summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/qrbill
diff options
context:
space:
mode:
authorNorbert Preining <norbert@preining.info>2023-03-03 03:05:02 +0000
committerNorbert Preining <norbert@preining.info>2023-03-03 03:05:02 +0000
commitc000ad35f0ce69cc0466ad24b0647c1e295c0259 (patch)
tree6c64b429a374b5d60b67c2f728c71acb110c775c /macros/latex/contrib/qrbill
parentfe8af26a7b8f32a0cc1b761e3ffb95ed0867a845 (diff)
CTAN sync 202303030305
Diffstat (limited to 'macros/latex/contrib/qrbill')
-rw-r--r--macros/latex/contrib/qrbill/README.md8
-rw-r--r--macros/latex/contrib/qrbill/qrbill-qrencode.lua1351
-rw-r--r--macros/latex/contrib/qrbill/qrbill.dtx21
-rw-r--r--macros/latex/contrib/qrbill/qrbill.ins6
-rw-r--r--macros/latex/contrib/qrbill/qrbill.pdfbin86225 -> 86454 bytes
5 files changed, 1372 insertions, 14 deletions
diff --git a/macros/latex/contrib/qrbill/README.md b/macros/latex/contrib/qrbill/README.md
index 03eff67b34..3888da81b2 100644
--- a/macros/latex/contrib/qrbill/README.md
+++ b/macros/latex/contrib/qrbill/README.md
@@ -1,10 +1,10 @@
# qrbill – create QR-bills based on the swiss payment standard
-Copyright (C) Marei Peischl (peiTeX) <marei@peitex.de>, 2020–2022
+Copyright (C) Marei Peischl (peiTeX) <marei@peitex.de>, 2020–2023
This work is part of a collaborative project of Marei Peischl (peiTeX) and Alex Antener (foobar LLC).
-qrbill 2022/10/20 v1.07
+qrbill 2023/02/28 v2.00
***************************************************************************
@@ -79,4 +79,6 @@ For further information on l3build and other options please have a look at the c
- add possibilities to ignore data fields if empty
- allow the usage of commas within the billing info
* v1.07 (2022-10-20)
- - fix utf8 encoding für qrmode=package \ No newline at end of file
+ - fix utf8 encoding für qrmode=package
+ * v2.00 (2023-02-28)
+ - add luaqrcode to qrbill \ No newline at end of file
diff --git a/macros/latex/contrib/qrbill/qrbill-qrencode.lua b/macros/latex/contrib/qrbill/qrbill-qrencode.lua
new file mode 100644
index 0000000000..1df9a1e2fe
--- /dev/null
+++ b/macros/latex/contrib/qrbill/qrbill-qrencode.lua
@@ -0,0 +1,1351 @@
+--- The qrcode library is licensed under the 3-clause BSD license (aka "new BSD")
+--- To get in contact with the author, mail to <gundlach@speedata.de>.
+---
+--- Please report bugs on the [github project page](http://speedata.github.io/luaqrcode/).
+-- Copyright (c) 2012-2020, Patrick Gundlach and contributors, see https://github.com/speedata/luaqrcode
+-- All rights reserved.
+--
+-- Redistribution and use in source and binary forms, with or without
+-- modification, are permitted provided that the following conditions are met:
+-- * Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+-- * Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in the
+-- documentation and/or other materials provided with the distribution.
+-- * Neither the name of SPEEDATA nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+-- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+-- DISCLAIMED. IN NO EVENT SHALL SPEEDATA GMBH BE LIABLE FOR ANY
+-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+--- Overall workflow
+--- ================
+--- The steps to generate the qrcode, assuming we already have the codeword:
+---
+--- 1. Determine version, ec level and mode (=encoding) for codeword
+--- 1. Encode data
+--- 1. Arrange data and calculate error correction code
+--- 1. Generate 8 matrices with different masks and calculate the penalty
+--- 1. Return qrcode with least penalty
+---
+--- Each step is of course more or less complex and needs further description
+
+--- Helper functions
+--- ================
+---
+--- We start with some helper functions
+
+-- To calculate xor we need to do that bitwise. This helper table speeds up the num-to-bit
+-- part a bit (no pun intended)
+local cclxvi = {[0] = {0,0,0,0,0,0,0,0}, {1,0,0,0,0,0,0,0}, {0,1,0,0,0,0,0,0}, {1,1,0,0,0,0,0,0},
+{0,0,1,0,0,0,0,0}, {1,0,1,0,0,0,0,0}, {0,1,1,0,0,0,0,0}, {1,1,1,0,0,0,0,0},
+{0,0,0,1,0,0,0,0}, {1,0,0,1,0,0,0,0}, {0,1,0,1,0,0,0,0}, {1,1,0,1,0,0,0,0},
+{0,0,1,1,0,0,0,0}, {1,0,1,1,0,0,0,0}, {0,1,1,1,0,0,0,0}, {1,1,1,1,0,0,0,0},
+{0,0,0,0,1,0,0,0}, {1,0,0,0,1,0,0,0}, {0,1,0,0,1,0,0,0}, {1,1,0,0,1,0,0,0},
+{0,0,1,0,1,0,0,0}, {1,0,1,0,1,0,0,0}, {0,1,1,0,1,0,0,0}, {1,1,1,0,1,0,0,0},
+{0,0,0,1,1,0,0,0}, {1,0,0,1,1,0,0,0}, {0,1,0,1,1,0,0,0}, {1,1,0,1,1,0,0,0},
+{0,0,1,1,1,0,0,0}, {1,0,1,1,1,0,0,0}, {0,1,1,1,1,0,0,0}, {1,1,1,1,1,0,0,0},
+{0,0,0,0,0,1,0,0}, {1,0,0,0,0,1,0,0}, {0,1,0,0,0,1,0,0}, {1,1,0,0,0,1,0,0},
+{0,0,1,0,0,1,0,0}, {1,0,1,0,0,1,0,0}, {0,1,1,0,0,1,0,0}, {1,1,1,0,0,1,0,0},
+{0,0,0,1,0,1,0,0}, {1,0,0,1,0,1,0,0}, {0,1,0,1,0,1,0,0}, {1,1,0,1,0,1,0,0},
+{0,0,1,1,0,1,0,0}, {1,0,1,1,0,1,0,0}, {0,1,1,1,0,1,0,0}, {1,1,1,1,0,1,0,0},
+{0,0,0,0,1,1,0,0}, {1,0,0,0,1,1,0,0}, {0,1,0,0,1,1,0,0}, {1,1,0,0,1,1,0,0},
+{0,0,1,0,1,1,0,0}, {1,0,1,0,1,1,0,0}, {0,1,1,0,1,1,0,0}, {1,1,1,0,1,1,0,0},
+{0,0,0,1,1,1,0,0}, {1,0,0,1,1,1,0,0}, {0,1,0,1,1,1,0,0}, {1,1,0,1,1,1,0,0},
+{0,0,1,1,1,1,0,0}, {1,0,1,1,1,1,0,0}, {0,1,1,1,1,1,0,0}, {1,1,1,1,1,1,0,0},
+{0,0,0,0,0,0,1,0}, {1,0,0,0,0,0,1,0}, {0,1,0,0,0,0,1,0}, {1,1,0,0,0,0,1,0},
+{0,0,1,0,0,0,1,0}, {1,0,1,0,0,0,1,0}, {0,1,1,0,0,0,1,0}, {1,1,1,0,0,0,1,0},
+{0,0,0,1,0,0,1,0}, {1,0,0,1,0,0,1,0}, {0,1,0,1,0,0,1,0}, {1,1,0,1,0,0,1,0},
+{0,0,1,1,0,0,1,0}, {1,0,1,1,0,0,1,0}, {0,1,1,1,0,0,1,0}, {1,1,1,1,0,0,1,0},
+{0,0,0,0,1,0,1,0}, {1,0,0,0,1,0,1,0}, {0,1,0,0,1,0,1,0}, {1,1,0,0,1,0,1,0},
+{0,0,1,0,1,0,1,0}, {1,0,1,0,1,0,1,0}, {0,1,1,0,1,0,1,0}, {1,1,1,0,1,0,1,0},
+{0,0,0,1,1,0,1,0}, {1,0,0,1,1,0,1,0}, {0,1,0,1,1,0,1,0}, {1,1,0,1,1,0,1,0},
+{0,0,1,1,1,0,1,0}, {1,0,1,1,1,0,1,0}, {0,1,1,1,1,0,1,0}, {1,1,1,1,1,0,1,0},
+{0,0,0,0,0,1,1,0}, {1,0,0,0,0,1,1,0}, {0,1,0,0,0,1,1,0}, {1,1,0,0,0,1,1,0},
+{0,0,1,0,0,1,1,0}, {1,0,1,0,0,1,1,0}, {0,1,1,0,0,1,1,0}, {1,1,1,0,0,1,1,0},
+{0,0,0,1,0,1,1,0}, {1,0,0,1,0,1,1,0}, {0,1,0,1,0,1,1,0}, {1,1,0,1,0,1,1,0},
+{0,0,1,1,0,1,1,0}, {1,0,1,1,0,1,1,0}, {0,1,1,1,0,1,1,0}, {1,1,1,1,0,1,1,0},
+{0,0,0,0,1,1,1,0}, {1,0,0,0,1,1,1,0}, {0,1,0,0,1,1,1,0}, {1,1,0,0,1,1,1,0},
+{0,0,1,0,1,1,1,0}, {1,0,1,0,1,1,1,0}, {0,1,1,0,1,1,1,0}, {1,1,1,0,1,1,1,0},
+{0,0,0,1,1,1,1,0}, {1,0,0,1,1,1,1,0}, {0,1,0,1,1,1,1,0}, {1,1,0,1,1,1,1,0},
+{0,0,1,1,1,1,1,0}, {1,0,1,1,1,1,1,0}, {0,1,1,1,1,1,1,0}, {1,1,1,1,1,1,1,0},
+{0,0,0,0,0,0,0,1}, {1,0,0,0,0,0,0,1}, {0,1,0,0,0,0,0,1}, {1,1,0,0,0,0,0,1},
+{0,0,1,0,0,0,0,1}, {1,0,1,0,0,0,0,1}, {0,1,1,0,0,0,0,1}, {1,1,1,0,0,0,0,1},
+{0,0,0,1,0,0,0,1}, {1,0,0,1,0,0,0,1}, {0,1,0,1,0,0,0,1}, {1,1,0,1,0,0,0,1},
+{0,0,1,1,0,0,0,1}, {1,0,1,1,0,0,0,1}, {0,1,1,1,0,0,0,1}, {1,1,1,1,0,0,0,1},
