diff options
author | Norbert Preining <norbert@preining.info> | 2019-09-02 13:46:59 +0900 |
---|---|---|
committer | Norbert Preining <norbert@preining.info> | 2019-09-02 13:46:59 +0900 |
commit | e0c6872cf40896c7be36b11dcc744620f10adf1d (patch) | |
tree | 60335e10d2f4354b0674ec22d7b53f0f8abee672 /info/examples/Math/11-03-1.lualtx |
Initial commit
Diffstat (limited to 'info/examples/Math/11-03-1.lualtx')
-rw-r--r-- | info/examples/Math/11-03-1.lualtx | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/info/examples/Math/11-03-1.lualtx b/info/examples/Math/11-03-1.lualtx new file mode 100644 index 0000000000..f82b4e635b --- /dev/null +++ b/info/examples/Math/11-03-1.lualtx @@ -0,0 +1,83 @@ +%% +%% Ein Beispiel der DANTE-Edition +%% Mathematiksatz mit LaTeX +%% 2. Auflage +%% +%% Beispiel 11-03-1 auf Seite 316. +%% +%% Copyright (C) 2012 Herbert Voss +%% +%% It may be distributed and/or modified under the conditions +%% of the LaTeX Project Public License, either version 1.3 +%% of this license or (at your option) any later version. +%% +%% See http://www.latex-project.org/lppl.txt for details. +%% +%% +%% ==== +% Show page(s) 1 +%% +%% +\documentclass[]{exaarticle2} +\pagestyle{empty} +\setlength\textwidth{352.81416pt} +\setlength\parindent{0pt} +\StartShownPreambleCommands +\usepackage{amsmath,fontspec,unicode-math,rotating,array,booktabs} +\setmathfont[version=Cambria,math-style=TeX]{Cambria Math} +\setmathfont[version=Asana,math-style=TeX]{Asana Math} +\setmathfont[version=XITS,math-style=TeX]{XITS Math} +\setmathfont[version=LM,math-style=TeX]{Latin Modern Math} +\setmathfont[version=Lucida,math-style=TeX]{Lucida Math} +\setmathfont[version=Euler,math-style=upright]{Neo Euler} +\def\rb#1{\rlap{\rotatebox{40}{#1}}} +\StopShownPreambleCommands +\begin{document} +\begin{tabular}{*6c} +%\rb{Computer Modern} & +\rb{Neo Euler} & \rb{Asana Math} & \rb{XITS Math} & \rb{Cambria Math} & \rb{Lucida Math} & \rb{LM Math}\\\toprule +%$\sqrt[a]{b}$ & +\mathversion{Euler}%\setmathfont[range=\mathit/{greek,Greek}]{XITS Math} + $\displaystyle\sqrt[a]{b}$ + & \mathversion{Asana}$\displaystyle\sqrt[a]{b}$ + & \mathversion{XITS}$\displaystyle\sqrt[a]{b}$ + & \mathversion{Cambria}$\displaystyle\sqrt[a]{b}$ + & \mathversion{Lucida}$\displaystyle\sqrt[a]{b}$ + & \mathversion{LM}$\displaystyle\sqrt[a]{b}$\\ + +%$\sqrt[\uproot{10}a]{b}$ & +\mathversion{Euler}%\setmathfont[range=\mathit/{greek,Greek}]{XITS Math} +$\sqrt[\uproot{10}a]{b}$ + & \mathversion{Asana}$\displaystyle\sqrt[\uproot{10}a]{b}$ + & \mathversion{XITS}$\displaystyle\sqrt[\uproot{10}a]{b}$ + & \mathversion{Cambria}$\displaystyle\sqrt[\uproot{10}a]{b}$ + & \mathversion{Lucida}$\displaystyle\sqrt[\uproot{10}a]{b}$ + & \mathversion{LM}$\displaystyle\sqrt[\uproot{10}a]{b}$\\ + +%$\sqrt[\leftroot{10}a]{b}$ & +\mathversion{Euler}%\setmathfont[range=\mathit/{greek,Greek}]{XITS Math} +$\sqrt[\leftroot{10}a]{b}$ + & \mathversion{Asana}$\displaystyle\sqrt[\leftroot{10}a]{b}$ + & \mathversion{XITS}$\displaystyle\sqrt[\leftroot{10}a]{b}$ + & \mathversion{Cambria}$\displaystyle\sqrt[\leftroot{10}a]{b}$ + & \mathversion{Lucida}$\displaystyle\sqrt[\leftroot{10}a]{b}$ + & \mathversion{LM}$\displaystyle\sqrt[\leftroot{10}a]{b}$\\ + +%$\sqrt[\leftroot{10}\uproot{10}a]{b}$ & +\mathversion{Euler}%\setmathfont[range=\mathit/{greek,Greek}]{XITS Math} +$\sqrt[\leftroot{10}\uproot{10}a]{b}$ + & \mathversion{Asana}$\displaystyle\sqrt[\leftroot{10}\uproot{10}a]{b}$ + & \mathversion{XITS}$\displaystyle\sqrt[\leftroot{10}\uproot{10}a]{b}$ + & \mathversion{Cambria}$\displaystyle\sqrt[\leftroot{10}\uproot{10}a]{b}$ + & \mathversion{Lucida}$\displaystyle\sqrt[\leftroot{10}\uproot{10}a]{b}$ + & \mathversion{LM}$\displaystyle\sqrt[\leftroot{10}\uproot{10}a]{b}$ \\ + +%$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$ & + \mathversion{Euler}$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$ + & \mathversion{Asana}$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$ + & \mathversion{XITS}$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$ + & \mathversion{Cambria}$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$ + & \mathversion{Lucida}$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$ + & \mathversion{LM}$\displaystyle\int\limits_1^\infty\frac1{\alpha^2}\mathrm d\alpha$ \\\bottomrule +\end{tabular} +\end{document} |