diff options
author | Norbert Preining <norbert@preining.info> | 2019-09-02 13:46:59 +0900 |
---|---|---|
committer | Norbert Preining <norbert@preining.info> | 2019-09-02 13:46:59 +0900 |
commit | e0c6872cf40896c7be36b11dcc744620f10adf1d (patch) | |
tree | 60335e10d2f4354b0674ec22d7b53f0f8abee672 /fonts/mathgifg/sample.tex |
Initial commit
Diffstat (limited to 'fonts/mathgifg/sample.tex')
-rw-r--r-- | fonts/mathgifg/sample.tex | 757 |
1 files changed, 757 insertions, 0 deletions
diff --git a/fonts/mathgifg/sample.tex b/fonts/mathgifg/sample.tex new file mode 100644 index 0000000000..249b8bf40e --- /dev/null +++ b/fonts/mathgifg/sample.tex @@ -0,0 +1,757 @@ +\documentclass{article} +\usepackage{lipsum,url} +\usepackage{textcomp} +\usepackage{mathgifg,amsfonts,amsmath} +\usepackage{ifpdf} +\ifpdf + \pdfmapfile{+mathgifg.map} +\fi + +\newcounter{lipsumnum} +\setcounter{lipsumnum}{1} + +\newcommand{\samplefont}[2]{{#1\selectfont #2: +0123456789, \$20, \texteuro30, \pounds60. +Na\"ive \AE sop's \OE uvres in fran\c cais were my first reading. +\lipsum[\value{lipsumnum}]\stepcounter{lipsumnum}\par}} + +\DeclareMathSymbol{\dit}{\mathord}{letters}{`d} +\DeclareMathSymbol{\dup}{\mathord}{operators}{`d} + + +\def\test#1{#1} + +\def\testnums{% + \test 0 \test 1 \test 2 \test 3 \test 4 \test 5 \test 6 \test 7 + \test 8 \test 9 } +\def\testupperi{% + \test A \test B \test C \test D \test E \test F \test G \test H + \test I \test J \test K \test L \test M } +\def\testupperii{% + \test N \test O \test P \test Q \test R \test S \test T \test U + \test V \test W \test X \test Y \test Z } +\def\testupper{% + \testupperi\testupperii} + +\def\testloweri{% + \test a \test b \test c \test d \test e \test f \test g \test h + \test i \test j \test k \test l \test m } +\def\testlowerii{% + \test n \test o \test p \test q \test r \test s \test t \test u + \test v \test w \test x \test y \test z + \test\imath \test\jmath } +\def\testlower{% + \testloweri\testlowerii} + +\def\testupgreeki{% + \test A \test B \test\Gamma \test\Delta \test E \test Z \test H + \test\Theta \test I \test K \test\Lambda \test M } +\def\testupgreekii{% + \test N \test\Xi \test O \test\Pi \test P \test\Sigma \test T + \test\Upsilon \test\Phi \test X \test\Psi \test\Omega + \test\nabla } +\def\testupgreek{% + \testupgreeki\testupgreekii} + +\def\testlowgreeki{% + \test\alpha \test\beta \test\gamma \test\delta \test\epsilon + \test\zeta \test\eta \test\theta \test\iota \test\kappa \test\lambda + \test\mu } +\def\testlowgreekii{% + \test\nu \test\xi \test o \test\pi \test\rho \test\sigma \test\tau + \test\upsilon \test\phi \test\chi \test\psi \test\omega } +\def\testlowgreekiii{% + \test\varepsilon \test\vartheta \test\varpi \test\varrho + \test\varsigma \test\varphi} +\def\testlowgreek{% + \testlowgreeki\testlowgreekii\testlowgreekiii} + + + + +\begin{document} + +\section{Text Tests} +\label{sec:text} + + + +\samplefont{\normalfont}{Georgia} +\samplefont{\itshape}{Georgia Italic} +\samplefont{\bfseries}{Georgia Bold} +\samplefont{\bfseries\itshape}{Georgia Bold Italic} +\samplefont{\sffamily\fontseries{k}}{Franklin Gothic Book} +\samplefont{\sffamily\fontseries{k}\itshape}{Franklin Gothic Book Italic} +\samplefont{\sffamily}{Franklin Gothic Medium} +\samplefont{\sffamily\itshape}{Franklin Gothic Medum Italic} +\samplefont{\sffamily\fontseries{mc}}{Franklin