+{0,0,0,0,1,0,0,1}, {1,0,0,0,1,0,0,1}, {0,1,0,0,1,0,0,1}, {1,1,0,0,1,0,0,1},
+{0,0,1,0,1,0,0,1}, {1,0,1,0,1,0,0,1}, {0,1,1,0,1,0,0,1}, {1,1,1,0,1,0,0,1},
+{0,0,0,1,1,0,0,1}, {1,0,0,1,1,0,0,1}, {0,1,0,1,1,0,0,1}, {1,1,0,1,1,0,0,1},
+{0,0,1,1,1,0,0,1}, {1,0,1,1,1,0,0,1}, {0,1,1,1,1,0,0,1}, {1,1,1,1,1,0,0,1},
+{0,0,0,0,0,1,0,1}, {1,0,0,0,0,1,0,1}, {0,1,0,0,0,1,0,1}, {1,1,0,0,0,1,0,1},
+{0,0,1,0,0,1,0,1}, {1,0,1,0,0,1,0,1}, {0,1,1,0,0,1,0,1}, {1,1,1,0,0,1,0,1},
+{0,0,0,1,0,1,0,1}, {1,0,0,1,0,1,0,1}, {0,1,0,1,0,1,0,1}, {1,1,0,1,0,1,0,1},
+{0,0,1,1,0,1,0,1}, {1,0,1,1,0,1,0,1}, {0,1,1,1,0,1,0,1}, {1,1,1,1,0,1,0,1},
+{0,0,0,0,1,1,0,1}, {1,0,0,0,1,1,0,1}, {0,1,0,0,1,1,0,1}, {1,1,0,0,1,1,0,1},
+{0,0,1,0,1,1,0,1}, {1,0,1,0,1,1,0,1}, {0,1,1,0,1,1,0,1}, {1,1,1,0,1,1,0,1},
+{0,0,0,1,1,1,0,1}, {1,0,0,1,1,1,0,1}, {0,1,0,1,1,1,0,1}, {1,1,0,1,1,1,0,1},
+{0,0,1,1,1,1,0,1}, {1,0,1,1,1,1,0,1}, {0,1,1,1,1,1,0,1}, {1,1,1,1,1,1,0,1},
+{0,0,0,0,0,0,1,1}, {1,0,0,0,0,0,1,1}, {0,1,0,0,0,0,1,1}, {1,1,0,0,0,0,1,1},
+{0,0,1,0,0,0,1,1}, {1,0,1,0,0,0,1,1}, {0,1,1,0,0,0,1,1}, {1,1,1,0,0,0,1,1},
+{0,0,0,1,0,0,1,1}, {1,0,0,1,0,0,1,1}, {0,1,0,1,0,0,1,1}, {1,1,0,1,0,0,1,1},
+{0,0,1,1,0,0,1,1}, {1,0,1,1,0,0,1,1}, {0,1,1,1,0,0,1,1}, {1,1,1,1,0,0,1,1},
+{0,0,0,0,1,0,1,1}, {1,0,0,0,1,0,1,1}, {0,1,0,0,1,0,1,1}, {1,1,0,0,1,0,1,1},
+{0,0,1,0,1,0,1,1}, {1,0,1,0,1,0,1,1}, {0,1,1,0,1,0,1,1}, {1,1,1,0,1,0,1,1},
+{0,0,0,1,1,0,1,1}, {1,0,0,1,1,0,1,1}, {0,1,0,1,1,0,1,1}, {1,1,0,1,1,0,1,1},
+{0,0,1,1,1,0,1,1}, {1,0,1,1,1,0,1,1}, {0,1,1,1,1,0,1,1}, {1,1,1,1,1,0,1,1},
+{0,0,0,0,0,1,1,1}, {1,0,0,0,0,1,1,1}, {0,1,0,0,0,1,1,1}, {1,1,0,0,0,1,1,1},
+{0,0,1,0,0,1,1,1}, {1,0,1,0,0,1,1,1}, {0,1,1,0,0,1,1,1}, {1,1,1,0,0,1,1,1},
+{0,0,0,1,0,1,1,1}, {1,0,0,1,0,1,1,1}, {0,1,0,1,0,1,1,1}, {1,1,0,1,0,1,1,1},
+{0,0,1,1,0,1,1,1}, {1,0,1,1,0,1,1,1}, {0,1,1,1,0,1,1,1}, {1,1,1,1,0,1,1,1},
+{0,0,0,0,1,1,1,1}, {1,0,0,0,1,1,1,1}, {0,1,0,0,1,1,1,1}, {1,1,0,0,1,1,1,1},
+{0,0,1,0,1,1,1,1}, {1,0,1,0,1,1,1,1}, {0,1,1,0,1,1,1,1}, {1,1,1,0,1,1,1,1},
+{0,0,0,1,1,1,1,1}, {1,0,0,1,1,1,1,1}, {0,1,0,1,1,1,1,1}, {1,1,0,1,1,1,1,1},
+{0,0,1,1,1,1,1,1}, {1,0,1,1,1,1,1,1}, {0,1,1,1,1,1,1,1}, {1,1,1,1,1,1,1,1}}
+
+-- Return a number that is the result of interpreting the table tbl (msb first)
+local function tbl_to_number(tbl)
+ local n = #tbl
+ local rslt = 0
+ local power = 1
+ for i = 1, n do
+ rslt = rslt + tbl[i]*power
+ power = power*2
+ end
+ return rslt
+end
+
+-- Calculate bitwise xor of bytes m and n. 0 <= m,n <= 256.
+local function bit_xor(m, n)
+ local tbl_m = cclxvi[m]
+ local tbl_n = cclxvi[n]
+ local tbl = {}
+ for i = 1, 8 do
+ if(tbl_m[i] ~= tbl_n[i]) then
+ tbl[i] = 1
+ else
+ tbl[i] = 0
+ end
+ end
+ return tbl_to_number(tbl)
+end
+
+-- Return the binary representation of the number x with the width of `digits`.
+local function binary(x,digits)
+ local s=string.format("%o",x)
+ local a={["0"]="000",["1"]="001", ["2"]="010",["3"]="011",
+ ["4"]="100",["5"]="101", ["6"]="110",["7"]="111"}
+ s=string.gsub(s,"(.)",function (d) return a[d] end)
+ -- remove leading 0s
+ s = string.gsub(s,"^0*(.*)$","%1")
+ local fmtstring = string.format("%%%ds",digits)
+ local ret = string.format(fmtstring,s)
+ return string.gsub(ret," ","0")
+end
+
+-- A small helper function for add_typeinfo_to_matrix() and add_version_information()
+-- Add a 2 (black by default) / -2 (blank by default) to the matrix at position x,y
+-- depending on the bitstring (size 1!) where "0"=blank and "1"=black.
+local function fill_matrix_position(matrix,bitstring,x,y)
+ if bitstring == "1" then
+ matrix[x][y] = 2
+ else
+ matrix[x][y] = -2
+ end
+end
+
+
+--- Step 1: Determine version, ec level and mode for codeword
+--- ========================================================
+---
+--- First we need to find out the version (= size) of the QR code. This depends on
+--- the input data (the mode to be used), the requested error correction level
+--- (normally we use the maximum level that fits into the minimal size).
+
+-- Return the mode for the given string `str`.
+-- See table 2 of the spec. We only support mode 1, 2 and 4.
+-- That is: numeric, alaphnumeric and binary.
+local function get_mode( str )
+ if string.match(str,"^[0-9]+$") then
+ return 1
+ elseif string.match(str,"^[0-9A-Z $%%*./:+-]+$") then
+ return 2
+ else
+ return 4
+ end
+ assert(false,"never reached") -- luacheck: ignore
+ return nil
+end
+
+
+
+--- Capacity of QR codes
+--- --------------------
+--- The capacity is calculated as follow: \\(\text{Number of data bits} = \text{number of codewords} * 8\\).
+--- The number of data bits is now reduced by 4 (the mode indicator) and the length string,
+--- that varies between 8 and 16, depending on the version and the mode (see method `get_length()`). The
+--- remaining capacity is multiplied by the amount of data per bit string (numeric: 3, alphanumeric: 2, other: 1)
+--- and divided by the length of the bit string (numeric: 10, alphanumeric: 11, binary: 8, kanji: 13).
+--- Then the floor function is applied to the result:
+--- $$\Big\lfloor \frac{( \text{#data bits} - 4 - \text{length string}) * \text{data per bit string}}{\text{length of the bit string}} \Big\rfloor$$
+---
+--- There is one problem remaining. The length string depends on the version,
+--- and the version depends on the length string. But we take this into account when calculating the
+--- the capacity, so this is not really a problem here.
+
+-- The capacity (number of codewords) of each version (1-40) for error correction levels 1-4 (LMQH).
+-- The higher the ec level, the lower the capacity of the version. Taken from spec, tables 7-11.
+local capacity = {
+ { 19, 16, 13, 9},{ 34, 28, 22, 16},{ 55, 44, 34, 26},{ 80, 64, 48, 36},
+ { 108, 86, 62, 46},{ 136, 108, 76, 60},{ 156, 124, 88, 66},{ 194, 154, 110, 86},
+ { 232, 182, 132, 100},{ 274, 216, 154, 122},{ 324, 254, 180, 140},{ 370, 290, 206, 158},
+ { 428, 334, 244, 180},{ 461, 365, 261, 197},{ 523, 415, 295, 223},{ 589, 453, 325, 253},
+ { 647, 507, 367, 283},{ 721, 563, 397, 313},{ 795, 627, 445, 341},{ 861, 669, 485, 385},
+ { 932, 714, 512, 406},{1006, 782, 568, 442},{1094, 860, 614, 464},{1174, 914, 664, 514},
+ {1276, 1000, 718, 538},{1370, 1062, 754, 596},{1468, 1128, 808, 628},{1531, 1193, 871, 661},
+ {1631, 1267, 911, 701},{1735, 1373, 985, 745},{1843, 1455, 1033, 793},{1955, 1541, 1115, 845},
+ {2071, 1631, 1171, 901},{2191, 1725, 1231, 961},{2306, 1812, 1286, 986},{2434, 1914, 1354, 1054},
+ {2566, 1992, 1426, 1096},{2702, 2102, 1502, 1142},{2812, 2216, 1582, 1222},{2956, 2334, 1666, 1276}}
+
+
+--- Return the smallest version for this codeword. If `requested_ec_level` is supplied,
+--- then the ec level (LMQH - 1,2,3,4) must be at least the requested level.
