1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
-- tkz_elements_point.lua
-- date 2024/03/25
-- version 2.20c
-- Copyright 2024 Alain Matthes
-- This work may be distributed and/or modified under the
-- conditions of the LaTeX Project Public License, either version 1.3
-- of this license or (at your option) any later version.
-- The latest version of this license is in
-- http://www.latex-project.org/lppl.txt
-- and version 1.3 or later is part of all distributions of LaTeX
-- version 2005/12/01 or later.
-- This work has the LPPL maintenance status “maintained”.
-- The Current Maintainer of this work is Alain Matthes.
-- point.lua
require 'tkz_elements_class'
point = class(function(p,re,im)
if type(re) == 'number' then
p.re = re
p.im = im
else
p.re = re.re
p.im = re.im
end
p.type = 'point'
p.argument = math.atan(p.im, p.re)
p.modulus = math.sqrt(p.re * p.re + p.im * p.im)
p.mtx = matrix : new {{p.re},{p.im}}
end)
local sqrt = math.sqrt
local cos = math.cos
local sin = math.sin
local exp = math.exp
local atan = math.atan
local min = math.min
local max = math.max
local abs = math.abs
local function topoint (z1)
if (type(z1) == "number") then return point(z1,0) else return z1 end
end
local function check(z1,z2)
if type(z1) == 'number' then return point(z1,0),z2
elseif type(z2) == 'number' then return z1,point(z2,0)
else return z1,z2
end
end
-- -------------------------------------------------------------------
-- metamethods
-- -------------------------------------------------------------------
-- redefine arithmetic operators!
function point.__add(z1,z2)
local c1,c2 = check(z1,z2)
return point(c1.re + c2.re, c1.im + c2.im)
end
function point.__sub(z1,z2)
local c1,c2 = check(z1,z2)
return point(c1.re - c2.re, c1.im - c2.im)
end
function point.__unm(z)
local z = topoint(z)
return point(-z.re, -z.im)
end
function point.__mul(z1,z2)
local c1,c2 = check(z1,z2)
return point(c1.re*c2.re - c1.im*c2.im, c1.im*c2.re + c1.re*c2.im)
end
-- dot product is '..' (a+ib) (c-id) = ac+bd + i(bc-ad)
function point.__concat(z1,z2)
local z
z = z1 * point.conj(z2)
return z.re
end
-- determinant is '^' (a-ib) (c+id) = ac+bd + i(ad - bc)
function point.__pow(z1,z2)
local z
z = point.conj(z1) * z2
return z.im
end
function point.__div(x,y)
local xx = topoint(x); local yy = topoint(y)
return point(
(xx.re * yy.re + xx.im * yy.im) / (yy.re * yy.re + yy.im * yy.im),
(xx.im * yy.re - xx.re * yy.im) / (yy.re * yy.re + yy.im * yy.im)
)
end
function point.__tostring(z)
local real = z.re
local imag = z.im
if (real == 0) then
if (imag == 0) then
return "0"
else
if (imag == 1) then
return "" .. "i"
else
if (imag == -1) then
return "" .. "-i"
else
local imag = string.format( "%."..tkz_dc.."f",imag)
return "" .. imag .. "i"
end
end
end
else
if (imag > 0) then
if (imag ==1) then
if is_integer (real) then real = math.round(real) else
real = string.format( "%."..tkz_dc.."f",real) end
return "" .. real .. "+" .. "i"
else
if is_integer (real) then real = math.round(real) else
real = string.format( "%."..tkz_dc.."f",real) end
imag = string.format( "%."..tkz_dc.."f",imag)
return "" .. real .. "+" .. imag .. "i"
end
elseif (imag < 0) then
if (imag == -1) then
if is_integer (real) then real = math.round(real) else
real = string.format( "%."..tkz_dc.."f",real) end
imag = string.format( "%."..tkz_dc.."f",imag)
return "" .. real .. "-" .. "i"
else
if is_integer (real) then real = math.round(real) else
real = string.format( "%."..tkz_dc.."f",real) end
imag = string.format( "%."..tkz_dc.."f",imag)
return "" .. real .. imag .. "i"
end
else
if is_integer (real) then real = math.round(real) else
real = string.format( "%."..tkz_dc.."f",real) end
return "" .. real
end
end
end
function point.__tonumber(z)
if (z.im == 0) then
return z.re
else
return nil
end
end
function point.__eq(z1,z2)
return z1.re==z2.re and z1.im==z2.im
end
-- -------------------------------------------------------------------
local function pyth(a, b)
if a == 0 and b == 0 then return 0 end
a, b = abs(a), abs(b)
a, b = max(a,b), min(a,b)
return a * sqrt(1 + (b / a)^2)
end
function point.conj(z)
local cx = topoint(z)
return point(cx.re,-cx.im)
end
function point.mod(z)
