summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/tkz-elements/tkz_elements_point.lua
blob: 5e9d4fcd00e92aa7bfbe33e6f2bab7324f788ed0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
-- tkz_elements_point.lua
-- date 2024/03/25
-- version 2.20c
-- Copyright 2024  Alain Matthes
-- This work may be distributed and/or modified under the
-- conditions of the LaTeX Project Public License, either version 1.3
-- of this license or (at your option) any later version.
-- The latest version of this license is in
--   http://www.latex-project.org/lppl.txt
-- and version 1.3 or later is part of all distributions of LaTeX
-- version 2005/12/01 or later.
-- This work has the LPPL maintenance status “maintained”.
-- The Current Maintainer of this work is Alain Matthes.

-- point.lua
require 'tkz_elements_class'

point = class(function(p,re,im)
       if type(re) == 'number' then 
         p.re     = re
         p.im     = im
       else       
         p.re     = re.re
         p.im     = re.im
       end
       p.type     = 'point'
       p.argument = math.atan(p.im, p.re)
       p.modulus  = math.sqrt(p.re * p.re  + p.im * p.im)
       p.mtx      = matrix : new {{p.re},{p.im}}
end)

local sqrt = math.sqrt
local cos  = math.cos
local sin  = math.sin
local exp  = math.exp
local atan = math.atan
local min  = math.min
local max  = math.max
local abs  = math.abs

local function topoint (z1)
   if (type(z1) == "number") then return point(z1,0) else return z1 end
end

local function check(z1,z2)
  if     type(z1) == 'number' then return point(z1,0),z2
  elseif type(z2) == 'number' then return z1,point(z2,0) 
  else return z1,z2
  end
end
-- -------------------------------------------------------------------
-- metamethods
-- -------------------------------------------------------------------
-- redefine arithmetic operators!
function point.__add(z1,z2)
  local c1,c2 = check(z1,z2)
  return point(c1.re + c2.re, c1.im + c2.im)
end

function point.__sub(z1,z2)
  local c1,c2 = check(z1,z2)
  return point(c1.re - c2.re, c1.im - c2.im)
end

function point.__unm(z)
    local z = topoint(z)
  return point(-z.re, -z.im)
end

function point.__mul(z1,z2)
  local c1,c2 = check(z1,z2)
  return point(c1.re*c2.re - c1.im*c2.im, c1.im*c2.re + c1.re*c2.im)
end

-- dot product is '..'  (a+ib) (c-id) = ac+bd + i(bc-ad) 
function point.__concat(z1,z2)
    local z
    z = z1 * point.conj(z2)
  return z.re
end

-- determinant  is '^'   (a-ib) (c+id) = ac+bd + i(ad - bc)
function point.__pow(z1,z2)
    local z
    z = point.conj(z1) * z2
   return z.im
end

function point.__div(x,y)
   local xx = topoint(x); local yy = topoint(y)
   return point(
      (xx.re * yy.re + xx.im * yy.im) / (yy.re * yy.re + yy.im * yy.im),
      (xx.im * yy.re - xx.re * yy.im) / (yy.re * yy.re + yy.im * yy.im)
   )
end

function point.__tostring(z)
  local real = z.re
  local imag = z.im
   if (real == 0) then
      if (imag == 0) then 
         return "0"
      else
         if  (imag == 1) then
            return ""  .. "i"
         else
            if  (imag == -1) then
               return ""  .. "-i"
            else
            local  imag = string.format( "%."..tkz_dc.."f",imag)
         return "" .. imag .. "i"
      end
      end
      end
   else
      if (imag > 0) then
        if  (imag ==1) then 
            if is_integer (real) then real = math.round(real) else
            real = string.format( "%."..tkz_dc.."f",real) end
           return "" .. real .. "+"  .. "i"
        else
          if is_integer (real) then real = math.round(real) else
          real = string.format( "%."..tkz_dc.."f",real) end
            imag = string.format( "%."..tkz_dc.."f",imag)
         return "" .. real .. "+" .. imag .. "i"
     end
      elseif (imag < 0) then
         if  (imag == -1) then
           if is_integer (real) then real = math.round(real) else
           real = string.format( "%."..tkz_dc.."f",real) end
             imag = string.format( "%."..tkz_dc.."f",imag)
            return "" .. real .. "-"  .. "i"
         else
           if is_integer (real) then real = math.round(real) else
           real = string.format( "%."..tkz_dc.."f",real) end
             imag = string.format( "%."..tkz_dc.."f",imag)
         return "" .. real .. imag .. "i"
      end
      else
        if is_integer (real) then real = math.round(real) else
        real = string.format( "%."..tkz_dc.."f",real) end
         return "" .. real

      end
   end
end

function point.__tonumber(z)
  if (z.im == 0) then
    return z.re
  else
    return nil
  end
end

function point.__eq(z1,z2)
  return z1.re==z2.re and z1.im==z2.im
end
-- -------------------------------------------------------------------   
local function pyth(a, b)
	if a == 0 and b == 0 then return 0 end
	a, b = abs(a), abs(b)
	a, b = max(a,b), min(a,b)
	return a * sqrt(1 + (b / a)^2)
end

function point.conj(z)
    local cx = topoint(z)
  return point(cx.re,-cx.im)
end