+-- mode = 1,2,4,8
+local function get_version_eclevel(len,mode,requested_ec_level)
+ local local_mode = mode
+ if mode == 4 then
+ local_mode = 3
+ elseif mode == 8 then
+ local_mode = 4
+ end
+ assert( local_mode <= 4 )
+
+ local bits, digits, modebits, c
+ local tab = { {10,9,8,8},{12,11,16,10},{14,13,16,12} }
+ local minversion = 40
+ local maxec_level = requested_ec_level or 1
+ local min,max = 1, 4
+ if requested_ec_level and requested_ec_level >= 1 and requested_ec_level <= 4 then
+ min = requested_ec_level
+ max = requested_ec_level
+ end
+ for ec_level=min,max do
+ for version=1,#capacity do
+ bits = capacity[version][ec_level] * 8
+ bits = bits - 4 -- the mode indicator
+ if version < 10 then
+ digits = tab[1][local_mode]
+ elseif version < 27 then
+ digits = tab[2][local_mode]
+ elseif version <= 40 then
+ digits = tab[3][local_mode]
+ end
+ modebits = bits - digits
+ if local_mode == 1 then -- numeric
+ c = math.floor(modebits * 3 / 10)
+ elseif local_mode == 2 then -- alphanumeric
+ c = math.floor(modebits * 2 / 11)
+ elseif local_mode == 3 then -- binary
+ c = math.floor(modebits * 1 / 8)
+ else
+ c = math.floor(modebits * 1 / 13)
+ end
+ if c >= len then
+ if version <= minversion then
+ minversion = version
+ maxec_level = ec_level
+ end
+ break
+ end
+ end
+ end
+ return minversion, maxec_level
+end
+
+-- Return a bit string of 0s and 1s that includes the length of the code string.
+-- The modes are numeric = 1, alphanumeric = 2, binary = 4, and japanese = 8
+local function get_length(str,version,mode)
+ local i = mode
+ if mode == 4 then
+ i = 3
+ elseif mode == 8 then
+ i = 4
+ end
+ assert( i <= 4 )
+ local tab = { {10,9,8,8},{12,11,16,10},{14,13,16,12} }
+ local digits
+ if version < 10 then
+ digits = tab[1][i]
+ elseif version < 27 then
+ digits = tab[2][i]
+ elseif version <= 40 then
+ digits = tab[3][i]
+ else
+ assert(false, "get_length, version > 40 not supported")
+ end
+ local len = binary(#str,digits)
+ return len
+end
+
+--- If the `requested_ec_level` or the `mode` are provided, this will be used if possible.
+--- The mode depends on the characters used in the string `str`. It seems to be
+--- possible to split the QR code to handle multiple modes, but we don't do that.
+local function get_version_eclevel_mode_bistringlength(str,requested_ec_level,mode)
+ local local_mode
+ if mode then
+ assert(false,"not implemented")
+ -- check if the mode is OK for the string
+ local_mode = mode
+ else
+ local_mode = get_mode(str)
+ end
+ local version, ec_level
+ version, ec_level = get_version_eclevel(#str,local_mode,requested_ec_level)
+ local length_string = get_length(str,version,local_mode)
+ return version,ec_level,binary(local_mode,4),local_mode,length_string
+end
+
+--- Step 2: Encode data
+--- ===================
+
+--- There are several ways to encode the data. We currently support only numeric, alphanumeric and binary.
+--- We already chose the encoding (a.k.a. mode) in the first step, so we need to apply the mode to the
+--- codeword.
+---
+--- **Numeric**: take three digits and encode them in 10 bits
+--- **Alphanumeric**: take two characters and encode them in 11 bits
+--- **Binary**: take one octet and encode it in 8 bits
+
+local asciitbl = {
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -- 0x01-0x0f
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -- 0x10-0x1f
+ 36, -1, -1, -1, 37, 38, -1, -1, -1, -1, 39, 40, -1, 41, 42, 43, -- 0x20-0x2f
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 44, -1, -1, -1, -1, -1, -- 0x30-0x3f
+ -1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, -- 0x40-0x4f
+ 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, -1, -- 0x50-0x5f
+ }
+
+-- Return a binary representation of the numeric string `str`. This must contain only digits 0-9.
+local function encode_string_numeric(str)
+ local bitstring = ""
+ local int
+ string.gsub(str,"..?.?",function(a)
+ int = tonumber(a)
+ if #a == 3 then
+ bitstring = bitstring .. binary(int,10)
+ elseif #a == 2 then
+ bitstring = bitstring .. binary(int,7)
+ else
+ bitstring = bitstring .. binary(int,4)
+ end
+ end)
+ return bitstring
+end
+
+-- Return a binary representation of the alphanumeric string `str`. This must contain only
+-- digits 0-9, uppercase letters A-Z, space and the following chars: $%*./:+-.
+local function encode_string_ascii(str)
+ local bitstring = ""
+ local int
+ local b1, b2
+ string.gsub(str,"..?",function(a)
+ if #a == 2 then
+ b1 = asciitbl[string.byte(string.sub(a,1,1))]
+ b2 = asciitbl[string.byte(string.sub(a,2,2))]
+ int = b1 * 45 + b2
+ bitstring = bitstring .. binary(int,11)
+ else
+ int = asciitbl[string.byte(a)]
+ bitstring = bitstring .. binary(int,6)
+ end
+ end)
+ return bitstring
+end
+
+-- Return a bitstring representing string str in binary mode.
+-- We don't handle UTF-8 in any special way because we assume the
+-- scanner recognizes UTF-8 and displays it correctly.
+local function encode_string_binary(str)
+ local ret = {}
+ string.gsub(str,".",function(x)
+ ret[#ret + 1] = binary(string.byte(x),8)
+ end)
+ return table.concat(ret)
+end
+
+-- Return a bitstring representing string str in the given mode.
+local function encode_data(str,mode)
+ if mode == 1 then
+ return encode_string_numeric(str)
+ elseif mode == 2 then
+ return encode_string_ascii(str)
+ elseif mode == 4 then
+ return encode_string_binary(str)
+ else
+ assert(false,"not implemented yet")
+ end
+end
+
+-- Encoding the codeword is not enough. We need to make sure that
+-- the length of the binary string is equal to the number of codewords of the version.
+local function add_pad_data(version,ec_level,data)
+ local count_to_pad, missing_digits
+ local cpty = capacity[version][ec_level] * 8
+ count_to_pad = math.min(4,cpty - #data)
+ if count_to_pad > 0 then
+ data = data .. string.rep("0",count_to_pad)
+ end
+ if math.fmod(#data,8) ~= 0 then
+ missing_digits = 8 - math.fmod(#data,8)
+ data = data .. string.rep("0",missing_digits)
+ end
+ assert(math.fmod(#data,8) == 0)
+ -- add "11101100" and "00010001" until enough data
+ while #data < cpty do
+ data = data .. "11101100"
+ if #data < cpty then
+ data = data .. "00010001"
+ end
+ end
+ return data
+end
+
+
+
+--- Step 3: Organize data and calculate error correction code
+--- =======================================================
+--- The data in the qrcode is not encoded linearly. For example code 5-H has four blocks, the first two blocks
+--- contain 11 codewords and 22 error correction codes each, the second block contain 12 codewords and 22 ec codes each.
+--- We just take the table from the spec and don't calculate the blocks ourself. The table `ecblocks` contains this info.
+---
+--- During the phase of splitting the data into codewords, we do the calculation for error correction codes. This step involves
+--- polynomial division. Find a math book from school and follow the code here :)
+
+--- ### Reed Solomon error correction
+--- Now this is the slightly ugly part of the error correction. We start with log/antilog tables
+-- https://codyplanteen.com/assets/rs/gf256_log_antilog.pdf
+local alpha_int = {
+ [0] = 1,
+ 2, 4, 8, 16, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38, 76,
+ 152, 45, 90, 180, 117, 234, 201, 143, 3, 6, 12, 24, 48, 96, 192, 157,
+ 39, 78, 156, 37, 74, 148, 53, 106, 212, 181, 119, 238, 193, 159, 35, 70,
+ 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222, 161, 95,
+ 190, 97, 194, 153, 47, 94, 188, 101, 202, 137, 15, 30, 60, 120, 240, 253,
+ 231, 211, 187, 107, 214, 177, 127, 254, 225, 223, 163, 91, 182, 113, 226, 217,
+ 175, 67, 134, 17, 34, 68, 136, 13, 26, 52, 104, 208, 189, 103, 206, 129,
+ 31, 62, 124, 248, 237, 199, 147, 59, 118, 236, 197, 151, 51, 102, 204, 133,
+ 23, 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, 132, 21, 42, 84, 168,
+ 77, 154, 41, 82, 164, 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, 230,
+ 209, 191, 99, 198, 145, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227,
+ 219, 171, 75, 150, 49, 98, 196, 149, 55, 110, 220, 165, 87, 174, 65, 130,
+ 25, 50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167, 83, 166, 81,
+ 162, 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9, 18,
+ 36, 72, 144, 61, 122, 244, 245, 247, 243, 251, 235, 203, 139, 11, 22, 44,
+ 88, 176, 125, 250, 233, 207, 131, 27, 54, 108, 216, 173, 71, 142, 0, 0
+}
+
+local int_alpha = {
+ [0] = 256, -- special value
+ 0, 1, 25, 2, 50, 26, 198, 3, 223, 51, 238, 27, 104, 199, 75, 4,
+ 100, 224, 14, 52, 141, 239, 129, 28, 193, 105, 248, 200, 8, 76, 113, 5,
+ 138, 101, 47, 225, 36, 15, 33, 53, 147, 142, 218, 240, 18, 130, 69, 29,
+ 181, 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, 77, 228, 114, 166, 6,
+ 191, 139, 98, 102, 221, 48, 253, 226, 152, 37, 179, 16, 145, 34, 136, 54,
+ 208, 148, 206, 143, 150, 219, 189, 241, 210, 19, 92, 131, 56, 70, 64, 30,
+ 66, 182, 163, 195, 72, 126, 110, 107, 58, 40, 84, 250, 133, 186, 61, 202,
+ 94, 155, 159, 10, 21, 121, 43, 78, 212, 229, 172, 115, 243, 167, 87, 7,
+ 112, 192, 247, 140, 128, 99, 13, 103, 74, 222, 237, 49, 197, 254, 24, 227,
+ 165, 153, 119, 38, 184, 180, 124, 17, 68, 146, 217, 35, 32, 137, 46, 55,
+ 63, 209, 91, 149, 188, 207, 205, 144, 135, 151, 178, 220, 252, 190, 97, 242,
+ 86, 211, 171, 20, 42, 93, 158, 132, 60, 57, 83, 71, 109, 65, 162, 31,
+ 45, 67, 216, 183, 123, 164, 118, 196, 23, 73, 236, 127, 12, 111, 246, 108,
+ 161, 59, 82, 41, 157, 85, 170, 251, 96, 134, 177, 187, 204, 62, 90, 203,
+ 89, 95, 176, 156, 169, 160, 81, 11, 245, 22, 235, 122, 117, 44, 215, 79,
+ 174, 213, 233, 230, 231, 173, 232, 116, 214, 244, 234, 168, 80, 88, 175
+}
+
+-- We only need the polynomial generators for block sizes 7, 10, 13, 15, 16, 17, 18, 20, 22, 24, 26, 28, and 30. Version
+-- 2 of the qr codes don't need larger ones (as opposed to version 1). The table has the format x^1*ɑ^21 + x^2*a^102 ...