local cx = topoint(z)
local function sqr(x) return x*x end
return pyth (cx.re,cx.im)
end
function point.abs (z)
local cx = topoint(z)
local function sqr(x) return x*x end
return sqrt(sqr(cx.re) + sqr(cx.im))
end
function point.norm (z)
local cx = topoint(z)
local function sqr(x) return x*x end
return (sqr(cx.re) + sqr(cx.im))
end
function point.power (z,n)
if type(z) == number then return z^n
else
local m = (z.modulus)^n
local a = angle_normalize((z.argument)*n)
return scale * polar_ (m,a)
end
end
function point.arg (z)
cx = topoint(z)
return math.atan(cx.im, cx.re)
end
function point.get(z)
return z.re, z.im
end
function point.sqrt(z)
local cx = topoint(z)
local len = math.sqrt( (cx.re)^2+(cx.im)^2 )
local sign = (cx.im < 0 and -1 ) or 1
return point(math.sqrt((cx.re+len)/2), sign*math.sqrt((len-cx.re)/2) )
end
-- methods ---
function point: new ( a,b )
return scale * point (a,b )
end
function point: polar ( radius, phi )
return point: new (radius * math.cos(phi), radius * math.sin(phi))
end
function point: polar_deg ( radius, phi )
return scale * polar_ ( radius, phi * math.pi/180 )
end
function point: north(d)
local d = d or 1
return self+ polar_ ( d , math.pi/2 )
end
function point: south(d)
local d = d or 1
return self + polar_ ( d , 3 * math.pi/2 )
end
function point: east(d)
local d = d or 1
return self+ polar_( d , 0 )
end
function point: west(d)
local d = d or 1
return self + polar_ ( d , math.pi )
end
-- ----------------------------------------------------------------
-- transformations
-- ----------------------------------------------------------------
-- function point: symmetry(pt)
-- return symmetry_ (self ,pt)
-- end
function point: symmetry (...)
local obj,nb,t
local tp = table.pack(...)
obj = tp[1]
nb = tp.n
if nb == 1 then
if obj.type == "point" then
return symmetry_ (self,obj)
elseif obj.type == "line" then
return line: new (set_symmetry_ (self,obj.pa,obj.pb))
elseif obj.type == "circle" then
return circle: new (set_symmetry_ (self,obj.center,obj.through))
else
return triangle: new (set_symmetry (self,obj.pa,obj.pb,obj.pc))
end
else
local t = {}
for i=1,tp.n do
table.insert( t , symmetry_ (self , tp[i]) )
end
return table.unpack ( t )
end
end
function point: set_symmetry (...)
return set_symmetry_ ( self,... )
end
function point: rotation_pt(angle , pt)
return rotation_(self,angle,pt)
end
function point:set_rotation (angle,...)
return set_rotation_ ( self,angle,... )
end
function point : rotation (angle,...)
local obj,nb,t
local tp = table.pack(...)
obj = tp[1]
nb = tp.n
if nb == 1 then
if obj.type == "point" then
return rotation_ (self,angle,obj )
elseif obj.type == "line" then
return line : new (set_rotation_ (self, angle,obj.pa,obj.pb ))
elseif obj.type == "triangle" then
return triangle: new (set_rotation_ (self, angle,obj.pa,obj.pb,obj.pc))
elseif obj.type == "circle" then
return circle : new (set_rotation_ (self,angle,obj.center,obj.through))
else
return square: new (set_rotation_(self,angle,obj.pa,obj.pb,obj.pc,obj.pd))
end
else
t = {}
for i=1,tp.n do
table.insert( t , rotation_ ( self,angle,tp[i]))
end
return table.unpack ( t )
end
end
function point : homothety (coeff,...)
local obj,nb,t
local tp = table.pack(...)
obj = tp[1]
nb = tp.n
if nb == 1 then
if obj.type == "point" then
return homothety_ (self,coeff,obj )
elseif obj.type == "line" then
return line : new (set_homothety_ (self, coeff,obj.pa,obj.pb ))
elseif obj.type == "triangle" then
return triangle: new (set_homothety_(self,coeff,obj.pa,obj.pb,obj.pc))
elseif obj.type == "circle" then
return circle: new (set_homothety_(self,coeff,obj.center,obj.through))
else
return square: new (set_homothety_(self,coeff,obj.pa,obj.pb))
end
else
t = {}
for i=1,tp.n do
table.insert( t , homothety_ ( self,coeff,tp[i]))
end
return table.unpack ( t )
end
end
function point: normalize()
local d = point.abs(self)
return point(self.re/d,self.im/d)
end
function point: orthogonal(d)
local m
if d==nil then
return point(-self.im,self.re)
else
m = point.mod(self)
return point(-self.im*d/m,self.re*d/m)
end
end
function point : at (z)
return point(self.re+z.re,self.im+z.im)
end
function point : print ()
tex.print(tostring(self))
end
|