Gothic Medium Condensed} +\samplefont{\sffamily\bfseries}{Franklin Gothic Demibold} +\samplefont{\sffamily\bfseries\itshape}{Franklin Gothic Demibold + Italic} +\samplefont{\sffamily\fontseries{dc}}{Franklin Gothic Demibold Condensed} +\samplefont{\sffamily\fontseries{h}}{Franklin Gothic Heavy} +\samplefont{\sffamily\fontseries{h}\itshape}{Franklin Gothic Heavy Italic} + +\section{Math Tests} +\label{sec:mthtests} + + + +Math test are taken from\cite{Schmidt04:PSNFSS9.2}. Note that we do +not have \texttt{\string\jmath}, so we took one from CM. + +\parindent 0pt +%\mathindent 1em + + +\subsection{Math Alphabets} + +Math Italic (\texttt{\string\mathnormal}) +\def\test#1{\mathnormal{#1},} +\begin{eqnarray*} + && {\testnums}\\ + && {\testupper}\\ + && {\testlower}\\ + && {\testupgreek}\\ + && {\testlowgreek} +\end{eqnarray*}% + +Math Roman (\texttt{\string\mathrm}) +\def\test#1{\mathrm{#1},} +\begin{eqnarray*} + && {\testnums}\\ + && {\testupper}\\ + && {\testlower}\\ + && {\testupgreek}\\ + && {\testlowgreek} +\end{eqnarray*}% + +%Math Italic Bold +%\def\test#1{\mathbm{#1},} +%\begin{eqnarray*} +% && {\testnums}\\ +% && {\testupper}\\ +% && {\testlower}\\ +% && {\testupgreek}\\ +% && {\testlowgreek} +%\end{eqnarray*}% + +Math Bold (\texttt{\string\mathbf}) +\def\test#1{\mathbf{#1},} +\begin{eqnarray*} + && {\testnums}\\ + && {\testupper}\\ + && {\testlower}\\ + && {\testupgreek} +\end{eqnarray*}% + +Math Sans Serif (\texttt{\string\mathsf}) +\def\test#1{\mathsf{#1},} +\begin{eqnarray*} + && {\testnums}\\ + && {\testupper}\\ + && {\testlower}\\ + && {\testupgreek} +\end{eqnarray*}% + + + +%Caligraphic (\texttt{\string\mathcal}) +%\def\test#1{\mathcal{#1},} +%\begin{eqnarray*} +% && {\testupper} +%\end{eqnarray*}% + +%Script (\texttt{\string\mathscr}) +%\def\test#1{\mathscr{#1},} +%\begin{eqnarray*} +% && {\testupper} +%\end{eqnarray*}% + +%Fraktur (\texttt{\string\mathfrak}) +%\def\test#1{\mathfrak{#1},} +%\begin{eqnarray*} +% && {\testupper}\\ +% && {\testlower} +%\end{eqnarray*}% + +%Blackboard Bold (\texttt{\string\mathbb}) +%\def\test#1{\mathbb{#1},} +%\begin{eqnarray*} +% && {\testupper} +%\end{eqnarray*}% + + +\clearpage +\subsection{Character Sidebearings} + +\def\test#1{|#1|+} +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii} +\end{eqnarray*}% +% +\def\test#1{|\mathrm{#1}|+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% +% +%\def\test#1{|\mathbm{#1}|+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii}\\ +% && {\testlowgreeki}\\ +% && {\testlowgreekii}\\ +% && {\testlowgreekiii} +%\end{eqnarray*}% +%% +%\def\test#1{|\mathbf{#1}|+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii} +%\end{eqnarray*}% +% +\def\test#1{|\mathcal{#1}|+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii} +\end{eqnarray*}% + + +\clearpage +\subsection{Superscript positioning} + +\def\test#1{#1^{2}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii} +\end{eqnarray*}% +% +\def\test#1{\mathrm{#1}^{2}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% +% +%\def\test#1{\mathbm{#1}^{2}+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii}\\ +% && {\testlowgreeki}\\ +% && {\testlowgreekii}\\ +% && {\testlowgreekiii} +%\end{eqnarray*}% +% +%\def\test#1{\mathbf{#1}^{2}+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii} +%\end{eqnarray*} +% +\def\test#1{\mathcal{#1}^{2}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii} +\end{eqnarray*}% + + +\clearpage +\subsection{Subscript positioning} + +\def\test#1{\mathnormal{#1}_{i}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii} +\end{eqnarray*}% +% +\def\test#1{\mathrm{#1}_{i}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% +% +%\def\test#1{\mathbm{#1}_{i}+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii}\\ +% && {\testlowgreeki}\\ +% && {\testlowgreekii}\\ +% && {\testlowgreekiii} +%\end{eqnarray*} +%% +%\def\test#1{\mathbf{#1}_{i}+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii} +%\end{eqnarray*}% +% +\def\test#1{\mathcal{#1}_{i}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii} +\end{eqnarray*}% + + +\clearpage +\subsection{Accent positioning} + +\def\test#1{\hat{#1}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii} +\end{eqnarray*}% +% +\def\test#1{\hat{\mathrm{#1}}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% +% +%\def\test#1{\hat{\mathbm{#1}}+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii}\\ +% && {\testlowgreeki}\\ +% && {\testlowgreekii}\\ +% && {\testlowgreekiii} +%\end{eqnarray*}% +%% +%\def\test#1{\hat{\mathbf{#1}}+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii} +%\end{eqnarray*} +% +\def\test#1{\hat{\mathcal{#1}}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii} +\end{eqnarray*}% + + +\clearpage +\subsection{Differentials} + +\begin{eqnarray*} +\gdef\test#1{\dit #1+}% + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii}\\ +\gdef\test#1{\dit \mathrm{#1}+}% + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% +% +\begin{eqnarray*} +\gdef\test#1{\dup #1+}% + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii}\\ +\gdef\test#1{\dup \mathrm{#1}+}% + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% +% +\begin{eqnarray*} +\gdef\test#1{\partial #1+}% + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii}\\ +\gdef\test#1{\partial \mathrm{#1}+}% + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% + + +\clearpage +\subsection{Slash kerning} + +\def\test#1{1/#1+} +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii} +\end{eqnarray*} + +\def\test#1{#1/2+} +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii} +\end{eqnarray*} + + +\clearpage +\subsection{Big operators} + +\def\testop#1{#1_{i=1}^{n} x^{n} \quad} +\begin{displaymath} + \testop\sum + \testop\prod + \testop\coprod + \testop\int + \testop\oint +\end{displaymath} +\begin{displaymath} + \testop\bigotimes + \testop\bigoplus + \testop\bigodot + \testop\bigwedge + \testop\bigvee + \testop\biguplus + \testop\bigcup + \testop\bigcap + \testop\bigsqcup +% \testop\bigsqcap +\end{displaymath} + + +\subsection{Radicals} + +\begin{displaymath} + \sqrt{x+y} \qquad \sqrt{x^{2}+y^{2}} \qquad + \sqrt{x_{i}^{2}+y_{j}^{2}} \qquad + \sqrt{\left(\frac{\cos x}{2}\right)} \qquad + \sqrt{\left(\frac{\sin x}{2}\right)} +\end{displaymath} + +\begingroup +\delimitershortfall-1pt +\begin{displaymath} + \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}} +\end{displaymath} +\endgroup % \delimitershortfall + + +\subsection{Over- and underbraces} + +\begin{displaymath} + \overbrace{x} \quad + \overbrace{x+y} \quad + \overbrace{x^{2}+y^{2}} \quad + \overbrace{x_{i}^{2}+y_{j}^{2}} \quad + \underbrace{x} \quad + \underbrace{x+y} \quad + \underbrace{x_{i}+y_{j}} \quad + \underbrace{x_{i}^{2}+y_{j}^{2}} \quad +\end{displaymath} + + +\subsection{Normal and wide accents} + +\begin{displaymath} + \dot{x} \quad + \ddot{x} \quad + \vec{x} \quad + \bar{x} \quad + \overline{x} \quad + \overline{xx} \quad + \tilde{x} \quad + \widetilde{x} \quad + \widetilde{xx} \quad + \widetilde{xxx} \quad + \hat{x} \quad + \widehat{x} \quad + \widehat{xx} \quad + \widehat{xxx} \quad +\end{displaymath} + + +\subsection{Long arrows} + +\begin{displaymath} + \leftarrow \mathrel{-} \rightarrow \quad + \leftrightarrow \quad + \longleftarrow \quad + \longrightarrow \quad + \longleftrightarrow \quad + \Leftarrow = \Rightarrow \quad + \Leftrightarrow \quad + \Longleftarrow \quad + \Longrightarrow \quad + \Longleftrightarrow \quad +\end{displaymath} + + +\subsection{Left and right delimters} + +\def\testdelim#1#2{ - #1 f #2 - } +\begin{displaymath} + \testdelim() + \testdelim[] + \testdelim\lfloor\rfloor + \testdelim\lceil\rceil + \testdelim\langle\rangle + \testdelim\{\} +\end{displaymath} + +\def\testdelim#1#2{ - \left#1 f \right#2 - } +\begin{displaymath} + \testdelim() + \testdelim[] + \testdelim\lfloor\rfloor + \testdelim\lceil\rceil + \testdelim\langle\rangle + \testdelim\{\} +% \testdelim\lgroup\rgroup +% \testdelim\lmoustache\rmoustache +\end{displaymath} +\begin{displaymath} + \testdelim)( + \testdelim][ + \testdelim// + \testdelim\backslash\backslash + \testdelim/\backslash + \testdelim\backslash/ +\end{displaymath} + + +\clearpage +\subsection{Big-g-g delimters} + +\def\testdelim#1#2{% + - \left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1 - + \right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2 -} + +\begingroup +\delimitershortfall-1pt +\begin{displaymath} + \testdelim\lfloor\rfloor + \qquad + \testdelim() +\end{displaymath} +\begin{displaymath} + \testdelim\lceil\rceil + \qquad + \testdelim\{\} +\end{displaymath} +\begin{displaymath} + \testdelim[] + \qquad + \testdelim\lgroup\rgroup +\end{displaymath} +\begin{displaymath} + \testdelim\langle\rangle + \qquad + \testdelim\lmoustache\rmoustache +\end{displaymath} +\begin{displaymath} + \testdelim\uparrow\downarrow \quad + \testdelim\Uparrow\Downarrow \quad +\end{displaymath} +\endgroup % \delimitershortfall + +\subsection{Miscellanneous formulae} + +Taken from~\cite{Downes04:amsart} + +\label{sec:misc} +\begin{displaymath} + \hbar\nu=E +\end{displaymath} + +Let $\mathbf{A}=(a_{ij})$ be the adjacency matrix of graph $G$. The +corresponding Kirchhoff matrix $\mathbf{K}=(k_{ij})$ is obtained from +$\mathbf{A}$ by replacing in $-\mathbf{A}$ each diagonal entry by the +degree of its corresponding vertex; i.e., the $i$th diagonal entry is +identified with the degree of the $i$th vertex. It is well known that +\begin{equation} +\det\mathbf{K}(i|i)=\text{ the number of spanning trees of $G$}, +\quad i=1,\dots,n +\end{equation} +where $\mathbf{K}(i|i)$ is the $i$th principal submatrix of +$\mathbf{K}$. + +\newcommand{\abs}[1]{\left\lvert#1\right\rvert} +\newcommand{\wh}{\widehat} +Let $C_{i(j)}$ be the set of graphs obtained from $G$ by attaching edge +$(v_iv_j)$ to each spanning tree of $G$. Denote by $C_i=\bigcup_j +C_{i(j)}$. It is obvious that the collection of Hamiltonian cycles is a +subset of $C_i$. Note that the cardinality of $C_i$ is $k_{ii}\det +\mathbf{K}(i|i)$. Let $\wh X=\{\hat x_1,\dots,\hat x_n\}$. Define multiplication for the elements of $\wh X$ by +\begin{equation}\label{multdef} +\hat x_i\hat x_j=\hat x_j\hat x_i,\quad \hat x^2_i=0,\quad +i,j=1,\dots,n. +\end{equation} +Let $\hat k_{ij}=k_{ij}\hat x_j$ and $\hat k_{ij}=-\sum_{j\not=i} \hat +k_{ij}$. Then the number of Hamiltonian cycles $H_c$ is given by the +relation +\begin{equation}\label{H-cycles} +\biggl(\prod^n_{\,j=1}\hat x_j\biggr)H_c=\frac{1}{2}\hat k_{ij}\det +\wh{\mathbf{K}}(i|i),\qquad i=1,\dots,n. +\end{equation} +The task here is to express \eqref{H-cycles} +in a form free of any $\hat x_i$, +$i=1,\dots,n$. The result also leads to the resolution of enumeration of +Hamiltonian paths in a graph. + +It is well known that the enumeration of Hamiltonian cycles and paths +in a complete graph $K_n$ and in a complete bipartite graph +$K_{n_1n_2}$ can only be found from \textit{first combinatorial + principles}. One wonders if there exists a formula which can be used +very efficiently to produce $K_n$ and $K_{n_1n_2}$. Recently, using +Lagrangian methods, Goulden and Jackson have shown that $H_c$ can be +expressed in terms of the determinant and permanent of the adjacency +matrix. However, the formula of Goulden and +Jackson determines neither $K_n$ nor $K_{n_1n_2}$ effectively. In this +paper, using an algebraic method, we parametrize the adjacency matrix. +The resulting formula also involves the determinant and permanent, but +it can easily be applied to $K_n$ and $K_{n_1n_2}$. In addition, we +eliminate the permanent from $H_c$ and show that $H_c$ can be +represented by a determinantal function of multivariables, each +variable with domain $\{0,1\}$. Furthermore, we show that $H_c$ can be +written by number of spanning trees of subgraphs. Finally, we apply +the formulas to a complete multigraph $K_{n_1\dots n_p}$. + +The conditions $a_{ij}=a_{ji}$, $i,j=1,\dots,n$, are not required in +this paper. All formulas can be extended to a digraph simply by +multiplying $H_c$ by 2. + +The boundedness, property of $\Phi_ 0$, then yields +\[\int_{\mathcal{D}}\abs{\overline\partial u}^2e^{\alpha\abs{z}^2}\geq c_6\alpha +\int_{\mathcal{D}}\abs{u}^2e^{\alpha\abs{z}^2} ++c_7\delta^{-2}\int_ A\abs{u}^2e^{\alpha\abs{z}^2}.\] + +Let $B(X)$ be the set of blocks of $\Lambda_{X}$ +and let $b(X) = \abs{B(X)}$. If $\phi \in Q_{X}$ then +$\phi$ is constant on the blocks of $\Lambda_{X}$. +\begin{equation}\label{far-d} + P_{X} = \{ \phi \in M \mid \Lambda_{\phi} = \Lambda_{X} \}, +\qquad +Q_{X} = \{\phi \in M \mid \Lambda_{\phi} \geq \Lambda_{X} \}. +\end{equation} +If $\Lambda_{\phi} \geq \Lambda_{X}$ then +$\Lambda_{\phi} = \Lambda_{Y}$ for some $Y \geq X$ so that +\[ Q_{X} = \bigcup_{Y \geq X} P_{Y}. \] +Thus by M\"obius inversion +\[ \abs{P_{Y}}= \sum_{X\geq Y} \mu (Y,X)\abs{Q_{X}}.\] +Thus there is a bijection from $Q_{X}$ to $W^{B(X)}$. +In particular $\abs{Q_{X}} = w^{b(X)}$. + + +\renewcommand{\arraystretch}{2.2} +\[W(\Phi)= \begin{Vmatrix} +\dfrac\varphi{(\varphi_1,\varepsilon_1)}&0&\dots&0\\ +\dfrac{\varphi k_{n2}}{(\varphi_2,\varepsilon_1)}& +\dfrac\varphi{(\varphi_2,\varepsilon_2)}&\dots&0\\ +\hdotsfor{5}\\ +\dfrac{\varphi k_{n1}}{(\varphi_n,\varepsilon_1)}& +\dfrac{\varphi k_{n2}}{(\varphi_n,\varepsilon_2)}&\dots& +\dfrac{\varphi k_{n\,n-1}}{(\varphi_n,\varepsilon_{n-1})}& +\dfrac{\varphi}{(\varphi_n,\varepsilon_n)} +\end{Vmatrix}\] + + + +\bibliography{mathgifg} +\bibliographystyle{unsrt} + + +\end{document} |