+local generator_polynomial = {
+ [7] = { 21, 102, 238, 149, 146, 229, 87, 0},
+ [10] = { 45, 32, 94, 64, 70, 118, 61, 46, 67, 251, 0 },
+ [13] = { 78, 140, 206, 218, 130, 104, 106, 100, 86, 100, 176, 152, 74, 0 },
+ [15] = {105, 99, 5, 124, 140, 237, 58, 58, 51, 37, 202, 91, 61, 183, 8, 0},
+ [16] = {120, 225, 194, 182, 169, 147, 191, 91, 3, 76, 161, 102, 109, 107, 104, 120, 0},
+ [17] = {136, 163, 243, 39, 150, 99, 24, 147, 214, 206, 123, 239, 43, 78, 206, 139, 43, 0},
+ [18] = {153, 96, 98, 5, 179, 252, 148, 152, 187, 79, 170, 118, 97, 184, 94, 158, 234, 215, 0},
+ [20] = {190, 188, 212, 212, 164, 156, 239, 83, 225, 221, 180, 202, 187, 26, 163, 61, 50, 79, 60, 17, 0},
+ [22] = {231, 165, 105, 160, 134, 219, 80, 98, 172, 8, 74, 200, 53, 221, 109, 14, 230, 93, 242, 247, 171, 210, 0},
+ [24] = { 21, 227, 96, 87, 232, 117, 0, 111, 218, 228, 226, 192, 152, 169, 180, 159, 126, 251, 117, 211, 48, 135, 121, 229, 0},
+ [26] = { 70, 218, 145, 153, 227, 48, 102, 13, 142, 245, 21, 161, 53, 165, 28, 111, 201, 145, 17, 118, 182, 103, 2, 158, 125, 173, 0},
+ [28] = {123, 9, 37, 242, 119, 212, 195, 42, 87, 245, 43, 21, 201, 232, 27, 205, 147, 195, 190, 110, 180, 108, 234, 224, 104, 200, 223, 168, 0},
+ [30] = {180, 192, 40, 238, 216, 251, 37, 156, 130, 224, 193, 226, 173, 42, 125, 222, 96, 239, 86, 110, 48, 50, 182, 179, 31, 216, 152, 145, 173, 41, 0}}
+
+
+-- Turn a binary string of length 8*x into a table size x of numbers.
+local function convert_bitstring_to_bytes(data)
+ local msg = {}
+ string.gsub(data,"(........)",function(x)
+ msg[#msg+1] = tonumber(x,2)
+ end)
+ return msg
+end
+
+-- Return a table that has 0's in the first entries and then the alpha
+-- representation of the generator polynominal
+local function get_generator_polynominal_adjusted(num_ec_codewords,highest_exponent)
+ local gp_alpha = {[0]=0}
+ for i=0,highest_exponent - num_ec_codewords - 1 do
+ gp_alpha[i] = 0
+ end
+ local gp = generator_polynomial[num_ec_codewords]
+ for i=1,num_ec_codewords + 1 do
+ gp_alpha[highest_exponent - num_ec_codewords + i - 1] = gp[i]
+ end
+ return gp_alpha
+end
+
+--- These converter functions use the log/antilog table above.
+--- We could have created the table programatically, but I like fixed tables.
+-- Convert polynominal in int notation to alpha notation.
+local function convert_to_alpha( tab )
+ local new_tab = {}
+ for i=0,#tab do
+ new_tab[i] = int_alpha[tab[i]]
+ end
+ return new_tab
+end
+
+-- Convert polynominal in alpha notation to int notation.
+local function convert_to_int(tab)
+ local new_tab = {}
+ for i=0,#tab do
+ new_tab[i] = alpha_int[tab[i]]
+ end
+ return new_tab
+end
+
+-- That's the heart of the error correction calculation.
+local function calculate_error_correction(data,num_ec_codewords)
+ local mp
+ if type(data)=="string" then
+ mp = convert_bitstring_to_bytes(data)
+ elseif type(data)=="table" then
+ mp = data
+ else
+ assert(false,string.format("Unknown type for data: %s",type(data)))
+ end
+ local len_message = #mp
+
+ local highest_exponent = len_message + num_ec_codewords - 1
+ local gp_alpha,tmp
+ local he
+ local gp_int, mp_alpha
+ local mp_int = {}
+ -- create message shifted to left (highest exponent)
+ for i=1,len_message do
+ mp_int[highest_exponent - i + 1] = mp[i]
+ end
+ for i=1,highest_exponent - len_message do
+ mp_int[i] = 0
+ end
+ mp_int[0] = 0
+
+ mp_alpha = convert_to_alpha(mp_int)
+
+ while highest_exponent >= num_ec_codewords do
+ gp_alpha = get_generator_polynominal_adjusted(num_ec_codewords,highest_exponent)
+
+ -- Multiply generator polynomial by first coefficient of the above polynomial
+
+ -- take the highest exponent from the message polynom (alpha) and add
+ -- it to the generator polynom
+ local exp = mp_alpha[highest_exponent]
+ for i=highest_exponent,highest_exponent - num_ec_codewords,-1 do
+ if exp ~= 256 then
+ if gp_alpha[i] + exp >= 255 then
+ gp_alpha[i] = math.fmod(gp_alpha[i] + exp,255)
+ else
+ gp_alpha[i] = gp_alpha[i] + exp
+ end
+ else
+ gp_alpha[i] = 256
+ end
+ end
+ for i=highest_exponent - num_ec_codewords - 1,0,-1 do
+ gp_alpha[i] = 256
+ end
+
+ gp_int = convert_to_int(gp_alpha)
+ mp_int = convert_to_int(mp_alpha)
+
+
+ tmp = {}
+ for i=highest_exponent,0,-1 do
+ tmp[i] = bit_xor(gp_int[i],mp_int[i])
+ end
+ -- remove leading 0's
+ he = highest_exponent
+ for i=he,0,-1 do
+ -- We need to stop if the length of the codeword is matched
+ if i < num_ec_codewords then break end
+ if tmp[i] == 0 then
+ tmp[i] = nil
+ highest_exponent = highest_exponent - 1
+ else
+ break
+ end
+ end
+ mp_int = tmp
+ mp_alpha = convert_to_alpha(mp_int)
+ end
+ local ret = {}
+
+ -- reverse data
+ for i=#mp_int,0,-1 do
+ ret[#ret + 1] = mp_int[i]
+ end
+ return ret
+end
+
+--- #### Arranging the data
+--- Now we arrange the data into smaller chunks. This table is taken from the spec.
+-- ecblocks has 40 entries, one for each version. Each version entry has 4 entries, for each LMQH
+-- ec level. Each entry has two or four fields, the odd files are the number of repetitions for the
+-- folowing block info. The first entry of the block is the total number of codewords in the block,
+-- the second entry is the number of data codewords. The third is not important.
