diff options
author | Norbert Preining <norbert@preining.info> | 2019-09-02 13:46:59 +0900 |
---|---|---|
committer | Norbert Preining <norbert@preining.info> | 2019-09-02 13:46:59 +0900 |
commit | e0c6872cf40896c7be36b11dcc744620f10adf1d (patch) | |
tree | 60335e10d2f4354b0674ec22d7b53f0f8abee672 /dviware/dvisvgm/src/Bezier.cpp |
Initial commit
Diffstat (limited to 'dviware/dvisvgm/src/Bezier.cpp')
-rw-r--r-- | dviware/dvisvgm/src/Bezier.cpp | 256 |
1 files changed, 256 insertions, 0 deletions
diff --git a/dviware/dvisvgm/src/Bezier.cpp b/dviware/dvisvgm/src/Bezier.cpp new file mode 100644 index 0000000000..70656d14f9 --- /dev/null +++ b/dviware/dvisvgm/src/Bezier.cpp @@ -0,0 +1,256 @@ +/************************************************************************* +** Bezier.cpp ** +** ** +** This file is part of dvisvgm -- a fast DVI to SVG converter ** +** Copyright (C) 2005-2019 Martin Gieseking <martin.gieseking@uos.de> ** +** ** +** This program is free software; you can redistribute it and/or ** +** modify it under the terms of the GNU General Public License as ** +** published by the Free Software Foundation; either version 3 of ** +** the License, or (at your option) any later version. ** +** ** +** This program is distributed in the hope that it will be useful, but ** +** WITHOUT ANY WARRANTY; without even the implied warranty of ** +** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** +** GNU General Public License for more details. ** +** ** +** You should have received a copy of the GNU General Public License ** +** along with this program; if not, see <http://www.gnu.org/licenses/>. ** +*************************************************************************/ + +#include <algorithm> +#include <utility> +#include "Bezier.hpp" + +using namespace std; + +Bezier::Bezier () { + _points[0] = _points[1] = _points[2] = _points[3] = DPair(0); +} + + +/** Creates a quadratic Bézier curve. internally, it's represented as a cubic one. */ +Bezier::Bezier (const DPair &p0, const DPair &p1, const DPair &p2) { + setPoints(p0, p0+(p1-p0)*2.0/3.0, p2+(p1-p2)*2.0/3.0, p2); +} + + +Bezier::Bezier (const DPair &p0, const DPair &p1, const DPair &p2, const DPair &p3) { + setPoints(p0, p1, p2, p3); +} + + +/** Creates a subcurve of a given Bézier curve. + * @param[in] source original curve to be clipped + * @param[in] t0 'time' parameter \f$\in[0,1]\f$ of source curve where the subcurve starts + * @param[in] t1 'time' parameter \f$\in[0,1]\f$ of source curve where the subcurve ends */ +Bezier::Bezier (const Bezier &source, double t0, double t1) { + if (t0 == t1) + _points[0] = _points[1] = _points[2] = _points[3] = source.valueAt(t0); + else { + if (t0 > t1) + swap(t0, t1); + if (t0 == 0) + source.subdivide(t1, this, nullptr); + else if (t1 == 1) + source.subdivide(t0, nullptr, this); + else { + Bezier subcurve; + source.subdivide(t0, nullptr, &subcurve); + subcurve.subdivide((t1-t0)/(1-t0), this, nullptr); + } + } +} + + +void Bezier::setPoints(const DPair &p0, const DPair &p1, const DPair &p2, const DPair &p3) { + _points[0] = p0; + _points[1] = p1; + _points[2] = p2; + _points[3] = p3; +} + + +void Bezier::reverse() { + swap(_points[0], _points[3]); + swap(_points[1], _points[2]); +} + + +DPair Bezier::valueAt (double t) const { + const double s = 1-t; + return _points[0]*s*s*s + _points[1]*3.0*s*s*t + _points[2]*3.0*s*t*t + _points[3]*t*t*t; +} + + +/** Returns a value of the Bézier curve's blossom representation. */ +DPair Bezier::blossomValue (double u, double v, double w) const { + const double uv = u*v; + const double uw = u*w; + const double vw = v*w; + const double uvw = u*v*w; + return _points[0]*(1.0-u-v-w+uv+uw+vw-uvw) + +_points[1]*(u+v+w-2.0*(uv+uw+vw)+3.0*uvw) + +_points[2]*(uv+uw+vw-3.0*uvw) + +_points[3]*uvw; +} + + +/** Splits the curve at t into two sub-curves. */ +void Bezier::subdivide (double t, Bezier *bezier1, Bezier *bezier2) const { + const double s = 1-t; + DPair p01 = _points[0]*s + _points[1]*t; + DPair p12 = _points[1]*s + _points[2]*t; + DPair p23 = _points[2]*s + _points[3]*t; + DPair p012 = p01*s + p12*t; + DPair p123 = p12*s + p23*t; + DPair p0123 = p012*s + p123*t; + if (bezier1) + bezier1->setPoints(_points[0], p01, p012, p0123); + if (bezier2) + bezier2->setPoints(p0123, p123, p23, _points[3]); +} + + +/** Approximates the current Bézier curve by a sequence of line segments. + * This is done by subdividing the curve several times using De Casteljau's algorithm. + * If a sub-curve is almost flat, i.e. \f$\sum\limits_{k=0}^2 |p_{k+1}-p_k| - |p_3-p_0| < \delta\f$, + * the curve is not further subdivided. + * @param[in] delta threshold where to stop further subdivisions (see description