7 @@ This method exists for all objects except quadrilaterals.
\subsubsection{Example: new line from a defined line} % (fold)
\label{ssub:new_line_from_a_defined_line}
\begin{minipage}{0.5\textwidth}
-\begin{tkzexample}[latex=0cm,small,code only]
+\begin{Verbatim}
\begin{tkzelements}
scale = 1.25
z.A = point : new (1,1)
@@ -597,7 +644,7 @@ This method exists for all objects except quadrilaterals.
\tkzMarkRightAngle(B,A,C)
\tkzMarkSegments(A,C A,B A,D)
\end{tikzpicture}
-\end{tkzexample}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{0.5\textwidth}
\begin{tkzelements}
@@ -629,7 +676,7 @@ _,z.E = get_points ( L.CD: ll_from (z.B))
\subsubsection{Example: projection of several points} % (fold)
\label{ssub:example_projection_of_several_points}
\begin{minipage}{0.5\textwidth}
-\begin{tkzexample}[latex=0cm,small,code only]
+\begin{Verbatim}
\begin{tkzelements}
scale = .8
z.a = point: new (0, 0)
@@ -645,7 +692,7 @@ _,z.E = get_points ( L.CD: ll_from (z.B))
\tkzDrawPoints(a,...,d,c',d')
\tkzLabelPoints(a,...,d,c',d')
\end{tikzpicture}
- \end{tkzexample}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{0.5\textwidth}
\begin{tkzelements}
@@ -674,7 +721,7 @@ z.cp,z.dp = L.ab : projection(z.c,z.d)
\label{ssub:example_combination_of_methods}
\begin{minipage}{0.6\textwidth}
-\begin{tkzexample}[small,code only]
+\begin{Verbatim}
\begin{tkzelements}
z.A = point: new (0 , 0)
z.B = point: new (6 , 0)
@@ -699,9 +746,11 @@ z.cp,z.dp = L.ab : projection(z.c,z.d)
\tkzFillAngles[teal!30,opacity=.4](A,C,B b,A,B A,O,H)
\tkzMarkAngles[mark=|](A,C,B b,A,B A,O,H H,O,B)
\tkzDrawPoints(A,B,C,H,O)
- \tkzLabelPoints(A,B,C,H,O)
+ \tkzLabelPoints(B,H)
+ \tkzLabelPoints[above](O,C)
+ \tkzLabelPoints[left](A)
\end{tikzpicture}
-\end{tkzexample}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{0.4\textwidth}
\begin{tkzelements}
@@ -730,7 +779,9 @@ z.a,z.b = L.ab.pa,L.ab.pb
\tkzFillAngles[teal!30,opacity=.4,,size=.5](A,C,B b,A,B A,O,H)
\tkzMarkAngles[mark=|,size=.5](A,C,B b,A,B A,O,H H,O,B)
\tkzDrawPoints(A,B,C,H,O)
-\tkzLabelPoints(A,B,C,H,O)
+\tkzLabelPoints(B,H)
+\tkzLabelPoints[above](O,C)
+\tkzLabelPoints[left](A)
\end{tikzpicture}
\hspace*{\fill}
\end{minipage}
@@ -741,7 +792,7 @@ z.a,z.b = L.ab.pa,L.ab.pb
\label{ssub:example_translation}
\begin{minipage}{0.6\textwidth}
-\begin{tkzexample}[small,code only]
+\begin{Verbatim}
\begin{tkzelements}
z.A = point: new (0,0)
z.B = point: new (1,2)
@@ -756,7 +807,7 @@ z.a,z.b = L.ab.pa,L.ab.pb
\tkzLabelPoints(A,...,F)
\tkzDrawSegments[->,red,> =latex](C,E D,F A,B)
\end{tikzpicture}
-\end{tkzexample}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{0.4\textwidth}
\begin{tkzelements}
@@ -783,7 +834,7 @@ z.a,z.b = L.ab.pa,L.ab.pb
\label{ssub:example_distance_and_projection}
\begin{minipage}{0.5\textwidth}
-\begin{tkzexample}[latex=0cm,small,code only]
+\begin{Verbatim}
\begin{tkzelements}
z.A = point : new (0 , 0)
z.B = point : new (5 , -2)
@@ -800,7 +851,7 @@ z.a,z.b = L.ab.pa,L.ab.pb
\tkzLabelSegment[above left,
draw](C,H){$CH = \tkzUseLua{d}$}
\end{tikzpicture}
-\end{tkzexample}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{0.5\textwidth}
\begin{tkzelements}
@@ -829,26 +880,26 @@ z.a,z.b = L.ab.pa,L.ab.pb
\label{ssub:reflection_of_object}
\begin{minipage}{.5\textwidth}
- \begin{verbatim}
- \begin{tkzelements}
- z.A = point : new ( 0 , 0 )
- z.B = point : new ( 4 , 1 )
- z.E = point : new ( 0 , 2 )
- z.F = point : new ( 3 , 3 )
- z.G = point : new ( 4 , 2 )
- L.AB = line : new ( z.A , z.B )
- T.EFG = triangle : new (z.E,z.F,z.G)
- T.new = L.AB : reflection (T.EFG)
- z.Ep,z.Fp,z.Gp = get_points(T.new)
- \end{tkzelements}
- \begin{tikzpicture}
- \tkzGetNodes
- \tkzDrawLine(A,B)
- \tkzDrawPolygon(E,F,G)
- \tkzDrawPolygon[new](E',F',G')
- \tkzDrawSegment[red,dashed](E,E')
- \end{tikzpicture}
- \end{verbatim}
+\begin{Verbatim}
+\begin{tkzelements}
+ z.A = point : new ( 0 , 0 )
+ z.B = point : new ( 4 , 1 )
+ z.E = point : new ( 0 , 2 )
+ z.F = point : new ( 3 , 3 )
+ z.G = point : new ( 4 , 2 )
+ L.AB = line : new ( z.A , z.B )
+ T.EFG = triangle : new (z.E,z.F,z.G)
+ T.new = L.AB : reflection (T.EFG)
+ z.Ep,z.Fp,z.Gp = get_points(T.new)
+\end{tkzelements}
+\begin{tikzpicture}
+ \tkzGetNodes
+ \tkzDrawLine(A,B)
+ \tkzDrawPolygon(E,F,G)
+ \tkzDrawPolygon[new](E',F',G')
+ \tkzDrawSegment[red,dashed](E,E')
+\end{tikzpicture}
+\end{Verbatim}
\end{minipage}
\begin{minipage}{.5\textwidth}
\begin{tkzelements}
@@ -876,7 +927,7 @@ z.a,z.b = L.ab.pa,L.ab.pb
\subsection{Apollonius circle MA/MB = k} % (fold)
\label{sub:apollonius_circle_ma_mb_k}
-\begin{verbatim}
+\begin{Verbatim}
\begin{tkzelements}
z.A = point : new ( 0 , 0 )
z.B = point : new ( 6 , 0 )
@@ -901,7 +952,7 @@ z.a,z.b = L.ab.pa,L.ab.pb
\tkzMarkRightAngle[opacity=.3,fill=lightgray](O,P,C)
\tkzMarkAngles[mark=||](A,P,D D,P,B)
\end{tikzpicture}
-\end{verbatim}
+\end{Verbatim}
\begin{tkzelements}
z.A = point : new ( 0 , 0 )