+local ecblocks = {
+ {{ 1,{ 26, 19, 2} }, { 1,{26,16, 4}}, { 1,{26,13, 6}}, { 1, {26, 9, 8} }},
+ {{ 1,{ 44, 34, 4} }, { 1,{44,28, 8}}, { 1,{44,22,11}}, { 1, {44,16,14} }},
+ {{ 1,{ 70, 55, 7} }, { 1,{70,44,13}}, { 2,{35,17, 9}}, { 2, {35,13,11} }},
+ {{ 1,{100, 80,10} }, { 2,{50,32, 9}}, { 2,{50,24,13}}, { 4, {25, 9, 8} }},
+ {{ 1,{134,108,13} }, { 2,{67,43,12}}, { 2,{33,15, 9}, 2,{34,16, 9}}, { 2, {33,11,11}, 2,{34,12,11}}},
+ {{ 2,{ 86, 68, 9} }, { 4,{43,27, 8}}, { 4,{43,19,12}}, { 4, {43,15,14} }},
+ {{ 2,{ 98, 78,10} }, { 4,{49,31, 9}}, { 2,{32,14, 9}, 4,{33,15, 9}}, { 4, {39,13,13}, 1,{40,14,13}}},
+ {{ 2,{121, 97,12} }, { 2,{60,38,11}, 2,{61,39,11}}, { 4,{40,18,11}, 2,{41,19,11}}, { 4, {40,14,13}, 2,{41,15,13}}},
+ {{ 2,{146,116,15} }, { 3,{58,36,11}, 2,{59,37,11}}, { 4,{36,16,10}, 4,{37,17,10}}, { 4, {36,12,12}, 4,{37,13,12}}},
+ {{ 2,{ 86, 68, 9}, 2,{ 87, 69, 9}}, { 4,{69,43,13}, 1,{70,44,13}}, { 6,{43,19,12}, 2,{44,20,12}}, { 6, {43,15,14}, 2,{44,16,14}}},
+ {{ 4,{101, 81,10} }, { 1,{80,50,15}, 4,{81,51,15}}, { 4,{50,22,14}, 4,{51,23,14}}, { 3, {36,12,12}, 8,{37,13,12}}},
+ {{ 2,{116, 92,12}, 2,{117, 93,12}}, { 6,{58,36,11}, 2,{59,37,11}}, { 4,{46,20,13}, 6,{47,21,13}}, { 7, {42,14,14}, 4,{43,15,14}}},
+ {{ 4,{133,107,13} }, { 8,{59,37,11}, 1,{60,38,11}}, { 8,{44,20,12}, 4,{45,21,12}}, { 12, {33,11,11}, 4,{34,12,11}}},
+ {{ 3,{145,115,15}, 1,{146,116,15}}, { 4,{64,40,12}, 5,{65,41,12}}, { 11,{36,16,10}, 5,{37,17,10}}, { 11, {36,12,12}, 5,{37,13,12}}},
+ {{ 5,{109, 87,11}, 1,{110, 88,11}}, { 5,{65,41,12}, 5,{66,42,12}}, { 5,{54,24,15}, 7,{55,25,15}}, { 11, {36,12,12}, 7,{37,13,12}}},
+ {{ 5,{122, 98,12}, 1,{123, 99,12}}, { 7,{73,45,14}, 3,{74,46,14}}, { 15,{43,19,12}, 2,{44,20,12}}, { 3, {45,15,15}, 13,{46,16,15}}},
+ {{ 1,{135,107,14}, 5,{136,108,14}}, { 10,{74,46,14}, 1,{75,47,14}}, { 1,{50,22,14}, 15,{51,23,14}}, { 2, {42,14,14}, 17,{43,15,14}}},
+ {{ 5,{150,120,15}, 1,{151,121,15}}, { 9,{69,43,13}, 4,{70,44,13}}, { 17,{50,22,14}, 1,{51,23,14}}, { 2, {42,14,14}, 19,{43,15,14}}},
+ {{ 3,{141,113,14}, 4,{142,114,14}}, { 3,{70,44,13}, 11,{71,45,13}}, { 17,{47,21,13}, 4,{48,22,13}}, { 9, {39,13,13}, 16,{40,14,13}}},
+ {{ 3,{135,107,14}, 5,{136,108,14}}, { 3,{67,41,13}, 13,{68,42,13}}, { 15,{54,24,15}, 5,{55,25,15}}, { 15, {43,15,14}, 10,{44,16,14}}},
+ {{ 4,{144,116,14}, 4,{145,117,14}}, { 17,{68,42,13}}, { 17,{50,22,14}, 6,{51,23,14}}, { 19, {46,16,15}, 6,{47,17,15}}},
+ {{ 2,{139,111,14}, 7,{140,112,14}}, { 17,{74,46,14}}, { 7,{54,24,15}, 16,{55,25,15}}, { 34, {37,13,12} }},
+ {{ 4,{151,121,15}, 5,{152,122,15}}, { 4,{75,47,14}, 14,{76,48,14}}, { 11,{54,24,15}, 14,{55,25,15}}, { 16, {45,15,15}, 14,{46,16,15}}},
+ {{ 6,{147,117,15}, 4,{148,118,15}}, { 6,{73,45,14}, 14,{74,46,14}}, { 11,{54,24,15}, 16,{55,25,15}}, { 30, {46,16,15}, 2,{47,17,15}}},
+ {{ 8,{132,106,13}, 4,{133,107,13}}, { 8,{75,47,14}, 13,{76,48,14}}, { 7,{54,24,15}, 22,{55,25,15}}, { 22, {45,15,15}, 13,{46,16,15}}},
+ {{ 10,{142,114,14}, 2,{143,115,14}}, { 19,{74,46,14}, 4,{75,47,14}}, { 28,{50,22,14}, 6,{51,23,14}}, { 33, {46,16,15}, 4,{47,17,15}}},
+ {{ 8,{152,122,15}, 4,{153,123,15}}, { 22,{73,45,14}, 3,{74,46,14}}, { 8,{53,23,15}, 26,{54,24,15}}, { 12, {45,15,15}, 28,{46,16,15}}},
+ {{ 3,{147,117,15}, 10,{148,118,15}}, { 3,{73,45,14}, 23,{74,46,14}}, { 4,{54,24,15}, 31,{55,25,15}}, { 11, {45,15,15}, 31,{46,16,15}}},
+ {{ 7,{146,116,15}, 7,{147,117,15}}, { 21,{73,45,14}, 7,{74,46,14}}, { 1,{53,23,15}, 37,{54,24,15}}, { 19, {45,15,15}, 26,{46,16,15}}},
+ {{ 5,{145,115,15}, 10,{146,116,15}}, { 19,{75,47,14}, 10,{76,48,14}}, { 15,{54,24,15}, 25,{55,25,15}}, { 23, {45,15,15}, 25,{46,16,15}}},
+ {{ 13,{145,115,15}, 3,{146,116,15}}, { 2,{74,46,14}, 29,{75,47,14}}, { 42,{54,24,15}, 1,{55,25,15}}, { 23, {45,15,15}, 28,{46,16,15}}},
+ {{ 17,{145,115,15} }, { 10,{74,46,14}, 23,{75,47,14}}, { 10,{54,24,15}, 35,{55,25,15}}, { 19, {45,15,15}, 35,{46,16,15}}},
+ {{ 17,{145,115,15}, 1,{146,116,15}}, { 14,{74,46,14}, 21,{75,47,14}}, { 29,{54,24,15}, 19,{55,25,15}}, { 11, {45,15,15}, 46,{46,16,15}}},
+ {{ 13,{145,115,15}, 6,{146,116,15}}, { 14,{74,46,14}, 23,{75,47,14}}, { 44,{54,24,15}, 7,{55,25,15}}, { 59, {46,16,15}, 1,{47,17,15}}},
+ {{ 12,{151,121,15}, 7,{152,122,15}}, { 12,{75,47,14}, 26,{76,48,14}}, { 39,{54,24,15}, 14,{55,25,15}}, { 22, {45,15,15}, 41,{46,16,15}}},
+ {{ 6,{151,121,15}, 14,{152,122,15}}, { 6,{75,47,14}, 34,{76,48,14}}, { 46,{54,24,15}, 10,{55,25,15}}, { 2, {45,15,15}, 64,{46,16,15}}},
+ {{ 17,{152,122,15}, 4,{153,123,15}}, { 29,{74,46,14}, 14,{75,47,14}}, { 49,{54,24,15}, 10,{55,25,15}}, { 24, {45,15,15}, 46,{46,16,15}}},
+ {{ 4,{152,122,15}, 18,{153,123,15}}, { 13,{74,46,14}, 32,{75,47,14}}, { 48,{54,24,15}, 14,{55,25,15}}, { 42, {45,15,15}, 32,{46,16,15}}},
+ {{ 20,{147,117,15}, 4,{148,118,15}}, { 40,{75,47,14}, 7,{76,48,14}}, { 43,{54,24,15}, 22,{55,25,15}}, { 10, {45,15,15}, 67,{46,16,15}}},
+ {{ 19,{148,118,15}, 6,{149,119,15}}, { 18,{75,47,14}, 31,{76,48,14}}, { 34,{54,24,15}, 34,{55,25,15}}, { 20, {45,15,15}, 61,{46,16,15}}}
+}
+
+-- The bits that must be 0 if the version does fill the complete matrix.
+-- Example: for version 1, no bits need to be added after arranging the data, for version 2 we need to add 7 bits at the end.
+local remainder = {0, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0}
+
+-- This is the formula for table 1 in the spec:
+-- function get_capacity_remainder( version )
+-- local len = version * 4 + 17
+-- local size = len^2
+-- local function_pattern_modules = 192 + 2 * len - 32 -- Position Adjustment pattern + timing pattern
+-- local count_alignemnt_pattern = #alignment_pattern[version]
+-- if count_alignemnt_pattern > 0 then
+-- -- add 25 for each aligment pattern
+-- function_pattern_modules = function_pattern_modules + 25 * ( count_alignemnt_pattern^2 - 3 )
+-- -- but substract the timing pattern occupied by the aligment pattern on the top and left
+-- function_pattern_modules = function_pattern_modules - ( count_alignemnt_pattern - 2) * 10
+-- end
+-- size = size - function_pattern_modules
+-- if version > 6 then
+-- size = size - 67
+-- else
+-- size = size - 31
+-- end
+-- return math.floor(size/8),math.fmod(size,8)
+-- end
+
+
+--- Example: Version 5-H has four data and four error correction blocks. The table above lists
+--- `2, {33,11,11}, 2,{34,12,11}` for entry [5][4]. This means we take two blocks with 11 codewords
+--- and two blocks with 12 codewords, and two blocks with 33 - 11 = 22 ec codes and another
+--- two blocks with 34 - 12 = 22 ec codes.
+--- Block 1: D1 D2 D3 ... D11
+--- Block 2: D12 D13 D14 ... D22
+--- Block 3: D23 D24 D25 ... D33 D34
+--- Block 4: D35 D36 D37 ... D45 D46
+--- Then we place the data like this in the matrix: D1, D12, D23, D35, D2, D13, D24, D36 ... D45, D34, D46. The same goes
+--- with error correction codes.
+
+-- The given data can be a string of 0's and 1' (with #string mod 8 == 0).
+-- Alternatively the data can be a table of codewords. The number of codewords
+-- must match the capacity of the qr code.
+local function arrange_codewords_and_calculate_ec( version,ec_level,data )
+ if type(data)=="table" then
+ local tmp = ""
+ for i=1,#data do
+ tmp = tmp .. binary(data[i],8)
+ end
+ data = tmp
+ end
+ -- If the size of the data is not enough for the codeword, we add 0's and two special bytes until finished.
+ local blocks = ecblocks[version][ec_level]
+ local size_datablock_bytes, size_ecblock_bytes
+ local datablocks = {}
+ local final_ecblocks = {}
+ local count = 1
+ local pos = 0
+ local cpty_ec_bits = 0
+ for i=1,#blocks/2 do
+ for _=1,blocks[2*i - 1] do
+ size_datablock_bytes = blocks[2*i][2]
+ size_ecblock_bytes = blocks[2*i][1] - blocks[2*i][2]
+ cpty_ec_bits = cpty_ec_bits + size_ecblock_bytes * 8
+ datablocks[#datablocks + 1] = string.sub(data, pos * 8 + 1,( pos + size_datablock_bytes)*8)
+ local tmp_tab = calculate_error_correction(datablocks[#datablocks],size_ecblock_bytes)
+ local tmp_str = ""
+ for x=1,#tmp_tab do
+ tmp_str = tmp_str .. binary(tmp_tab[x],8)
+ end
+ final_ecblocks[#final_ecblocks + 1] = tmp_str
+ pos = pos + size_datablock_bytes
+ count = count + 1
+ end
+ end
+ local arranged_data = ""
+ pos = 1
+ repeat
+ for i=1,#datablocks do
+ if pos < #datablocks[i] then
+ arranged_data = arranged_data .. string.sub(datablocks[i],pos, pos + 7)
+ end
+ end
+ pos = pos + 8
+ until #arranged_data == #data
+ -- ec
+ local arranged_ec = ""
+ pos = 1
+ repeat
+ for i=1,#final_ecblocks do
+ if pos < #final_ecblocks[i] then
+ arranged_ec = arranged_ec .. string.sub(final_ecblocks[i],pos, pos + 7)
+ end
+ end
+ pos = pos + 8
+ until #arranged_ec == cpty_ec_bits
+ return arranged_data .. arranged_ec
+end
+
+--- Step 4: Generate 8 matrices with different masks and calculate the penalty
+--- ==========================================================================
+---
+--- Prepare matrix
+--- --------------
+--- The first step is to prepare an _empty_ matrix for a given size/mask. The matrix has a
+--- few predefined areas that must be black or blank. We encode the matrix with a two
+--- dimensional field where the numbers determine which pixel is blank or not.