above) + * @param[out] p the resulting sequence of points defining the start/end points of the line segments + * @param[out] t corresponding curve parameters of the approximated points p: \f$ b(t_i)=p_i \f$ + * @return number of points in vector p */ +int Bezier::approximate (double delta, std::vector<DPair> &p, vector<double> *t) const { + p.push_back(_points[0]); + if (t) + t->push_back(0); + return approximate(delta, 0, 1, p, t); +} + + +int Bezier::approximate (double delta, double t0, double t1, vector<DPair> &p, vector<double> *t) const { + // compute distance of adjacent control points + const double l01 = (_points[1]-_points[0]).length(); + const double l12 = (_points[2]-_points[1]).length(); + const double l23 = (_points[3]-_points[2]).length(); + const double l03 = (_points[3]-_points[0]).length(); + if (l01+l12+l23-l03 < delta) { // is curve flat enough? + p.push_back(_points[3]); // => store endpoint + if (t) + t->push_back(t1); + } + else { + // subdivide curve at b(0.5) and approximate the resulting parts separately + Bezier b1, b2; + subdivide(0.5, &b1, &b2); + double tmid = (t0+t1)/2; + b1.approximate(delta, t0, tmid, p, t); + b2.approximate(delta, tmid, t1, p, t); + } + return p.size(); +} + + +/** Returns the signed area of the triangle (p1, p2, p3). */ +static inline double signed_area (const DPair &p1, const DPair &p2, const DPair &p3) { + return ((p2.x()-p1.x())*(p3.y()-p1.y()) - (p3.x()-p1.x())*(p2.y()-p1.y()))/2.0; +} + + +static inline double dot_prod (const DPair &p1, const DPair &p2) { + return p1.x()*p2.x() + p1.y()*p2.y(); +} + + +/** Returns true if p3 is located between p1 and p2, i.e. p3 lays almost on the line + * between p1 and p2. */ +static bool between (const DPair &p1, const DPair &p2, const DPair &p3, double delta) { + double sqr_dist = dot_prod(p2-p1, p2-p1); + double factor = sqr_dist == 0.0 ? 1.0 : sqr_dist; + double area2 = fabs(signed_area(p1, p2, p3)); + return area2*area2/factor < delta // does p3 lay almost on the line through p1 and p2... + && min(p1.x(), p2.x()) <= p3.x() // ...and on or inside the rectangle spanned by p1 and p2? + && max(p1.x(), p2.x()) >= p3.x() + && min(p1.y(), p2.y()) <= p3.y() + && max(p1.y(), p2.y()) >= p3.y(); +} + + +static inline bool near (const DPair &p1, const DPair &p2, double delta) { + DPair diff = p2-p1; + return fabs(diff.x()) < delta && fabs(diff.y()) < delta; +} + + +/** Tries to reduce the degree of the Bézier curve. This only works if the number of + * control points can be reduces without changing the shape of the curve significantly. + * @param[in] delta deviation tolerance + * @param[in] p control points of the reduced curve + * @return degree of the reduced curve */ +int Bezier::reduceDegree (double delta, vector<DPair> &p) const { + p.clear(); + if (near(_points[0], _points[1], delta) && near(_points[0], _points[2], delta) && near(_points[0], _points[3], delta)) + p.push_back(_points[0]); + else if (between(_points[0], _points[3], _points[1], delta) && between(_points[0], _points[3], _points[2], delta)) { + p.push_back(_points[0]); + p.push_back(_points[3]); + } + else if (near((_points[1]-_points[0])*1.5+_points[0], (_points[2]-_points[3])*1.5+_points[3], delta)) { + p.push_back(_points[0]); + p.push_back((_points[1]-_points[0])*1.5 + _points[0]); + p.push_back(_points[3]); + } + else { + p.resize(4); + for (int i=0; i < 4; i++) + p[i] = _points[i]; + } + return p.size()-1; +} + + +/** Try to solve the quadratic equation ax^2 + bx + c = 0. */ +static bool solve_quadratic_equation (double a, double b, double c, double &x1, double &x2) { + if (a == 0) { + if (b == 0) + return false; + x1 = x2 = -c/b; + } + else { + double discr = b*b - 4*a*c; + if (discr < 0) + return false; + double p = -b/a/2; + double r = sqrt(discr)/a/2; + x1 = p+r; + x2 = p-r; + } + return true; +} + + +/** Returns a tight bounding box parallel to the x- and y-axis. */ +void Bezier::getBBox (BoundingBox &bbox) const { + bbox.invalidate(); + // coefficients of the derivative + DPair pa = _points[3] - _points[2]*3.0 + _points[1]*3.0 - _points[0]; + DPair pb = (_points[2]-_points[1]*2.0+_points[0])*2.0; + DPair pc = _points[1]-_points[0]; + + // compute extrema for t > 0 and t < 1 + double t1, t2; + if (solve_quadratic_equation(pa.x(), pb.x(), pc.x(), t1, t2)) { + if (t1 > 0.001 && t1 < 0.999) + bbox.embed(valueAt(t1)); + if (t1 != t2 && t2 > 0.001 && t2 < 0.999) + bbox.embed(valueAt(t2)); + } + if (solve_quadratic_equation(pa.y(), pb.y(), pc.y(), t1, t2)) { + if (t1 > 0.001 && t1 < 0.999) + bbox.embed(valueAt(t1)); + if (t1 != t2 && t2 > 0.001 && t2 < 0.999) + bbox.embed(valueAt(t2)); + } + bbox.embed(_points[0]); + bbox.embed(_points[3]); +} |