summaryrefslogtreecommitdiff
path: root/info/examples/Math/11-03-1.lualtx
diff options
context:
space:
mode:
authorNorbert Preining <norbert@preining.info>2019-09-02 13:46:59 +0900
committerNorbert Preining <norbert@preining.info>2019-09-02 13:46:59 +0900
commite0c6872cf40896c7be36b11dcc744620f10adf1d (patch)
tree60335e10d2f4354b0674ec22d7b53f0f8abee672 /info/examples/Math/11-03-1.lualtx
Initial commit
Diffstat (limited to 'info/examples/Math/11-03-1.lualtx')
-rw-r--r--info/examples/Math/11-03-1.lualtx83
1 files changed, 83 insertions, 0 deletions
diff --git a/info/examples/Math/11-03-1.lualtx b/info/examples/Math/11-03-1.lualtx
new file mode 100644
index 0000000000..f82b4e635b
--- /dev/null
+++ b/info/examples/Math/11-03-1.lualtx
@@ -0,0 +1,83 @@
+%%
+%% Ein Beispiel der DANTE-Edition
+%% Mathematiksatz mit LaTeX
+%% 2. Auflage
+%%
+%% Beispiel 11-03-1 auf Seite 316.
+%%
+%% Copyright (C) 2012 Herbert Voss
+%%
+%% It may be distributed and/or modified under the conditions
+%% of the LaTeX Project Public License, either version 1.3
+%% of this license or (at your option) any later version.
+%%
+%% See http://www.latex-project.org/lppl.txt for details.
+%%
+%%
+%% ====
+% Show page(s) 1
+%%
+%%
+\documentclass[]{exaarticle2}
+\pagestyle{empty}
+\setlength\textwidth{352.81416pt}
+\setlength\parindent{0pt}
+\StartShownPreambleCommands
+\usepackage{amsmath,fontspec,unicode-math,rotating,array,booktabs}
+\setmathfont[version=Cambria,math-style=TeX]{Cambria Math}
+\setmathfont[version=Asana,math-style=TeX]{Asana Math}
+\setmathfont[version=XITS,math-style=TeX]{XITS Math}
+\setmathfont[version=LM,math-style=TeX]{Latin Modern Math}
+\setmathfont[version=Lucida,math-style=TeX]{Lucida Math}
+\setmathfont[version=Euler,math-style=upright]{Neo Euler}
+\def\rb#1{\rlap{\rotatebox{40}{#1}}}
+\StopShownPreambleCommands
+\begin{document}
+\begin{tabular}{*6c}
+%\rb{Computer Modern} &
+\rb{Neo Euler} & \rb{Asana Math} & \rb{XITS Math} & \rb{Cambria Math} & \rb{Lucida Math} & \rb{LM Math}\\\toprule
+%$\sqrt[a]{b}$ &
+\mathversion{Euler}%\setmathfont[range=\mathit/{greek,Greek}]{XITS Math}
+ $\displaystyle\sqrt[a]{b}$
+ & \mathversion{Asana}$\displaystyle\sqrt[a]{b}$
+ & \mathversion{XITS}$\displaystyle\sqrt[a]{b}$
+ & \mathversion{Cambria}$\displaystyle\sqrt[a]{b}$
+ & \mathversion{Lucida}$\displaystyle\sqrt[a]{b}$
+ & \mathversion{LM}$\displaystyle\sqrt[a]{b}$\\
+
+%$\sqrt[\uproot{10}a]{b}$ &
+\mathversion{Euler}%\setmathfont[range=\mathit/{greek,Greek}]{XITS Math}
+$\sqrt[\uproot{10}a]{b}$
+ & \mathversion{Asana}$\displaystyle\sqrt[\uproot{10}a]{b}$
+ & \mathversion{XITS}$\displaystyle\sqrt[\uproot{10}a]{b}$
+ & \mathversion{Cambria}$\displaystyle\sqrt[\uproot{10}a]{b}$
+ & \mathversion{Lucida}$\displaystyle\sqrt[\uproot{10}a]{b}$
+ & \mathversion{LM}$\displaystyle\sqrt[\uproot{10}a]{b}$\\
+
+%$\sqrt[\leftroot{10}a]{b}$ &
+\mathversion{Euler}%\setmathfont[range=\mathit/{greek,Greek}]{XITS Math}
+$\sqrt[\leftroot{10}a]{b}$
+ & \mathversion{Asana}$\displaystyle\sqrt[\leftroot{10}a]{b}$
+ & \mathversion{XITS}$\displaystyle\sqrt[\leftroot{10}a]{b}$
+ & \mathversion{Cambria}$\displaystyle\sqrt[\leftroot{10}a]{b}$
+ & \mathversion{Lucida}$\displaystyle\sqrt[\leftroot{10}a]{b}$
+ & \mathversion{LM}$\displaystyle\sqrt[\leftroot{10}a]{b}$\\
+
+%$\sqrt[\leftroot{10}\uproot{10}a]{b}$ &
+\mathversion{Euler}%\setmathfont[range=\mathit/{greek,Greek}]{XITS Math}
+$\sqrt[\leftroot{10}\uproot{10}a]{b}$
+ & \mathversion{Asana}$\displaystyle\sqrt[\leftroot{10}\uproot{10}a]{b}$
+ & \mathversion{XITS}$\displaystyle\sqrt[\leftroot{10}\uproot{10}a]{b}$
+ & \mathversion{Cambria}$\displaystyle\sqrt[\leftroot{10}\uproot{10}a]{b}$
+ & \mathversion{Lucida}$\displaystyle\sqrt[\leftroot{10}\uproot{10}a]{b}$
+ & \mathversion{LM}$\displaystyle\sqrt[\leftroot{10}\uproot{10}a]{b}$ \\
+
+%$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$ &
+ \mathversion{Euler}$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$
+ & \mathversion{Asana}$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$
+ & \mathversion{XITS}$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$
+ & \mathversion{Cambria}$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$
+ & \mathversion{Lucida}$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$
+ & \mathversion{LM}$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$ \\\bottomrule
+\end{tabular}
+\end{document}