+---
+--- The following code is used for our matrix:
+--- 0 = not in use yet,
+--- -2 = blank by mandatory pattern,
+--- 2 = black by mandatory pattern,
+--- -1 = blank by data,
+--- 1 = black by data
+---
+---
+--- To prepare the _empty_, we add positioning, alingment and timing patters.
+
+--- ### Positioning patterns ###
+local function add_position_detection_patterns(tab_x)
+ local size = #tab_x
+ -- allocate quite zone in the matrix area
+ for i=1,8 do
+ for j=1,8 do
+ tab_x[i][j] = -2
+ tab_x[size - 8 + i][j] = -2
+ tab_x[i][size - 8 + j] = -2
+ end
+ end
+ -- draw the detection pattern (outer)
+ for i=1,7 do
+ -- top left
+ tab_x[1][i]=2
+ tab_x[7][i]=2
+ tab_x[i][1]=2
+ tab_x[i][7]=2
+
+ -- top right
+ tab_x[size][i]=2
+ tab_x[size - 6][i]=2
+ tab_x[size - i + 1][1]=2
+ tab_x[size - i + 1][7]=2
+
+ -- bottom left
+ tab_x[1][size - i + 1]=2
+ tab_x[7][size - i + 1]=2
+ tab_x[i][size - 6]=2
+ tab_x[i][size]=2
+ end
+ -- draw the detection pattern (inner)
+ for i=1,3 do
+ for j=1,3 do
+ -- top left
+ tab_x[2+j][i+2]=2
+ -- top right
+ tab_x[size - j - 1][i+2]=2
+ -- bottom left
+ tab_x[2 + j][size - i - 1]=2
+ end
+ end
+end
+
+--- ### Timing patterns ###
+-- The timing patterns (two) are the dashed lines between two adjacent positioning patterns on row/column 7.
+local function add_timing_pattern(tab_x)
+ local line,col
+ line = 7
+ col = 9
+ for i=col,#tab_x - 8 do
+ if math.fmod(i,2) == 1 then
+ tab_x[i][line] = 2
+ else
+ tab_x[i][line] = -2
+ end
+ end
+ for i=col,#tab_x - 8 do
+ if math.fmod(i,2) == 1 then
+ tab_x[line][i] = 2
+ else
+ tab_x[line][i] = -2
+ end
+ end
+end
+
+
+--- ### Alignment patterns ###
+--- The alignment patterns must be added to the matrix for versions > 1. The amount and positions depend on the versions and are
+--- given by the spec. Beware: the patterns must not be placed where we have the positioning patterns
+--- (that is: top left, top right and bottom left.)
+
+-- For each version, where should we place the alignment patterns? See table E.1 of the spec
+local alignment_pattern = {
+ {},{6,18},{6,22},{6,26},{6,30},{6,34}, -- 1-6
+ {6,22,38},{6,24,42},{6,26,46},{6,28,50},{6,30,54},{6,32,58},{6,34,62}, -- 7-13
+ {6,26,46,66},{6,26,48,70},{6,26,50,74},{6,30,54,78},{6,30,56,82},{6,30,58,86},{6,34,62,90}, -- 14-20
+ {6,28,50,72,94},{6,26,50,74,98},{6,30,54,78,102},{6,28,54,80,106},{6,32,58,84,110},{6,30,58,86,114},{6,34,62,90,118}, -- 21-27
+ {6,26,50,74,98 ,122},{6,30,54,78,102,126},{6,26,52,78,104,130},{6,30,56,82,108,134},{6,34,60,86,112,138},{6,30,58,86,114,142},{6,34,62,90,118,146}, -- 28-34
+ {6,30,54,78,102,126,150}, {6,24,50,76,102,128,154},{6,28,54,80,106,132,158},{6,32,58,84,110,136,162},{6,26,54,82,110,138,166},{6,30,58,86,114,142,170} -- 35 - 40
+}
+
+--- The alignment pattern has size 5x5 and looks like this:
+--- XXXXX
+--- X X
+--- X X X
+--- X X
+--- XXXXX
+local function add_alignment_pattern( tab_x )
+ local version = (#tab_x - 17) / 4
+ local ap = alignment_pattern[version]
+ local pos_x, pos_y
+ for x=1,#ap do
+ for y=1,#ap do
+ -- we must not put an alignment pattern on top of the positioning pattern
+ if not (x == 1 and y == 1 or x == #ap and y == 1 or x == 1 and y == #ap ) then
+ pos_x = ap[x] + 1
+ pos_y = ap[y] + 1
+ tab_x[pos_x][pos_y] = 2
+ tab_x[pos_x+1][pos_y] = -2
+ tab_x[pos_x-1][pos_y] = -2
+ tab_x[pos_x+2][pos_y] = 2
+ tab_x[pos_x-2][pos_y] = 2
+ tab_x[pos_x ][pos_y - 2] = 2
+ tab_x[pos_x+1][pos_y - 2] = 2
+ tab_x[pos_x-1][pos_y - 2] = 2
+ tab_x[pos_x+2][pos_y - 2] = 2
+ tab_x[pos_x-2][pos_y - 2] = 2
+ tab_x[pos_x ][pos_y + 2] = 2
+ tab_x[pos_x+1][pos_y + 2] = 2
+ tab_x[pos_x-1][pos_y + 2] = 2
+ tab_x[pos_x+2][pos_y + 2] = 2
+ tab_x[pos_x-2][pos_y + 2] = 2
+
+ tab_x[pos_x ][pos_y - 1] = -2
+ tab_x[pos_x+1][pos_y - 1] = -2
+ tab_x[pos_x-1][pos_y - 1] = -2
+ tab_x[pos_x+2][pos_y - 1] = 2
+ tab_x[pos_x-2][pos_y - 1] = 2
+ tab_x[pos_x ][pos_y + 1] = -2
+ tab_x[pos_x+1][pos_y + 1] = -2
+ tab_x[pos_x-1][pos_y + 1] = -2
+ tab_x[pos_x+2][pos_y + 1] = 2
+ tab_x[pos_x-2][pos_y + 1] = 2
+ end
+ end
+ end
+end
+
+--- ### Type information ###
+--- Let's not forget the type information that is in column 9 next to the left positioning patterns and on row 9 below
+--- the top positioning patterns. This type information is not fixed, it depends on the mask and the error correction.
+
+-- The first index is ec level (LMQH,1-4), the second is the mask (0-7). This bitstring of length 15 is to be used
+-- as mandatory pattern in the qrcode. Mask -1 is for debugging purpose only and is the 'noop' mask.
+local typeinfo = {
+ { [-1]= "111111111111111", [0] = "111011111000100", "111001011110011", "111110110101010", "111100010011101", "110011000101111", "110001100011000", "110110001000001", "110100101110110" },
+ { [-1]= "111111111111111", [0] = "101010000010010", "101000100100101", "101111001111100", "101101101001011", "100010111111001", "100000011001110", "100111110010111", "100101010100000" },
+ { [-1]= "111111111111111", [0] = "011010101011111", "011000001101000", "011111100110001", "011101000000110", "010010010110100", "010000110000011", "010111011011010", "010101111101101" },
+ { [-1]= "111111111111111", [0] = "001011010001001", "001001110111110", "001110011100111", "001100111010000", "000011101100010", "000001001010101", "000110100001100", "000100000111011" }
+}
+
+-- The typeinfo is a mixture of mask and ec level information and is
+-- added twice to the qr code, one horizontal, one vertical.
+local function add_typeinfo_to_matrix( matrix,ec_level,mask )
+ local ec_mask_type = typeinfo[ec_level][mask]
+
+ local bit
+ -- vertical from bottom to top
+ for i=1,7 do
+ bit = string.sub(ec_mask_type,i,i)
+ fill_matrix_position(matrix, bit, 9, #matrix - i + 1)
+ end
+ for i=8,9 do
+ bit = string.sub(ec_mask_type,i,i)
+ fill_matrix_position(matrix,bit,9,17-i)
+ end
+ for i=10,15 do
+ bit = string.sub(ec_mask_type,i,i)
+ fill_matrix_position(matrix,bit,9,16 - i)
+ end
+ -- horizontal, left to right
+ for i=1,6 do
+ bit = string.sub(ec_mask_type,i,i)
+ fill_matrix_position(matrix,bit,i,9)
+ end
+ bit = string.sub(ec_mask_type,7,7)
+ fill_matrix_position(matrix,bit,8,9)
+ for i=8,15 do
+ bit = string.sub(ec_mask_type,i,i)
+ fill_matrix_position(matrix,bit,#matrix - 15 + i,9)
+ end
+end
+
+-- Bits for version information 7-40
+-- The reversed strings from https://www.thonky.com/qr-code-tutorial/format-version-tables
+local version_information = {"001010010011111000", "001111011010000100", "100110010101100100", "110010110010010100",
+ "011011111101110100", "010001101110001100", "111000100001101100", "101100000110011100", "000101001001111100",
+ "000111101101000010", "101110100010100010", "111010000101010010", "010011001010110010", "011001011001001010",
+ "110000010110101010", "100100110001011010", "001101111110111010", "001000110111000110", "100001111000100110",
+ "110101011111010110", "011100010000110110", "010110000011001110", "111111001100101110", "101011101011011110",
+ "000010100100111110", "101010111001000001", "000011110110100001", "010111010001010001", "111110011110110001",
+ "110100001101001001", "011101000010101001", "001001100101011001", "100000101010111001", "100101100011000101" }
+
+-- Versions 7 and above need two bitfields with version information added to the code
+local function add_version_information(matrix,version)
+ if version < 7 then return end
+ local size = #matrix
+ local bitstring = version_information[version - 6]
+ local x,y, bit
+ local start_x, start_y
+ -- first top right
+ start_x = size - 10
+ start_y = 1
+ for i=1,#bitstring do
+ bit = string.sub(bitstring,i,i)
+ x = start_x + math.fmod(i - 1,3)
+ y = start_y + math.floor( (i - 1) / 3 )
+ fill_matrix_position(matrix,bit,x,y)
+ end
+
+ -- now bottom left
+ start_x = 1
+ start_y = size - 10
+ for i=1,#bitstring do
+ bit = string.sub(bitstring,i,i)
+ x = start_x + math.floor( (i - 1) / 3 )
+ y = start_y + math.fmod(i - 1,3)
+ fill_matrix_position(matrix,bit,x,y)
+ end
+end
+
+--- Now it's time to use the methods above to create a prefilled matrix for the given mask
+local function prepare_matrix_with_mask( version,ec_level, mask )
+ local size
+ local tab_x = {}
+
+ size = version * 4 + 17
+ for i=1,size do
+ tab_x[i]={}
+ for j=1,size do
+ tab_x[i][j] = 0
+ end
+ end
+ add_position_detection_patterns(tab_x)
+ add_timing_pattern(tab_x)
+ add_version_information(tab_x,version)
+
+ -- black pixel above lower left position detection pattern
+ tab_x[9][size - 7] = 2
+ add_alignment_pattern(tab_x)
+ add_typeinfo_to_matrix(tab_x,ec_level, mask)
+ return tab_x
+end
+
+--- Finally we come to the place where we need to put the calculated data (remember step 3?) into the qr code.