function point.mod(z)
  local cx = topoint(z)
  local function sqr(x) return x*x end
  return pyth (cx.re,cx.im)
end

function point.abs (z) 
  local cx = topoint(z)
  local function sqr(x) return x*x end
  return sqrt(sqr(cx.re)  + sqr(cx.im))
end

function point.norm (z)
 local cx = topoint(z)
 local function sqr(x) return x*x end
   return (sqr(cx.re)  + sqr(cx.im))
end

function point.power (z,n)
  if type(z) == number then return z^n
  else
    local m = (z.modulus)^n
    local a = angle_normalize((z.argument)*n)   
   return scale * polar_ (m,a)
 end
end

function point.arg (z)
  cx = topoint(z)
  return math.atan(cx.im, cx.re)
end

function point.get(z)
   return z.re, z.im
end

function point.sqrt(z)
  local cx = topoint(z)
  local len = math.sqrt( (cx.re)^2+(cx.im)^2 )
  local sign = (cx.im < 0 and -1 ) or 1
  return point(math.sqrt((cx.re+len)/2), sign*math.sqrt((len-cx.re)/2) )
end

-- methods ---

function point: new ( a,b )
  return scale * point (a,b )
end

function point: polar ( radius, phi )
  return point: new (radius * math.cos(phi), radius * math.sin(phi))
end

function point: polar_deg ( radius, phi )
	return scale * polar_ ( radius, phi * math.pi/180 )
end

function point: north(d)
  local d = d or 1
   return self+ polar_ ( d ,  math.pi/2 )
end

function point: south(d)
  local d = d or 1
    return self + polar_ ( d , 3 * math.pi/2 )
end
   
function point: east(d)
  local d = d or 1
  return self+ polar_( d ,  0 )
end

function point: west(d)
    local d = d or 1
      return self + polar_ ( d , math.pi )
   end
-- ----------------------------------------------------------------
-- transformations
-- ----------------------------------------------------------------
-- function point: symmetry(pt)
--     return symmetry_ (self ,pt)
-- end

function point: symmetry (...)
   local obj,nb,t
   local tp = table.pack(...)
   obj = tp[1]
   nb = tp.n
    if nb == 1 then
       if obj.type == "point" then
          return symmetry_ (self,obj)
       elseif  obj.type == "line" then
         return line: new (set_symmetry_ (self,obj.pa,obj.pb))
       elseif  obj.type == "circle" then
          return circle: new (set_symmetry_ (self,obj.center,obj.through))
       else
         return triangle: new (set_symmetry (self,obj.pa,obj.pb,obj.pc)) 
       end
    else
       local t = {}
       for i=1,tp.n do
           table.insert( t , symmetry_ (self , tp[i])  ) 
        end
     return table.unpack ( t )      
    end
end

function point: set_symmetry (...)
 return set_symmetry_ ( self,... )
end

function point: rotation_pt(angle , pt)
    return rotation_(self,angle,pt)
end

function point:set_rotation (angle,...)
 return set_rotation_ ( self,angle,... )
end

function point : rotation (angle,...)
   local obj,nb,t
   local tp = table.pack(...)
   obj = tp[1]
   nb = tp.n
    if nb == 1 then
       if obj.type == "point" then
      return rotation_ (self,angle,obj )
       elseif  obj.type == "line" then
   return line : new  (set_rotation_ (self, angle,obj.pa,obj.pb ))
       elseif obj.type == "triangle" then
   return triangle: new (set_rotation_ (self, angle,obj.pa,obj.pb,obj.pc))
       elseif obj.type == "circle" then
return circle : new  (set_rotation_ (self,angle,obj.center,obj.through))
       else 
return square: new (set_rotation_(self,angle,obj.pa,obj.pb,obj.pc,obj.pd))
       end
    else
        t = {}
        for i=1,tp.n do
            table.insert( t , rotation_ ( self,angle,tp[i]))
         end
      return table.unpack ( t )
     end
end

function point : homothety (coeff,...)
local obj,nb,t
local tp = table.pack(...)
obj = tp[1]
nb = tp.n
 if nb == 1 then
   if obj.type == "point" then
      return homothety_ (self,coeff,obj )
   elseif  obj.type == "line" then
      return line : new  (set_homothety_ (self, coeff,obj.pa,obj.pb ))
   elseif obj.type == "triangle" then
     return triangle: new (set_homothety_(self,coeff,obj.pa,obj.pb,obj.pc))
   elseif obj.type == "circle" then
    return circle: new  (set_homothety_(self,coeff,obj.center,obj.through))
   else
return square: new (set_homothety_(self,coeff,obj.pa,obj.pb))    
       end
    else
        t = {}
        for i=1,tp.n do
            table.insert( t , homothety_ ( self,coeff,tp[i]))
         end
      return table.unpack ( t )
     end
end

function point: normalize()
    local d = point.abs(self)
   return point(self.re/d,self.im/d)
end

function point: orthogonal(d)
   local m
   if d==nil then
   return point(-self.im,self.re)
else
   m = point.mod(self)
   return point(-self.im*d/m,self.re*d/m)
end
end

function point : at (z)
   return point(self.re+z.re,self.im+z.im)
end

function point : print ()
    tex.print(tostring(self))
end