+--- We do this for each mask. BTW speaking of mask, this is what we find in the spec:
+--- Mask Pattern Reference Condition
+--- 000 (y + x) mod 2 = 0
+--- 001 y mod 2 = 0
+--- 010 x mod 3 = 0
+--- 011 (y + x) mod 3 = 0
+--- 100 ((y div 2) + (x div 3)) mod 2 = 0
+--- 101 (y x) mod 2 + (y x) mod 3 = 0
+--- 110 ((y x) mod 2 + (y x) mod 3) mod 2 = 0
+--- 111 ((y x) mod 3 + (y+x) mod 2) mod 2 = 0
+
+-- Return 1 (black) or -1 (blank) depending on the mask, value and position.
+-- Parameter mask is 0-7 (-1 for 'no mask'). x and y are 1-based coordinates,
+-- 1,1 = upper left. tonumber(value) must be 0 or 1.
+local function get_pixel_with_mask( mask, x,y,value )
+ x = x - 1
+ y = y - 1
+ local invert = false
+ -- test purpose only:
+ if mask == -1 then -- luacheck: ignore
+ -- ignore, no masking applied
+ elseif mask == 0 then
+ if math.fmod(x + y,2) == 0 then invert = true end
+ elseif mask == 1 then
+ if math.fmod(y,2) == 0 then invert = true end
+ elseif mask == 2 then
+ if math.fmod(x,3) == 0 then invert = true end
+ elseif mask == 3 then
+ if math.fmod(x + y,3) == 0 then invert = true end
+ elseif mask == 4 then
+ if math.fmod(math.floor(y / 2) + math.floor(x / 3),2) == 0 then invert = true end
+ elseif mask == 5 then
+ if math.fmod(x * y,2) + math.fmod(x * y,3) == 0 then invert = true end
+ elseif mask == 6 then
+ if math.fmod(math.fmod(x * y,2) + math.fmod(x * y,3),2) == 0 then invert = true end
+ elseif mask == 7 then
+ if math.fmod(math.fmod(x * y,3) + math.fmod(x + y,2),2) == 0 then invert = true end
+ else
+ assert(false,"This can't happen (mask must be <= 7)")
+ end
+ if invert then
+ -- value = 1? -> -1, value = 0? -> 1
+ return 1 - 2 * tonumber(value)
+ else
+ -- value = 1? -> 1, value = 0? -> -1
+ return -1 + 2*tonumber(value)
+ end
+end
+
+
+-- We need up to 8 positions in the matrix. Only the last few bits may be less then 8.
+-- The function returns a table of (up to) 8 entries with subtables where
+-- the x coordinate is the first and the y coordinate is the second entry.
+local function get_next_free_positions(matrix,x,y,dir,byte)
+ local ret = {}
+ local count = 1
+ local mode = "right"
+ while count <= #byte do
+ if mode == "right" and matrix[x][y] == 0 then
+ ret[#ret + 1] = {x,y}
+ mode = "left"
+ count = count + 1
+ elseif mode == "left" and matrix[x-1][y] == 0 then
+ ret[#ret + 1] = {x-1,y}
+ mode = "right"
+ count = count + 1
+ if dir == "up" then
+ y = y - 1
+ else
+ y = y + 1
+ end
+ elseif mode == "right" and matrix[x-1][y] == 0 then
+ ret[#ret + 1] = {x-1,y}
+ count = count + 1
+ if dir == "up" then
+ y = y - 1
+ else
+ y = y + 1
+ end
+ else
+ if dir == "up" then
+ y = y - 1
+ else
+ y = y + 1
+ end
+ end
+ if y < 1 or y > #matrix then
+ x = x - 2
+ -- don't overwrite the timing pattern
+ if x == 7 then x = 6 end
+ if dir == "up" then
+ dir = "down"
+ y = 1
+ else
+ dir = "up"
+ y = #matrix
+ end
+ end
+ end
+ return ret,x,y,dir
+end
+
+-- Add the data string (0's and 1's) to the matrix for the given mask.
+local function add_data_to_matrix(matrix,data,mask)
+ local size = #matrix
+ local x,y,positions
+ local _x,_y,m
+ local dir = "up"
+ local byte_number = 0
+ x,y = size,size
+ string.gsub(data,".?.?.?.?.?.?.?.?",function ( byte )
+ byte_number = byte_number + 1
+ positions,x,y,dir = get_next_free_positions(matrix,x,y,dir,byte)
+ for i=1,#byte do
+ _x = positions[i][1]
+ _y = positions[i][2]
+ m = get_pixel_with_mask(mask,_x,_y,string.sub(byte,i,i))
+ if debugging then
+ matrix[_x][_y] = m * (i + 10)
+ else
+ matrix[_x][_y] = m
+ end
+ end
+ end)
+end
+
+
+--- The total penalty of the matrix is the sum of four steps. The following steps are taken into account:
+---
+--- 1. Adjacent modules in row/column in same color
+--- 1. Block of modules in same color
+--- 1. 1:1:3:1:1 ratio (dark:light:dark:light:dark) pattern in row/column
+--- 1. Proportion of dark modules in entire symbol
+---
+--- This all is done to avoid bad patterns in the code that prevent the scanner from
+--- reading the code.
+-- Return the penalty for the given matrix
+local function calculate_penalty(matrix)
+ local penalty1, penalty2, penalty3 = 0,0,0
+ local size = #matrix
+ -- this is for penalty 4
+ local number_of_dark_cells = 0
+
+ -- 1: Adjacent modules in row/column in same color
+ -- --------------------------------------------
+ -- No. of modules = (5+i) -> 3 + i
+ local last_bit_blank -- < 0: blank, > 0: black
+ local is_blank
+ local number_of_consecutive_bits
+ -- first: vertical
+ for x=1,size do
+ number_of_consecutive_bits = 0
+ last_bit_blank = nil
+ for y = 1,size do
+ if matrix[x][y] > 0 then
+ -- small optimization: this is for penalty 4
+ number_of_dark_cells = number_of_dark_cells + 1
+ is_blank = false
+ else
+ is_blank = true
+ end
+ if last_bit_blank == is_blank then
+ number_of_consecutive_bits = number_of_consecutive_bits + 1
+ else
+ if number_of_consecutive_bits >= 5 then
+ penalty1 = penalty1 + number_of_consecutive_bits - 2
+ end
+ number_of_consecutive_bits = 1
+ end
+ last_bit_blank = is_blank
+ end
+ if number_of_consecutive_bits >= 5 then
+ penalty1 = penalty1 + number_of_consecutive_bits - 2
+ end
+ end
+ -- now horizontal
+ for y=1,size do
+ number_of_consecutive_bits = 0
+ last_bit_blank = nil
+ for x = 1,size do
+ is_blank = matrix[x][y] < 0
+ if last_bit_blank == is_blank then
+ number_of_consecutive_bits = number_of_consecutive_bits + 1
+ else
+ if number_of_consecutive_bits >= 5 then
+ penalty1 = penalty1 + number_of_consecutive_bits - 2
+ end
+ number_of_consecutive_bits = 1
+ end
+ last_bit_blank = is_blank
+ end
+ if number_of_consecutive_bits >= 5 then
+ penalty1 = penalty1 + number_of_consecutive_bits - 2
+ end
+ end
+ for x=1,size do
+ for y=1,size do
+ -- 2: Block of modules in same color
+ -- -----------------------------------
+ -- Blocksize = m × n -> 3 × (m-1) × (n-1)
+ if (y < size - 1) and ( x < size - 1) and ( (matrix[x][y] < 0 and matrix[x+1][y] < 0 and matrix[x][y+1] < 0 and matrix[x+1][y+1] < 0) or (matrix[x][y] > 0 and matrix[x+1][y] > 0 and matrix[x][y+1] > 0 and matrix[x+1][y+1] > 0) ) then
+ penalty2 = penalty2 + 3
+ end
+
+ -- 3: 1:1:3:1:1 ratio (dark:light:dark:light:dark) pattern in row/column
+ -- ------------------------------------------------------------------
+ -- Gives 40 points each
+ --
+ -- I have no idea why we need the extra 0000 on left or right side. The spec doesn't mention it,
+ -- other sources do mention it. This is heavily inspired by zxing.
+ if (y + 6 < size and
+ matrix[x][y] > 0 and
+ matrix[x][y + 1] < 0 and
+ matrix[x][y + 2] > 0 and
+ matrix[x][y + 3] > 0 and
+ matrix[x][y + 4] > 0 and
+ matrix[x][y + 5] < 0 and
+ matrix[x][y + 6] > 0 and
+ ((y + 10 < size and
+ matrix[x][y + 7] < 0 and
+ matrix[x][y + 8] < 0 and
+ matrix[x][y + 9] < 0 and
+ matrix[x][y + 10] < 0) or
+ (y - 4 >= 1 and
+ matrix[x][y - 1] < 0 and
+ matrix[x][y - 2] < 0 and
+ matrix[x][y - 3] < 0 and
+ matrix[x][y - 4] < 0))) then penalty3 = penalty3 + 40 end
+ if (x + 6 <= size and
+ matrix[x][y] > 0 and
+ matrix[x + 1][y] < 0 and
+ matrix[x + 2][y] > 0 and
+ matrix[x + 3][y] > 0 and
+ matrix[x + 4][y] > 0 and
+ matrix[x + 5][y] < 0 and
+ matrix[x + 6][y] > 0 and
+ ((x + 10 <= size and
+ matrix[x + 7][y] < 0 and
+ matrix[x + 8][y] < 0 and
+ matrix[x + 9][y] < 0 and
+ matrix[x + 10][y] < 0) or
+ (x - 4 >= 1 and
+ matrix[x - 1][y] < 0 and
+ matrix[x - 2][y] < 0 and
+ matrix[x - 3][y] < 0 and
+ matrix[x - 4][y] < 0))) then penalty3 = penalty3 + 40 end
+ end
+ end
+ -- 4: Proportion of dark modules in entire symbol
+ -- ----------------------------------------------
+ -- 50 ± (5 × k)% to 50 ± (5 × (k + 1))% -> 10 × k
+ local dark_ratio = number_of_dark_cells / ( size * size )
+ local penalty4 = math.floor(math.abs(dark_ratio * 100 - 50)) * 2
+ return penalty1 + penalty2 + penalty3 + penalty4
+end
+
+-- Create a matrix for the given parameters and calculate the penalty score.
+-- Return both (matrix and penalty)
+local function get_matrix_and_penalty(version,ec_level,data,mask)
+ local tab = prepare_matrix_with_mask(version,ec_level,mask)
+ add_data_to_matrix(tab,data,mask)
+ local penalty = calculate_penalty(tab)
+ return tab, penalty
+end
+
+-- Return the matrix with the smallest penalty. To to this
+-- we try out the matrix for all 8 masks and determine the
+-- penalty (score) each.
+local function get_matrix_with_lowest_penalty(version,ec_level,data)
+ local tab, penalty
+ local tab_min_penalty, min_penalty
+
+ -- try masks 0-7
+ tab_min_penalty, min_penalty = get_matrix_and_penalty(version,ec_level,data,0)
+ for i=1,7 do
+ tab, penalty = get_matrix_and_penalty(version,ec_level,data,i)
+ if penalty < min_penalty then
+ tab_min_penalty = tab
+ min_penalty = penalty
+ end
+ end
+ return tab_min_penalty
+end
+
+--- The main function. We connect everything together. Remember from above:
+---
+--- 1. Determine version, ec level and mode (=encoding) for codeword
+--- 1. Encode data
+--- 1. Arrange data and calculate error correction code
+--- 1. Generate 8 matrices with different masks and calculate the penalty
+--- 1. Return qrcode with least penalty
+-- If ec_level or mode is given, use the ones for generating the qrcode. (mode is not implemented yet)
+local function qrcode( str, ec_level, _mode ) -- luacheck: no unused args
+ local arranged_data, version, data_raw, mode, len_bitstring
+ version, ec_level, data_raw, mode, len_bitstring = get_version_eclevel_mode_bistringlength(str,ec_level)
+ data_raw = data_raw .. len_bitstring
+ data_raw = data_raw .. encode_data(str,mode)
+ data_raw = add_pad_data(version,ec_level,data_raw)
+ arranged_data = arrange_codewords_and_calculate_ec(version,ec_level,data_raw)
+ if math.fmod(#arranged_data,8) ~= 0 then
+ return false, string.format("Arranged data %% 8 != 0: data length = %d, mod 8 = %d",#arranged_data, math.fmod(#arranged_data,8))
+ end
+ arranged_data = arranged_data .. string.rep("0",remainder[version])
+ local tab = get_matrix_with_lowest_penalty(version,ec_level,arranged_data)
+ return true, tab
+end
+
+
+if testing then
+ return {
+ encode_string_numeric = encode_string_numeric,
+ encode_string_ascii = encode_string_ascii,
+ qrcode = qrcode,
+ binary = binary,
+ get_mode = get_mode,
+ get_length = get_length,
+ add_pad_data = add_pad_data,
+ get_generator_polynominal_adjusted = get_generator_polynominal_adjusted,
+ get_pixel_with_mask = get_pixel_with_mask,
+ get_version_eclevel_mode_bistringlength = get_version_eclevel_mode_bistringlength,
+ remainder = remainder,
+ --get_capacity_remainder = get_capacity_remainder,
+ arrange_codewords_and_calculate_ec = arrange_codewords_and_calculate_ec,
+ calculate_error_correction = calculate_error_correction,
+ convert_bitstring_to_bytes = convert_bitstring_to_bytes,
+ bit_xor = bit_xor,
+ }
+end
+
+return {
+ qrcode = qrcode
+}
diff --git a/macros/latex/contrib/qrbill/qrbill.dtx b/macros/latex/contrib/qrbill/qrbill.dtx
index 6d169404d5..c7739d81d3 100644
--- a/macros/latex/contrib/qrbill/qrbill.dtx
+++ b/macros/latex/contrib/qrbill/qrbill.dtx
@@ -2,7 +2,7 @@
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
-% Copyright (C) 2020–2022 by Marei Peischl (peiTeX) <marei@peitex.de>
+% Copyright (C) 2020–2023 by Marei Peischl (peiTeX) <marei@peitex.de>
%
% This work is a collaboration of
% Marei Peischl (peiTeX) and Alex Antener (foobar LLC).
@@ -54,7 +54,7 @@
% \fi
% \iffalse
%<*driver>
-\ProvidesFile{qrbill.dtx}[2022/10/20 v1.07 \ create QR-bills based on the Swiss standard]
+\ProvidesFile{qrbill.dtx}[2023/02/28 v2.00 \ create QR-bills based on the Swiss standard]
\documentclass[english, parskip=half-]{scrartcl}
\usepackage{iftex}
\ifPDFTeX
@@ -284,8 +284,8 @@
% \changes{v1.06}{2022/10/18}{Add ignore-if-empty option}
%
% \item[qrmode (package/lua) (package)] Selects the mechanism for QRcode generation.
+% \changes{v2.00}{2023/02/28}{qrencode.lua now is part of the qrbill package}
% With Version 2.0 the package supports usage of the the luaqrcode library \cite{luaqrcode}. This can be enabled by using the \latexinline{qmode=lua} option.
-% In that case the luaqrcode libary has to be installed within the \verb+$LUAINPUTS+.
%
% \item[qrscheme (Name of a custom QRbill scheme) (swiss)]
% Loads the definitions for the QRcode and the BillingInformation. Currently only the
@@ -514,7 +514,7 @@
% \section{Implementation}
% \begin{macrocode}
\RequirePackage{expl3}
-\ProvidesExplPackage{qrbill}{2022/10/20}{1.07}{
+\ProvidesExplPackage{qrbill}{2023/02/28}{2.00}{
Template for QR-bills based on the Swiss Payment Standards
}
\RequirePackage{iftex}
@@ -866,7 +866,7 @@
\skip_vertical:n {\c_qrbill_sep_dim-\g__qrbill_rule_dim}
\skip_horizontal:n {\c_qrbill_sep_dim-\g__qrbill_rule_dim}
\begin{minipage}[c][95mm][t]{52mm}
- \vbox_to_ht:nn {7mm} {\qrbill_title_font:\qrbillreceiptname}
+ \vbox_to_ht:nn {7mm} {\qrbill_title_font:\qrbillreceiptname\vfill}
\par\nointerlineskip
\vbox_to_ht:nn {56mm}{
{\qrbill_headingR_font:\qrbillaccountname\par}
@@ -896,6 +896,7 @@
\par
}
}
+ \vfill
}
\par\nointerlineskip
\vbox_to_ht:nn {14mm}{
@@ -918,12 +919,13 @@
\par\nointerlineskip
\vbox_to_ht:nn {18mm} {
\makebox[\linewidth][r]{\qrbill_headingR_font:\qrbillacceptantname}\par
+ \vfill
}
\end{minipage}%
\skip_horizontal:n {2\c_qrbill_sep_dim}
\begin{minipage}[c][95mm][t]{138mm}
\begin{minipage}[c][85mm][t]{51mm}
- \parbox[t][7mm][t]{\linewidth}{\qrbill_title_font:\qrbillpaymentpartname}
+ \parbox[t][7mm][t]{\linewidth}{\qrbill_title_font:\qrbillpaymentpartname\vfill}
\par\nointerlineskip
\skip_vertical:n {\c_qrbill_sep_dim}
\qrcode_setup_QRcode:
@@ -950,9 +952,10 @@
\tl_if_empty:NTF \l_qrbill_data_Amount_tl {
\hfill
\raisebox{\dimexpr-\height+\ht\strutbox}[\z@]{
- \llap{\__qrbill_placeholder:nn {40mm} {15mm}
- }}
+ \llap{\__qrbill_placeholder:nn {40mm} {15mm}}
+ }
}
+ \vfill
}
\end{minipage}
\begin{minipage}[c][85mm][t]{87mm}
@@ -964,6 +967,7 @@
\qrbill_insert_address:N \g__qrbill_creditorprefix_tl
\par\vskip\baselineskip
}
+ \raggedright
\tl_if_empty:NF \l_qrbill_data_Reference_tl {
{\qrbill_headingP_font:\qrbillreferencename\par}
{\qrbill_valueP_font:
@@ -1017,6 +1021,7 @@
{\rule{\g__qrbill_rule_dim}{\c_qrbill_height_dim}}
{\rule{\g__qrbill_rule_dim}{\c_zero_dim}}
}
+ \vfill
}
}
\endgroup
diff --git a/macros/latex/contrib/qrbill/qrbill.ins b/macros/latex/contrib/qrbill/qrbill.ins
index 00a8697623..1fe8b6669e 100644
--- a/macros/latex/contrib/qrbill/qrbill.ins
+++ b/macros/latex/contrib/qrbill/qrbill.ins
@@ -2,17 +2,17 @@
\preamble
-Copyright (C) 2020–2022 by Marei Peischl (peiTeX) <marei@peitex.de>
+Copyright (C) 2020–2023 by Marei Peischl (peiTeX) <marei@peitex.de>
This work is a collaboration of
Marei Peischl (peiTeX) and Alex Antener (foobar LLC).
This work may be distributed and/or modified under the
-conditions of the LaTeX Project Public License, either version 1.3
+conditions of the LaTeX Project Public License, either version 1.3c
of this license or (at your option) any later version.
The latest version of this license is in
http://www.latex-project.org/lppl.txt
-and version 1.3 or later is part of all distributions of LaTeX
+and version 1.3c or later is part of all distributions of LaTeX
version 2005/12/01 or later.
This work has the LPPL maintenance status `maintained'.
diff --git a/macros/latex/contrib/qrbill/qrbill.pdf b/macros/latex/contrib/qrbill/qrbill.pdf
index 3684e2c948..1125e6cddc 100644
--- a/macros/latex/contrib/qrbill/qrbill.pdf
+++ b/macros/latex/contrib/qrbill/qrbill.pdf
Binary files differ